
16B
MORE ON FILES — NAVIGATION

SERVICES
Includes Demonstration Program Files2

Introduction
Navigation Services, which was introduced with Mac OS 8.51 as an alternative to, and
ultimately as a replacement for, the Standard File Package described at Chapter 16,
provides greatly enhanced functionality in the area of document management. Navigation
Services provides for opening and saving documents, confirming saves and discarding
changes, choosing a volume, folder, file, or file object, creating a new folder, file format
translation, and easier navigation.

The dialog and alert boxes created by Navigation Services are all Appearance-compliant.
Provided that your application provides an event-handling callback function, the primary
dialog boxes are resizable and movable and the alert boxes are movable.

As is the case with the Standard File Package dialogs, the primary Navigation Services
dialog boxes may be customised.

Navigation Services Dialog and Alert Boxes
The primary dialog boxes created by Navigation Services are as follows:

• Open.

• Save.

• Choose a folder.

• Choose a volume.

• Choose a file.

• Choose a file object.

1 Although introduced with Mac OS 8.5, Navigation Services may be used with Mac OS 7.5.5 or later provided Appearance
Manager 1.0.1 or later is present. QuickTime is also required if previews of graphic documents are to be created and
viewed. Macintosh Easy Open is required for document translation and the correct display of file types. On 680x0 systems,
Navigation Services requires the CFM-68K Runtime Enabler.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-1

• Create a new folder.

The alert boxes created by Navigation Services are as follows:

• Save changes.

• Discard changes.

Standard User Interface Elements in Dialog Boxes
The standard user interface elements in Navigation Services primary dialog boxes are
shown at Fig 1.

FIG 1 - STANDARD USER INTERFACE ELEMENTS IN NAVIGATION SERVICES DIALOG BOXES

BROWSER

LOCATION POP-UP MENU BUTTON SHORTCUTS BEVEL BUTTONFAVOURITES BEVEL BUTTONRECENT BEVEL BUTTON

CANCEL PUSH BUTTON DEFAULT PUSH BUTTON

BROWSER LIST

SORT
ORDER
BEVEL
BUTTON

SHOW PUSH BUTTON

PREVIEW
BUTTON

SIZE BOX

SORT KEY BEVEL BUTTONS

Note: The Open dialog box is shown. The names of the user interface elements common to all primary Navigation Services dialog boxes appear in boxes.

The menus associated with the standard user interface elements known as the Shortcut,
Favourites, and Recent bevel buttons are shown in more detail at Fig 2.

16B-2 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

FIG 2 - SHORTCUTS, FAVOURITES, AND RECENT
BEVEL BUTTON MENUS (TYPICAL)

Commands
section

Documents
section
(Open dialog
only)

Folders and
Volumes
section

Folders and
Volumes
section

SHORTCUTS FAVOURITES

RECENT

Allows quick navigation to any mounted
storage volume, or straight to the desktop.
If ejectable volumes are mounted, an Eject
item appears at the bottom of the menu.

The Add to Favorites command allows the user to
add the currently selected item to this menu. The
Remove from Favorites command opens a dialog
which allows the user to remove items from the menu.

Documents
section
(Open dialog
only)

The number of items in each section of
the Recent menu will not exceed the
number set in the Apple Menu Options
dialog box.

As an alternative to the Add to Favorites command, users can add an
item to the Favourites menu by dragging the file or folder from the
browser list or desktop to the Favourites bevel button.

Moving and Resizing Navigation Services Dialog Boxes
Navigation Services primary dialog boxes are movable and resizable only if your
application provides an application-defined event-handling callback function to handle
update events. A universal procedure pointer to your event-handling function is passed in
the eventProc parameter of Navigation Services functions such as NavGetFile (see below).

Browser List Expansion

When the user resizes the dialog box using the size box, the browser list expands
proportionately. The date format in the browser list changes as the browser list expands.

Sort Keys and Sort Order
Clicking on one of the sort key bevel buttons (Name or Date) causes the browser list to be
sorted on that key. The sort order (ascending or descending) may be toggled by clicking
the sort order bevel button. Navigation Services tracks the sort key and sort order for
each application.

Preview Area
Navigation Services provides a preview area in all dialog boxes which open files. This
area can be toggled on or off by the user using the Show/Hide Preview push button. If the
preview area is visible, Navigation Services will automatically display a preview of any file
that contains a valid 'pnot' resource. You can request preview display by ensuring that the
kNavAllowPreviews constant is set in the dialogOptionFlags field of the NavDialogOptions structure (see
below).

Persistence
Persistence is the ability of Navigation Services to store information, and to store it on a
per-application basis. For example, when a primary dialog box is displayed, the browser
defaults to the directory location that was in use when that particular dialog box was last
closed by the application. In addition, if a file or folder was selected when the dialog box
was last closed, that file or folder is automatically selected when the dialog is re-opened.
The size, position, sort key and sort order of dialog boxes are also memorised for each
application.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-3

Default Location and Selection
If you pass NULL in the defaultLocation parameter of functions such as NavGetFile (see below),
Navigation Services will display the default location and selection. You can override
the default location and selection of any Navigation Services dialog box by passing a
pointer to an Apple event descriptor (AEDesc) for the new location in the defaultLocation
parameter.

Opening Files
The function NavGetFile displays an Open dialog box that prompts the user to select a file (or
files) to open.

Opening Multiple Files
By Shift-clicking in the Open dialog box's browser list, or by choosing the Select All item in
the application's Edit menu, the user can open multiple files.2

The Show Pop-up Menu
The Show pop-up menu in the Open dialog box allows the user to choose the file types to
be displayed by the browser list and opened by Navigation Services. The list of available
file types is built from information supplied by your application when it calls NavGetFile, and
by services in the Translation Manager. (See Fig 3.)

Note: The Show pop-up menu button will not appear in the
Open dialog if you supply the kNavNoTypePopup
constant in the dialogOptionsFlags field of the
NavDialogOptions structure.

The first section contains your application's native file types. Native file types are those whose type
and creator codes appear in the NavTypeList structure whose handle is passed in the openList
parameter of the NavGetFile function. The first item provides the user with a way to see all native
file types at once. The following items provide the user with a way to display files of one type only.
This section contains a list of file types provided by the Translation Manager. Navigation Services
will automatically translate these file types unless you supply the kNavDontAutoTranslate
constant in the dialogOptionsFlags field of the NavDialogOptions structure passed in
the dialogOptions parameter of the NavGetFile function. This section will not appear if you
supply the kNavDontAddTranslateItems constant in the dialogOptionsFlags field.
This section is reserved for other file types. The All Readable item appears if your application supplies
the kNavAllFilesInPopup constant in the dialogOptionsFlags field of the
NavDialogOptions structure passed in the dialogOptions parameter of the NavGetFile
function. This option allows the display of all files regardless of your application's ability to translate or
open them directly.

FIG 3 - THE SHOW POP-UP MENU AND FILE TYPE OPTIONS

Native File Types Section

The first item in the native file types section of the Show pop-up menu defaults to All
Readable Files if you do not assign the name of your application to the clientName field of the
NavDialogOptions structure (see below) passed in the dialogOptions parameter of the NavGetFile
function.

The remaining items in the native file types section will default to <Application Name>
Document unless you provide kind strings to describe the file types included in your
NavTypeList structure. You can do this by including a kind resource (a resource of type
'kind') in your application's resource fork. Fig 4 shows the structure of a compiled 'kind'
resource and such a resource being created using Resorcerer.3

2 Folders and volumes cannot be multiple-selected.
3 The kind strings from your application's 'kind' resource also appear in the Kind column in Finder window list views.

16B-4 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

FIG 4 - STRUCTURE OF A COMPILED 'kind' RESOURCE AND CREATING A 'kind' RESOURCE USING RESORCERER

Note: The special file type 'apnm' has been included so that, whenever Navigation Services encounters a document that belongs to your application, but whose file
type has not been included in the 'kind' resource, a kind string in the form "<application name> document" will be generated.

APPLICATION SIGNATURE

REGION CODE

FILLER

KIND ARRAY COUNT

2

2

FIRST FILE TYPE

BYTES

4

4

2

4

COMPILED 'kind' RESOURCERESORCERER 'kind' RESOURCE EDITING WINDOW

FIRST KIND STRING

LAST FILE TYPE

ALIGNMENT BYTES

LAST KIND STRING

ALIGNMENT BYTES

1 TO 256

1 TO 256

The NavDialogOptions and NavTypeList Structures
Fig 3 referred to the NavTypeList structure, which defines a list of file types that your
application is capable of opening, and the NavDialogOptions structure, which contains dialog
box configuration settings.

The NavTypeList Structure

The NavTypeList structure is as follows:
struct NavTypeList
{

OSType componentSignature; // Your application signature.
short reserved;
short osTypeCount; // How many file types will be defined.
OSType osType[1]; // A list of file types your application can open.

};

You can create your file type list dynamically or you can use an 'open' resource. Fig 5
shows the structure of a compiled 'open' resource and such a resource being created using
Resorcerer.

FIG 5 - STRUCTURE OF A COMPILED 'open' RESOURCE AND CREATING AN 'open' RESOURCE USING RESORCERER

APPLICATION SIGNATURE

FILLER

FILE TYPE COUNT

FIRST FILE TYPE

2

2

LAST FILE TYPE

BYTES

4

4

4

COMPILED 'open' RESOURCE

RESORCERER 'open' RESOURCE EDITING WINDOW

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-5

The NavDialogOptions Structure

The NavDialogOptions structure is as follows:
struct NavDialogOptions
{

UInt16 version;
NavDialogOptionFlags dialogOptionFlags;
Point location;
Str255 clientName;
Str255 windowTitle;
Str255 actionButtonLabel;
Str255 cancelButtonLabel;
Str255 savedFileName;
Str255 message;
UInt32 preferenceKey;
Handle popupExtension;

};

Field Descriptions

dialogOptionsFlags One of the following constants of type NavDialogOptionFlags:

Constant Description
kNavDefaultNavDlogOptions Use default options. The defaults are as

follows:
• No custom control titles.
• No banner or prompt message.
• Automatic resolution of aliases.
• Support for file previews.
• No invisible file objects are displayed.
• Support for stationery.

kNavNoTypePopup Don't show file type pop-up.
kNavDontAutoTranslate Don't auto-translate on Open.
kNavDontAddTranslateItems Don't add translation choices.
kNavAllFilesInPopup Add "All Files" menu item.
kNavAllowStationery Allow stationery files.
kNavAllowPreviews Allow previews.
kNavAllowMultipleFiles Allow multiple selection.
kNavAllowInvisibleFiles Show invisible objects.
kNavDontResolveAliases Don't resolve aliases.
kNavSelectDefaultLocation Make default location the browser selection.
kNavSelectAllReadableItem Make All Readable Items default selection.
kNavSupportPackages Recognise file system packages.
kNavAllowOpenPackages Allow opening of packages.
kNavDontAddRecents Don't add chosen objects to Recents list.
kNavDontUseCustomFrame Don't add the bevelled custom frame.

Those appearing on a gray background are available only in Navigation
Services Version 2.0 or later. Version 2.0 was first issued with Mac OS
9.0.

location The upper-left location of the dialog box, in global coordinates. If the
dialogOptionFlags field is NULL or the coordinate value is (-1,-1), then the
dialog box appears in the same location as when last closed. The size
and location of the dialog box is persistent, but defaults to opening in
the middle of the main screen if any portion is not visible when opened
at the persistent location and size.

clientName A string that identifies your application in the dialog box window title.

16B-6 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

windowTitle A string that you can provide to override the default window title.

actionButtonLabel An alternative button title for the dialog box’s action push button. If
you do not specify a label, the push button will use the default label
(Open or Save, for example.)

cancelButtonLabel An alternative button title for the Cancel push button in dialog boxes.

savedFileName The default file name for a saved file.

message The string for the banner, or prompt, below the browser list. This
message can provide more descriptive instructions for the user. If you
don’t provide a message string, the browser list will expand to fill that
area.

preferenceKey An application-defined value that identifies which set of dialog box
preferences Navigation Services should use. If your application
maintains multiple sets of preferences for a particular type of dialog
box, you can determine which set is active by specifying the
appropriate value in the preferenceKey field. For example, an application
may allow one set of preferences when it calls the function NavGetFile to
open text files and a different set of preferences when opening movie
files. If you do not wish to provide a preference key, specify zero for
the preferenceKey value.

popupExtension A handle to one or more structures of type NavMenuItemSpec used to add
extra menu items to the Show pop-up menu in an Open dialog box or the
Format pop-up menu in Save dialog boxes. Using NavMenuItemSpec
structures allows your application to add additional document types to
be opened or saved, or different ways of saving a file (with or without
line breaks, for example).

The function NavGetDefaultDialogOptions may be called to initialise a structure of type
NavDialogOptions with the default dialog box options.

The NavReplyRecord Structure
The second parameter in the NavGetFile function, and in other Navigation Services functions,
is a pointer to a structure of type NavReplyRecord. Navigation Services uses this structure to
provide your application with information about the user's actions. The NavReplyRecord
structure is as follows:

struct NavReplyRecord
{

UInt16 version;
Boolean validRecord;
Boolean replacing;
Boolean isStationery;
Boolean translationNeeded;
AEDescList selection;
ScriptCode keyScript;
FileTranslationSpec **fileTranslation;

};

Field Descriptions

validRecord true if the user closes a dialog box by pressing Return or Enter, or by
pressing the default button in an Open or Save dialog box. If this field is
false, all other fields are unused and do not contain valid data.

replacing true if the user chooses to save a file by replacing an existing file
(thereby necessitating the removal or renaming of the existing file).

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-7

isStationery A Boolean value informing your application that the file about to be
saved should be saved as a stationery document.

translationNeeded A Boolean value indicating that translation was or will be needed for
files selected in Open and Save dialog boxes.

0 An Apple event descriptor list (AEDescList) created from FSSpec references
to items selected through the dialog box. Navigation Services creates
this list, which is automatically disposed of when your application calls
the function NavDisposeReply (see below). You can determine the number
of items in the list by calling the Apple Event Manager function
AECountItems. (Some dialog boxes may return one or more items; a Save
dialog box will always return one.) Each selected item is described in an
AEDesc structure by the descriptor type typeFSS. You can coerce this
descriptor into an FSSpec structure to perform operations such as opening
the file.

keyScript The keyboard script system used for the filename.

fileTranslation A handle to a FileTranslationSpec structure. This structure contains a
corresponding translation array for each file reference returned in the
selection field. When opening files, Navigation Services will perform the
translation automatically unless you set the kNavDontAutoTranslate flag in the
dialogOptionFlags field of the NavDialogOptions structure. When Navigation
Services performs an automatic translation, the FileTranslationSpec structure
is strictly for the Translation Manager’s use. If you turn off automatic
translation, your application may use the FileTranslationSpec structure for its
own translation scheme. If the user chooses a translation for a saved
file, the FileTranslationSpec structure contains a single translation reference
for the saved file and the translationNeeded field of the NavReplyRecord
structure is set to true. The handle to the FileTranslationSpec structure is
locked, so you can safely use dereferenced pointers.

