
11
QUICKDRAW PRELIMINARIES

Includes Demonstration Program PreQuickDraw

QuickDraw and Imaging
QuickDraw is a collection of system software routines that your application uses to
perform most imaging operations on Macintosh computers. Imaging entails the
construction and display of graphical information, including shapes, pictures, and text,
which can be displayed on such output devices as screens and printers.

This chapter serves as a prelude to Chapter 12 — Drawing With QuickDraw, and
introduces certain matters which need to be discussed before the matter of actually
drawing with QuickDraw is addressed. These matters include the history of QuickDraw,
RGB colours, colour and the video device, the colour graphics port, translation of RGB
values, and graphics devices.

History of QuickDraw
As the system software has developed, QuickDraw has progressed through the following
three main evolutionary stages:

• Basic QuickDraw, which was designed for the early black-and-white Macintoshes.
System 7 added new capabilities to basic QuickDraw, including support for offscreen
graphics worlds.

• The original version of Color QuickDraw, which was introduced with the first
Macintosh II systems, and which could support up to 256 colours.

• The current version of Color QuickDraw, which was originally introduced as 32-
bit Color QuickDraw. This version has been expanded to support millions of
colours.

The Appearance Manager requires that Color QuickDraw be present. Accordingly, this
edition of Macintosh C assumes Color QuickDraw in all circumstances. Where the word
"QuickDraw" is used, Color QuickDraw is invariably implied.

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-1

RGB Colours and Pixels
When using QuickDraw, you specify colours as RGB colours. An RGB (red-green-blue)
colour is defined by its red, green and blue components. For example, when each of the
red, green and blue components of a colour are at their maximum intensity (0xFFFF), the
result is the colour white. When each of the components has zero intensity (0x0000), the
result is the colour black.

You specify a colour to QuickDraw by creating an RGBColor structure in which you use three
16-bit unsigned integers to assign intensity values for the three additive1 primary colours.
The RGBColor data type is defined as follows:

struct RGBColor
{

unsigned short red; // Magnitude of red component.
unsigned short green; // Magnitude of green component.
unsigned short blue; // Magnitude of blue component.

};
typedef struct RGBColor RGBColor;

A pixel (picture element) is the smallest dot that QuickDraw can draw. Each colour pixel
represents up to 48 bits in memory.

Colour and the Video Device
QuickDraw supports a variety of screens of differing sizes and colour capabilities. It is
thus device-independent. Accordingly, you do not have to concern yourself with the
capabilities of individual screens. For example, when your application uses an RGBColor
structure to specify a colour by its red, green and blue components, with each component
defined in a 16-bit integer, QuickDraw compares the resulting 48-bit value with the
colours actually available on a video device (such as a plug-in video card or a built-in video
interface) at execution time and then chooses the closest match. What the user finally
sees depends on the characteristics of the actual video device and screen.

The video device that controls a screen may have either:

• Indexed colours, which support pixels of 1-bit, 2-bit, 4-bit, or 8-bit pixel depths2.
The indexed colour system was introduced with the Macintosh II, that is, at a time
when memory was scarce and moving megabyte images around was impractical.

• Direct colours, which support pixels of 16-bit and 32-bit depths. Most video
devices in the current day are direct colour devices. (However, as will be seen,
there are circumstances in which a direct colour device will act like an indexed
colour device.)

QuickDraw automatically determines which method is used by the video device and
matches your requested 48-bit colour with the closest available colour.

Indexed Colour Devices
Video devices using indexed colours support a maximum of 256 colours at any one time,
that is, with indexed colour, the maximum value of a pixel is limited to a single byte, with
each pixel's byte specifying one of 256 (28) different values.

1 On a video device, the primary colours are referred to as additive because, when each of the three colour components is at
maximum intensity, the result is the colour white. On a printer, the primary colours are referred to as subtractive because
the colour black results when the three colour components are at maximum intensity.
2 Pixel depth means the number of bits assigned to each pixel, and thus determines the maximum number of colours that
can be displayed at the one time. A 4-bit pixel depth, for example, means that an individual pixel can be displayed in any
one of 16 separate colours. An 8-bit pixel depth means that an individual pixel can be displayed in any one of 256 separate
colours.

11-2 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

Video devices implementing indexed colour contain a data structure called a colour
lookup table (or, more commonly, a CLUT). The CLUT, in turn, contains entries for all
possible colour values.

256 colours is, for many images, sufficient for near-photographic quality. The problem is
that the colours needed for one photographic image may not be appropriate for another.
Because most indexed video devices use a variable CLUT, however, you can display one
image using one set of 256 colours and then use system software to reload the CLUT with
a second set of 256 colours that are appropriate for the next image.3 If your application
needs this sort of control on indexed video devices, you can use the Palette Manager to
arrange palettes (that is, sets of colours) for particular images and for video devices with
differing colour capabilities.

If your application uses a 48-bit RGBColor structure to specify a colour, the Color Manager
examines the colours available in the CLUT on the video device. Comparing the CLUT
entries to the RGBColor structure you specify, the Color Manager determines which colour in
the CLUT is closest, and gives QuickDraw the index to this colour. QuickDraw then draws
with this colour.

Fig 1 illustrates this process. In Fig 1, the user selects a colour for some object in an
application (1). Using a 48-bit RGBColor structure to specify the colour, the application calls
a QuickDraw routine to draw the object in that colour (2). QuickDraw uses the Color
Manager to determine what colour in the video devices's CLUT comes closest to the
requested colour (3).

At startup, the video device's declaration ROM supplies information for the creation of a
GDevice structure (see below) that describes the characteristics of the device. The resulting
structure contains a ColorTable structure that is kept synchronised with the card's CLUT.

The Color Manager examines the GDevice structure to find what colours are currently
available (4) and to decide which colour comes closest to the one requested by the
application. The Color Manager gets the index value for the best match and returns the
value to QuickDraw (5), which puts the index value into those places in video RAM which
store the object.

FIG 1 - INDEXED COLOUR SYSTEM

USER APPLICATION

COLOR
QUICKDRAW

COLOR
MANAGER

GDevice STRUCTURE
COLOUR TABLE

CLUT
COLOUR TABLE R

G
B

VIDEO RAM

1 2
3

4
5

6

7
8 9

VIDEO CARD

The video device continually displays video RAM by taking the index values, converting
them to colours according to CLUT entries at those indexes (7), and sending them to the
digital-to-analog converters (8) which produce a signal for the screen (9).

Direct Colour Devices
Video devices which implement direct colour eliminate the competition for limited colour
lookup table spaces and remove the need for colour table matching. By using direct
colour, video devices can support thousands or millions of colours.

3 Some Macintosh computers, such as grayscale PowerBook computers, have a fixed CLUT, which your application cannot
change.

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-3

When you specify a colour using a 48-bit RGBColor structure on a direct colour system,
QuickDraw truncates the least significant bits of its red, green and blue components to
either 16 bits (five bits each for red, green and blue, with one bit unused) or 32 bits (eight
bits for red, green and blue, with eight bits unused). (See Translation of RGB Colours to
Pixel Values, below.) Using 16 bits, direct video devices can display 32,768 different
colours. Using 32 bits, the device can display 16,777,215 different colours

Fig 2 illustrates the direct colour system. A user chooses a colour for some object (1) and,
using a 48-bit RGBColor structure to specify the colour, the application uses a QuickDraw
routine to draw the object in that colour (2).

QuickDraw knows from the GDevice structure (3) that the screen is controlled by a direct
device in which pixels are, say, 32 bits deep, which means that eight bits are used for
each of the red, green and blue components of the requested colour. Accordingly,
QuickDraw passes the high eight bits from each 16-bit component of the 48-bit RGBColor
structure to the video device (4), which stores the resulting 24-bit value in video RAM for
the object. The video device continually displays video RAM by sending the 8-bit red,
green and blue values for the colour to digital-to-analog converters (5) which produce a
signal for the screen (6).

FIG 2 - DIRECT COLOUR SYSTEM

USER APPLICATION

COLOR
QUICKDRAW

GDevice STRUCTURE

R
G

1 2 3

4

6

VIDEO CARD
5

32-BIT PixMap
STRUCTURE

VIDEO RAM

B

Direct colour not only removes much of the complexity of the CLUT mechanism for video
device developers, but it also allows the display of thousands or millions of colours
simultaneously, resulting in near-photographic resolution.

