
10
APPLE EVENTS

Includes Demonstration Program AppleEvents

Introduction
As stated at Chapter 2 — Low Level and Operating System Events, events are broadly
categorised as low-level events, Operating System events, and high-level events.

Using high-level events, an application can instruct another application to perform a
specific action, such as adding a row to a spreadsheet or changing the font size of a
paragraph. An application can also request information from another application; for
example, it might request a dictionary application to return the definition of a particular
word.

Fig 1 shows the general event-handling mechanism. In Fig 1, three different applications
are communicating with each other by sending and receiving high-level events. Note that
high-level events are placed in a separate queue maintained by the operating system and
that a high-level event queue is maintained for each application that has announced itself
as capable of receiving high-level events.

FIG 1 - GENERAL EVENT HANDLING MECHANISM

KEYBOARD, MOUSE
BUTTON, FLOPPY DRIVEWINDOW MANAGER

OPERATING SYSTEM
EVENT MANAGER

TOOLBOX EVENT MANAGER

activate
update

key up
key down

autokey
mouse up

mouse down
disk insert

OPERATING SYSTEM
EVENT QUEUE

PROCESS MANAGER

suspend
resume

mouse- moved

EVENT STREAMEVENT STREAM EVENT STREAM

APPLICATION APPLICATION APPLICATION

PROGRAM-TO-PROGRAM
COMMUNICATION TOOLBOX

HIGH-LEVEL
EVENT QUEUE

Required Apple Events CLASSIC EDITION — Version 2.3 10-1

For effective communication between applications, an application must define the set of
high-level events it responds to and let other applications know the events it accepts. For
a high-level event sent by one application to be understood by another application, the
sender and receiver must agree on a protocol, that is, on the way the event is to be
interpreted.

Apple Events
Apple events are high-level events whose structure and interpretation are determined by
the Apple Event InterProcess Messaging Protocol (AEIMP). Applications typically use
Apple events to request services and information from other applications and to provide
services and information in response to such requests.

Communication between two applications which support Apple events is initiated by a
client application, which sends an Apple event to request a service or information. The
application providing the service or information is called a server application.1 Fig 2
shows a common Apple event, called the Open Documents event. The Finder (which is,
itself, an application) is the client; it requests that the application My Application open the
documents named Document A and Document B. My Application responds by opening
windows for the specified documents.

FIG 2 - CLIENT AND SERVER

MY
APPLICATION

APPLE EVENT

OPEN DOCUMENTS

DOCUMENT A
DOCUMENT B

CLIENT
APPLICATION

SERVER
APPLICATION

FINDER

To identify Apple events and respond appropriately, every application can rely on a
vocabulary of standard Apple events which developers and Apple have established for all
applications to use. These events are defined in the Apple Event Registry: Standard
Suites. The standard suites (groups of Apple events that are usually implemented
together) include:

• The required suite, which consists of five Apple events that the Finder sends to
applications. The required Apple events are:

• Open Application.

• Re-open Application.

• Open Documents.

• Print Documents.

• Quit Application.

Historical Note
The Re-open Application Apple event was introduced with Mac OS 8.

 The Finder uses the required Apple events as part of the mechanism for launching
and terminating applications. Your application must support the required Apple
events.

1 An application can also send Apple events to itself, thus acting as both client and server.

10-2 CLASSIC EDITION — Version 2.3 Required Apple Events

• The core suite, which consists of the basic Apple events, including Get Data, Set
Data, Move, Delete and Save, that nearly all applications use to communicate.

• The functional-area suite, which consists of a group of Apple events which support
a related functional area, and which include the Text suite and the Database suite.

• The appearance suite, which consists of four Apple events used to advise all
foreground applications when one of the following changes has been made in the
Fonts tab of the Appearance control panel:

• Appearance.

• Large system font.

• Small system font.

• Views font.

Historical Note
The Apple event relating to an appearance change was introduced with Mac
OS 8. The Apple events relating to large system font, small system font, and
vews font changes were introduced with Mac OS 8.5.

This chapter is primarily concerned with the required Apple events and the Appearance
Manager Apple events, exploring the subject of Apple events only to the extent necessary
to gain an understanding of the measures involved in supporting the required and
appearance suites.

Apple Event Attributes and Parameters
When an application creates and sends an Apple event, the Apple Event Manager uses
arguments passed to Apple Event Manager functions to construct the data structures that
make up the Apple event. An Apple event comprises attributes (which identify the Apple
event and denote its task) and, often, parameters (which contain information to be used
by the target application).