When your application has finished using this structure, it should dispose of it by calling
the function NavDisposeReply.

16B-8 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

Saving Files
The function NavPutFile displays the Save dialog box (see Fig 6).

FIG 6 - THE SAVE DIALOG BOX (PARTIAL), THE FORMAT POP-UP MENU, THE STATIONERY OPTION DIALOG
BOX, AND THE NEW FOLDER DIALOG BOX

The first item is defined by the document type specified by your application in the fileType and
fileCreator parameters of the NavPutFile function. The item's menu title is obtained from the Translation
Manager.
After setting the first item, Navigation Services calls the Translation Manager to determine whether to
display subsequent menu items describing alternative file types.
The Stationery Option item displays the Stationery option dialog box, which lets the user decide
whether a new document or a copy of a document should be saved as a document or as stationery.

When the user selects a folder,
the default push button title
toggles from Save to Open.

When the user selects the
Name editable text field, the
default push button title reverts
to Save.

When no filename is displayed
in the Name editable text field,
the default push button is
disabled.

Note: The Format pop-up menu button will not appear in the Save dialog if you supply the kNavNoTypePopup constant in the dialogOptionsFlags field of the
NavDialogOptions structure.

The New push button enables the user to
create a new folder for saving a document.

You should always call the function NavCompleteSave to complete any save operation.
Amongst other things, NavCompleteSave performs any needed translation.

Translating Files on Save
As stated at Fig 6, your application supplies its default file type and creator for saved files
to the function NavPutFile and Navigation Services uses this information to build a pop-up
menu of available translation choices obtained from the Translation Manager.

If the user selects an output file type that is different from the native type, Navigation
Services prepares a translation specification and supplies a handle to it in the fileTranslation
field of a NavReplyRecord structure. If you choose to provide your own translation, Navigation
Services informs you that translation is required by setting the translationNeeded field of the
NavReplyRecord structure to true.

If you wish to turn off automatic translation, set the value of the translationNeeded field of the
NavReplyRecord structure to false before calling the NavCompleteSave function.

By default, the NavPutFile function saves translations as a copy of the original file. Your
application can direct Navigation Services to replace the original with the translation by
passing the kNavTranslateInPlace constant in the howToTranslate parameter of the NavCompleteSave
function.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-9

Choosing A Folder
The function NavChooseFolder displays a dialog box that prompts the user to choose a folder
(see Fig 7.)

FIG 7 - CHOOSE A FOLDER DIALOG BOX

If a string assigned to the message field of the
NavDialogOptions structure, it is displayed here.

The browser list in the Choose Folder dialog
displays only directories and volumes.

Several Navigation Services functions return Apple event descriptors for file objects.
When Navigation Services passes your application an AEDesc structure of type typeFSS
describing a file, the name field will contain the file’s name and the parID field will contain
the directory ID of the file’s parent directory. However, when Navigation Services passes
your application an AEDesc structure of type typeFSS describing a directory, the name field is
empty and the parID field contains the directory ID of that directory.4

Choosing Volumes, Files, File Objects, and Creating a
New Folder

The function NavChooseVolume displays a dialog box that prompts the user to choose a
volume.

The function NavChooseFile displays a dialog box that prompts the user to choose a file. This
file can be a preferences file, dictionary, or other specialised file.

The function NavChooseObject displays a dialog box that prompts the user to choose a file
object. This function is useful when you need the user to select an object which might be
one of several different types.

The function NavNewFolder displays a dialog box that prompts the user to create a new
folder.

As with the Choose Folder dialog box, these dialog boxes will display a string assigned to
the message field of the NavDialogOptions structure immediately below the browser list.

4 This means, incidentally, that you can use the name field to determine whether an object is a file or a folder.

16B-10 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

Save Changes and Discard Changes Alert Boxes
Save Changes Alert Box

To display a standard Save Changes alert box, your application passes the document title
to the function NavAskSaveChanges, which creates an alert box similar to that shown at Fig 8.

FIG 8 - STANDARD SAVE CHANGES ALERT BOX (QUITTING APPLICATION)

One of the following constants is passed in the action parameter of the NavAskSaveChanges
function:

kNavSaveChangesClosingDocument = 1
kNavSaveChangesQuittingApplication = 2
kNavSaveChangesOther = 0

After the user closes the alert box, Navigation Services tells your application which push
button the user clicked by returning one of the following constants:

kNavAskSaveChangesSave = 1
kNavAskSaveChangesCancel = 2
kNavAskSaveChangesDontSave = 3

You can display a customised Save Changes alert box using the function
NavCustomAskSaveChanges. A typical customised Save Changes alert box might contain text
such as "You have not saved your work for ten minutes. Do you want to save now?". The
message field of the NavDialogOptions structure passed in the dialogOptions parameter of
NavCustomAskSaveChanges is the only one you must supply with a value.

Save Changes alert boxes are movable only if your application provides an application-
defined event-handling callback function to handle update events.

Discard Changes Alert Box
To support a Revert To Saved item in your application's File menu, Navigation Services
provides the Discard Changes alert box (see Fig 9), which is created by the function
NavAskDiscardChanges.

FIG 9 - DISCARD CHANGES ALERT BOX

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-11

After the user closes the alert box, Navigation Services tells your application which button
the user clicked by returning one of the following constants:

kNavAskDiscardChanges = 1
kNavAskDiscardChangesCancel = 2

Discard Changes alert boxes are movable only if your application provides an application-
defined event-handling callback function to handle update events.

Application-Defined Functions
Application-Defined Event Handling

As previously stated, Navigation Services primary dialog boxes are movable and resizable,
and Navigation Services alert boxes are movable, only if your application provides an
application-defined event-handling function to handle update events. A universal
procedure pointer to your event-handling function is passed in the eventProc parameter of
Navigation Services functions such as NavGetFile and NavAskSaveChanges.

The following is an example of an event-handling function:
pascal void myEventFunction(NavEventCallbackMessage callBackSelector,

 NavCBRecPtr callBackParms,void *callBackUD)
{
WindowPtr window;

WindowPtr = (WindowPtr) callBackParms->eventData.event->message;

switch (callBackSelector)
{

case kNavCBEvent:
switch (callBackParms->eventData.event->what)
{

case updateEvt:
doUpdate(window,(EventRecord *) callBackParms->eventData.event);
break;

}
break;

}

The formal parameter callBackSelector receives an event message constant indicating which
type of call Navigation Services is making to the event-handling function. One such
constant is kNavCBEvent, which indicates that an event has occurred, and which is the only
message that needs to be processed by applications that do not customise the Open and
Save dialog boxes. callBackParms is a pointer to a structure of type NavCBRec. The event's
event structure resides in the eventData field of the NavCBRec structure.

Application-Defined Object Filtering
The process of choosing which files, folders and volumes to display in the browser list and
the ShortCuts, Favourites, and Recent menus is known as object filtering. If your
application needs simple, straightforward object filtering, and as previously described,
you simply pass a pointer to a structure of type NavTypeList to the relevant Navigation
Services function. If you desire more specific filtering, Navigation Services lets you
implement an application-defined filter function. Filter functions give you more control
over what can and cannot be displayed.

You can use both an NavTypeList structure and a filter function if you wish, but be aware that
your filter function is directly affected by the NavTypeList structure. For example, if the
NavTypeList structure contains only TEXT and PICT types, only TEXT and PICT files will be
passed into your filter function.

16B-12 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

You pass a universal procedure pointer to your filter function in the filterProc parameter of
functions such as NavGetFile. Your filter function should return true if an object is to be
displayed.

The following is an example of a simple filter function:
pascal void myFilterFunction(AEDesc* theItem,void* info,

NavCallBackUserData callBackUD,
NavFilterModes filterMode)

{
 OSErr theErr = noErr;
 Boolean display = true;
 NavFileOrFolderInfo* theInfo = (NavFileOrFolderInfo*) info;

 if(theItem->descriptorType == typeFSS)
 if(!theInfo->isFolder)
 if(theInfo->fileAndFolder.fileInfo.finderInfo.fdType != 'TEXT')
 display = false;

 return display;
}

Application-Defined Previews
To override how previews are drawn and handled, you can create a preview function and
pass a universal procedure pointer to it in the previewProc parameter of Navigation Services
functions such as NavGetFile. Your preview function must be defined like this:

pascal Boolean myPreviewProc(NavCBRecPtr callBackParms,NavCallBackUserData callBackUD);

callBackParms A pointer to a NavCBRec structure that contains event data needed for
your function to draw the preview.

callBackUD A value set by your application. When the NavGetFile function calls back
your event-handling function, the callBackUD value is passed back to your
application.

Return: true if your preview function successfully draws the file preview. If your
preview function returns false, Navigation Services will display the preview if the file
contains a valid 'pnot' resource.

Your application can use the function NavCustomControl to determine if the preview area is
visible and, if so, what its dimensions are.

Adding Controls to a Navigation Services Dialog Box
To add controls to a Navigation Services dialog box, you should:

• Provide an event-handling function to communicate with Navigation Services.

• Within the event-handling function, respond to the kNavCBCustomize event message
constant, which your application can obtain from the param field of the NavCBRec
structure. (See Application-Defined Event Handling, above.) The customRect field of
the NavCBRec structure defines a rectangle in the local coordinates of the window.
The top-left coordinates of this rectangle define the anchor point for the
customisation rectangle, which is the area Navigation Services provides for your
application to add custom dialog items. Your application responds by passing the
values which will complete the dimensions of your required customisation rectangle.
Navigation Services inspects the customRect field to determine if the requested
dimensions can be accommodated in the screen space available. If not, the
rectangle will be set to the largest size that can be accommodated and your
application will be sent another kNavCBCustomize constant. Your application can
continue to negotiate by examining the customRect field and requesting a different size

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-13

until Navigation Services provides an acceptable rectangle value. The minimum
dimensions for the customisation area are 400 pixels wide by 40 pixels high.5

• With the customisation rectangle established, check for the kNavCBStart event message
constant in the param field of the NavCBRec structure. kNavCBStart indicates that
Navigation Services is opening the dialog box. After you obtain this constant, you
can add your interface elements to the customisation rectangle. You can do this by
providing a 'DITL' resource (in local coordinates, relative to the anchor point of the
customisation rectangle) and passing the kNavCtlAddControlList constant in the selector
parameter of the function NavCustomControl. The following shows one way to do this:

gDitlList = GetResource('DITL',kControlListID);
theErr = NavCustomControl(callBackParms->context,kNavCtlAddControlList,gDitlList);

The advantage of using a 'DITL' resource is that the Dialog Manager will handle all
control movement and tracking.

• When Navigation Services supplies the kNavCBTerminate event message constant in the
param field of the NavCBRec structure (after the user closes the dialog box), dispose of
the control or resource.

Main Navigation Services Constants, Data Types, and
Functions

In the following, those constants and functions appearing on a gray background are
available only in Navigation Services Version 2.0 or later. Version 2.0 was first issued
with Mac OS 9.0.

Constants
Configuration Options
kNavDefaultNavDlogOptions = 0x000000E4 // Use defaults for all the options
kNavNoTypePopup = 0x00000001 // Don't show file type/extension popup on Open/Save
kNavDontAutoTranslate = 0x00000002 // Don't automatically translate on Open
kNavDontAddTranslateItems = 0x00000004 // Don't add translation choices on Open/Save
kNavAllFilesInPopup = 0x00000010 // "All Files" menu item in the type popup on Open
kNavAllowStationery = 0x00000020 // Allow saving of stationery files
kNavAllowPreviews = 0x00000040 // Allow to show previews
kNavAllowMultipleFiles = 0x00000080 // Allow multiple items to be selected
kNavAllowInvisibleFiles = 0x00000100 // Allow invisible items to be shown
kNavDontResolveAliases = 0x00000200 // Don't resolve aliases
kNavSelectDefaultLocation = 0x00000400 // Make the default location the browser selection
kNavSelectAllReadableItem = 0x00000800 // Make dialog select "All Readable Documents" on Open
kNavSupportPackages = 0x00001000 // Recognize file system packages
kNavAllowOpenPackages = 0x00002000 // Allow opening of packages
kNavDontAddRecents = 0x00004000 // Don't add chosen objects to the recents list
kNavDontUseCustomFrame = 0x00008000 // Don't add the bevelled custom frame

Save Changes Request
kNavSaveChangesClosingDocument = 1
kNavSaveChangesQuittingApplication = 2
kNavSaveChangesOther = 0

Save Changes Action
kNavAskSaveChangesSave = 1
kNavAskSaveChangesCancel = 2
kNavAskSaveChangesDontSave = 3

Discard Changes Action

5 The customRect field contains an empty rectangle if customisation is not allowed (i.e. dialog boxes other than Open or
Save). In this case, your application can simply ignore the call.