Direct Devices Operating Like
Indexed Devices

Note that, when a user uses the Monitors and Sound control panel to set a direct colour
device to use 256 colours (or less) as either a grayscale or colour device, the direct device
creates a CLUT and operates like an indexed device.

Colour Graphics Port
QuickDraw performs its operations in a colour graphics port, a data structure of type
CGrafPort.

Historical Note
There is a related type of graphics port called the basic graphics port, which was
originally the drawing environment provided by basic QuickDraw. A basic graphics
port is defined in a GrafPort structure. It contains the information basic QuickDraw
needed to create and manipulate onscreen black-and-white images, or colour
images that employed basic QuickDraw's eight-colour system.

11-4 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

Since the Appearance Manager requires that Color QuickDraw be present, the
basic graphics port is now redundant.

A colour graphics port defines a complete drawing environment that determines where
and how colour graphics operations take place. Amongst other things, a colour graphics
port:

• Contains a handle to a pixel map which, in turn, contains a pointer to the area of
memory in which your drawing operations take place.

• Contains a metaphorical graphics pen with which to perform drawing operations.
(You can set this pen to different sizes, patterns and colours.)

• Holds information about text, which is styled and sized according to information in
the graphics port.

The fields of a colour graphics port are maintained by QuickDraw. QuickDraw provides
routines for changing and reading those fields. For example, routines are available to
reshape and resize the pen, change the pen's pattern and colour, switch fonts, etc.

You can open many colour graphics ports at the same time. Each has its own local
coordinate system, drawing pattern, background pattern, pen size and location,
foreground colour, background colour, pixel map, etc. You can instantly switch from one
graphics port to another using the function SetPort.

When you use Window Manager and Dialog Manager functions to create windows, dialog
boxes, and alert boxes, those managers automatically create colour graphics ports for you

The CGrafPort structure is as follows:
struct CGrafPort
{

short device; // Device-specific information.
PixMapHandle portPixMap; // Handle to pixel map.
short portVersion; // Flags and version number.
Handle grafVars; // Handle to additional colour fields.
short chExtra; // Extra width added to non-space characters.
short pnLocHFrac; // Fractional horizontal pen position.
Rect portRect; // Port rectangle.
RgnHandle visRgn; // Visible region.
RgnHandle clipRgn; // Clipping region.
PixPatHandle bkPixPat; // Background pattern
RGBColor rgbFgColor; // Requested foreground colour.
RGBColor rgbBkColor; // Requested background colour
Point pnLoc; // Pen location.
Point pnSize; // Pen size.
short pnMode; // Pattern mode.
PixPatHandle pnPixPat; // Pen pattern.
PixPatHandle fillPixPat; // Fill pattern.
short pnVis; // Pen visibility.
short txFont; // Font number for text.
Style txFace; // Text font style.
SInt8 filler;
short txMode; // Text source mode.
short txSize; // Font size for text.
Fixed spExtra; // Extra width added to space characters.
long fgColor; // Actual foreground colour.
long bkColor; // Actual background colour.
short colrBit; // Colour bit (reserved).
short patStretch; // (Used internally.)
Handle picSave; // Picture being saved. (Used internally.)
Handle rgnSave; // Region being saved. (Used internally.)
Handle polySave; // Polygon being saved. (Used internally.)
CQDProcsPtr grafProcs; // Pointer to low-level drawing routines.

};
typedef struct CGrafPort CGrafPort,*CGrafPtr;
typedef CGrafPtr CWindowPtr;

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-5

Main Field Descriptions

portPixMap A handle to a PixMap structure (see below) which describes the pixels in this
colour graphics port.

portVersion In the highest two bits, flags set to indicate that this is a CGrafPort structure and,
in the remainder of the field, the version number of QuickDraw that created
this structure.

grafVars A handle to a GrafVars structure, which contains colour information additional to
that contained in the CGrafPort structure itself, and which is used by QuickDraw
and the Palette Manager. For example, one field contains the RGB colour for
highlighting.

portRect The port rectangle that defines a subset of the pixel map to be used for
drawing. All drawing done by your application occurs inside the port
rectangle. (In a window's graphics port, the port rectangle is also called the
content region.)

The port rectangle uses the local coordinate system defined by the boundary
rectangle in the portPixMap field of the PixMap structure (see below). The upper-
left corner (which, for a window, is called the window origin) of the port
rectangle has a vertical coordinate of 0 and a horizontal coordinate of 0. The
port rectangle usually falls within the boundary rectangle, but it is not
required to do so.

visRgn The region of the graphics port that is actually visible on screen, that is, the
part of the window not covered by other windows (see Fig 3). By default, the
visible region is equivalent to the port rectangle.

clipRgn The graphics port's clipping region, an arbitrary region that you can use to
limit drawing to any region within the port rectangle. The default clipping
region is set arbitrarily large; however, you can change the clipping region
using the function ClipRect. At Fig 3, for example, Window B's clipping region
has been set by the application to prevent the scroll bar areas being over-
drawn.

FIG 3 - VISIBLE REGION AND CLIPPING REGION

TWO COLOUR GRAPHICS
PORTS

VISIBLE REGION OF
WINDOW A

MODIFIED CLIPPING REGION
OF WINDOW B

WINDOW AWINDOW A

WINDOW B

bkPixPat A handle to a PixPat structure that describes the background pixel pattern.
Various QuickDraw functions use this pattern for filling scrolled or erased
areas.

rgbFgColor An RGBColor structure that contains the requested foreground colour. By
default, the foreground colour is black.

rgbBkColor An RGBColor structure that contains the requested background colour. By
default, the background colour is white.

pnLoc The point where QuickDraw will begin drawing the next line, shape, or
character. It can be anywhere on the coordinate plane.

11-6 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

pnSize The vertical height and horizontal width of the graphics pen. The default size
is a 1-by-1 pixel square. If either the pen width or height is 0, the pen does
not draw.

pnMode The pen transfer mode, that is, a Boolean or arithmetic operation that
determines how QuickDraw transfers the pen pattern to the pixel map during
drawing operations. When the graphics pen draws into a pixel map,
QuickDraw first determines what pixels in the pixel image are affected and
finds their corresponding pixels in the pen pattern. QuickDraw then does a
pixel-by-pixel comparison based on the transfer mode. QuickDraw stores the
resulting pixel in its proper place in the image.

pnPixPat A handle to a PixPat structure (see below) that describes the pixel pattern used
by the graphics pen for drawing lines and framed shapes, and for painting
shapes.

fillPixpat A handle to a PixPat structure (see below) that describes the pixel pattern that
is used when you call QuickDraw shape filling functions.

pnVis The graphics pen's visibility, that is, whether it draws on the screen.

txFont A font family ID number that identifies the font to be used in the graphics
port.

txFace The style of the text, for example, bold, italic, and/or underlined.

txMode The transfer mode for text drawing, which functions much like the transfer
mode specified in the pnMode field (see above).

txSize The text size in pixels. The Font Manager uses this information to provide the
bitmaps for text drawing. The value in this field can be represented by

point size x device resolution / 72 dpi
where point is a typographical term meaning approximately 1/72 inch.

fgColor The pixel value of the foreground colour supplied by the Color Manager. (See
Colour and the Video Device, above, and Translation of RGB Colours to Pixel
Values, below.) This is the colour actually displayed on the device, that is, it is
the the best available approximation to the requested color in the rgbFgColor
field.

bkColor The pixel value of the background colour supplied by the Color Manager.
(See Colour and the Video Device, above, and Translation of RGB Colours to
Pixel Values, below.) This is the colour actually displayed on the device, that
is, it is the the best available approximation to the requested color in the
rgbBkColor field.

Pixel Maps
QuickDraw draws in a pixel map. The portPixMap field of the CGrafPort structure contains a
handle to a pixel map, which is a data structure of type PixMap. A PixMap structure contains a
pointer to a pixel image, as well as information on the image's storage format, depth,
resolution, and colour usage. The PixMap structure is as follows:

struct PixMap
{

Ptr baseAddr; // Pointer to image data.
short rowBytes; // Flags, and bytes in a row.
Rect bounds; // Boundary rectangle.
short pmVersion; // Pixel Map version number.
short packType; // Packing format.
long packSize; // Size of data in packed state.
Fixed hRes; // Horizontal resolution in dots per inch.