Apple Event Attributes
An Apple event attribute is a structure which identifies the event class, event ID, target
application, and other characteristics of an Apple event. Taken together, the attributes
denote the task to be performed on any data specified in the event's parameters. After
receiving an Apple event, a server application can use Apple Event Manager functions to
extract and examine its attributes. Apple events are identified by their event class and
event ID attributes.

Event Class

The event class is the attribute that identifies a group of related Apple events. It appears
in the message field of the event structure for an Apple event (see Fig 3). For example:

• The required Apple events have the value 'aevt' in the message field of their event
structures. 'aevt' is represented by the constant kCoreEventClass.

• The Appearance Manager Apple events have the value 'appr' in the message field of
their event structures. 'aevt' is represented by the constant kAppearanceEventClass.

Required Apple Events CLASSIC EDITION — Version 2.3 10-3

FIG 3 - CONTENTS OF AN EVENT STRUCTURE - HIGH LEVEL (APPLE) EVENT

what
message

when
where

modifiers Undefined

23 = kHighLevelEvent
Event Class

Event ID
Time event was posted

Event ID

The event ID is the attribute which identifies the particular event within the event class.
In conjunction with the event class, the event ID uniquely identifies the Apple event and
communicates what action the Apple event should perform. It appears in the where field of
the event structure for an Apple event (see Fig 3). For example, the event ID of an Open
Documents event has the value 'odoc', which is represented by the constant kAEOpenDocuments.
The kCoreEventClass constant in combination with the kAEOpenDocuments constant identifies the
Open Documents event to the Apple Event Manager.

The following are the event IDs for the five required Apple events and the four
Appearance Manager Apple events. (Those introduced with Mac OS 8.5 appear on a dark
gray background.)

Event ID Value Description
kAEOpenApplication 'oapp' Perform tasks required when a user opens your

application.
kAEReopenApplication 'rapp' Perform tasks required when a user "re-opens" your

application.
kAEOpenDocuments 'odoc' Open documents.
kAEPrintDocuemnts 'pdoc' Print Documents.
kAEQuitApplication 'quit' Quit your application.
kAEAppearanceChanged 'thme' Current appearance has changed. Action as required.
kAESystemFontChanged 'sysf' Current system font has changed. Action as required.
kAESmallSystemFontChanged 'ssfn' Current small system font has changed. Action as

required.
kAEViewsFontChanged 'vfnt' Current views font has changed. Action as required.

Target Application

In addition to the event class and event ID, every Apple event must include an attribute
which specifies the target application's address.

Apple Event Parameters
An Apple event parameter is a structure containing data that the target application uses.
Apple events can use standard data types, such as strings of text, long integers, boolean
values, and alias structures, for the data in their parameters. As with attributes, a client
application can use Apple Event Manager functions to extract and examine the
parameters of an Apple event it has received.

There are various kinds of Apple event parameters, including direct parameters and
additional parameters.

Direct Parameters

A direct parameter usually specifies the data to be acted upon by the target application.
For example, a list of documents is contained in the direct parameter of the Print
Documents event.

10-4 CLASSIC EDITION — Version 2.3 Required Apple Events

Additional Parameters

Some Apple events also take additional parameters, which the target application uses in
addition to the data specified in the direct parameter. For example, an Apple event for
arithmetic operations may include additional parameters which specify operands in an
equation.

Required and Optional Parameters

All parameters are either required parameters or optional parameters. A required
parameter is one which must be present for the target application to carry out the task
denoted by the Apple event. An optional parameter is a supplemental Apple event
parameter that can also be used to specify data to a target application. Direct parameters
are usually defined as required parameters in the Apple Event Registry - Standard Suites.

Interpreting Apple Event Attributes and Parameters
Fig 4 shows the major Apple event attributes and direct parameter for the Open
Documents event.

FIG 4 - MAJOR ATTRIBUTES AND DIRECT PARAMETERS IN AN OPEN DOCUMENTS EVENT

MY
APPLICATIONFINDER

DIRECT PARAMETER:
List of files (Document A,

Document B)

CLIENT
APPLICATION

SERVER
APPLICATIONOPEN DOCUMENT EVENT

EVENT CLASS ATTRIBUTE:
kCoreEventClass

EVENT ID ATTRIBUTE:
kAEOpenDocument

TARGET ADDRESS ATTRIBUTE:
Application with signature 'MYAP'

APPLE EVENT

To process this event, your application would use the AEProcessAppleEvent function, which
uses the event class and event ID attributes to dispatch the event to My Application's
Open Documents handler. In response, the Open Documents handler opens the
documents specified in the direct parameter.