16B-14 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

kNavAskDiscardChanges = 1
kNavAskDiscardChangesCancel = 2

Event Message
kNavCBEvent = 0 // An event has occurred (update, idle events, etc.)
kNavCBCustomize = 1 // Protocol for negotiating customization space
kNavCBStart = 2 // The navigation dialog is starting up
kNavCBTerminate = 3 // The navigation dialog is closing down
kNavCBAdjustRect = 4 // The navigation dialog is being resized
kNavCBNewLocation = 5 // User has chosen a new location in the browser
kNavCBShowDesktop = 6 // User has navigated to the desktop
kNavCBSelectEntry = 7 // User has made a selection in the browser
kNavCBPopupMenuSelect = 8 // Signifies that a popup menu selection was made
kNavCBAccept = 9 // User has accepted the navigation dialog
kNavCBCancel = 10 // User has cancelled the navigation dialog
kNavCBAdjustPreview = 11 // Preview button clicked or preview was resized
kNavCBOpenSelection = (long) 0x80000000 // User has opened or chosen an object

Object Filtering
kNavFilteringBrowserList = 0
kNavFilteringFavorites = 1
kNavFilteringRecents = 2
kNavFilteringShortCutVolumes = 3

Data Types
NavDialog Options Structure
struct NavDialogOptions
{

UInt16 version;
NavDialogOptionFlags dialogOptionFlags;
Point location;
Str255 clientName;
Str255 windowTitle;
Str255 actionButtonLabel;
Str255 cancelButtonLabel;
Str255 savedFileName;
Str255 message;
UInt32 preferenceKey;
Handle popupExtension;
char reserved[494];

};
typedef struct NavDialogOptions NavDialogOptions;

Nav Reply Structure
struct NavReplyRecord
{

UInt16 version;
Boolean validRecord;
Boolean replacing;
Boolean isStationery
Boolean translationNeeded;
AEDescList selection;
ScriptCode keyScript;
FileTranslationSpec **fileTranslation;
UInt32 reserved1;
char reserved[231];

};
typedef struct NavReplyRecord NavReplyRecord;

NavTypeList
struct NavTypeList
{

OSType componentSignature;
short reserved;
short osTypeCount;
OSType osType[1];

};
typedef struct NavTypeList NavTypeList;
typedef NavTypeList *NavTypeListPtr;

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-15

typedef NavTypeListPtr *NavTypeListHandle;

Functions
Calling Navigation Services
OSErr NavLoad(void);
OSErr NavUnload(void);
OSErr NavGetDefaultDialogOptions(NavDialogOptions *dialogOptions);
OSErr NavDisposeReply(NavReplyRecord *reply);

Choosing Files, Folders, and Volumes
OSErr NavGetFile(AEDesc *defaultLocation,NavReplyRecord *reply,

NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavPreviewUPP previewProc,
NavObjectFilterUPP filterProc,NavTypeListHandle typeList,
NavCallBackUserData callBackUD);

OSErr NavChooseFile(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavPreviewUPP previewProc,
NavObjectFilterUPP filterProc,NavTypeListHandle typeList,
NavCallBackUserData callBackUD);

OSErr NavChooseVolume(AEDesc *defaultSelection,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavObjectFilterUPP filterProc,
NavCallBackUserData callBackUD);

OSErr NavChooseFolder(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavObjectFilterUPP filterProc,
NavCallBackUserData callBackUD);

OSErr NavChooseObject(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavObjectFilterUPP filterProc,
NavCallBackUserData callBackUD);

OSErr NavNewFolder(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavCallBackUserData callBackUD);

OSErr NavCreatePreview(AEDesc *theObject,OSType previewDataType,const void *previewData,
Size previewDataSize);

Saving Files
OSErr NavPutFile(AEDesc *defaultLocation,NavReplyRecord *reply,

NavDialogOptions *dialogOptions,NavEventUPP eventProc,OSType fileType,
OSType fileCreator, NavCallBackUserData callBackUD);

OSErr NavAskSaveChanges(NavDialogOptions *dialogOptions,NavAskSaveChangesAction action,
NavAskSaveChangesResult *reply,NavEventUPP eventProc,NavCallBackUserData callBackUD);

OSErr NavCustomAskSaveChanges(NavDialogOptions *dialogOptions,
NavAskSaveChangesResult *reply,NavEventUPP eventProc,NavCallBackUserData callBackUD);

OSErr NavAskDiscardChanges(NavDialogOptions *dialogOptions,
NavAskDiscardChangesResult *reply,NavEventUPP eventProc,
NavCallBackUserData callBackUD);

OSErr NavCompleteSave(NavReplyRecord *reply,NavTranslationOptions howToTranslate);

Demonstration Program
// ◊◊
// Files2.h
// ◊◊
//
// This program demonstrates:
//
// • The use of Navigation Services rather than the Standard File Package to display
// Open, Save, and Choose a Folder dialog boxes.
//
// • The use of Navigation Services rather than the Dialog Manager to display Save
// Changes and Discard Changes alert boxes.
//
// • Application-defined file handling functions associated with:
//
// • The user invoking the File menu Open…, Close, Save, Save As…, Revert to Saved,
// and Quit commands of a typical application.
//
// • Handling of the required Apple events Open Application, Re-open Application,
// Open Documents and Quit Application.
//
// These functions are essentially the same as those in the demonstration program
// Files1 except that the safe-save methodology used in Files1 is not used, all

16B-16 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

// saves being direct to the target file.
//
// To keep the code not specifically related to files and file-handling to a minimum, an
// item is included in the Demonstration menu which allows the user to simulate
// "touching" a window (that is, modifying the contents of the associated document).
// Choosing the first menu item in this menu sets the window-touched flag in the window's
// document structure to true and draws the text "WINDOW TOUCHED" in the window in a
// large font size, this latter so that the user can keep track of which windows have
// been "touched".
//
// This program is also, in part, an extension of the demonstration program Windows2 in
// that it also demonstrates certain file-related Window Manager features introduced with
// the Mac OS 8.5 Window Manager. These features are:
//
// • Window proxy icons.
//
// • Window path pop-up menus.
//
// Those sections of the source code relating to these features is identified with /////
// at the right of each line.
//
// The program utilises the following resources:
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration
// menus (preload, non-purgeable).
//
// • A 'WIND' resource (purgeable) (initially not visible).
//
// • A 'STR ' resource containing the "missing application name" string, which is copied
// to all document files created by the program.
//
// • 'STR#' resources (purgeable) containing error strings, the application's name (for
// certain Navigation Services functions), and a message string for the Choose a
// Folder dialog box.
//
// • A 'kind' resource (purgeable) describing file types, which is used by Navigation
// Services to build the native file types section of the Show pop-up menu in the
// Open dialog box.
//
// • An 'open' resource (purgeable) containing the file type list for the Open dialog
// box.
//
// • A 'pnot' and associated 'PICT' resource (both purgeable), which provide the preview
// for the PICT file.
//
// • The 'BNDL' resource (non-purgeable), 'FREF' resources (non-purgeable), signature
// resource (non-purgeable), and icon family resources (purgeable), required to
// support the built application.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, isHighLevelEventAware, and
// is32BitCompatible flags set (non-purgeable).
//
// ◊◊

//
………
…………………………………… includes

#include <Appearance.h>
#include <AERegistry.h>
#include <Devices.h>
#include <Folders.h>
#include <Gestalt.h> /////
#include <Navigation.h>
#include <Resources.h>
#include <Sound.h>
#include <ToolUtils.h>

//
………
…………………………………… typedefs

typedef struct
{

TEHandle editStrucHdl;
PicHandle pictureHdl;
SInt16 fileRefNum;
FSSpec fileFSSpec;
AliasHandle aliasHdl; /////

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-17

Boolean windowTouched;
} docStructure, *docStructurePointer, **docStructureHandle;

typedef StandardFileReply *standardFileReplyPtr;

//
………
……………………………………… defines

#define mApple 128
#define iAbout 1
#define mFile 129
#define iNew 1
#define iOpen 2
#define iClose 4
#define iSave 5
#define iSaveAs 6
#define iRevert 7
#define iQuit 12
#define mDemonstration 131
#define iTouchWindow 1
#define iChooseAFolderDialog 3
#define rNewWindow 128
#define rMenubar 128
#define rRevertAlert 128
#define rCloseFileAlert 129
#define rCustomOpenDialog 130
#define iPopupItem 10
#define rSelectDirectoryDialog131
#define iSelectButton 10
#define rErrorStrings 128
#define eInstallHandler 1000
#define eMaxWindows 1001
#define eFileIsOpen opWrErr
#define eNoNavServices 1002
#define eCantFindFinderProcess 1003 /////
#define rMiscStrings 129
#define sApplicationName 1
#define sChooseAFolder 2
#define rOpenResource 128
#define kMaxWindows 10
#define MAXLONG 0x7FFFFFFF
#define MIN(a,b) ((a) < (b) ? (a) : (b))

//
………
……… function prototypes

void main (void);
void eventLoop (void);
void doInitManagers (void);
void doInstallAEHandlers (void);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doBringFinderToFront (void); /////
OSErr doFindProcess (OSType,OSType,ProcessSerialNumber *); /////
void doUpdate (EventRecord *);
void doMenuChoice (SInt32);
void doFileMenu (SInt16);
void doAdjustMenus (void);
void doErrorAlert (SInt16);
void doCopyPString (Str255,Str255);
void doConcatPStrings (Str255,Str255);
void doTouchWindow (void);
void doSynchroniseFiles (void); /////
pascal OSErrdoOpenAppEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoReopenAppEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoOpenDocsEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoQuitAppEvent (AppleEvent *,AppleEvent *,SInt32);
OSErr doHasGotRequiredParams (AppleEvent *);

OSErr doNewCommand (void);
OSErr doOpenCommand (void);
OSErr doCloseCommand (NavAskSaveChangesAction);
OSErr doSaveCommand (void);
OSErr doSaveAsCommand (void);
OSErr doRevertCommand (void);
OSErr doQuitCommand (NavAskSaveChangesAction);
OSErr doNewDocWindow (Boolean,OSType);

16B-18 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

OSErr doOpenFile (FSSpec,OSType);
OSErr doReadTextFile (WindowPtr);
OSErr doReadPictFile (WindowPtr);
OSErr doCloseFile (WindowPtr,docStructureHandle,NavAskSaveChangesAction);
OSErr doWriteFile (WindowPtr,Boolean);
OSErr doWriteTextData (WindowPtr,SInt16);
OSErr doWritePictData (WindowPtr,SInt16);
OSErr doCopyResources (WindowPtr);
OSErr doCopyAResource (ResType,SInt16,SInt16,SInt16);
pascal void navEventFunction (NavEventCallbackMessage,NavCBRecPtr,NavCallBackUserData);

OSErr doChooseAFolderDialog (FSSpec *);

// ◊◊
// Files2.c
// ◊◊

//
………
…………………………………… includes

#include "Files2.h"

//
………
……………… global variables

Boolean gMacOS85Present = false; /////
Boolean gDone;
Boolean gInBackground;
AEEventHandlerUPP doOpenAppEventUPP;
AEEventHandlerUPP doReopenAppEventUPP;
AEEventHandlerUPP doOpenDocsEventUPP;
AEEventHandlerUPP doQuitAppEventUPP;
SInt16 gAppResFileRefNum;

extern SInt16 gCurrentNumberOfWindows;
extern Rect gDestRect,gViewRect;

// ◊◊◊ main

void main(void)
{

OSErr osError; /////
SInt32 response; /////
Handle menubarHdl;
MenuHandle menuHdl;

//
………
……initialise managers

doInitManagers();

// ……………………………………………………………………………………………………… check whether Mac OS 8.5 or later is
present

osError = Gestalt(gestaltSystemVersion,&response); /////
/////

if(osError == noErr && response >= 0x00000850) /////
gMacOS85Present = true; /////

// …………………………………………………………………………… check for Navigation Services, and pre-load (optional)

if(NavServicesAvailable())
NavLoad();

else
doErrorAlert(eNoNavServices);

// ……………………………………………………………………………………… create routine decriptors for Apple event handlers

doOpenAppEventUPP = NewAEEventHandlerProc((ProcPtr) doOpenAppEvent);
doReopenAppEventUPP= NewAEEventHandlerProc((ProcPtr) doReopenAppEvent);
doOpenDocsEventUPP = NewAEEventHandlerProc((ProcPtr) doOpenDocsEvent);
doQuitAppEventUPP = NewAEEventHandlerProc((ProcPtr) doQuitAppEvent);

// ……………………………………………………………………… set application's resource fork as current resource file

gAppResFileRefNum = CurResFile();

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-19

// …… set
up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

doErrorAlert(MemError());
SetMenuBar(menubarHdl);
DrawMenuBar();

menuHdl = GetMenuHandle(mApple);
if(menuHdl == NULL)

doErrorAlert(MemError());
else

AppendResMenu(menuHdl,'DRVR');

// …… install required Apple event
handlers

doInstallAEHandlers();

//
………
………… enter event loop

eventLoop();
}

// ◊◊ eventLoop

void eventLoop(void)
{

EventRecord eventStructure;

gDone = false;

while(!gDone)
{

if(WaitNextEvent(everyEvent,&eventStructure,MAXLONG,NULL))
doEvents(&eventStructure);

#if TARGET_CPU_PPC /////
else /////

if(gMacOS85Present) /////
doSynchroniseFiles(); /////

#endif /////
}

}

// ◊◊◊ doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

RegisterAppearanceClient();
}

// ◊◊ doInstallAEHandlers

void doInstallAEHandlers(void)
{

OSErr osError;

osError = AEInstallEventHandler(kCoreEventClass,kAEOpenApplication,doOpenAppEventUPP,
0L,false);

if(osError != noErr) doErrorAlert(eInstallHandler);

osError = AEInstallEventHandler(kCoreEventClass,kAEReopenApplication,

16B-20 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

doReopenAppEventUPP,0L,false);
if(osError != noErr) doErrorAlert(eInstallHandler);

osError = AEInstallEventHandler(kCoreEventClass,kAEOpenDocuments,doOpenDocsEventUPP,
0L,false);

if(osError != noErr) doErrorAlert(eInstallHandler);

osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,doQuitAppEventUPP,
0L,false);

if(osError != noErr) doErrorAlert(eInstallHandler);
}

// ◊◊◊ doEvents

void doEvents(EventRecord *eventStrucPtr)
{

SInt8charCode;

switch(eventStrucPtr->what)
{

case kHighLevelEvent:
AEProcessAppleEvent(eventStrucPtr);
break;

case mouseDown:
doMouseDown(eventStrucPtr);
break;

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)
{

doAdjustMenus();
doMenuChoice(MenuEvent(eventStrucPtr));

}
break;

case updateEvt:
doUpdate(eventStrucPtr);
break;

case osEvt:
switch((eventStrucPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:
gInBackground = (eventStrucPtr->message & resumeFlag) == 0;
break;

}
HiliteMenu(0);
break;

}
}

// ◊◊ doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
SInt16 partCode;
OSStatus osStatus; /////
Boolean handled = false; /////
SInt32 itemSelected; /////

partCode = FindWindow(eventStrucPtr->where,&windowPtr);

switch(partCode)
{

case inMenuBar:
doAdjustMenus();
doMenuChoice(MenuSelect(eventStrucPtr->where));
break;

case inContent:
if(windowPtr != FrontWindow())

SelectWindow(windowPtr);
break;

case inGoAway:

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-21

if(TrackGoAway(windowPtr,eventStrucPtr->where) == true)
doCloseCommand(kNavSaveChangesClosingDocument);

break;

#if TARGET_CPU_PPC /////
case inProxyIcon: /////

osStatus = TrackWindowProxyDrag(windowPtr,eventStrucPtr->where); /////
if(osStatus == errUserWantsToDragWindow) /////

handled = false; /////
else if(osStatus == noErr) /////

handled = true; /////
#endif /////

case inDrag: /////
#if TARGET_CPU_PPC /////

if(gMacOS85Present) /////
{ /////

if(!handled) /////
{ /////

if(IsWindowPathSelectClick(windowPtr,eventStrucPtr)) /////
{ /////

if(WindowPathSelect(windowPtr,NULL,&itemSelected) == noErr) /////
{ /////

if(LoWord(itemSelected) > 1) /////
doBringFinderToFront(); /////

} /////
/////

handled = true; /////
} /////

} /////
if(!handled) /////

DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds); /////
} /////
else /////