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-7

Fixed vRes; // Vertical resolution in dots per inch.
short pixelType; // Format of pixel image.
short pixelSize; // Physical bits per pixel.
short cmpCount; // Number of components in each pixel.
short cmpSize; // Number of bits in each component.
long planeBytes; // Offset to next plane.
CTabHandle pmTable; // Handle to a colour table for this image.
long pmReserved; // (Reserved.)

};
typedef struct PixMap PixMap,*PixMapPtr,**PixMapHandle;

Field Descriptions

baseAddr For an onscreen pixel image, a pointer to the first byte of the image. The pixel
image that appears on the screen is normally stored on a graphics card rather
than in main memory. Note that there can be several pixel maps pointing to
the same pixel image, each imposing its own coordinate system on it.

A pixel image is analogous to the bit image used by basic QuickDraw. A bit
image is a collection of bits in memory that form a grid. Fig 4 illustrates a bit
image, which can be visualised as a matrix of rows and columns of bits with
each row containing the same number of bytes. Each bit corresponds to one
screen pixel. If a bit's value is 0, its screen pixel is white; if the bit's value is
1, the screen pixel is black. A bit image can be any length that is a multiple of
the row's width in bytes. On black-and-white Macintoshes, the screen itself is
one large visible bit image.

FIG 4 - A BIT IMAGE

8 BITS
FIRST BYTE

LAST BYTE

A pixel image is essentially the same as a bit image, except that a number of
bits, not just one bit, are assigned to each pixel. The number of bits per pixel
in a pixel image is called the pixel depth.

rowBytes The offset in bytes from one row of the image to the next. The value must be
even and less than 0x4000. For best performance it should be a multiple of 4.
Bit 15 is used as a flag. If bit 15 = 1, the data structure is a PixMap structure,
otherwise it is a BitMap structure. (The rowbytes bytes in a PixMap structure
occupy the same bytes (fifth and sixth) as they do is a BitMap.)

bounds The boundary rectangle, which links the local coordinate system of a graphics
port to QuickDraw's global coordinate system and defines the area of the pixel
image into which QuickDraw can draw. All drawing in a colour graphics port
occurs in the intersection of the boundary rectangle and the port rectangle
(and, within that intersection, all drawing is cropped to the colour graphics
port's visible region and its clipping region.)

As shown at Fig 5, QuickDraw assigns the entire screen as the boundary
rectangle. The boundary rectangle shares the same local coordinate system
as the port rectangle of the window.

11-8 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

FIG 5 - LOCAL AND GLOBAL COORDINATE SYSTEMS, THE BOUNDARY RECTANGLE AND
THE PORT RECTANGLE

BOUNDARY RECTANGLE PORT RECTANGLE

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

UPPER LEFT
CORNER OF
BOUNDARY
RECTANGLE:
h = - 70,v = - 60
IN LOCAL
COORDINATES

GLOBAL ORIGIN

WINDOW ORIGIN

- h

+ v

v

- v

+ h

h

Do not use the bounds field to determine the size of the screen; instead, use the
gdRect field of the GDevice structure (see below) for the screen.

pmVersion The version number of QuickDraw that created this PixMap structure.

packType The packing algorithm used to compress image data.

packSize The size of the packed image in bytes.

hRes The horizontal resolution of the image in pixels per inch, abbreviated as dpi
(dots per inch). By default, the value here is 0x00480000 (for 72 dpi), but
QuickDraw supports PixMap structures of other resolutions. For example, PixMap
structures for scanners can have dpi resolutions of 150, 200, 300, or greater.

vRes Describes the vertical resolution. (See hRes).

pixelType The storage format for a pixel image. Indexed pixels are indicated by a value
of 0. Direct pixels are specified by a value of RGBDirect, or 16. In the PixMap
structure of the GDevice structure (see below) for a direct device, this field is
set to the constant RGBDirect when the screen depth is set.

pixelSize The pixel depth, that is, the number of bits used to represent a pixel. Indexed
pixels can have sizes of 1, 2, 4, or 8 bits. Direct pixel sizes are 16 or 32 bits.

cmpCount The number of components used to represent a colour for a pixel. With
indexed pixels, each pixel is a single value representing an index in a colour
table, so this field contains the value 1. With direct pixels, each pixel contains
three components (one integer each for the intensities of red, green, and
blue), so this field contains the value 3.

cmpSize Specifies how large each colour component is. For indexed devices, it is the
same value as that in the pixelSize field. For direct devices, each of the three
colour components can be either 5 bits for a 16-bit pixel (one of these 16 bits
is unused), or 8 bits for a 32 bit pixel (8 of these 32 bits are unused). (See
Translation of RGB Colours to Pixel Values, below.)

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-9

planeBytes QuickDraw does not support multiple-plane images, so the value of this field is
always 0.

pmTable Contains a handle to the ColorTable structure. ColorTable structures define the
colours available for pixel images on indexed devices. (The Color Manager
stores a colour table for the currently available colours in the graphic's
device's CLUT. You use the Palette Manager to assign different colour tables
to your different windows.)

You can create colour tables using either ColorTable structures or 'clut' resources.
Pixel images on direct devices do not need a colour table because the colours
are stored right in the pixel values. In such cases, pmTable points to a dummy
colour table.

Pixel Patterns and Bit Patterns

Pixel Patterns

Three fields in the colour graphics port structure (pnPixPat, fillPixPat, and bkPixPat,) hold
handles to a pixel pattern , a structure of type PixPat.

Pixel patterns, which define a repeating design, can use colours at any pixel depth, and
can be of any width and height that is a power of 2. You can create your own pixel
patterns in your program code, but it is usually simpler and more convenient to store them
in resources of type 'ppat'. Fig 6 shows an 8-by-8 pixel 'ppat' resource being created using
Resorcerer.

FIG 6 - CREATING A 'ppat' RESOURCE USING RESORCERER

Bit Patterns

Bit patterns date from the era of the black-and-white Macintosh, but may be assigned to
the pnPixPat , fillPixPat, and bkPixPat fields of a colour graphics port. (PixPat structures can
contain bit patterns as well as pixel patterns.) Bit patterns are defined in data structures
of type Pattern, a 64-pixel image of a repeating design organised as an 8-by-8 pixel square.

Five bit patterns are pre-defined as QuickDraw global variables. The five pre-defined
patterns are available not only through the QuickDraw globals but also as system

11-10 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

resources stored in the System resource file. Fig 7 shows images drawn using some some
of the 38 available system-supplied bit patterns.

FIG 7 - RECTANGLES DRAWN USING BIT PATTERNS IN THE SYSTEM RESOURCE FILE

 RECTANGLES DRAWN WITH OTHER BIT PATTERNS IN THE SYTEM RESOURCE FILE

white black dkGray gray ltGray
 RECTANGLES DRAWN WITH BIT PATTERNS PRE-DEFINED AS QUICKDRAW GLOBAL VARIABLES

You can create your own bit patterns in your program code, but it is usually simpler and
more convenient to store them in resources of type 'PAT ' or 'PAT#'. Fig 8 shows a 'PAT '
resource being created using Resorcerer, together with the contents of the pat field of the
structure of type Pattern that is created when the resource is loaded.

pat[0] = 10001000 = 0x88
pat[1] = 01000100 = 0x44
pat[2] = 00100010 = 0x22
pat[3] = 00010001 = 0x11
pat[4] = 10001000 = 0x88
pat[5] = 01000100 = 0x44
pat[6] = 00100010 = 0x22
pat[7] = 00010001 = 0x11

FIG 8 - CREATING A 'PAT ' RESOURCE USING RESORCERER

Creating Colour Graphics Ports
Your application creates a colour graphics port using either the GetNewCWindow, NewCWindow,
or NewGWorld function. These functions automatically call OpenCPort (which opens the port)
and InitCPort (which and initialises the port).

Translation of RGB Colours to Pixel Values
As previously stated, the baseAddr field of the CGrafPort structure contains a pointer to the
beginning of the onscreen pixel image. When your application specifies an RGB colour for
a pixel in the pixel image, QuickDraw translates that colour into a value appropriate for
display on the user's screen. QuickDraw stores this value in the pixel. The pixel value is
a number used by system software and a graphics device to represent a colour. The
translation from the colour you specify in an RGBColor structure to a pixel value is
performed at the time you draw the colour. The process differs for direct and indexed
devices as follows:

• When drawing on indexed devices, QuickDraw calls the Color Manager to supply the
index to the colour that most closely matches the requested colour in the current
device's CLUT. This index becomes the pixel value for that colour.