Data Structures Within Apple Events
The Apple Event Manager constructs its own internal data structures to contain the
information in an Apple event.

Descriptor Structures
Descriptor structures are the building blocks used by the Apple Event Manager to
construct Apple event attributes and parameters. A descriptor structure is a data
structure of type AEDesc. It consists of a handle to data and a descriptor type which
identifies the type of data to which the handle refers:

struct AEDesc
{

DescType descriptorType; // Type of data.
Handle dataHandle; // Handle to data.

};
typedef struct AEDesc AEDesc;

The descriptor type is a structure of type DescType which, in turn, is of data type ResType,
that is, a four-character code. Constants are used in place of these codes when referring

Required Apple Events CLASSIC EDITION — Version 2.3 10-5

to descriptor types. The following are some of the major descriptor type constants, their
values, and the kind of data they identify:

Descriptor
Type

Value Description of Data

typeChar 'TEXT' Unterminated string.
typeType 'type' Four-character code.
typeBoolean 'bool' One-byte Boolean value.
typeLongInteger 'long' 32-bit integer.
typeAEList 'list' List of descriptor structures.
typeAERecord 'reco' List of keyword-specified descriptor

structures.
typeAppleEvent 'aevt' Apple event structure.
typeFSS 'fss ' File system specification.
typeKeyword 'keyw' Apple event keyword.
typeNull 'null' Nonexistent data (handle whose value is

NULL).

The following illustrates the logical arrangement of a descriptor structure with a
descriptor of type typeChar, which specifies that the data handle refers to an unterminated
string:

Data Type AEDesc
Descriptor
type:

typeChar

Data: "Summary of Sales"

The following illustrates the logical arrangement of a descriptor structure with a
descriptor type of typeType, which specifies that the data handle refers to a four-character
code (in this case the constant kCoreEventClass, whose value is 'aevt'):

Data Type AEDesc
Descriptor
type:

typeType

Data: (kCoreEventClass)

Address Descriptor Structure

Every Apple event includes an attribute specifying the address of the target application. A
descriptor structure which contains an application's address is called an address
descriptor structure:

typedef AEDesc AEAddressDesc; // An AEDesc which contains addressing data.

The address in an address descriptor structure can be specified as one of the four basic
types (or as any other descriptor types you define that can be coerced to one of these
types):

Descriptor Type Value Description
typeApplSignature 'sign' Application signature.
typeSessionID 'ssid' Session reference

number.
typeTargetID 'targ' Target ID structure.
typeProcessSerialNumber 'psn ' Process serial number.

Like several other data structures defined by the Apple Event Manager for use in Apple
event attributes and Apple event parameters, an address descriptor structure is identical

10-6 CLASSIC EDITION — Version 2.3 Required Apple Events

to a descriptor structure of data type AEDesc; the only difference is that the data for an
address descriptor structure must always consist of an application's address.

Keyword-Specified Descriptor Structures
After the Apple Event Manager has assembled the necessary descriptor structures as the
attributes and parameters of an Apple event, your application must use Event Manager
functions to request each attribute and parameter by keyword. Keywords are arbitrary
names used by the Apple Event Manager to keep track of various descriptor structures.
The AEKeyword data type is defined as a four-character code:

typedef FourCharCode AEKeyword;

Constants are typically used to represent keywords.

Keywords for Attributes. The following is a partial list of keyword constants for
Apple event attributes:

Attribute
Keyword

Value Description

keyEventClassAttr 'evcl' Event class of Apple event.
keyMissedKeywordAttr 'miss' Keyword for first required parameter remaining in an Apple

event.
keyAddressAttr 'addr' Address of target or client application.
keyEventIDAttr 'evid' Event ID of Apple event.
keyEventSourceAttr 'esrc' Nature of the source application.
keyReturnIDAttr 'rtid' Return ID for reply Apple event.

Keywords for Parameters. The following is a list of keyword constants for commonly
used Apple event parameters:

Parameter
Keyword

Value Description

keyDirectObject '----' Direct parameter.
keyErrorNumber 'errn' Error number parameter.
keyErrorString 'errs' Error string parameter.

The Apple Event Manager associates keywords with specific descriptor structures by
means of a keyword-specified descriptor structure, a data structure of type AEKeyDesc
that consists of a keyword and a descriptor structure:

struct AEKeyDesc
{

AEKeyword descKey; // Keyword.
AEDesc descContent; // Descriptor structure.