#endif /////
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);

break;
}

}

#if TARGET_CPU_PPC /////
// ◊◊◊ doBringFinderToFront

void doBringFinderToFront(void) /////
{ /////

ProcessSerialNumber finderProcess; /////
/////

if(doFindProcess('MACS','FNDR',&finderProcess) == noErr) /////
SetFrontProcess(&finderProcess); /////

else /////
doErrorAlert(eCantFindFinderProcess); /////

} /////

// ◊◊ doFindProcess

OSErr doFindProcess(OSType creator,OSType type,ProcessSerialNumber *outProcSerNo)
{ /////

ProcessSerialNumber procSerialNo; /////
ProcessInfoRec procInfoStruc; /////
OSErr osError = 0; /////

/////
procSerialNo.highLongOfPSN = 0; /////
procSerialNo.lowLongOfPSN = kNoProcess; /////

/////
procInfoStruc.processInfoLength = sizeof(ProcessInfoRec); /////
procInfoStruc.processName = NULL; /////
procInfoStruc.processAppSpec = NULL; /////
procInfoStruc.processLocation = NULL; /////

/////
while(true) /////
{ /////

osError = GetNextProcess(&procSerialNo); /////
if(osError != noErr) /////

break; /////
/////

osError = GetProcessInformation(&procSerialNo,&procInfoStruc); /////
if(osError != noErr) /////

break; /////
if((procInfoStruc.processSignature == creator) && (procInfoStruc.processType == type))

16B-22 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

break; /////
} /////

/////
*outProcSerNo = procSerialNo; /////

/////
return osError; /////

} /////
#endif /////

// ◊◊◊ doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
GrafPtr oldPort;
Rect destRect;

windowPtr = (WindowPtr) eventStrucPtr->message;
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

GetPort(&oldPort);
SetPort(windowPtr);

BeginUpdate(windowPtr);

if((*docStrucHdl)->pictureHdl)
{

destRect = (*(*docStrucHdl)->pictureHdl)->picFrame;
OffsetRect(&destRect,170,54);
HLock((Handle) (*docStrucHdl)->pictureHdl);
DrawPicture((*docStrucHdl)->pictureHdl,&destRect);
HUnlock((Handle) (*docStrucHdl)->pictureHdl);

}
else if((*docStrucHdl)->editStrucHdl)
{

HLock((Handle) (*docStrucHdl)->editStrucHdl);
TEUpdate(&gDestRect,(*docStrucHdl)->editStrucHdl);
HUnlock((Handle) (*docStrucHdl)->editStrucHdl);

}

if((*docStrucHdl)->windowTouched)
{

TextSize(48);
MoveTo(30,170);
DrawString("\pWINDOW TOUCHED");
TextSize(12);

}

EndUpdate((WindowPtr)eventStrucPtr->message);

SetPort(oldPort);
}

// ◊◊◊ doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{

SInt16 menuID, menuItem;
Str255 itemName;
SInt16 daDriverRefNum;
OSErr osError;
FSSpec fileSpec;
Rect theRect;
Str255 theString, numberString;

menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);
break;

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-23

case mFile:
doFileMenu(menuItem);
break;

case mDemonstration:
if(menuItem == iTouchWindow)

doTouchWindow();
else if(menuItem == iChooseAFolderDialog)
{

if((osError = doChooseAFolderDialog(&fileSpec)) && osError != userCanceledErr)
doErrorAlert(osError);

else
{

if(FrontWindow())
{

SetPort(FrontWindow());
TextSize(10);
SetRect(&theRect,0,271,600,300);
EraseRect(&theRect);
if(osError != userCanceledErr)
{

doCopyPString(fileSpec.name,theString);
doConcatPStrings(theString, "\p Volume Reference Number: ");
NumToString((SInt32) fileSpec.vRefNum,numberString);
doConcatPStrings(theString,numberString);
doConcatPStrings(theString, "\p Parent Directory ID: ");
NumToString((SInt32) fileSpec.parID,numberString);
doConcatPStrings(theString,numberString);
MoveTo(10,290);
DrawString(theString);

}
}

}
}
break;

}

HiliteMenu(0);
}

// ◊◊◊ doFileMenu

void doFileMenu(SInt16 menuItem)
{

OSErr osError;

switch(menuItem)
{

case iNew:
if(osError = doNewCommand())

doErrorAlert(osError);
break;

case iOpen:
if(osError = doOpenCommand())

doErrorAlert(osError);
break;

case iClose:
if((osError = doCloseCommand(kNavSaveChangesClosingDocument)) &&

osError != kNavAskSaveChangesCancel)
doErrorAlert(osError);

break;

case iSave:
if(osError = doSaveCommand())

doErrorAlert(osError);
break;

case iSaveAs:
if(osError = doSaveAsCommand())

doErrorAlert(osError);
break;

case iRevert:
if(osError = doRevertCommand())

doErrorAlert(osError);
break;

16B-24 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

case iQuit:
if((osError = doQuitCommand(kNavSaveChangesQuittingApplication)) &&

osError != kNavAskSaveChangesCancel)
doErrorAlert(osError);

if(osError != kNavAskSaveChangesCancel)
{

NavUnload();
gDone = true;

}
break;

}
}

// ◊◊ doAdjustMenus

void doAdjustMenus(void)
{

MenuHandle menuHdl;
WindowPtr windowPtr;
docStructureHandle docStrucHdl;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

menuHdl = GetMenuHandle(mFile);

if(gCurrentNumberOfWindows > 0)
{

menuHdl = GetMenuHandle(mFile);
EnableItem(menuHdl,iClose);
if((*docStrucHdl)->windowTouched)
{

EnableItem(menuHdl,iSave);
EnableItem(menuHdl,iRevert);

}
else
{

DisableItem(menuHdl,iSave);
DisableItem(menuHdl,iRevert);

}
EnableItem(menuHdl,iSaveAs);

menuHdl = GetMenuHandle(mDemonstration);
if((*docStrucHdl)->windowTouched == false)

EnableItem(menuHdl,iTouchWindow);
else

DisableItem(menuHdl,iTouchWindow);
}
else
{

menuHdl = GetMenuHandle(mFile);
DisableItem(menuHdl,iClose);
DisableItem(menuHdl,iSave);
DisableItem(menuHdl,iSaveAs);
DisableItem(menuHdl,iRevert);
menuHdl = GetMenuHandle(mDemonstration);
DisableItem(menuHdl,iTouchWindow);

}

DrawMenuBar();
}

// ◊◊◊ doErrorAlert

void doErrorAlert(SInt16 errorCode)
{

AlertStdAlertParamRec paramRec;
Str255 errorString, theString;
SInt16 itemHit;

paramRec.movable = true;
paramRec.helpButton = false;
paramRec.filterProc = NULL;
paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
paramRec.cancelText = NULL;
paramRec.otherText = NULL;
paramRec.defaultButton = kAlertStdAlertOKButton;
paramRec.cancelButton = 0;
paramRec.position = kWindowDefaultPosition;

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-25

if(errorCode == eInstallHandler)
GetIndString(errorString,rErrorStrings,1);

else if(errorCode == eMaxWindows)
GetIndString(errorString,rErrorStrings,2);

else if(errorCode == eFileIsOpen)
GetIndString(errorString,rErrorStrings,3);

else if(errorCode == eNoNavServices)
GetIndString(errorString,rErrorStrings,4);

else if(errorCode == eCantFindFinderProcess)
GetIndString(errorString,rErrorStrings,5);

else
{

GetIndString(errorString,rErrorStrings,6);
NumToString((SInt32) errorCode,theString);
doConcatPStrings(errorString,theString);

}

if(errorCode != memFullErr && errorCode != eNoNavServices)
StandardAlert(kAlertCautionAlert,errorString,NULL,¶mRec,&itemHit);

else
{

StandardAlert(kAlertStopAlert,errorString,NULL,¶mRec,&itemHit);
ExitToShell();

}
}

// ◊◊ doCopyPString

void doCopyPString(Str255 sourceString,Str255 destinationString)
{

SInt16 stringLength;

stringLength = sourceString[0];
BlockMove(sourceString + 1,destinationString + 1,stringLength);
destinationString[0] = stringLength;

}

// ◊◊◊ doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{

SInt16 appendLength;

appendLength = MIN(appendString[0],255 - targetString[0]);

if(appendLength > 0)
{

BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
targetString[0] += appendLength;

}
}

// ◊◊ doTouchWindow

void doTouchWindow(void)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

SetPort(windowPtr);

TextSize(48);
MoveTo(30,170);
DrawString("\pWINDOW TOUCHED");
TextSize(12);

(*docStrucHdl)->windowTouched = true;

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////

SetWindowModified(windowPtr,true); /////
#endif /////
}

// ◊◊◊ doSynchroniseFiles

16B-26 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

#if TARGET_CPU_PPC /////
void doSynchroniseFiles(void) /////
{ /////

UInt32 currentTicks; /////
WindowPtr windowPtr; /////
SInt16 trashVRefNum; /////
SInt32 trashDirID; /////
static UInt32 nextSynchTicks = 0; /////
docStructureHandle docStrucHdl; /////
Boolean aliasChanged; /////
AliasHandle aliasHdl; /////
FSSpec newFSSpec; /////
OSErr osError; /////

/////
currentTicks = TickCount(); /////
windowPtr = FrontNonFloatingWindow(); /////

/////
if(currentTicks > nextSynchTicks) /////
{ /////

while(windowPtr != NULL) /////
{ /////

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr); /////
/////

if(docStrucHdl != NULL) /////
{ /////

if((*docStrucHdl)->aliasHdl == NULL) /////
break; /////

/////
aliasChanged = false; /////
aliasHdl = (*docStrucHdl)->aliasHdl; /////
ResolveAlias(NULL,aliasHdl,&newFSSpec,&aliasChanged); /////

/////
if(aliasChanged) /////
{ /////

(*docStrucHdl)->fileFSSpec = newFSSpec; /////
SetWTitle(windowPtr,newFSSpec.name); /////

} /////
/////

osError = FindFolder(kOnSystemDisk,kTrashFolderType,kDontCreateFolder, /////
 &trashVRefNum,&trashDirID); /////

/////
if(osError == noErr) /////
{ /////

do /////
{ /////

if(newFSSpec.parID == fsRtParID) /////
break; /////

/////
if((newFSSpec.vRefNum == trashVRefNum) && (newFSSpec.parID == trashDirID))
{ /////

FSClose((*docStrucHdl)->fileRefNum); /////
if((*docStrucHdl)->editStrucHdl) /////

TEDispose((*docStrucHdl)->editStrucHdl); /////
if((*docStrucHdl)->pictureHdl) /////

KillPicture((*docStrucHdl)->pictureHdl); /////
DisposeHandle((Handle) docStrucHdl); /////
DisposeWindow(windowPtr); /////
gCurrentNumberOfWindows --; /////
break; /////

} /////
} while(FSMakeFSSpec(newFSSpec.vRefNum,newFSSpec.parID,"\p",&newFSSpec) == noErr);

} /////
} /////

/////
windowPtr = GetNextWindow(windowPtr); /////

} /////
/////

nextSynchTicks = currentTicks + 15; /////
} /////

} /////
#endif /////

// ◊◊◊ doOpenAppEvent

pascal OSErr doOpenAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefCon)
{

OSErr osError;

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-27

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)

osError = doNewCommand();

return(osError);
}

// ◊◊◊ doReopenAppEvent

pascal OSErr doReopenAppEvent(AppleEvent *appEvent,AppleEvent *reply,
 SInt32 handlerRefCon)

{
OSErr osError;

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)

if(!FrontWindow())
osError = doNewCommand();

return(osError);
}

// ◊◊ doOpenDocsEvent

pascal OSErr doOpenDocsEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

FSSpec fileSpec;
AEDescList docList;
OSErr osError, ignoreErr;
SInt32 index, numberOfItems;
Size actualSize;
AEKeyword keyWord;
DescType returnedType;
FInfo fileInfo;

osError = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);

if(osError == noErr)
{

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)
{

AECountItems(&docList,&numberOfItems);
if(osError == noErr)
{

for(index=1;index<=numberOfItems;index++)
{

osError = AEGetNthPtr(&docList,index,typeFSS,&keyWord,&returnedType,
(Ptr) &fileSpec,sizeof(fileSpec),&actualSize);

if(osError == noErr)
{

osError = FSpGetFInfo(&fileSpec,&fileInfo);
if(osError == noErr)
{

if(osError = doOpenFile(fileSpec,fileInfo.fdType))
doErrorAlert(osError);

}
}
else

doErrorAlert(osError);
}

}
}
else

doErrorAlert(osError);

ignoreErr = AEDisposeDesc(&docList);
}
else

doErrorAlert(osError);

return(osError);
}

// ◊◊◊ doQuitAppEvent

pascal OSErr doQuitAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

OSErr osError;

16B-28 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)
{

while(FrontWindow())
{

osError = doCloseCommand(kNavSaveChangesQuittingApplication);

if(osError != noErr && osError != kNavAskSaveChangesCancel)
doErrorAlert(osError);

if(osError == kNavAskSaveChangesCancel)
return;

}
}

NavUnload();
gDone = true;

return(osError);
}

// ◊◊◊ doHasGotRequiredParams

OSErr doHasGotRequiredParams(AppleEvent *appEvent)
{

DescType returnedType;
Size actualSize;
OSErr osError;

osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,
NULL,0,&actualSize);

if(osError == errAEDescNotFound)
return(noErr);

else if(osError == noErr)
return(errAEParamMissed);

}

// ◊◊
// NewOpenCloseSave.c
// ◊◊

//
………
…………………………………… includes

#include "Files2.h"

//
………
……………… global variables

WindowPtr gWindowPtr;
SInt16 gCurrentNumberOfWindows = 0;
Rect gDestRect,gViewRect;

extern SInt16 gAppResFileRefNum;
extern Boolean gMacOS85Present; /////

// ◊◊◊ doNewCommand

OSErr doNewCommand(void)
{

OSErr osError;
OSTypedocumentType = 'TEXT';

osError = doNewDocWindow(true,documentType);

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////
{ /////

if(osError == noErr) /////
SetWindowProxyCreatorAndType(gWindowPtr,'kBkB','TEXT',kOnSystemDisk); /////

} /////
#endif /////

return(osError);
}

// ◊◊ doOpenCommand

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-29

OSErr doOpenCommand(void)
{

OSErr osError = noErr;
NavDialogOptions dialogOptions;
NavTypeListHandle fileTypeListHdl = NULL;
NavEventUPP navEventFunctionUPP;
NavReplyRecord navReplyStruc;
SInt32 count, index;
AEKeyword theKeyword;
DescType actualType;
FSSpec fileSpec;
Size actualSize;
FInfo fileInfo;
OSType documentType;

osError = NavGetDefaultDialogOptions(&dialogOptions);

if(osError == noErr)
{

GetIndString((unsigned char*) &dialogOptions.clientName,rMiscStrings,sApplicationName);
fileTypeListHdl = (NavTypeListHandle) GetResource('open',rOpenResource);

navEventFunctionUPP = NewNavEventUPP(navEventFunction);
fileTypeListHdl = (NavTypeListHandle) GetResource('open',rOpenResource);

osError = NavGetFile(NULL,&navReplyStruc,&dialogOptions,navEventFunctionUPP,
 NULL,NULL,fileTypeListHdl,NULL);