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-11

• When drawing on direct devices, QuickDraw truncates the least significant bits from
the red, green and blue fields of the RGBColor structure. The result becomes the pixel
value that QuickDraw sends to the graphics device.

Your application never needs to handle pixel values. However, to clarify the relationship
between RGBColor structures and the pixels that are actually displayed, the following
presents some examples of the derivation of pixel values from RGBColor structures.

Derivation of Pixel Values on Indexed Devices
Fig 9 shows the translation of an RGBColor structure to an 8-bit pixel value on an indexed
device.

FIG 9 - TRANSLATING AN RGBColor STRUCTURE TO AN 8-BIT PIXEL VALUE ON AN INDEXED DEVICE

160

162

RGBColor STRUCTURE
INDEX NUMBERS

CLUT
0

161

R G B
0x32060x90380x013D

PIXEL VALUE (161) 255

CLOSEST
COLOUR MATCH
IS AT TABLE
ENTRY 161

0x3333 0x9999 0x0000

1rgbFgColor or rgbBkColor
field of CGrafPort structure

fgColor or bkColor field
of CGrafPort structure

The application might later use GetCPixel to determine the colour of a particular pixel. As
shown at Fig 10, the Color Manager uses the index number stored as the pixel value to
find the RGBColor structure stored in the CLUT for that pixel's colour. Also as shown at Fig
10, this is not necessarily the exact colour first specified.

FIG 10 - TRANSLATING AN 8-BIT PIXEL VALUE ON AN IDEXED DEVICE TO AN RGBColor STRUCTURE

RGBColor STRUCTURE
INDEX NUMBERS

CLUT
0

161

R G B
0x33330x99990x0000

PIXEL VALUE (161) 255

0x3333 0x9999 0x0000

1

160

162
fgColor or bkColor field
of CGrafPort structure

GetCPixel

Derivation of Pixel Values on Direct Devices
Fig 11 shows how QuickDraw converts an RBGColor structure into a 16-bit pixel value on a
direct device by storing the most significant 5 bits of each 16-bit field of the 48-bit RGBColor
structure in the lower 15 bits of the pixel value, leaving an unused high bit. Fig 11 also
shows how QuickDraw expands a 16-bit pixel value to a 48-bit RGBColor structure by
dropping the unused high bit of the pixel value and inserting three copies of each 5-bit
component and a copy of the most significant bit into each 16-bit field of the RGBColor
structure. Note that the result differs, in the least significant 11 bits, from the original 48-
bit value.

11-12 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

FIG 11 - TRANSLATING AN RGBColor STRUCTURE TO A 16 BIT PIXEL VALUE, AND FROM A 16-BIT PIXEL VALUE TO AN RGBColor
STRUCTURE, ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

(UNUSED)

0x318C 0x9495 0x0000

R 0x06 G 0x12 B 0x00

rgbFgColor or
rgbBkColor field of
CGrafPort structure

fgColor or bkColor
field of CGrafPort
structure

GetCPixel

Fig 12 shows how QuickDraw converts an RBGColor structure into a 32-bit pixel value on a
direct device by storing the most significant 8 bits of each 16-bit field of the structure into
the lower 3 bytes of the pixel value, leaving 8 unused bits in the high byte of the pixel
value. Fig 12 also shows how QuickDraw expands a 32-bit pixel value to an RBGColor
structure by dropping the unused high byte of the pixel value and doubling each of its 8-
bit components. Note that the resulting 48-bit value differs in the least significant 8 bits
of each component from the original RBGColor structure.

FIG 12 - TRANSLATING AN RGBColor STRUCTURE TO A 32 BIT PIXEL VALUE, AND FROM A 32-BIT PIXEL VALUE TO AN RGBColor
STRUCTURE, ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

B 0x01(UNUSED)

0x3232 0x9090 0x0101

R 0x32 G 0x90

rgbFgColor or
rgbBkColor field of
CGrafPort structure

fgColor or bkColor
field of CGrafPort
structure

GetCPixel

Colours on Grayscale Screens
When QuickDraw displays a colour on a grayscale screen, it computes the luminance, or
intensity of light, of the desired colour and uses that value to determine the appropriate
gray value to draw.

A grayscale device can be a colour graphics device that the user sets to grayscale by using
the Monitors and Sound control panel. For such a graphics device, Colour QuickDraw
places an evenly spaced set of grays in the graphics device's CLUT.

By using the GetCTable function, your application can obtain the default colour tables for
various graphics devices, including grayscale devices.

Graphics Devices and GDevice Structures
As previously stated, QuickDraw provides a device-independent interface. Your
application can draw images in the graphics port for a window and QuickDraw
automatically manages the path to the screen — even if the user is using multiple screens.
QuickDraw communicates with a video device, such as a plug-in video card or a built-in
video interface, by automatically creating and managing a structure of data type GDevice.

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-13

Types of Graphics Device
A graphics device is anything into which QuickDraw can draw. There are three types of
graphics device:

• Video devices, such as video cards and built-in video interfaces, that control
screens.

• Offscreen graphics worlds, which allow your application to build complex images
offscreen before displaying them.4

• Printing graphics ports for printers.5

GDevice Structure
For a video device or an offscreen graphics world, QuickDraw automatically creates, and
stores state information in, a GDevice structure. Note that printers do not have GDevice
structures.

When the system starts up, QuickDraw uses information supplied by the Slot Manager to
create and initialise a GDevice structure for each video device found during startup. When
you use the NewGWorld function to create an offscreen graphics world, QuickDraw
automatically creates a GDevice structure.

All existing GDevice structures are linked together in a list called a device list. The global
variable DeviceList holds a handle to the first structure in the list. At any given time, exactly
one graphics device is the current device (also called the active device), that is, the one
in which drawing is actually taking place. A handle to its GDevice structure is stored in the
global variable TheGDevice. By default, the GDevice structure corresponding to the first video
device found is marked as the current device.

Your application generally never needs to create GDevice structures; however, in may need
to examine GDevice structures to determine the capabilities of the user's screens. The
GDevice structure is as follows:

struct GDevice
{

short gdRefNum; // Reference Number of Driver.
short gdID; // Client ID for search procedures.
short gdType; // Type of device (indexed or direct).
ITabHandle gdITable; // Handle to inverse lookup table for Color Manager.
short gdResPref; // Preferred resolution.
SProcHndl gdSearchProc; // Handle to list of search functions.
CProcHndl gdCompProc; // Handle to list of complement functions.
short gdFlags; // Graphics device flags.
PixMapHandle gdPMap; // Handle to pixel map for displayed image.
long gdRefCon; // Reference value.
Handle gdNextGD; // Handle to next GDevice structure.
Rect gdRect; // Device's global boundaries.
long gdMode; // Device's current mode.
short gdCCBytes; // Width of expanded cursor data.
short gdCCDepth; // Depth of expanded cursor data.
Handle gdCCXData; // Handle to cursor's expanded data.
Handle gdCCXMask; // Handle to cursor's expanded mask.
long gdReserved; // (Reserved. Must be 0.)

};
typedef struct GDevice GDevice;
typedef GDevice *GDPtr, **GDHandle;

Main Field Descriptions

gdType The general type of graphics device. See Flag Bits of gdType Field, below.

4 See Chapter 13 — Offscreen Graphics Worlds, Pictures, Cursors, and Icons.
5 See Chapter 15 — Printing.

11-14 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

gdITable Points to an inverse table. An inverse table is a special Color Manager data
structure arranged in such a manner that, given an arbitrary RGB colour, its
pixel value (that is, its index number in the CLUT) can be found quickly.

gdFlags Device attributes (that is, whether the device is a screen, whether it is the
main screen, whether it is set to black-and-white or colour, whether it is the
active device, etc.) See Flag Bits of gdType Field, below.

gdPMap Contains a handle to the pixel map (PixMap) structure, which contains the
dimensions of the image buffer, along with the characteristics of the graphics
device (resolution, storage format, pixel depth, and colour table. QuickDraw
automatically synchronises the pixel map's colour table (ColorTable) structure
with the CLUT on the video device.

gdNextGD A handle to the next graphics device in the device list. If this is the last
graphics device in the device list, this field contains 0.

gdRect The boundary rectangle of the graphics device represented by the GDevice
structure. The main screen has the upper-left corner of the rectangle set to
(0,0). All other graphics devices are relative to this point.