};
typedef struct AEKeyDesc AEKeyDesc;

The following illustrates a keyword-specified descriptor structure with the keyword
keyEventClassAttr, the keyword that identifies an event class attribute. It shows the logical
arrangement of the event class attribute for the Open Documents event shown at Fig 4.

Data Type AEKeyDesc
Keyword: keyEventClassAttr

Descriptor
Structure:

Descriptor
Type:

typeType

Data: Event Class
(coreEventClass)

Required Apple Events CLASSIC EDITION — Version 2.3 10-7

Descriptor Lists, AE Structures, and AppleEvent Structures

Descriptor Lists

When extracting data from an Apple event, you use Apple Event Manager functions to
copy data to a buffer specified by a pointer, or to return a descriptor structure whose data
handle refers to a copy of the data, or to return lists of descriptor structures (called
descriptor lists).

A descriptor list is a data structure of type AEDescList defined by the data type AEDesc. That
is, a descriptor list is a descriptor structure whose handle refers to a list of other
descriptor structures (unless it is an empty list):

typedef AEDesc AEDescList; // List of descriptor structures.

The following illustrates the logical arrangement of the descriptor list that specifies the
direct parameter of the Open Documents event shown at Fig 4. This descriptor list
consists of a list of descriptor structures which contain alias structures to filenames.

Data Type AEDescList
Descriptor type: typeAEList
Data: List of descriptor structures:

Descriptor
type:

typeAlias

Data: Alias structure for filename
(Document A)

Descriptor
type:

typeAlias

Data: Alias structure for filename
(Document B)

This descriptor list provides the data for a keyword-specified descriptor structure.

AE Structure

 Keyword-specified descriptor structures for Apple event parameters can in turn be
combined into an AE structure, which is a descriptor list of type AERecord:

typedef AEDescList AERecord; // List of keyword-specified descriptor structures.

The handle for a descriptor list of data type AERecord refers to a list of keyword-specified
descriptor structures that can be used to construct Apple event parameters. An AE
structure has the descriptor type typeAERecord and can be coerced to several other
descriptor types.

Apple Event Structure

An Apple event structure, which is different from an AE structure, is another special
descriptor list of data type AppleEvent and descriptor type typeAppleEvent:

typedef AERecord AppleEvent; // List of attributes and parameters for Apple event.

An Apple event structure describes a full-fledged Apple event. Like the data for an AE
structure, the data for an Apple event structure consists of a list of keyword-specified
descriptor structures. Unlike an AE structure, the data for an Apple event structure is
divided into two parts, one for attributes and one for parameters. This division allows the
Apple event to distinguish between an Apple event's attributes and its parameters.

10-8 CLASSIC EDITION — Version 2.3 Required Apple Events

Passing Descriptor Lists, AE
Structures and Apple Event
Structures to Apple Event Manager
Functions

Descriptor lists, AE structures and Apple event structures are all descriptor structures
whose handles refer to a nested list of other descriptor structures. The data associated
with each data type may be organised differently and used by the Apple Event Manager
for different purposes. In each case, however, the data are identified by a handle in a
descriptor structure. This means that you can pass an Apple event structure to any Apple
Event Manager function that expects an AE structure. Similarly, you can pass Apple event
structures and AE structures, as well as descriptor lists and descriptor structures, to any
Apple Event Manager functions that expect structures of data type AEDesc.

Example Complete Apple Event
Fig 5 shows an example of a complete Apple event — a data structure of type AppleEvent
containing a list of keyword-specified descriptor structures that name the attributes and
parameters of an Open Documents event.

Required Apple Events CLASSIC EDITION — Version 2.3 10-9

FIG 5 - DATA STRUCTURES WITHIN AN OPEN DOCUMENTS EVENT

Descriptor type:
Data:

typeAlias
Alias record for filename
(Document B)

Descriptor type:
Data:

typeAlias
Alias record for filename
(Document A)

Descriptor type:
Data: List of attributes and parameters

typeAppleEvent

Descriptor type:
Data:

typeAEList
List of descriptor records

Event ID
Descriptor type:
Data:

Event ID Attribute
Keyword: keyEventIDAttr

typeType

(kAEOpenDocuments)

Direct Parameter
Keyword: keyDirectObject

Descriptor type:
Data:

Target Application Attribute
Keyword: keyAddressAttr

typeApplSignature

('MYAP')
Target application's address

Descriptor type:
Data:

Event Class Attribute
Keyword: keyEventClassAttr

typeType

(kCoreEventClass)
Event Class

Handling Apple Events
A client application uses the Apple Event Manager to create and send an Apple event
requesting a service or information. A server application responds by using the Apple
Event Manager to process the Apple event, extract data from the attributes and
parameters of the Apple event and, if necessary, add requested data to the reply event
returned by the Apple Event Manager to the client application.