DisposeNavEventUPP(navEventFunctionUPP);

if(osError == noErr && navReplyStruc.validRecord)
{

osError = AECountItems(&(navReplyStruc.selection),&count);
if(osError == noErr)
{

for(index=1;index<=count;index++)
{

osError = AEGetNthPtr(&(navReplyStruc.selection),index,typeFSS,&theKeyword,
&actualType,&fileSpec,sizeof(fileSpec),&actualSize);

if((osError = FSpGetFInfo(&fileSpec,&fileInfo)) == noErr)
{

documentType = fileInfo.fdType;
osError = doOpenFile(fileSpec,documentType);

}
}

}

osError = NavDisposeReply(&navReplyStruc);
}

if(fileTypeListHdl != NULL)
ReleaseResource((Handle) fileTypeListHdl);

}

if(osError == userCanceledErr)
osError = noErr;

return osError;
}

// ◊◊◊ doCloseCommand

OSErr doCloseCommand(NavAskSaveChangesAction action)
{

WindowPtr windowPtr;
SInt16 windowKind;
docStructureHandle docStrucHdl;
OSErr osError = noErr;

windowPtr = FrontWindow();
windowKind = ((WindowPeek) windowPtr)->windowKind;

switch(windowKind)
{

case kApplicationWindowKind:
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

16B-30 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

osError = doCloseFile(windowPtr,docStrucHdl,action);

if(osError == kNavAskSaveChangesCancel)
return(kNavAskSaveChangesCancel);

else if(osError == noErr)
{

DisposeWindow(windowPtr);
gCurrentNumberOfWindows --;

}
break;

case kDialogWindowKind:
// Hide or close modeless dialog, as required.
break;

}

return(osError);
}

// ◊◊ doSaveCommand

OSErr doSaveCommand(void)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
OSErr osError = noErr;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

if((*docStrucHdl)->fileRefNum)
{

osError = doWriteFile(windowPtr,false);

SetPort(windowPtr);
EraseRect(&windowPtr->portRect);
InvalRect(&windowPtr->portRect);

}
else

osError = doSaveAsCommand();

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////
{ /////

if(osError == noErr) /////
SetWindowModified(windowPtr,false); /////

} /////
#endif /////

return(osError);
}

// ◊◊ doSaveAsCommand

OSErr doSaveAsCommand(void)
{

OSErr osError = noErr;
NavDialogOptions dialogOptions;
WindowPtr windowPtr;
docStructureHandle docStrucHdl;
NavEventUPP navEventFunctionUPP;
OSType fileType;
NavReplyRecord navReplyStruc;
AEKeyword theKeyword;
DescType actualType;
FSSpec fileSpec;
Size actualSize;
SInt16 fileRefNum;
Rect portRect;

osError = NavGetDefaultDialogOptions(&dialogOptions);

if(osError == noErr)
{

windowPtr = FrontWindow();

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
GetWTitle(windowPtr,dialogOptions.savedFileName);
GetIndString((unsigned char*) &dialogOptions.clientName,rMiscStrings,sApplicationName);

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-31

navEventFunctionUPP = NewNavEventUPP(navEventFunction);

if((*docStrucHdl)->editStrucHdl)
fileType = 'TEXT';

else if((*docStrucHdl)->pictureHdl)
fileType = 'PICT';

osError = NavPutFile(NULL,&navReplyStruc,&dialogOptions,navEventFunctionUPP,
 fileType,'kBkB',NULL);

DisposeNavEventUPP(navEventFunctionUPP);

if(navReplyStruc.validRecord && osError == noErr)
{

if((osError = AEGetNthPtr(&(navReplyStruc.selection),1,typeFSS,&theKeyword,
&actualType,&fileSpec,sizeof(fileSpec),&actualSize)) == noErr)

{
if(!navReplyStruc.replacing)
{

osError = FSpCreate(&fileSpec,'kBkB',fileType,navReplyStruc.keyScript);
if(osError != noErr)
{

NavDisposeReply(&navReplyStruc);
return(osError);

}
}

(*docStrucHdl)->fileFSSpec = fileSpec;

if((*docStrucHdl)->fileRefNum != 0)
{

osError = FSClose((*docStrucHdl)->fileRefNum);
(*docStrucHdl)->fileRefNum = 0;

}

if(osError == noErr)
osError = FSpOpenDF(&(*docStrucHdl)->fileFSSpec,fsRdWrPerm,&fileRefNum);

if(osError == noErr)
{

(*docStrucHdl)->fileRefNum = fileRefNum;
SetWTitle(windowPtr,fileSpec.name);

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////
{ /////

SetPort(windowPtr); /////
SetWindowProxyFSSpec(windowPtr,&fileSpec); /////
GetWindowProxyAlias(windowPtr,&((*docStrucHdl)->aliasHdl)); /////
SetWindowModified(windowPtr,false); /////

} /////
#endif /////

osError = doWriteFile(windowPtr,!navReplyStruc.replacing);
}

NavCompleteSave(&navReplyStruc,kNavTranslateInPlace);
}

NavDisposeReply(&navReplyStruc);
}

SetPort(windowPtr);
EraseRect(&windowPtr->portRect);
InvalRect(&windowPtr->portRect);

}

if(osError == userCanceledErr)
osError = noErr;

return(osError);
}

// ◊◊ doRevertCommand

OSErr doRevertCommand(void)
{

NavEventUPP navEventFunctionUPP;

16B-32 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
Str255 fileName;
NavDialogOptions dialogOptions;
NavAskSaveChangesResult reply;
OSErr osError = noErr;

navEventFunctionUPP = NewNavEventProc((ProcPtr) navEventFunction);

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

SetPort(windowPtr);

GetWTitle(windowPtr,fileName);
BlockMoveData(fileName,dialogOptions.savedFileName,fileName[1]);

osError = NavAskDiscardChanges(&dialogOptions,&reply,navEventFunctionUPP,0);

if(reply == kNavAskDiscardChanges)
{

EraseRect(&windowPtr->portRect);

if((*docStrucHdl)->editStrucHdl)
{

osError = doReadTextFile(windowPtr);
}
else if((*docStrucHdl)->pictureHdl)
{

KillPicture((*docStrucHdl)->pictureHdl);
(*docStrucHdl)->pictureHdl = NULL;

osError = doReadPictFile(windowPtr);
}

(*docStrucHdl)->windowTouched = false;

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////

SetWindowModified(windowPtr,false); /////
#endif /////

InvalRect(&windowPtr->portRect);
}

return(osError);
}

// ◊◊ doQuitCommand

OSErr doQuitCommand(NavAskSaveChangesAction action)
{

OSErr osError = noErr;

while(FrontWindow())
{

osError = doCloseCommand(action);
if(osError != noErr)

return(osError);
}

return(osError);
}

// ◊◊◊ doNewDocWindow

OSErr doNewDocWindow(Boolean showWindow,OSType documentType)
{

docStructureHandle docStrucHdl;

if(gCurrentNumberOfWindows == kMaxWindows)
return(eMaxWindows);

if(!(gWindowPtr = GetNewCWindow(rNewWindow,NULL,(WindowPtr)-1)))
return(MemError());

SetPort(gWindowPtr);

if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-33

{
DisposeWindow(gWindowPtr);
return(MemError());

}

SetWRefCon(gWindowPtr,(SInt32) docStrucHdl);

(*docStrucHdl)->editStrucHdl = NULL;
(*docStrucHdl)->pictureHdl = NULL;
(*docStrucHdl)->fileRefNum = 0;
(*docStrucHdl)->windowTouched = false;
(*docStrucHdl)->aliasHdl = NULL; /////

if(documentType == 'TEXT')
{

gDestRect = gWindowPtr->portRect;
InsetRect(&gDestRect,6,6);
gViewRect = gDestRect;

MoveHHi((Handle) docStrucHdl);
HLock((Handle) docStrucHdl);

if(!((*docStrucHdl)->editStrucHdl = TENew(&gDestRect,&gViewRect)))
{

DisposeWindow(gWindowPtr);
DisposeHandle((Handle) docStrucHdl);
return(MemError());

}

HUnlock((Handle) docStrucHdl);
}

if(showWindow)
ShowWindow(gWindowPtr);

gCurrentNumberOfWindows ++;

return(noErr);
}

// ◊◊◊ doOpenFile

OSErr doOpenFile(FSSpec fileSpec,OSType documentType)
{

OSErr osError;
SInt16 fileRefNum;
docStructureHandle docStrucHdl;

if(osError = doNewDocWindow(false,documentType))
return(osError);

SetWTitle(gWindowPtr,fileSpec.name);

if(osError = FSpOpenDF(&fileSpec,fsRdWrPerm,&fileRefNum))
{

DisposeWindow(gWindowPtr);
gCurrentNumberOfWindows --;
return(osError);

}

docStrucHdl = (docStructureHandle) GetWRefCon(gWindowPtr);
(*docStrucHdl)->fileRefNum = fileRefNum;
(*docStrucHdl)->fileFSSpec = fileSpec;

if(documentType == 'TEXT')
{

if(osError = doReadTextFile(gWindowPtr))
return(osError);

}
else if(documentType == 'PICT')
{

if(osError = doReadPictFile(gWindowPtr))
return(osError);

}

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////
{ /////

SetWindowProxyFSSpec(gWindowPtr,&fileSpec); /////

16B-34 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

GetWindowProxyAlias(gWindowPtr,&((*docStrucHdl)->aliasHdl)); /////
SetWindowModified(gWindowPtr,false); /////

} /////
#endif /////

ShowWindow(gWindowPtr);

return(noErr);
}

// ◊◊ doCloseFile

OSErr doCloseFile(WindowPtr windowPtr,docStructureHandle docStrucHdl,
 NavAskSaveChangesAction action)

{
NavAskSaveChangesResult reply = 0;
NavEventUPP navEventFunctionUPP;
NavDialogOptions dialogOptions;
Str255 fileName;
OSErr osError;

if((*docStrucHdl)->windowTouched)
{

GetWTitle(windowPtr,fileName);
BlockMoveData(fileName,dialogOptions.savedFileName,fileName[0]+1);

navEventFunctionUPP = NewNavEventProc((ProcPtr) navEventFunction);

osError = NavAskSaveChanges(&dialogOptions,action,&reply,navEventFunctionUPP,0);

DisposeRoutineDescriptor(navEventFunctionUPP);

if(reply == kNavAskSaveChangesCancel)
return((OSErr) reply);

else if(reply == kNavAskSaveChangesSave)
{

if(osError = doSaveCommand())
return(osError);

}
}

if((*docStrucHdl)->fileRefNum != 0)
{

if(!(osError = FSClose((*docStrucHdl)->fileRefNum)))
{

osError = FlushVol(NULL,(*docStrucHdl)->fileFSSpec.vRefNum);
(*docStrucHdl)->fileRefNum = 0;

}
}

if((*docStrucHdl)->editStrucHdl)
TEDispose((*docStrucHdl)->editStrucHdl);

if((*docStrucHdl)->pictureHdl)
KillPicture((*docStrucHdl)->pictureHdl);

DisposeHandle((Handle) docStrucHdl);

return(osError);
}

// ◊◊ doWriteFile

OSErr doWriteFile(WindowPtr windowPtr,Boolean newFile)
{

docStructureHandle docStrucHdl;
OSErr osError;
SInt32 fileRefNum;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
fileRefNum = (*docStrucHdl)->fileRefNum;

if((*docStrucHdl)->editStrucHdl)
osError = doWriteTextData(windowPtr,fileRefNum);

else if((*docStrucHdl)->pictureHdl)
osError = doWritePictData(windowPtr,fileRefNum);

if(osError == noErr)
if(newFile)

osError = doCopyResources(windowPtr);

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-35

return(osError);
}

// ◊◊◊ doReadTextFile

OSErr doReadTextFile(WindowPtr windowPtr)
{

docStructureHandle docStrucHdl;
SInt16 fileRefNum;
TEHandle textEditHdl;
SInt32 numberOfBytes;
Handle textBuffer;
OSErr osError;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
fileRefNum = (*docStrucHdl)->fileRefNum;

textEditHdl = (*docStrucHdl)->editStrucHdl;
(*textEditHdl)->txSize = 10;
(*textEditHdl)->lineHeight = 15;

SetFPos(fileRefNum,fsFromStart,0);
GetEOF(fileRefNum,&numberOfBytes);

if(numberOfBytes > 32767)
numberOfBytes = 32767;

if(!(textBuffer = NewHandle((Size) numberOfBytes)))
return(MemError());

osError = FSRead(fileRefNum,&numberOfBytes,*textBuffer);
if(osError == noErr || osError == eofErr)
{

MoveHHi(textBuffer);
HLockHi(textBuffer);
TESetText(*textBuffer,numberOfBytes,(*docStrucHdl)->editStrucHdl);
HUnlock(textBuffer);
DisposeHandle(textBuffer);

}
else

return(osError);

return(noErr);
}

// ◊◊◊ doReadPictFile

OSErr doReadPictFile(WindowPtr windowPtr)
{

docStructureHandle docStrucHdl;
SInt16 fileRefNum;
SInt32 numberOfBytes;
OSErr osError;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
fileRefNum = (*docStrucHdl)->fileRefNum;

GetEOF(fileRefNum,&numberOfBytes);
SetFPos(fileRefNum,fsFromStart,512);
numberOfBytes -= 512;

if(!((*docStrucHdl)->pictureHdl = (PicHandle) NewHandle(numberOfBytes)))
return(MemError());

osError = FSRead(fileRefNum,&numberOfBytes,*(*docStrucHdl)->pictureHdl);
if(osError == noErr || osError == eofErr)

return(noErr);
else

return(osError);
}

// ◊◊ doWriteTextData

OSErr doWriteTextData(WindowPtr windowPtr,SInt16 tempFileRefNum)
{

docStructureHandle docStrucHdl;
TEHandle textEditHdl;
Handle editText;