Flag Bits of gdType Field

Constant Bit Meaning
clutType 0 CLUT device.
fixedType 1 Fixed CLUT device.
directType 2 Direct device.

Flag Bits of gdFlags Field

Constant Bit Meaning
gdDevType 0 0 = black-and-white. 1 = colour.
burstDevice 7 Device supports block transfer.
ext32Device 8 Device must be used in 32-bit mode.
ramInit 10 Device was initialised from RAM.
mainScreen 11 Device is the main screen.
allInit 12 All devices were initialised from 'scrn'

resource.
screenDevice 13 Device is a screen device.
noDriver 14 GDevice structure has no driver.
screenActive 15 Device is current device.

Setting a Device's Pixel Depth
The gdPMap field of the GDevice structure contains a handle to a PixMap structure which, in
turn, contains the PixelSize field to which is assigned the pixel depth of the device.

The Monitors and Sound control panel is the user interface for changing the pixel depth
of video devices. Since the user can control the capabilities of the video device, your
application should be flexible, that is, although it may have a preferred pixel depth, it
should do its best to accommodate less than ideal conditions. Your application can use the
SetDepth function to change the pixel depth, but it should not do so without the consent of
the user. Before calling SetDepth, you should use the HasDepth function to determine whether
the available hardware can support the pixel depth you require.

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-15

Other Graphics Managers
In addition to the QuickDraw functions, several other collections of system software
functions are available to assist you in drawing images.

Palette Manager
To provide more sophisticated colour support on indexed graphics devices, your
application can use the Palette Manager. The Palette Manager allows your application to
specify sets of colours that it needs on a window-by-window basis. On a video device that
uses a variable CLUT, your application can use the Palette Manager to display any number
of palettes (that is, sets of colours) consisting of 256 colours each. Remember, though,
that only one set of colours (palette) can be displayed at any one time.

Color Picker Utilities
To solicit colour choices from users, your application can use the Color Picker Utilities.
The Color Picker Utilities also provide functions that allow your application to convert
between colours specified in RGBColor structures and colours specified for other colour
models, such as the CMYK (cyan, magenta, yellow, black) model used for many colour
printers. (See Chapter 23 — Miscellany.)

Coping With Multiple Monitors
Image optimisation and window dragging in a multiple monitors environment is addressed
at Chapter 23 — Miscellany.

Relevant QuickDraw Constants, Data Types, and
Functions
Constants
Flag Bits of gdType Field of GDevice Structure
clutType = 0
fixedType = 1
directType = 2

Flag Bits of gdFlags Field of GDevice Structure
gdDevType = 0
burstDevice = 7
ext32Device = 8
ramInit = 10
mainScreen = 11
allInit = 12
screenDevice = 13
noDriver = 14
screenActive = 15

Pixel Type
RGBDirect = 16 // 16 and 32 bits-per-pixel pixelType value.

Data Types
Colour Graphics Port
struct CGrafPort

11-16 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

{
short device; // Device-specific information.
PixMapHandle portPixMap; // Handle to pixel map.
short portVersion; // Flags and version number.
Handle grafVars; // Handle to additional colour fields.
short chExtra; // Extra width added to non-space characters.
short pnLocHFrac; // Fractional horizontal pen position.
Rect portRect; // Port rectangle.
RgnHandle visRgn; // Visible region.
RgnHandle clipRgn; // Clipping region.
PixPatHandle bkPixPat; // Background pattern
RGBColor rgbFgColor; // Requested foreground colour.
RGBColor rgbBkColor; // Requested background colour
Point pnLoc; // Pen location.
Point pnSize; // Pen size.
short pnMode; // Pattern mode.
PixPatHandle pnPixPat; // Pen pattern.
PixPatHandle fillPixPat; // Fill pattern.
short pnVis; // Pen visibility.
short txFont; // Font number for text.
Style txFace; // Text font style.
SInt8 filler;
short txMode; // Text source mode.
short txSize; // Font size for text.
Fixed spExtra; // Extra width added to space characters.
long fgColor; // Actual foreground colour.
long bkColor; // Actual background colour.
short colrBit; // Colour bit (reserved).
short patStretch; // (Used internally.)
Handle picSave; // Picture being saved. (Used internally.)
Handle rgnSave; // Region being saved. (Used internally.)
Handle polySave; // Polygon being saved. (Used internally.)
CQDProcsPtr grafProcs; // Pointer to low-level drawing routines.

};
typedef struct CGrafPort CGrafPort,*CGrafPtr;
typedef CGrafPtr CWindowPtr;

GrafVars
struct GrafVars
{

RGBColor rgbOpColor; // Color for addPin, subPin and average.
RGBColor rgbHiliteColor; // Color for highlighting.
Handle pmFgColor; // Palette handle for foreground color.
short pmFgIndex; // Index value for foreground.
Handle pmBkColor; // Palette handle for background color.
short pmBkIndex; // Index value for background.
short pmFlags; // Flags for Palette Manager.

};
typedef struct GrafVars GrafVars,*GVarPtr,**GVarHandle;

Pixel Map
struct PixMap
{

Ptr baseAddr; // Pointer to image data.
short rowBytes; // Flags, and bytes in a row.
Rect bounds; // Boundary rectangle.
short pmVersion; // Pixel Map version number.
short packType; // Packing format.
long packSize; // Size of data in packed state.
Fixed hRes; // Horizontal resolution in dots per inch.
Fixed vRes; // Vertical resolution in dots per inch.
short pixelType; // Format of pixel image.
short pixelSize; // Physical bits per pixel.
short cmpCount; // Number of components in each pixel.
short cmpSize; // Number of bits in each component.
long planeBytes; // Offset to next plane.
CTabHandle pmTable; // Handle to a colour table for this image.
long pmReserved; // (Reserved.)

};
typedef struct PixMap PixMap,*PixMapPtr,**PixMapHandle;

Color Table
struct ColorTable
{

long ctSeed; // Unique identifier for table.

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-17

short ctFlags; // High bit: 0 = PixMap, 1 = device.
short ctSize; // Number of entries in ctTable minus 1.
CSpecArray ctTable; // Array of ColorSpec structures.

};
typedef struct ColorTable ColorTable;
typedef ColorTable *CTabPtr;
typedef CTabPtr *CTabHandle;

ColorSpec
struct ColorSpec
{

short value; // Index or other value.
RGBColor rgb; // True color.

};
typedef struct ColorSpec ColorSpec;
typedef ColorSpec *ColorSpecPtr;
typedef ColorSpec CSpecArray[1];

BitMap
struct BitMap
{

Ptr baseAddr; // Pointer to bit image.
short rowBytes; // Row width.
Rect bounds; // Boundary rectangle.

};
typedef struct BitMap BitMap;
typedef BitMap *BitMapPtr, **BitMapHandle;

Pixel Pattern
struct PixPat
{

short patType; // Type of pattern.
PixMapHandle patMap; // The pattern's pixel map.
Handle patData; // Pixel map's data.
Handle patXData; // Expanded Pattern data (internal use).
short patXValid; // Flags whether expanded Pattern valid.
Handle patXMap; // Handle to expanded Pattern data (reserved).
Pattern pat1Data; // Bit map's data.

};
typedef struct PixPat PixPat;
typedef PixPat *PixPatPtr;
typedef PixPatPtr *PixPatHandle;

Pattern
struct Pattern
{

UInt8 pat[8];
};
typedef struct Pattern Pattern;
typedef Pattern *PatPtr;
typedef PatPtr *PatHandle;

Note: Patterns were originally defined as:

typedef unsigned char Pattern[8];

The new struct definition was introduced with the Universal Headers. The old array
definition of Pattern would cause 68000-based CPUs to crash in certain circumstances.

GDevice
struct GDevice
{

short gdRefNum; // Reference Number of Driver.
short gdID; // Client ID for search procedures.
short gdType; // Type of device (indexed or direct).
ITabHandle gdITable; // Handle to inverse lookup table for Color Manager.
short gdResPref; // Preferred resolution.
SProcHndl gdSearchProc; // Handle to list of search functions.