As a first step in supporting Apple events, and as previously stated, your application
should support the required Apple events sent by the Finder. To support the required
Apple events, you must:

• Set the isHighLevelEventAware flag in the 'SIZE' resource of your application.

10-10 CLASSIC EDITION — Version 2.3 Required Apple Events

• Test for high-level events in your application's event loop. An Apple event (like all
high-level events) is identified by a message class of kHighLevelEvent in the what field of
the event structure. Your application should therefore test the what field of the event
structure to determine whether it contains the value represented by kHighLevelEvent.

• Use AEProcessAppleEvent to process the Apple events. AEProcessAppleEvent first identifies
the Apple event by examining the data in the event class and event ID attributes. It
then uses that data to call the appropriate Apple event handler provided by your
application.

• Provide handlers for the required Apple events in your application. Your Apple
event handlers must extract the pertinent data from the Apple event, perform the
requested action, and return a result.

• Use AEInstallEventHandler to install your Apple event handlers. This function installs
handlers in an Apple event dispatch table for your application. The Apple Event
Manager uses this table to map Apple events to handlers in your application When
your application calls AEProcessAppleEvent, the Apple Event Manager checks the
dispatch table and, if your application has installed a handler for the event, calls the
handler. Each entry in the Apple event dispatch table should specify:

• The event class.

• The event ID.

• A universal procedure pointer to the Apple event handler.

• A reference constant.2

Accordingly, the parameters for the call to AEInstallEventHandler are the event class, the
event ID, a pointer to the event handler, a reference constant, and false.3

Apple Event Handlers
Each Apple event handler must be a function which uses this syntax:

OSErr theEventHandler(AppleEvent *appleEvent,AppleEvent *reply,long handlerRefcon);

appleEvent The Apple event to handle. Your handler uses Apple Event Manager functions
to extract any parameters and attributes from the Apple event and then
perform the necessary processing.

reply The default reply provided by the Apple Event Manager.

handlerRefcon Reference constant stored in the Apple event dispatch table entry for the Apple
event. Your handler can ignore this parameter if your application does not use
the reference constant.

Apple event handlers must generally perform the following tasks:

• Extract the parameters and attributes from the Apple event.

• Check that all required parameters have been extracted.

2 The reference constant is passed to your handler by the Apple Event Manager each time your handler is called. Your
application can use this reference constant for any purpose. If your application does not use the reference constant, specify
0.
3 false causes the handler to be installed in the application's Apple event dispatch table. true causes the handler to be
installed in the system's Apple event dispatch table. The system Apple event dispatch table is a table in the system heap
containing handlers that are available to all applications and processes running on the same computer. The handlers in
your application's Apple events dispatch table are available only to your application. If AEProcessAppleEvent cannot find a
handler for the Apple event in your application's Apple event dispatch table, it looks in the system Apple event dispatch
table for a handler. If it does not find a handler in the system table, it returns the errAEEventNotHandled result code.

Required Apple Events CLASSIC EDITION — Version 2.3 10-11

• Perform the action requested by the Apple event.

• Dispose of any copies of the descriptor structures that have been created.

• Add information to the reply Apple event if requested.

Extracting and Checking Data

You must use Apple Event Manager functions to extract the data from Apple events. The
following are the main functions involved:

Function Description
AEGetAttributePtr Uses a buffer to return a copy of the data contained in an Apple event

attribute. Used to extract data of fixed length or known maximum length.
AEGetParamDesc Returns a copy of the descriptor structure or descriptor list for an Apple

event parameter. Usually used to extract data of variable length, for
example, to extract the descriptor list for a list of alias structures specified
in the direct parameter of an Open Documents event.

AECountItems Returns the number of descriptor structures in a descriptor list. Used, for
example, to determine the number of alias structures for documents
specified in the direct parameter of an Open Documents event.

AEGetNthPtr Uses a buffer to return a copy of the data for a descriptor structure
contained in a descriptor list. Used to extract data of fixed length or known
maximum length, for example, to extract the name and location of a
document from the descriptor list specified in the direct parameter of the
Open Documents event.

Data Type Coercion. You can specify the descriptor type in the resulting data from
these functions. If this type is different from the descriptor type of the attribute or
parameter, the Apple Event Manager attempts to coerce it to the specified type. In the
direct parameter of the Open Documents event, for example, each descriptor structure in
the descriptor list is an alias structure and each alias structure specifies a document to
be opened. All your application usually needs to open a document is a file system
specification structure (FSSpec) of the document. When you extract the descriptor
structure from the descriptor list, you can request that the Apple Event Manager return
the data to your application as a file system specification structure instead of an alias
structure.