16B-36 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

SInt32 numberOfBytes;
SInt16 volRefNum;
OSErr osError;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
textEditHdl = (*docStrucHdl)->editStrucHdl;
editText = (*textEditHdl)->hText;
numberOfBytes = (*textEditHdl)->teLength;

osError = SetFPos(tempFileRefNum,fsFromStart,0);
if(osError == noErr)

osError = FSWrite(tempFileRefNum,&numberOfBytes,*editText);
if(osError == noErr)

osError = SetEOF(tempFileRefNum,numberOfBytes);
if(osError == noErr)

osError = GetVRefNum(tempFileRefNum,&volRefNum);
if(osError == noErr)

osError = FlushVol(NULL,volRefNum);

if(osError == noErr)
(*docStrucHdl)->windowTouched = false;

return(osError);
}

// ◊◊ doWritePictData

OSErr doWritePictData(WindowPtr windowPtr,SInt16 tempFileRefNum)
{

docStructureHandle docStrucHdl;
PicHandle pictureHdl;
SInt32 numberOfBytes, dummyData;
SInt16 volRefNum;
OSErr osError;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
pictureHdl = (*docStrucHdl)->pictureHdl;

numberOfBytes = 512;
dummyData = 0;

osError = SetFPos(tempFileRefNum,fsFromStart,0);

if(osError == noErr)
osError = FSWrite(tempFileRefNum,&numberOfBytes,&dummyData);

numberOfBytes = GetHandleSize((Handle) (*docStrucHdl)->pictureHdl);

if(osError == noErr)
{

HLock((Handle) (*docStrucHdl)->pictureHdl);
osError = FSWrite(tempFileRefNum,&numberOfBytes,*(*docStrucHdl)->pictureHdl);
HUnlock((Handle) (*docStrucHdl)->pictureHdl);

}

if(osError == noErr)
osError = SetEOF(tempFileRefNum,512 + numberOfBytes);

if(osError == noErr)
osError = GetVRefNum(tempFileRefNum,&volRefNum);

if(osError == noErr)
osError = FlushVol(NULL,volRefNum);

if(osError == noErr)
(*docStrucHdl)->windowTouched = false;

return(osError);
}

// ◊◊ doCopyResources

OSErr doCopyResources(WindowPtr windowPtr)
{

docStructureHandle docStrucHdl;
OSType fileType;
OSErr osError;
SInt16 fileRefNum;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-37

if((*docStrucHdl)->editStrucHdl)
fileType = 'TEXT';

else if((*docStrucHdl)->pictureHdl)
fileType = 'PICT';

FSpCreateResFile(&(*docStrucHdl)->fileFSSpec,'kBkB',fileType,smSystemScript);

osError = ResError();
if(osError == noErr)

fileRefNum = FSpOpenResFile(&(*docStrucHdl)->fileFSSpec,fsRdWrPerm);

if(fileRefNum > 0)
{

osError = doCopyAResource('STR ',-16396,gAppResFileRefNum,fileRefNum);

if(fileType == 'PICT')
{

doCopyAResource('pnot',128,gAppResFileRefNum,fileRefNum);
doCopyAResource('PICT',128,gAppResFileRefNum,fileRefNum);

}
}
else

osError = ResError();

if(osError == noErr)
CloseResFile(fileRefNum);

osError = ResError();
return(osError);

}

// ◊◊ doCopyAResource

OSErr doCopyAResource(ResType resourceType,SInt16 resourceID,SInt16 sourceFileRefNum,
SInt16 destFileRefNum)

{
Handle sourceResourceHdl;
Str255 sourceResourceName;
ResType ignoredType;
SInt16 ignoredID;

UseResFile(sourceFileRefNum);

sourceResourceHdl = GetResource(resourceType,resourceID);

if(sourceResourceHdl != NULL)
{

GetResInfo(sourceResourceHdl,&ignoredID,&ignoredType,sourceResourceName);
DetachResource(sourceResourceHdl);
UseResFile(destFileRefNum);
AddResource(sourceResourceHdl,resourceType,resourceID,sourceResourceName);
if(ResError() == noErr)

UpdateResFile(destFileRefNum);
}

ReleaseResource(sourceResourceHdl);

return(ResError());
}

// ◊◊◊ navEventFunction

pascal void navEventFunction(NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,NavCallBackUserData callBackUD)

{
WindowPtr windowPtr;

windowPtr = (WindowPtr) callBackParms->eventData.eventDataParms.event->message;

switch(callBackSelector)
{

case kNavCBEvent:
switch(callBackParms->eventData.eventDataParms.event->what)
{

case updateEvt:
if(((WindowPeek) windowPtr)->windowKind != kDialogWindowKind)

doUpdate((EventRecord *) callBackParms->eventData.eventDataParms.event);
break;

}

16B-38 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

break;
}

}

// ◊◊
// ChooseAFolderDialog.c
// ◊◊

//
………
…………………………………… includes

#include "Files2.h"

// ◊◊ doChooseAFolderDialog

OSErr doChooseAFolderDialog(FSSpec *theFileSpec)
{

NavDialogOptions dialogOptions;
NavEventUPP navEventFunctionUPP;
OSErr osError;
NavReplyRecord navReplyStruc;
FSSpec fileSpec;
AEDesc resultDesc;

osError = NavGetDefaultDialogOptions(&dialogOptions);
GetIndString(dialogOptions.message,rMiscStrings,sChooseAFolder);

navEventFunctionUPP = NewNavEventProc((ProcPtr) navEventFunction);

osError = NavChooseFolder(NULL,&navReplyStruc,&dialogOptions,navEventFunctionUPP,NULL,0);

DisposeRoutineDescriptor(navEventFunctionUPP);

if((navReplyStruc.validRecord) && (osError == noErr))
{

if((osError = AECoerceDesc(&(navReplyStruc.selection),typeFSS,&resultDesc)) == noErr)
{

BlockMoveData(*resultDesc.dataHandle,&fileSpec,sizeof(FSSpec));

FSMakeFSSpec(fileSpec.vRefNum,fileSpec.parID,fileSpec.name,theFileSpec);
}

AEDisposeDesc(&resultDesc);
NavDisposeReply(&navReplyStruc);

}

return(osError);
}

// ◊◊

Demonstration Program Comments
Note 1: Navigation Services requires Mac OS 7.5 or later and Appearance Manager 1.0.1 or later. If Mac OS 8.5 or later is
not present, the Navigation Services shared library must be installed in the Extensions folder. On 680x0 systems,
OpenTransportLib68K 1.3 or later must be installed in the Extensions folder.

Note 2: In addition to demonstrating Navigation Services, this program also demonstrates window proxy icons and window
path pop-up menus. (See Chapter 4B - More on Windows - Mac OS 8.5 Window Managager.) Comments pertaining to these
aspects of the demonstration appear on a light gray background.

When the program is run, the user should:

• Exercise the File menu by opening the supplied TEXT and PICT files, saving those files, saving those files under new
names, closing files, opening the new files, attempting to open files which are already open, attempting to save files to
new files with existing names, making open windows "touched" by choosing the first item in the Demonstration menu,
reverting to the saved versions of files associated with "touched" windows, choosing Quit when "touched" and non-"
touched" windows are open, and so on.

• Choose, via the Show pop-up menu button, the file types required to be displayed in the Open dialog.

• Choose the Choose a Folder item from the Demonstration menu to display the Choose a Folder dialog, and choose a
folder using the Choose button at the bottom of the dialog. (The name of the chosen folder will be drawn in the
bottom-left corner of the front window.)

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-39

• With either PICT Document or TEXT Document open:

• With the chap16b-demo folder open so that the document's Finder icon is visible, drag the window proxy icon to
the desktop or to another open folder, noting that the Finder icon moves to the latter. Then choose Touch
Window from the Demonstration menu to simulate unsaved changes to the document. Note that the proxy icon
changes to the disabled state. Then save the file, proving the correct operation of the file synchronisation
function. Note that, after the save, the window proxy icon changes back to the enabled state.

• Command-click the window's title to display the window path pop-up menu, choose a folder from the menu, and
note that the Finder is brought to the foreground and the chosen folder opens.

The program may be run from within CodeWarrior to demonstrate responses to the File menu commands and the Choose a
Folder dialog.

The built application, together with the supplied TEXT and PICT files, may be used to demonstrate the additional aspect of
integrating the receipt of required Apple events with the overall file handling mechanism. To prove the correct handling of
the required Apple events, the user should:

• Open the application by double-clicking the application icon, noting that a new document window is opened after the
application is launched and the Open Application event is received.

• Double click on a document icon, or select one or more document icons and either drag those icons to the application
icon or choose Open from the Finder's File menu, noting that the application is launched and the selected files are
opened when the Open Documents event is received.

• Close all windows and double-click the application icon, noting that the application responds to the Re-open
Application event by opening a new window.

• With several documents open, some with "touched" windows, choose Restart or Shut Down from the Finder's Special
menu (thus invoking a Quit Application event), noting that, for "touched" windows, the Save Changes alert box is
presented asking the user whether the file should be saved before the shutdown process proceeds.

Files2.h

#typedef
Each window created by the program will have an associated document structure, accessed via the window structure's
refCon field. The docStructure structure will be used for document structures.

The editStrucHdl field will be assigned a handle to a TextEdit edit structure ('TEXT' files). The pictureHdl field will be
assigned a handle to a Picture structure ('PICT' files). The fileRefNum and fileFSSpec fields will be assigned the file reference
number and the file system specification structure of the file associated with the window. The windowTouched field will be
set to true when a window has been made "touched", that is, when the associated document in memory has been modified
by the user.

When a file is opened, the aliasHdl field will be assigned a handle to a structure of type AliasRecord, which contains the alias
data for the file.

#define
After the usual constants relating to menus, windows, and alert boxes are established, additional constants are established a
'STR#' resource containing error strings, four specific error conditions, a 'STR#' resource containing the application's name
and the message string for the Choose a Folder dialog box, and the 'open' resource containing the file types list.
kMaxWindows is used to limit the number of windows the user can open.

Files2.c
Files.c is simply the basic "engine" which supports the demonstration. There is little in this file which has not featured in
previous demonstration programs.

Global Variables
gMacOS85Present will be assigned true if Mac OS 8.5 or later is present. (Because window proxy icons and window path
pop-up menus are supported only under Mac OS 8.5 or later, the associated source code will be bypassed if Mac OS 8.5 or
later is not present.)

gAppResFileRefNum will be assigned the file reference number of the application's resource fork.

main
The call to Gestalt determines whether Mac OS 8.5 or later is present.

The call to NavServicesAvailable determines whether the Navigation Services shared library is installed and running on the
user's system. If it is, NavLoad is called to load the library, otherwise, an error alert is presented and the program

16B-40 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

terminates. (The call to NavLoad is optional. If the call is not made, the Navigation Services shared library will not load until
your application calls a Navigation Services function, and will unload after the call completes. If the NavLoad call is made,
you must call the NavUnload function before quitting so as to release the reserved memory.)

Routine descriptors for the required Apple events (less the Print Documents event) are created and a call is made to the
application-defined function which installs the handlers. Also, the file reference number of the application's resource fork
(which is opened automatically at application launch) is assigned to the global variable gAppResFileRefNum.

EventLoop
If the compilation is for PowerPC (Mac OS 8.5 does not run on 680x0 Macintoshes) and if Mac OS 8.5 or later is present, the
application-defined function doSynchroniseFiles is called. (See File Synchronisation Function at Chapter 4B - More on
Windows - Mac OS 8.5 Window Manager.)

doInstallAEHandlers
doInstallAEHandlers installs handlers for the Open Application, Re-Open Application, Open Documents, and Quit Application
events. (Note that, so as to avoid the necessity to include application-defined printing functions in this program, a handler
for the Print Documents event is not included in this demonstration.)

doMouseDown
Note that, in the inGoAway case, the constant kNavSaveChangesClosingDocument is passed in the call to doCloseCommand.
This affects the text in the Save Changes alert box.

The inProxyIcon and inDrag cases recognise that a mouse-down in the proxy icon region can mean that the user wishes to
drag the proxy icon (icon enabled), drag the window (icon disabled) or display the window path pop-up menu (Command key
down, icon enabled or disabled).

If the proxy icon is enabled and the mouse-down is in the proxy icon, TrackWindowProxyDrag handles all aspects of the
proxy icon drag process while the user drags the icon and returns noErr, in which case the local variable handled is assigned
true and execution drops through to the break at the bottom of the inDrag case.

If TrackWindowProxyDrag returns errUserWantsToDragWindow, the user is either dragging the window (proxy icon is
disabled) or displaying the window path pop-up menu. In this case, the local variable handled is assigned false and
execution falls through to the IsWindowPathSelectClick call inside the inDrag case.

IsWindowPathSelectClick reports whether the mouse-down should activate the window path pop-up menu. If this call returns
true, WindowPathSelect displays the pop-up menu, returning the item selected in the third parameter. If the menu item
chosen is not the title of the window itself, the application-defined function doBringFinderToFront is called to make the Finder
the frontmost process, thus ensuring that the window being opened will be visible. The local variable handled is then set to
true so that DragWindow will not be called.

If IsWindowPathSelectClick returns false, DragWindow is called to take control of the dragging operation.

doBringFinderToFront
doBringFinderToFront is called from the inDrag case in doMouseDown. It makes the Finder the frontmost process.

The call to the application-defined function doFindProcess gets the process serial number of the Finder, which is then passed
in a call to SetFrontProcess.

doFindProcess
doFindProcess is called by doBringFinderToFront to get the process serial number of the Finder.

The first two lines initialise the fields of a process serial number structure so that the search starts from kNoProcess. The
next block initialises the fields of a process information structure which, amongst other things, contains fields for the
signature (creator) and file type of the application file. (The search is for the signature (creator) 'MACS' and the type 'FNDR'.)

Within the while loop, GetNextProcess is called to get the process serial number of the next process. The call to
GetProcessInformation gets information about this process into the process information structure. The processSignature and
processType fields of process information structure are then examined. If they equal 'MACS' and 'FNDR' respectively, the
while loop exits and the process serial number is assigned to the formal parameter outProcSerNo.

doUpdate
doUpdate performs such window updating as is necessary for the satisfactory execution of the demonstration aspects of the
program.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-41

doMenuChoice
If the Choose a Folder item in the Demonstration menu is chosen, the application-defined function which presents the
Choose a Folder dialog box is called. This function returns userCanceledErr if the user clicked the Cancel push button in the
dialog box. If an error other than userCanceledErr is returned, an error alert box is presented and the else block is bypassed.

The doChooseAFolderDialog function fills in the file system specification structure whose address is passed in its parameter.
If a window is open, a rectangle in the bottom corner of the front window is erased and, if the user did not click the Cancel
push button, the chosen folder's name, volume reference number, and parent directory ID are extracted from the file system
specification structure and drawn in the bottom of the window.

doFileMenu
At the iClose case, kNavSaveChangesClosingDocument is passed in the call to doCloseCommand. This affects the wording in
the Save Changes alert box. If doCloseCommand returns an error, and if that error is not kNavAskSaveChangesCancel (the
user clicked the Cancel push button in the Save Changes alert box), an error alert box is presented.