11-18 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

CProcHndl gdCompProc; // Handle to list of complement functions.
short gdFlags; // Graphics device flags.
PixMapHandle gdPMap; // Handle to pixel map for displayed image.
long gdRefCon; // Reference value.
Handle gdNextGD; // Handle to next GDevice structure.
Rect gdRect; // Device's global boundaries.
long gdMode; // Device's current mode.
short gdCCBytes; // Width of expanded cursor data.
short gdCCDepth; // Depth of expanded cursor data.
Handle gdCCXData; // Handle to cursor's expanded data.
Handle gdCCXMask; // Handle to cursor's expanded mask.
long gdReserved; // (Reserved. Must be 0.)

};
typedef struct GDevice GDevice;
typedef GDevice *GDPtr, **GDHandle;

Functions
Opening and Closing Colour Graphics Ports
void OpenCPort(CGrafPtr port);
void InitCPort(CGrafPtr port);
void CloseCPort(CGrafPtr port);

Saving and Restoring Colour Graphics Ports
void GetPort(GrafPtr *port);
void SetPort(GrafPtr port);

Creating, Setting and Disposing of Pixel Maps
PixMapHandle NewPixMap(void);
void CopyPixMap(PixMapHandle srcPM,PixMapHandle dstPM);
void SetPortPix(PixMapHandle pm);
void DisposePixMap(PixMapHandle pm);

Creating, Setting and Disposing of Graphics Device Structures
GDHandle NewGDevice(short refNum,long mode);
void InitGDevice(short qdRefNum,long mode,GDHandle gdh);
void SetDeviceAttribute(GDHandle gdh,short attribute,Boolean value);
void SetGDevice(GDHandle gd);
void DisposeGDevice(GDHandle gdh);

Getting the Available Graphics Devices
GDHandle GetGDevice(void);
GDHandle LMGetMainDevice(void);
GDHandle GetNextDevice(GDHandle curDevice);
GDHandle LMGetDeviceList(void);

Determining the Characteristics of a Video Device
Boolean TestDeviceAttribute(GDHandle gdh,short attribute);
void ScreenRes(short *scrnHRes,short *scrnVRes);

Changing the Pixel Depth of a Video Device
OSErr SetDepth(GDHandle gd,short depth,short whichFlags,short flags);
short HasDepth(GDHandle gd,short depth,short whichFlags,short flags);

Demonstration Program
// ◊◊
// PreQuickDraw.c
// ◊◊
//
// This program opens a window in which is displayed some information extracted from
// the GDevice structure for the main video device and some colour information extracted
// from the window's colour graphics port structure. When the monitor is set to 256
// colours or less, the colours in the colour table in the GDevice structure's pixel map

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-19

// structure are also displayed.
//
// A Demonstration menu, which is enabled if the monitor is a direct device set to 256
// colours or less at program start, allows the user to set the monitor to 16-bit colour,
// and restore the original pixel depth, using application-defined functions.
//
// The program utilises 'MBAR', 'MENU', 'WIND', and 'STR#' resources, and a 'SIZE'
// resource with the is32BitCompatible flag set.
//
// ◊◊

//
………
…………………………………… includes

#include <Appearance.h>
#include <Devices.h>
#include <Palettes.h>
#include <LowMem.h>
#include <Sound.h>
#include <ToolUtils.h>

//
………
……………………………………… defines

#define rMenubar 128
#define rWindow 128
#define mApple 128
#define iAbout 1
#define mFile 129
#define iQuit 11
#define mDemonstration 131
#define iSetDepth 1
#define iRestoreDepth 2
#define rIndexedStrings 128
#define sMonitorInadequate 1
#define sSettingPixelDepth16 2
#define sMonitorIsDepth16 3
#define sMonitorIsDepthStart 4
#define sRestoringMonitor 5
#define MAXLONG 0x7FFFFFFF
#define topLeft(r) (((Point *) &(r))[0])
#define botRight(r) (((Point *) &(r))[1])

//
………
……………… global variables

Boolean gDone;
SInt16 gStartupPixelDepth;

//
………
……… function prototypes

void main (void);
void doInitManagers (void);
void doEvents (EventRecord *);
void doDisplayInformation (WindowPtr);
Boolean doCheckMonitor (void);
void doSetMonitorPixelDepth (void);
void doRestoreMonitorPixelDepth(void);
void doMonitorAlert (Str255);

// ◊◊◊ main

void main(void)
{

Handle menubarHdl;
MenuHandle menuHdl;
WindowPtr windowPtr;
Str255 theString;
EventRecord EventStructure;

//
………
… initialise managers

11-20 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

doInitManagers();

// …… set
up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

ExitToShell();
SetMenuBar(menubarHdl);

menuHdl = GetMenuHandle(mApple);
if(menuHdl == NULL)

ExitToShell();
else

AppendResMenu(menuHdl,'DRVR');

if(!(doCheckMonitor()))
{

GetIndString(theString,rIndexedStrings,sMonitorInadequate);
doMonitorAlert(theString);
menuHdl = GetMenuHandle(mDemonstration);
DisableItem(menuHdl,0);

}
else
{

if(gStartupPixelDepth > 8)
{

menuHdl = GetMenuHandle(mDemonstration);
DisableItem(menuHdl,0);

}
}

DrawMenuBar();

// ………………………………………………………………………… open windows, set font size, show windows, move windows

if(!(windowPtr = GetNewCWindow(rWindow,NULL,(WindowPtr)-1)))
ExitToShell();

SetPort(windowPtr);
TextSize(10);

//
………
…………… enter eventLoop

gDone = false;

while(!gDone)
{

if(WaitNextEvent(everyEvent,&EventStructure,MAXLONG,NULL))
doEvents(&EventStructure);

}
}

// ◊◊◊ doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

RegisterAppearanceClient();
}

// ◊◊◊ doEvents

void doEvents(EventRecord *eventStrucPtr)

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-21

{
SInt8 charCode;
SInt32 menuChoice;
SInt16 menuID, menuItem;
SInt16 partCode;
WindowPtr windowPtr;
Str255 itemName;
SInt16 daDriverRefNum;
Rect theRect;

switch(eventStrucPtr->what)
{

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)
{

menuChoice = MenuEvent(eventStrucPtr);
menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);
if(menuID == mFile && menuItem == iQuit)

gDone = true;
}
break;

case mouseDown:
if(partCode = FindWindow(eventStrucPtr->where,&windowPtr))
{

switch(partCode)
{

case inMenuBar:
menuChoice = MenuSelect(eventStrucPtr->where);
menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
if(menuItem == iAbout)

SysBeep(10);
else
{

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);

}
break;

case mFile:
if(menuItem == iQuit)

gDone = true;
break;

case mDemonstration:
if(menuItem == iSetDepth)

doSetMonitorPixelDepth();
else if(menuItem == iRestoreDepth)

doRestoreMonitorPixelDepth();
break;

}
HiliteMenu(0);
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
theRect = windowPtr->portRect;
theRect.right = windowPtr->portRect.left + 250;
InvalRect(&theRect);
break;

}
}
break;

case updateEvt:
windowPtr = (WindowPtr) eventStrucPtr->message;
BeginUpdate(windowPtr);
SetPort(windowPtr);

11-22 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

EraseRect(&windowPtr->portRect);
doDisplayInformation(windowPtr);
EndUpdate(windowPtr);
break;

}
}

// ◊◊◊ doDisplayInformation

void doDisplayInformation(WindowPtr windowPtr)
{

RGBColor whiteColour = { 0xFFFF, 0xFFFF, 0xFFFF };
RGBColor blueColour = { 0x4444, 0x4444, 0x9999 };
GDHandle deviceHdl;
SInt16 videoDeviceCount = 0;
Str255 theString;
SInt16 deviceType, pixelDepth, bytesPerRow;
Rect theRect;
PixMapHandle pixMapHdl;
CGrafPtr cgrafPtr;
SInt32 pixelValue;
SInt16 redComponent, greenComponent, blueComponent;
CTabHandle colorTableHdl;
SInt16 entries = 0, a, b, c = 0;
RGBColor theColour;

RGBForeColor(&whiteColour);
RGBBackColor(&blueColour);
EraseRect(&windowPtr->portRect);

//
………
…………… Get Device List

deviceHdl = LMGetDeviceList();

// ……… count video devices in
device list

while(deviceHdl != NULL)
{

if(TestDeviceAttribute(deviceHdl,screenDevice))
videoDeviceCount ++;

deviceHdl = GetNextDevice(deviceHdl);
}

NumToString((SInt32) videoDeviceCount,theString);
MoveTo(10,20);
DrawString(theString);
if(videoDeviceCount < 2)