Checking That All Required Parameters Have Been Retrieved. After
extracting all known Apple event parameters, your handler should check that it has
retrieved all the parameters that the source application considered to be required. To do
this, determine whether the keyMissedKeywordAttr attribute exists. If this attribute does exist,
your handler has not retrieved all the required parameters, and it should return an error.

Interacting With the User

In some cases, the server application may need to interact with the user when it handles
an Apple event. For example, your handler for the Print Documents event may need to
display a print options dialog box and get settings from the user before printing .

The Apple Event Manager does not allow the server application to interact with the user
in response to a client application's Apple event unless at least two conditions are met:

• First, the client application must set flags in the sendMode parameter of the AESend
function to indicate that user interaction is allowed.

• Second, the server application must either:

• Set flags to the AESetInterActionAllowed function indicating that user interaction is
allowed. (These flags relate to permitting interaction where the client and

10-12 CLASSIC EDITION — Version 2.3 Required Apple Events

server are the same application, the client application is on the same computer
as the server, or the client is on any computer.)

• Set no user interaction preferences (that is, make no call to AESetInterActionAllowed
), in which case AEInteractWithUser (the function used to initiate interaction with
the user when your application is a server responding to an Apple event)
assumes that only interaction with a client on the local computer is allowed.

If these two conditions are met, and if AEInteractWithUser determines that both the client and
server applications allow user interaction under the current circumstances, AEInteractWithUser
brings your application to the foreground if it is not already in the foreground. Your
application can then display its dialog box or alert box or otherwise interact with the user.

Performing the Requested Action and
Returning a Result

When your application responds to an Apple event, it should perform the standard action
requested by the event.

Your Apple event handler should always set its function result to either noErr, if it
successfully handles the Apple event, or to a non-zero result code if an error occurs. If
your handler returns a non-zero result code, the Apple Event Manager adds a keyErrorNumber
parameter to the reply Apple event. This parameter contains the result code that your
handler returns.

Disposing of Copies of Descriptor
Structures

When your handler is finished with a copy of a descriptor structure created by
AEGetParamDesc and related functions, it should dispose of it by calling AEDisposeDesc.

Required Apple Events - Contents and Required Action
Your application receives the five required Apple events from the Finder in these
circumstances:

• If your application is not open and the user elects to open it from the Finder without
opening or printing any documents (either by double clicking the application's icon
or by selecting the icon and choosing Open from the Finder's File menu), the Finder
launches your application (using the Process Manager) and sends it an Open
Application event.

• If your application is already open and the user attempts to "open" it from the
Finder (either by double clicking the application's icon or by selecting the icon and
choosing Open from the Finder's File menu), the Finder sends your application a Re-
open Application event.4

• If your application is not open and the user elects to open one of your application's
documents from the Finder, the Finder launches your application (using the Process
Manager) and sends it an Open Documents event.

• If your application is not open and the user elects to print one of your application's
documents from the Finder, the Finder launches your application (using the Process
Manager) and sends it the Print Documents event. Your application should print the

4 The Re-open Application event was introduced with MAC OS 8 to cater for a situation which could confuse inexperienced
users. The specific situation is where the application is open but has no open windows. Because of the absence of a
window, the user does not realise that the application is running, attempts to "open" it from the Finder, and then fails to
notice the menu bar change. The intention of the Re-open Application event in such circumstances is to cause the
application to open a window, providing more obvious visible evidence to the user that the application is, in fact, open.

Required Apple Events CLASSIC EDITION — Version 2.3 10-13

selected documents and remain open until it receives a Quit Application event from
the Finder.

• If your application is open and the user elects to open or print any of your
application's documents from the Finder, the Finder sends your application the
Open Documents or Print Documents event.

• If your application is open and the user chooses Restart or Shut Down from the Finder's
Special menu, the Finder sends your application the Quit Application event.

The following is a summary of the contents of the required Apple events sent by the
Finder and the actions they request applications to perform:

Open Application event
Attributes:

Event Class: kCoreEventClass
Event ID: kAEOpenApplication

Parameters: None.
Requested Action: Perform tasks your application normally performs when a user opens your

application without opening or printing any documents, such as opening
an untitled document window.