At the iQuit case, kNavSaveChangesQuittingApplication is passed in the call to doQuitCommand. This affects the wording in
the Save Changes alert box. If doQuitCommand returns an error, and if that error is not kNavAskSaveChangesCancel (the
user clicked the Cancel push button in the Save Changes alert box), an error alert box is presented. If
kNavAskSaveChangesCancel was not returned, NavUnload is called to release the memory reserved for the Navigation
Services shared library, and gDone is set to true to cause program termination.

doErrorAlert
doErrorAlert handles errors, invoking an appropriate alert box (caution or stop) advising of the nature of the problem by error
code number or straight text. Note that the program will only be terminated if the Navigation Services library is not installed
and running, or in the case of the memFullErr error (no more space in the application heap).

doTouchWindow
doTouchWindow is called when the user chooses the Touch Window item in the Demonstration menu. Changing the content
of the in-memory version of a file is only simulated in this program. The text "WINDOW TOUCHED" is drawn in window and
the windowTouched field of the document structure is set to true.

If Mac OS 8.5 is present (meaning that window proxy icons are implemented), SetWindowModified is called with true passed
in the modified parameter. This causes the proxy icon to appear in the disabled state, indicating that the window has
unsaved changes.

doSynchroniseFiles
doSynchroniseFiles is called from the main event loop whenever a null event is received. It synchronises the file data for the
application's document windows. (See File Synchronisation Function at Chapter 4B - More on Windows - Mac OS 8.5 Window
Manager.)

currentTicks is assigned the number of ticks since system startup. As will be seen, currentTicks will be used to ensure that
synchronisations only occur every quarter second (15 ticks). WindowPtr is assigned a pointer to the front non-floating
window.

If 15 ticks have elapsed since the last synchronisation, the outer if block executes. The while loop walks the window list (see
the call to GetNextWindow at the bottom of the loop) looking for associated files whose locations have changed. When the
last window in the list has been examined, the loop exits.

Within the while loop, GetWRefCon is called to retrieve the handle to the window's document structure.

If the aliasHdl field of the window's document structure contains NULL, the window does not yet have a file associated with it,
in which case execution falls through to the next iteration of the while loop and the next window is examined.

If the window has an associated file, the handle to the associated alias structure, which contains the alias data for the file, is
retrieved. ResolveAlias is then called to perform a search for the target of the alias, returning the file system specification
for the target file in the third parameter. After identifying the target, ResolveAlias compares some key information about the
target with the information in the alias structure. If the information differs, ResolveAlias updates the alias structure to match
the target and sets the aliasChanged parameter to true.

If the aliasChanged parameter is set to true, meaning that the location of the file has changed, the fileFSSpec field of the
window's document structure is assigned the file system specification structure returned by ResolveAlias. Since it is also
possible that the user has renamed the file, SetWTitle is called to set the window's title to the filename contained in the
name field of the file system specification structure returned by ResolveAlias.

The next task is to determine whether the user has moved the file to the trash or to a folder in the trash, in which case the
document must be closed.

FindFolder is called to get the volume reference number and parent directory ID of the trash folder.

16B-42 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

The do/while loop walks up the parent folder hierarchy to the root folder. At the first line in the do/while loop, if the root
folder has been reached (fsRtParID is the parent ID of the root directory), the file is not in the trash, in which case the loop
exits at that point. At the next if statement, the volume reference number and parent directory ID of the file are compared
with the volume reference number and directory ID of the trash. If they match, the file is closed, its associated memory is
disposed of, and the window is disposed of.

The bottom line of the do/while loop effects the walk up the parent directory hierarchy, FSMakeFSSpec creates a file system
specification structure from the current contents of the vRefNum and parID fields of newFSSPec. Since newFSSpec is also
the target, the parID field is "filled in" again, at every iteration of the loop, with the parent ID of the directory passed in the
second parameter of the FSMakeFSSpec call.

doOpenAppEvent, doOpenDocsEvent,
and doQuitAppEvent
The handlers for the required Apple events are essentially identical to those in the demonstration program at Chapter 10 -
Required Apple Events.

Most programs should simply open a new untitled window on receipt of an Open Application event. Accordingly,
doOpenAppEvent simply calls the same function (doNewCommand) as is called when the user chooses New from the File
menu.

On receipt of a Re-Open Application event, if no windows are currently open, doNewCommand is called to open a window.

The demonstration program supports both 'TEXT' and 'PICT' files. On receipt of an Open Application event, it is thus
necessary to determine the type of each file specified in the event. Accordingly, within doOpenDocsEvent, the call to
FSpGetFInfo returns the Finder information from the volume catalog entry for the file relating to the specified FSSpec
structure. The fdType field of the FInfo structure "filled-in" by FSpGetFInfo contains the file type. This, together with the
FSSpec structure, is then passed in the call to doOpenFile. (doOpenFile is also called when the user chooses Open from the
File menu.)

Within the function doQuitAppEvent, the while loop entered at repeats for each open window. Within the loop,
doCloseCommand is called, passing kNavSaveChangesQuittingApplication (which affects the wording in the Save Changes
alert box). doCloseCommand, in turn, calls doCloseFile. doCloseFile presents the Save Changes alert box . If an error is
returned by this sequence, and if the user did not click the Cancel push button in the alert box, the error handler is called. If
the user clicked the Cancel button, it is necessary to interrupt the sequence of closing all open windows and re-enter the
main event loop.

When the while loop eventually exits, NavUnload is called to release the memory reserved for the Navigation Services shared
library, and gDone is set to true, causing the program to terminate.

NewOpenCloseSave.c

Global Variables
gWindowPtr is assigned the pointer to the graphics port of each new window as it is opened. gCurrentNumberOfWindows
keeps a count of the number of windows opened. gDestRect and gViewRect are used to set the destination and view
rectangles for the edit structures associated with 'TEXT' files.

doNewCommand
doNewCommand is the first of the file-handling functions. It is called when the user chooses New from the File menu and
when an Open Application or Re-Open Application event is received.

Since this demonstration does not support the actual entry of text or the drawing of graphics, the document type passed to
doNewDocWindow is immaterial. The document type 'TEXT' is passed in this instance simply to keep doNewDocWindow
happy.

If the compilation is for PowerPC, if Mac OS 8.5 or later is present, and if doNewDocWindow returned no error,
SetWindowProxyCreatorAndType is called to set the proxy icon for the window. (A new, untitled window, even though it has
no associated file, needs a proxy icon to maintain visual consistency with other windows which have associated files.) The
proxy icon will display in the disabled state, indicating, in this particular case, that the window has no associated file rather
than unsaved changes.

The creator code and file type passed in the second and third parameters of SetWindowProxyCreatorAndType determine the
icon to be displayed.)

doOpenCommand
doOpenCommand is called when the user chooses Open from the File menu.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the defaults.

GetIndString assigns the application's name to the clientName field of the NavDialogOptions structure. This will then appear
in the dialog box's title bar. The next line reads in the 'open' resource containing the file type list and assigns the handle to a

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-43

variable of type NavTypeListHandle.

NewNavEventUPP creates a routine descriptor for an application-defined event-handling function, which is included so as to
make the Open dialog box movable and resizable.

The call to NavGetFile displays the Open dialog box. NULL in the first parameter means that the dialog box will open at the
last location visited during the last call to NavGetFile. The second parameter will receive the information required by the
application. Since the default options are being used, multiple file selection is allowed. The universal procedure pointer to
the event-handling function is passed in the fourth parameter. No preview function is used. No filter function is used. The
handle to the file type list is passed in the second last parameter.

When the Open dialog is dismissed by the user and NavGetFile returns, the first action is to dispose of the routine descriptor.

The following if block executes only if the user clicked the Open push button (or pressed the Return or Enter keys) and no
error was returned. The first action is to call AECountItems to count the number of descriptor structures in the descriptor list
returned in the selection field of the NavReplyRecord structure, and which is created from FSSpec references to items
selected in the Open dialog box.

The for loop repeats for each of the descriptor structures. AEGetNthPtr gets the file system specification into a local variable
of type FSSpec. This file system specification is then passed in the first parameter of a call to FspGetFInfo, allowing the file
type to be ascertained. The file system specification and file type are then passed in a call to the application-defined
function doOpenFile, which creates a new window and reads in the file.

With all of the selected files read in, NavDisposeReply must be called to release the memory allotted for the NavReplyReply
structure. The call to ReleaseResource frees the memory occupied by the file type list.

If the user clicks the Cancel push button in a Navigation Services dialog box, the relevant Navigation Services function
returns userCanceledErr. In this event, the variable osError is set to noErr before doOpenCommand returns.

doCloseCommand
doCloseCommand is called when the user chooses Close from the File menu or clicks in the window's go-away box. It is also
called successively for each open window when a Quit Application event is received.

The first two lines get the WindowPtr for the front window and establish whether the front window is a document window or a
modeless dialog box.

If the front window is a document window, the handle to the window's document structure is retrieved from the window
structure's refCon field. The WindowPtr and this handle are then passed to the application-defined function doCloseFile,
together with the Navigation Services constant received in doCloseCommand's action parameter. If the window is "touched",
doCloseFile presents the Save Changes alert box asking the user whether the document should be saved before it is closed.
If the user clicks the Cancel push button of that alert box, doCloseFile returns kNavAskSaveChangesCancel, in which case
doCloseCommand returns kNavAskSaveChangesCancel. If the user clicks either the OK or Don't Save push buttons in the
alert box, and if doCloseFile returns no error, the window is closed as the final act in closing the file, and the global variable
which keeps track of the number of open windows is decremented.

No modeless dialog boxes are used by this program. However, if the front window was a modeless dialog box, the
appropriate action would be taken at the second case.

doSaveCommand
doSaveCommand is called when the user chooses Save from the File menu. It may also be called by doCloseFile if the user is
attempting to close a "dirty" window.

The first two lines get the WindowPtr for the front window and retrieve the handle to that window's document structure. If a
file currently exists for the document in this window, the application-defined function doWriteFile is called, otherwise the
application-defined function doSaveAsCommand is called.

If the compilation is for PowerPC, and if Mac OS 8.5 or later is present, and if doSaveAsCommand returned no error,
SetWindowModified is called with false passed in the modified parameter. This causes the window proxy icon to appear in
the enabled state, indicating no unsaved changes.

doSaveAsCommand
doSaveAsCommand is called when the user chooses Save As… from the File menu. It is also called by doSaveCommand if
the user chooses Save when the front window contains a document for which no file currently exists.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the defaults.

The first two lines in the if block get the handle to the window's document structure, which will be required later. GetWTitle
gets the window's title into the savedFileName field of a NavDialogOptions structure. This will be the default name for the
saved file and will appear in the Name edit text field in the Save dialog box. The call to GetIndString copies the application's
name to the clientName field of the NavDialogOptions structure. This will then appear in the dialog box's title bar.

NewNavEventUPP creates a routine descriptor for an application-defined event-handling function, which is included so as to
make the Save dialog box movable and resizable. The next four lines retrieve the file type from the document structure for
the front window.

16B-44 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

The call to NavPutFile displays the Open dialog box. NULL in the first parameter means that the dialog box will open at the
last location visited during the last call to NavPutFile. The second parameter will receive the information required by the
application. The file type and creator are passed in the fifth and sixth parameters. When the user dismisses the dialog box,
NavPutFile returns, at which point the routine descriptor for the event-handling function is disposed of.

The following if block executes only if the user clicked the Save push button (or pressed the Return or Enter keys) and no
error was returned. A descriptor list is returned in the selection field of the NavReplyRecord structure. AEGetNthPtr gets the
file system specification into a local variable of type FSSpec.

If the value in the replacing field of the NavReplyRecord structure indicates that the file is not being replaced, FSpCreate is
called to create a new file of the specified type and with the application's signature as the specified creator. If this call is not
successful, the descriptor structure is disposed of, the NavReplyRecord structure is disposed of, and the function returns.

The file system specification structure returned by the FSpCreate call is assigned to the fileFSSpec field of the window's
document structure. If a file currently exists for the document, that file is closed by the call to FSClose. The data fork of the
newly created file is then opened by a call to FSpOpenDF, the fileRefNum field of the document structure is assigned the file
reference number returned by FSpOpenDF, the window's title is set to the new file's name, and the application-defined
function doWriteFile is called to write the document to the new file.

Just before the call to doWriteFile, if the compilation is for PowerPC, and if Mac OS 8.5 or later is present,
SetWindowProxyFSSpec is called to establish a proxy icon for the window and associate the file with the window. (The
creator code and file type of the file determine the icon to be displayed.) GetWindowProxyAlias assigns a copy of the alias
data for the file to the aliasHdl field of the window's document structure. (This is used by the file synchronisation function.)
SetWindowModified is called with false passed in the modified parameter. This causes the window proxy icon to appear in
the enabled state, indicating no unsaved changes.

NavCompleteSave is called to complete the save operation. With the save completed, NavDisposeReply must be called to
release the memory allotted for the NavReplyReply structure.

If the user clicks the Cancel push button in a Navigation Services dialog box, the relevant Navigation Services function
returns userCanceledErr. In this event, the variable osError is set to noErr before doOpenCommand returns.

doRevertCommand
doRevertCommand is called when the user chooses Revert to Saved from the File menu. This function uses a Navigation
Services function.

The first line creates a routine descriptor for an application-defined event handling function, which will be used so as to
cause the Discard Changes alert box to be movable.

The next two lines get the WindowPtr for the front window and the handle to that window's document structure. The call to
GetWTitle gets the window's title (that is, the filename). BlockMoveData copies that filename to the savedFileName field of a
NavDialogOptions structure. This will be used in the Discard Changes alert box's text.

The call to NavAskDiscardChanges displays the Discard Changes alert box. The information required by the application is
received in the reply parameter. When the user dismisses the alert box, the routine descriptor is disposed of.

If the user clicked the OK push button, the window's content area is erased and the appropriate application-defined function
(doReadTextFile or doReadPictFile) is called depending on whether the file type is 'TEXT' or 'PICT'. In addition, the window's
"touched" field in the document structure is set to false and InvalRect is called to force a redraw of the window's content
region.

Just before the InvalRect call, if the compilation is for PowerPC, and if Mac OS 8.5 or later is present, SetWindowModified is
called with false passed in the modified parameter. This causes the window proxy icon to appear in the enabled state,
indicating no unsaved changes.

doQuitCommand
doQuitCommand is called when the user chooses Quit from the File menu and when a Quit Application event is received.

The while loop continues to execute until no more windows remain open. On each pass through the loop, doCloseCommand
is called to manage the process of closing (and, where necessary, saving) all documents and disposing of the associated
windows.

doNewDocWindow
doNewDocWindow is called by doNewCommand, doOpenFile and the Open Application event handler. It creates a new
window and associated document structure.

If the current number of open windows is the maximum allowable by this program, the function immediately exits, passing
an error code which will cause an advisory error alert box to be displayed.

The call to GetNewCWindow opens a new window. SetPort sets that window's graphics port as the current port for drawing.