DrawString("\p video device in the device list.");
else

DrawString("\p video devices in the device list.");

//
………
…………… Get Main Device

deviceHdl = LMGetMainDevice();

//
……
determine device type

MoveTo(10,35);
if(BitTst(&(**deviceHdl).gdFlags,15 - gdDevType))

DrawString("\pThe main video device is a colour device.");
else

DrawString("\pThe main video device is a monochrome device.");

MoveTo(10,50);
deviceType = (**deviceHdl).gdType;
switch(deviceType)
{

case clutType:
DrawString("\pIt is an indexed device with variable CLUT.");
break;

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-23

case fixedType:
DrawString("\pIt is is an indexed device with fixed CLUT.");
break;

case directType:
DrawString("\pIt is a direct device.");
break;

}

// ……
Get Handle to Pixel Map

pixMapHdl = (**deviceHdl).gdPMap;

//
……
determine pixel depth

MoveTo(10,70);
DrawString("\pPixel depth = ");
pixelDepth = (**pixMapHdl).pixelSize;
NumToString((SInt32) pixelDepth,theString);
DrawString(theString);

// ……… Get Device's
Global Boundaries

theRect = (**deviceHdl).gdRect;

// …………………………………………………………………………………… determine bytes per row and total pixel image bytes

MoveTo(10,90);
bytesPerRow = (**pixMapHdl).rowBytes & 0x7FFF;
DrawString("\pBytes per row = ");
NumToString((SInt32) bytesPerRow,theString);
DrawString(theString);

MoveTo(10,105);
DrawString("\pTotal pixel image bytes = ");
NumToString((SInt32) bytesPerRow * theRect.bottom,theString);
DrawString(theString);

// …………………………………………… convert device's global boundaries to coordinates of graphics port

GlobalToLocal(&topLeft(theRect));
GlobalToLocal(&botRight(theRect));

MoveTo(10,125);
DrawString("\pBoundary rectangle top = ");
NumToString((SInt32) theRect.top,theString);
DrawString(theString);

MoveTo(10,140);
DrawString("\pBoundary rectangle left = ");
NumToString((SInt32) theRect.left,theString);
DrawString(theString);

MoveTo(10,155);
DrawString("\pBoundary rectangle bottom = ");
NumToString((SInt32) theRect.bottom,theString);
DrawString(theString);

MoveTo(10,170);
DrawString("\pBoundary rectangle right = ");
NumToString((SInt32) theRect.right,theString);
DrawString(theString);

// …… Get Pointer to Colour
Graphics Port

cgrafPtr = (CGrafPtr) windowPtr;

// …… determine requested
background colour

MoveTo(10,190);
GetBackColor(&blueColour);
DrawString("\pRequested background colour (rgb) = ");;
MoveTo(10,205);

11-24 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

NumToString((SInt32) blueColour.red,theString);
DrawString(theString);
DrawString("\p ");
NumToString((SInt32) blueColour.green,theString);
DrawString(theString);
DrawString("\p ");
NumToString((SInt32) blueColour.blue,theString);
DrawString(theString);

// …… get actual
colour (pixel value)

pixelValue = cgrafPtr->bkColor;

// ……………… if direct device, extract colour components, else retrieve colour table index

MoveTo(10,220);

if(deviceType == directType)
{

if(pixelDepth == 16)
{

redComponent = pixelValue >> 10 & 0x0000001F;
greenComponent = pixelValue >> 5 & 0x0000001F;
blueComponent = pixelValue & 0x0000001F;

}
else if (pixelDepth == 32)
{

redComponent = pixelValue >> 16 & 0x000000FF;
greenComponent = pixelValue >> 8 & 0x000000FF;
blueComponent = pixelValue & 0x000000FF;

}

DrawString("\pBackground colour used (rgb) = ");
MoveTo(10,235);

NumToString((SInt32) redComponent,theString);
DrawString(theString);
DrawString("\p ");

NumToString((SInt32) greenComponent,theString);
DrawString(theString);
DrawString("\p ");

NumToString((SInt32) blueComponent,theString);
DrawString(theString);

}
else if(deviceType == clutType || deviceType == fixedType)
{

DrawString("\p Background colour used (color table index) = ");
MoveTo(10,235);
NumToString((SInt32) pixelValue,theString);
DrawString(theString);

}

// ……… Get
Handle to Colour Table

colorTableHdl = (*pixMapHdl)->pmTable;

// …………………………………………………………………………………………… if any entries in colour table, draw the colours

MoveTo(250,20);
DrawString("\pColour table in GDevice's PixMap:");

entries = (*colorTableHdl)->ctSize;

if(entries < 2)
{

MoveTo(260,105);
DrawString("\pDummy (one entry) colour table only.");
MoveTo(260,120);
DrawString("\pTo get some entries, set the monitor to");
MoveTo(260,135);
DrawString("\p 256 colours, causing it to act like an");
MoveTo(260,150);
DrawString("\p indexed device.");
SetRect(&theRect,250,28,458,236);
FrameRect(&theRect);

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-25

}

for(a=28;a<224;a+=13)
{

for(b=250;b<446;b+=13)
{

if(c > entries)
break;

SetRect(&theRect,b,a,b+12,a+12);
theColour = (*colorTableHdl)->ctTable[c++].rgb;
RGBForeColor(&theColour);
PaintRect(&theRect);
if((deviceType == clutType || deviceType == fixedType) && c - 1 == pixelValue)
{

RGBForeColor(&whiteColour);
InsetRect(&theRect,-1,-1);
FrameRect(&theRect);

}
}

}
}

// ◊◊◊ doCheckMonitor

Boolean doCheckMonitor(void)
{

GDHandle mainDeviceHdl;

mainDeviceHdl = LMGetMainDevice();

if(!(HasDepth(mainDeviceHdl,16,0,0)))
return false;

else
{

gStartupPixelDepth = (**((**mainDeviceHdl).gdPMap)).pixelSize;
return true;

}
}

// ◊◊◊ doSetMonitorPixelDepth

void doSetMonitorPixelDepth(void)
{

GDHandle mainDeviceHdl;
Str255 alertString;
SInt16 pixelDepth;

mainDeviceHdl = LMGetMainDevice();
pixelDepth = (**((**mainDeviceHdl).gdPMap)).pixelSize;

if(pixelDepth != 16)
{

GetIndString(alertString,rIndexedStrings,sSettingPixelDepth16);
doMonitorAlert(alertString);
SetDepth(mainDeviceHdl,16,0,0);

}
else
{

GetIndString(alertString,rIndexedStrings,sMonitorIsDepth16);
doMonitorAlert(alertString);

}
}

// ◊◊◊ doRestoreMonitorPixelDepth

void doRestoreMonitorPixelDepth(void)
{

GDHandle mainDeviceHdl;
Str255 alertString;
SInt16 pixelDepth;

mainDeviceHdl = LMGetMainDevice();
pixelDepth = (**((**mainDeviceHdl).gdPMap)).pixelSize;

if(pixelDepth != gStartupPixelDepth)
{

GetIndString(alertString,rIndexedStrings,sRestoringMonitor);
doMonitorAlert(alertString);
SetDepth(mainDeviceHdl,gStartupPixelDepth,0,0);

11-26 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

}
else
{

GetIndString(alertString,rIndexedStrings,sMonitorIsDepthStart);
doMonitorAlert(alertString);

}
}

// ◊◊◊ doMonitorAlert

void doMonitorAlert(Str255 labelText)
{

AlertStdAlertParamRec paramRec;
SInt16 itemHit;

paramRec.movable = true;
paramRec.helpButton = false;
paramRec.filterProc = NULL;
paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
paramRec.cancelText = NULL;
paramRec.otherText = NULL;
paramRec.defaultButton = kAlertStdAlertOKButton;
paramRec.cancelButton = 0;
paramRec.position = kWindowDefaultPosition;

StandardAlert(kAlertNoteAlert,labelText,NULL,¶mRec,&itemHit);
}

// ◊◊

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-27

Demonstration Program Comments
When this program is first run, the user should:

• Drag the window to various position on the main screen, noting the changes to the coordinates of the boundary
rectangle.

• Open the Monitors and Sound control panel and, depending on the characteristics of the user's system:

• Change between the available resolutions, noting the changes in the bytes per row and total pixel image bytes
figures displayed in the window.