Re-open Application event
Attributes:

Event Class: kCoreEventClass
Event ID: kAEReopenApplication

Parameters: None.
Requested Action: If no windows are currently open, open a new untitled document window.
Open Documents event
Attributes:

Event Class: kCoreEventClass
Event ID: kAEOpenDocuments

Required
parameters:

Keyword: keyDirectObject
Descriptor type: typeAEList
Data: A list of alias structures for the documents to be opened.

Requested Action: Open the documents specified in the keyDirectObject parameter.
Print Documents event
Attributes:

Event Class: kCoreEventClass
Event ID: kAEPrintDocuments

Required
parameters:

Keyword: keyDirectObject
Descriptor type: typeAEList
Data: A list of alias structures for the documents to be printed.

Requested action: Print the documents specified in the keyDirectObject parameter, opening
windows for the documents only if your application can interact with the
user.

Quit Application event
Attributes:

Event Class: kCoreEventClass
Event ID: kAEQuitApplication

Parameters: None
Requested Action: Perform any tasks that your application would normally perform when the

user chooses Quit from the application's File menu. (Such tasks typically

10-14 CLASSIC EDITION — Version 2.3 Required Apple Events

include releasing memory and requesting the user to save documents
which have been changed.)

Your application needs to recognise two descriptor types to handle the required Apple
events: descriptor lists and alias structures.

As previously stated, in the event of an Open Documents or Print Documents event, you
can retrieve the data which specifies the document as an alias structure, or you can
request that the Apple Event Manager coerce the alias structure to a file system
specification structure. The file system specification provides a standard method of
identifying files.

Main Apple Event Manager and Appearance Manager
Constants, Data Types, and Functions Relevant to
Required Apple Events and Appearance Manager Apple
Events

In the following, those constants introduced with Mac OS 8.5 appear on a dark gray
background.

Constants
High Level Event
kHighLevelEvent = 23

Event Classes for Required Apple Event and Appearance Manager Apple
Event
kCoreEventClass = FOUR_CHAR_CODE('aevt') // Event class - required Apple events.
KAppearanceEventClass = FOUR_CHAR_CODE('appr') // Event Class - Appearance Manager Apple

// events.

Event IDs for Required Apple Events
kAEOpenApplication = FOUR_CHAR_CODE('oapp') // Event ID for Open Application event.
kAEReopenApplication = FOUR_CHAR_CODE('rapp') // Event ID for Re-open Application Event.
kAEOpenDocuments = FOUR_CHAR_CODE('odoc') // Event ID for Open Documents event.
kAEPrintDocuments = FOUR_CHAR_CODE('pdoc') // Event ID for Print Documents event.
kAEQuitApplication = FOUR_CHAR_CODE('quit') // Event ID for Quit Application event.

Event IDs for Appearance Manager Apple Events
kAEAppearanceChanged = FOUR_CHAR_CODE('thme') // Appearance changed.
kAESystemFontChanged = FOUR_CHAR_CODE('sysf') // System font changed.
KAESmallSystemFontChanged = FOUR_CHAR_CODE('ssfn') // Small system font changed.
kAEViewsFontChanged = FOUR_CHAR_CODE('vfnt') // Views font changed.

Keywords for Apple Event Attributes
keyMissedKeywordAttr = FOUR_CHAR_CODE('miss') // First required parameter remaining in

// an Apple event.

Keywords for Apple Event Parameters
keyDirectObject = FOUR_CHAR_CODE('----') // Direct parameter

Apple Event Descriptor Types
typeAEList = FOUR_CHAR_CODE('list') // List of descriptor structures.
typeWildCard = FOUR_CHAR_CODE('****') // Matches any type.
typeFSS = FOUR_CHAR_CODE('fss ') // File system specification.

Required Apple Events CLASSIC EDITION — Version 2.3 10-15

Result Codes
errAEDescNotFound = -1701 // Descriptor structure was not found.
errAEParamMissed = -1715 // Handler cannot understand a parameter

// the client considers is required.

Theme Font ID Constants
KThemeSystemFont = 0
KThemeSmallSystemFont = 1
KThemeSmallEmphasizedSystemFont = 2
KThemeViewsFont = 3

Data Types
typedef FourCharCode AEEventClass; // Event class for a high level event.
typedef FourCharCode AEEventID; // Event ID for a high level event.
typedef FourCharCode AEKeyword; // Keyword for a descriptor structure.
typedef ResType DescType; // Descriptor type.

typedef AEDesc AEDescList; // List of descriptor structures.
typedef AEDescList AERecord; // List af keyword-specified descriptor structures.
typedef AERecord AppleEvent // List of attributes and parameters for Apple event.