The call to NewHandle allocates memory for the window's document structure. If this call is not successful, the window is
disposed of and the function returns with the error code returned by MemError.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-45

The call to SetWRefCon assigns the handle to the document structure to the window structure's refCon field. The next five
lines initialise fields of the document structure.

If the document type is 'TEXT', the if block executes, creating a TextEdit edit structure and assigning a handle to that
structure to the editRec field of the document structure. (Note that the processes here are not explained in detail because
TextEdit and edit structures are not central to the demonstration. For the purposes of the demonstration, it is sufficient to
understand that the text data retrieved from, and saved to, disk is stored in a TextEdit edit structure. TextEdit is addressed
in detail at Chapter 19 — Text and TextEdit.)

If the Boolean value passed to doNewDocWindow was set to true, the call to ShowWindow makes the window visible,
otherwise the window is left invisible. The penultimate line increments the global variable which keeps track of the number
of open windows.

doOpenFile
doOpenFile is called by doOpenCommand and the Open Documents event handler, which pass to it the file system
specification structure and document type. doOpenFile opens a new document window and calls the application-defined
functions which read in the file.

The call to doNewDocWindow opens a new window and creates an associated document structure. SetWTitle sets the
window's title. FSpOpenDF opens the file's data fork. If this call is not successful, the window is disposed of and the function
returns. The next three lines assign the file reference number and file system specification structure to the relevant fields of
the document structure.

The next block calls the appropriate function for reading in the file, depending on whether the file type is of type 'TEXT' or
'PICT'. If the file is read in successfully, ShowWindow makes the window visible.

Just before the call to ShowWindow, if the compilation is for PowerPC, and if Mac OS 8.5 or later is present,
SetWindowProxyFSSpec is called to establish a proxy icon for the window and associate the file with the window. (The
creator code and file type of the file determine the icon to be displayed.) GetWindowProxyAlias assigns a copy of the alias
data for the file to the aliasHdl field of the window's document structure. (This is used by the file synchronisation function.)
SetWindowModified is called with false passed in the modified parameter. This causes the window proxy icon to appear in
the enabled state, indicating no unsaved changes.

doCloseFile
doCloseFile is called by doCloseCommand. doCloseFile does not allow a "touched" window to be closed without offering the
user the option of first saving the associated document to file. This function uses a Navigation Services function.

The first if block executes only if the window has been "touched". First, GetWTitle gets the window's title, which
BlockMoveData copies to the savedFileName field of a NavDialogOptions structure. This will be used in the alert box's text.
A routine descriptor is created for an event-handling function, which is used so as to cause the Save Changes alert box to be
movable.

NavAskSaveChanges is then called to display the Save Changes alert box. The information required by the application is
received in the reply parameter. The routine descriptor is disposed of when NavAskSaveChanges returns.

If the Cancel push button was clicked, NavAskSaveChanges returns kNavAskSaveChangesCancel, in which case doCloseFile
returns, returning kNavAskSaveChangesCancel to the calling function. If OK push button was clicked, the application-defined
function doSaveCommand is called to save the file.

If the document has a file, FSClose closes the file, and FlushVol stores to disk all unwritten data currently in the volume
buffer.

If the document is a text document, the text edit structure is disposed of. If it is a picture document, the Picture structure is
disposed of. Finally, the document structure is disposed of.

doWriteFile
doWriteFile is called by doSaveCommand and doSaveAsCommand. In conjunction with two supporting application-defined
functions, it writes the document to disk. Note that, unlike the function of the same name in the demonstration program
Files1, the "safe-save" methodology is not used.

The first two lines retrieve a handle to the window's document structure and the file reference number from the document
structure.

At the next four lines, the appropriate application-defined function is called to write the document's data to its file.

If the file is a newly created file, the application-defined function doCopyResources is called to copy the missing application
name string resource from the resource fork of the application file to the resource fork of the new document file. If the file
type is 'PICT', a 'pnot' resource and associated 'PICT' resource is also copied to the resource fork.

doReadTextFile
doReadTextFile is called by doOpenFile and doRevertCommand to read in data from an open file of type 'TEXT'.

16B-46 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

The first two lines retrieve the file reference number from the document structure.

The next three lines retrieve the handle to the TextEdit edit structure from the document structure and modify the text size
and line height fields of the edit structure.

SetFPos sets the file mark to the beginning of the file. GetEOF gets the number of bytes in the file. If the number of bytes
exceeds that which can be stored in a TextEdit edit structure (32,767), the number of bytes which will be read from the file is
restricted to 32,767.

NewHandle allocates a buffer equal to the size of the file (or 32,767 bytes if the preceding if statement executed). FSRead
reads the data from the file into the buffer. MoveHHi and HLockHi move the buffer high in the heap and lock it preparatory
to the call to TESetText. TESetText copies the text in the buffer into the existing hText handle of the TextEdit edit structure.
The buffer is then unlocked and disposed of.

(Note: TextEdit is addressed in detail at Chapter 19 - Text and TextEdit.)

doReadPictFile
doReadPictFile is called by doOpenFile and doRevertCommand to read in data from an open file of type 'PICT'.

The first two lines retrieve the file reference number from the document structure. GetEOF gets the number of bytes in the
file. SetFPos sets the file mark 512 bytes (the size of a 'PICT' file's header) past the beginning of the file, and the next line
subtracts the header size from the total size of the file. NewHandle allocates memory for the Picture structure and FSRead
reads in the file's data.

doWriteTextData
doWriteTextData is called by doWriteFile to write text data to the specified file.

The first two lines retrieve the handle to the TextEdit edit structure from the document structure. The number of bytes of
text is then retrieved from the teLength field of the text edit structure.

SetFPos sets the file mark to the beginning of the file. FSWrite writes the specified number of bytes to the file. SetEOF
adjusts the file's size. FlushVol stores to disk all unwritten data currently in the volume buffer.

The penultimate line sets the windowTouched field of the document structure to indicate that the document data on disk
equates to the document data in memory.

doWritePictData
doWritePictData is called by doWriteFile to write picture data to the specified file.

The first two lines retrieve the handle to the relevant Picture structure from the document structure. SetFPos sets the file
mark to the start of the file. FSWrite writes zeros in the first 512 bytes (the size of a 'PICT' file's header). GetHandleSize gets
the size of the Picture structure and FSWrite writes the bytes in the Picture structure to the file. SetEOF adjusts the file's size
and FlushVol stores to disk all unwritten data currently in the volume buffer.

The penultimate line sets the windowTouched field of the document structure to indicate that the document data on disk
equates to the document data in memory.

doCopyResources
doCopyResources is called by doWriteFile when a newly created file has been written to for the first time. It copies the
missing application name string resource from the resource fork of the application file to the resource fork of the new file. If
the file type is PICT, a 'pnot' resource and associated 'PICT' resource is also copied.

The first line retrieves a handle to the file's document structure. The next four lines establish the file type involved.
FSpCreateResFile creates the resource fork in the new file and FSpOpenResFile opens the resource fork. The application-
defined function for copying specified resources between specified files (doCopyAResource) is then called to copy the
missing application name string resource from the resource fork of the application file to the resource fork of the new file. If
the file type is 'PICT', a 'pnot' resource and associated 'PICT' resource is also copied so as to provide a preview for 'PICT' files
in the Open dialog box. (Of course, in a real application, the 'pnot' and 'PICT' resource would be created by the application
for each separate 'PICT' file.)

CloseResFile closes the resource fork of the new file.

doCopyAResource
doCopyAResource copies specified resources between specified files. In this program, it is called only by doCopyResources.

UseResFile sets the application's resource fork as the current resource file. GetResource reads the specified resource into
memory.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-47

GetResInfo, given a handle, gets the resource type, ID and name. (Note that this line is included only because of the generic
nature of doCopyResource. The calling function has passed doCopyResource the type and ID in this instance.)

DetachResource removes the resource's handle from the resource map without removing the resource from memory, and
converts the resource handle into a generic handle. UseResFile makes the new file's resource fork the current resource file.
AddResource makes the now arbitrary data in memory into a resource, assigns a resource ID, type and name to that
resource, and inserts an entry in the resource map for the current resource file. UpdateResFile then writes the resource map
and data to disk.

navEventFunction
navEventFunction is the event-handling function used by the Navigation Services dialog and alert boxes.

The formal parameter callBackSelector is a constant indicating which type of call Navigation Services is making to
navEventFunction. One such constant is kNavCBEvent, which indicates that an event has occurred. callBackParms is a
pointer to a structure of type NavCBRec. The event's event structure resides in the eventData field of the NavCBRec
structure.

At the first line, the window's WindowPtr is retrieved from the event structure's message field. At the kNavCBEvent case, the
event type is extracted from the event structure's what field. If it is an update event, and if it is not for a Navigation Services
dialog box (the application does not open any other dialog boxes), the application's window updating function doUpdate is
called.

ChooseAFolderDialog.c

doChooseAFolderDialog
doChooseAFolderDialog is called when the user chooses the Choose a Folder Dialog item in the demonstration menu. This
function uses Navigation Services functions.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the defaults. GetIndString copies a
string to the message field of a NavDialogOptions structure. This will appear immediately below the browser list in the
dialog box.

The next line creates a routine descriptor for the event-handling function.

NavChooseFolder displays the Choose a Folder dialog box. When the user dismisses the dialog box, NavChooseFolder
returns, at which time the routine descriptor is disposed of.

The if block executes if the user clicked the Choose push button. AECoerceDesc coerces the descriptor structure in the
descriptor list returned in the selection field of the NavReplyRecord structure to a descriptor of type file system specification,
the resulting descriptor being assigned to the AEDesc structure resultDesc. If this call is successful, BlockMoveData is called
to copy the data from the dataHandle field of that structure to a local variable of type FSSpec.

When Navigation Services passes your application an AEDesc structure of type typeFSS describing a directory, the name
field is empty and the parID field contains the directory ID of that directory, not the ID of the parent directory. In this
demonstration, the volume reference number and directory ID are passed in a call to FSMakeFSSpec, which fills in the fields
of the FSSpec record pointed to by the fourth parameter. In the function doMenuChoice, the contents of the fields of this
FSSpec structure (the directory name, its parent directory ID, and the volume reference number) are drawn in the bottom of
the front window.

16B-48 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

	16B
	MORE ON FILES — NAVIGATION SERVICES
	Includes Demonstration Program Files2
	Introduction
	Navigation Services Dialog and Alert Boxes
	The primary dialog boxes created by Navigation Services are as follows:
	The alert boxes created by Navigation Services are as follows:
	Standard User Interface Elements in Dialog Boxes
	The standard user interface elements in Navigation Services primary dialog boxes are shown at Fig 1.
	Moving and Resizing Navigation Services Dialog Boxes
	Browser List Expansion
	Sort Keys and Sort Order
	Preview Area
	Persistence
	Default Location and Selection
	Opening Files
	Opening Multiple Files
	The Show Pop-up Menu
	Native File Types Section
	The NavDialogOptions and NavTypeList Structures
	The NavTypeList Structure
	The NavTypeList structure is as follows:
	The NavDialogOptions Structure
	The NavDialogOptions structure is as follows:
	Field Descriptions
	The NavReplyRecord Structure
	Field Descriptions
	Saving Files
	The function NavPutFile displays the Save dialog box (see Fig 6).
	Translating Files on Save
	Choosing A Folder
	The function NavChooseFolder displays a dialog box that prompts the user to choose a folder (see Fig 7.)
	Choosing Volumes, Files, File Objects, and Creating a New Folder
	The function NavChooseVolume displays a dialog box that prompts the user to choose a volume.
	The function NavNewFolder displays a dialog box that prompts the user to create a new folder.
	Save Changes and Discard Changes Alert Boxes
	Save Changes Alert Box
	One of the following constants is passed in the action parameter of the NavAskSaveChanges function:
	Discard Changes Alert Box
	Application-Defined Functions
	Application-Defined Event Handling
	Application-Defined Object Filtering
	The following is an example of a simple filter function:
	Application-Defined Previews
	Adding Controls to a Navigation Services Dialog Box
	To add controls to a Navigation Services dialog box, you should:
	Main Navigation Services Constants, Data Types, and Functions
	Constants
	Configuration Options
	Save Changes Request
	Save Changes Action
	Discard Changes Action
	Event Message
	Object Filtering
	Data Types
	NavDialog Options Structure
	Nav Reply Structure
	NavTypeList
	Functions
	Calling Navigation Services
	Choosing Files, Folders, and Volumes
	Saving Files
	Demonstration Program
	// item is included in the Demonstration menu which allows the user to simulate
	// Choosing the first menu item in this menu sets the window-touched flag in the window's
	// large font size, this latter so that the user can keep track of which windows have
	// that it also demonstrates certain file-related Window Manager features introduced with
	EventRecord eventStructure;
	BeginUpdate(windowPtr);
	EndUpdate((WindowPtr)eventStrucPtr->message);
	EnableItem(menuHdl,iSaveAs);
	SetPort(windowPtr);
	SetPort(windowPtr);
	EraseRect(&windowPtr->portRect);
	SetPort(gWindowPtr);
	SetWRefCon(gWindowPtr,(SInt32) docStrucHdl);
	SetWTitle(gWindowPtr,fileSpec.name);
	ShowWindow(gWindowPtr);
	DisposeRoutineDescriptor(navEventFunctionUPP);
	DisposeHandle((Handle) docStrucHdl);
	FSpCreateResFile(&(*docStrucHdl)->fileFSSpec,'kBkB',fileType,smSystemScript);
	UseResFile(sourceFileRefNum);
	ReleaseResource(sourceResourceHdl);
	DisposeRoutineDescriptor(navEventFunctionUPP);
	BlockMoveData(*resultDesc.dataHandle,&fileSpec,sizeof(FSSpec));
	Demonstration Program Comments
	Files2.h
	#typedef
	#define
	Files2.c
	Global Variables
	main
	The call to Gestalt determines whether Mac OS 8.5 or later is present.
	EventLoop
	doInstallAEHandlers
	doMouseDown
	doBringFinderToFront
	doFindProcess
	doUpdate
	doMenuChoice
	doFileMenu
	doErrorAlert
	doTouchWindow
	doSynchroniseFiles
	doOpenAppEvent, doOpenDocsEvent, and doQuitAppEvent
	NewOpenCloseSave.c
	Global Variables
	doNewCommand
	doOpenCommand
	doCloseCommand
	doSaveCommand
	doSaveAsCommand
	doRevertCommand
	doQuitCommand
	doNewDocWindow
	doOpenFile
	doCloseFile
	doWriteFile
	doReadTextFile
	The first two lines retrieve the file reference number from the document structure.
	doReadPictFile
	doWriteTextData
	doWritePictData
	doCopyResources
	doCopyAResource
	navEventFunction
	ChooseAFolderDialog.c
	doChooseAFolderDialog
	The next line creates a routine descriptor for the event-handling function.