• Change between the available colour depths, noting the changes to the pixel depth and total pixel image bytes
figures, and the background colour used figures, displayed in the window.

• Note that, when 256 or less colours are displayed on a direct device (in colours and grays), the device creates a CLUT
and operates like a direct device. In this case, the background colour used figure is the colour table entry (index), and
the relevant colour in the colour table display is framed in white.

Assuming the user's monitor is a direct colour device, the user should then run the program again with the monitor set to
display 256 colours prior to program start. The Demonstration menu and its items will be enabled. The user should then
choose the items in the Demonstration menu to set the monitor to a pixel depth of 16 and back to the startup pixel depth.

main
Before DrawMenuBar is called, a call to the application-defined function doCheckMonitor assigns the startup pixel depth to a
global variable and determines whether the main device supports 16-bit colour. If the main device does not support 16-bit
colour, the Demonstration menu is disabled. If the main device does support support 16-bit colour, the Demonstration menu
is disabled only if the current pixel depth is not 8 (256 colours) or less.

doEvents
In the case of a mouse-down event, in the inDrag case, when the user releases the mouse button, the left half of the window
is invalidated, causing the left half to be redrawn with the new boundary rectangle coordinates.

doDisplayInformation
In the first three lines, RGB colours are assigned to the window's colour graphics port's rgbFgColor and rgbBkColor fields.
The call to EraseRect causes the content region to be filled with the background colour.

Get Device List
The call to LMGetDeviceList gets a handle to the first GDevice structure in the device list. The device list is then "walked" in
the while loop. For every video device found in the list, the variable videoDeviceCount is incremented. GetNextDevice gets
a handle to the next device in the device list.

Get Main Device
LMGetMainDevice gets a handle to the startup device, that is, the device on which the menu bar appears.

The call to BitTest with the gdDevType flag determines whether the main (startup) device is a colour or black-and-white
device. In the next block, the gdType field of the GDevice structure is examined to determine whether the device is an
indexed device with a variable CLUT, an indexed device with a fixed CLUT, or a direct device (or a direct device set to display
256 colours or less and, as a consequence, acting like an indexed device).

Get Handle to Pixel Map
At the first line of this block, a handle to the GDevice structure's pixel map is retrieved from the gdPMap field.

In the next block, the pixel depth is extracted from the PixMap structure's pixelSize field.

Get Device's Global Boundaries
At the first line of this block, the device's global boundaries are extracted from the GDevice structure's gdRect field.

At the next block, the number of bytes in each row in the pixel map is determined. (The high bit in the rowBytes field of the
PixMap structure is a flag which indicates whether the data structure is a PixMap structure or a BitMap structure.)

11-28 CLASSIC EDITION — Version 2.3 QuickDraw Preliminaries

At the next block, the bytes per row value is multiplied by the height of the boundary rectangle to arrive at the total number
of bytes in the pixel image.

The two calls to GlobalToLocal convert the boundary rectangle coordinates to coordinates local to the colour graphics port.

Get Pointer To Colour Graphics Port
The first line simply casts the windowPtr to a pointer to a colour graphics port so that, later on, the bkColor field can be
accessed.

The next block gets the current (requested) background colour using the function GetBackColor, and then extracts the red,
green, and blue components.

At the next line, the pixel value in the bkColor field of the colour graphics port is retrieved. This is an SInt32 value holding
either the red, green, and blue components of the background colour actually used for drawing (direct device) or the colour
table entry used for drawing (indexed devices).

For direct devices with a pixel depth of 16, the first 15 bits hold the three RGB components. For direct devices with a pixel
depth of 32, the first 24 bits hold the RGB components. These are extracted in the if(deviceType == directType) block. For
indexed devices the value is simply the colour table entry (index) determined by the Color Manager to represent the nearest
match to the requested colour.

Get Handle To Colour Table
The first and fourth lines get a handle to the colour table in the GDevice structure's pixel map and the number of entries in
that table.

The final block paints small coloured rectangles for each entry in the colour table. If the main device is an indexed device (or
if it is a direct device set to display 256 colours or less), the colour table entry being used as the best match for the
requested background colour is outlined in white.

doCheckMonitor
doCheckMonitor is called at program start to determine whether the main device supports 16-bit colour and, if it does, to
assign the main device's pixel depth at startup to the global variable gStartupPixelDepth.

The call to LMGetMainDevice gets a handle to the main device's GDevice structure. The function HasDepth is used to
determine whether the device supports 16-bit colour. The pixel depth is extracted from the pixelSize field of the PixMap
structure in the GDevice structure.

doSetMonitorPixelDepth
doSetMonitorPixelDepth is called when the first item in the Demonstration menu is chosen to set the main device's pixel
depth to 16.

If the current pixel depth determined at the first two lines is not 16, a string is retrieved from a 'STR#' resource and passed
to the application-defined function doMonitorAlert, which displays a movable modal alert box advising the user that the
monitor's bit depth is about to be changed to 16. When the user dismisses the alert box, SetDepth sets the main device's
pixel depth to 16.

If the current pixel depth is 16, the last two lines display an alert box advising the user that the device is currently set to that
pixel depth.

doRestoreMonitorPixelDepth
doRestoreMonitorPixelDepth is called when the second item in the Demonstration menu is chosen to reset the main device's
pixel depth to the startup pixel depth.

If the current pixel depth determined at the first two lines is not equal to the startup pixel depth, a string is retrieved from a
'STR#' resource and passed to the application-defined function doMonitorAlert, which displays a movable modal alert box
advising the user that the monitor's bit depth is about to be changed to the startup pixel depth. When the user dismisses
the alert box, SetDepth sets the main device's pixel depth to the startup pixel depth.

If the current pixel depth is the startup pixel depth, the last two lines display an alert box advising the user that the device is
currently set to that pixel depth.

QuickDraw Preliminaries CLASSIC EDITION — Version 2.3 11-29

	QUICKDRAW PRELIMINARIES
	Includes Demonstration Program PreQuickDraw
	QuickDraw and Imaging
	History of QuickDraw
	RGB Colours and Pixels
	Colour and the Video Device
	Indexed Colour Devices
	Direct Colour Devices
	Direct Devices Operating Like Indexed Devices
	Colour Graphics Port
	Historical Note
	Main Field Descriptions
	Pixel Maps
	Field Descriptions
	Pixel Patterns and Bit Patterns
	Pixel Patterns
	Bit Patterns
	Creating Colour Graphics Ports
	Translation of RGB Colours to Pixel Values
	Derivation of Pixel Values on Indexed Devices
	Derivation of Pixel Values on Direct Devices
	Colours on Grayscale Screens
	Graphics Devices and GDevice Structures
	Types of Graphics Device
	GDevice Structure
	Main Field Descriptions
	Flag Bits of gdType Field
	Flag Bits of gdFlags Field
	Setting a Device's Pixel Depth
	Other Graphics Managers
	Palette Manager
	Color Picker Utilities
	Coping With Multiple Monitors
	Relevant QuickDraw Constants, Data Types, and Functions
	Constants
	Flag Bits of gdType Field of GDevice Structure
	Flag Bits of gdFlags Field of GDevice Structure
	Pixel Type
	Data Types
	Colour Graphics Port
	GrafVars
	Pixel Map
	Color Table
	ColorSpec
	BitMap
	Pixel Pattern
	Pattern
	GDevice
	Functions
	Opening and Closing Colour Graphics Ports
	Saving and Restoring Colour Graphics Ports
	Creating, Setting and Disposing of Pixel Maps
	Creating, Setting and Disposing of Graphics Device Structures
	Getting the Available Graphics Devices
	Determining the Characteristics of a Video Device
	Changing the Pixel Depth of a Video Device
	Demonstration Program
	// the GDevice structure for the main video device and some colour information extracted
	// colours or less, the colours in the colour table in the GDevice structure's pixel map
	// colours or less at program start, allows the user to set the monitor to 16-bit colour,
	DrawMenuBar();
	RegisterAppearanceClient();
	MoveTo(10,220);
	Demonstration Program Comments
	main
	doEvents
	doDisplayInformation
	Get Device List
	Get Main Device
	Get Handle to Pixel Map
	Get Device's Global Boundaries
	Get Pointer To Colour Graphics Port
	Get Handle To Colour Table
	doCheckMonitor
	doSetMonitorPixelDepth
	doRestoreMonitorPixelDepth