Descriptor Structure
struct AEDesc
{
 DescType descriptorType; // Type of data being passed.
 Handle dataHandle; // Handle to data being passed.
};
typedef struct AEDesc AEDesc;

Keyword-Specified Descriptor Structure
struct AEKeyDesc
{
 AEKeyword deskKey; // Keyword.
 AEDesc descContent; // Descriptor structure.
};
typedef struct AEKeyDesc AEKeyDesc;

Functions
Creating and Managing Apple Event Dispatch Tables
OSErr AEInstallEventHandler(AEEventClass theAEEventClass,AEEventID theAEEventID,

AEEventHandlerUPP handler,long handlerRefcon,Boolean isSysHandler);

Dispatching Apple Events
OSErr AEProcessAppleEvent(const EventRecord *theEventRecord);

Getting Data or Descriptor Structures Out of Apple Event Parameters and
Attributes
OSErr AEGetParamDesc(const AppleEvent *theAppleEvent,AEKeyword theAEKeyword,

DescType desiredType,AEDesc *result);
OSErr AEGetAttributePtr(const AppleEvent *theAppleEvent,AEKeyword theAEKeyword,

DescType desiredType,DescType *typeCode,Ptr dataPtr,Size maximumSize,
Size *actualSize);

Counting the Items in Descriptor Lists
OSErr AECountItems(const AEDescList *theAEDescList,long *theCount);

Getting Items From Descriptor Lists
OSErr AEGetNthPtr(const AEDescList *theAEDescList,long index,DescType desiredType,AEKeyword

*theAEKeyword,DescType *typeCode,Ptr dataPtr,Size maximumSize,Size *actualSize);

10-16 CLASSIC EDITION — Version 2.3 Required Apple Events

Deallocating Memory for Descriptor Structures
OSErr AEDisposeDesc(AEDesc *theAEDesc);

Accessing Theme Font Information
OSStatus GetThemeFont(ThemeFontID inFontID,ScriptCode inScript,StringPtr outFontName,

SInt16 *outFontSize, Style *outStyle);
OSStatus UseThemeFont(ThemeFontID inFontID,ScriptCode inScript);

Required Apple Events CLASSIC EDITION — Version 2.3 10-17

Demonstration Program
// ◊◊
// AppleEvents.c
// ◊◊
//
// This program:
//
// • Installs handlers for the required Apple events and Appearance Manager Apple
// events.
//
// • Responds to the receipt of required Apple events by displaying descriptive text in
// a window opened for that purpose, and by opening simulated document windows as
// appropriate. These responses result from the user:
//
// • Double clicking on the application's icon, or selecting the icon and choosing
// Open from the Finder's File menu, thus causing the receipt of an Open
// Application event.
//
// • When the application is already open, double clicking on the application's
// icon, or selecting the icon and choosing Open from the Finder's File menu,
// thus causing the receipt of a Re-open Application event.
//
// • Double clicking on one of the document icons, selecting one or both of the
// document icons and choosing Open from the Finder's File menu, or dragging one
// or both of the document icons onto the application's icon, thus causing the
// receipt of an Open Documents event.
//
// • Selecting one or both of the document icons and choosing Print from the
// Finder's file menu, thus causing the receipt of a Print Documents event and,
// if the application is not already running, a subsequent Quit Application event.
//
// • While the application is running, choosing Shut Down or Restart from the
// Finder's Special menu, thus causing the receipt of a Quit Application event.
//
// • Responds to the receipt of Appearance Manager Apple events by displaying
// descriptive text.
//
// The program, which is intended to be run as a built application rather than within
// CodeWarrior, utilises the following resources:
//
// • 'WIND' resources (purgeable, initially visible) for the descriptive text display
// window and simulated document windows.
//
// • 'MBAR' and 'MENU' resources (preload, non-purgeable).
//
// • 'STR#' resources (purgeable) for displaying error messages using StandardAlert.
//
// • 'ICN#', 'ics#', 'ics4', 'ics8', 'icl4', and 'icl8' resources (that is, an icon
// family) for the application and for the application's documents. (Purgeable.)
//
// • 'FREF' resources (non-purgeable) for the application and the application's 'TEXT'
// documents, which link the icons with the file types they represent, and which allow
// users to launch the application by dragging the document icons to the application
// icon.
//
// • The application's signature resource (non-purgeable), which enables the Finder to
// identify and start up the application when the user double clicks the application's
// document icons.
//
// • A 'BNDL' resource (non-purgeable), which groups together the application's
// signature, icon and 'FREF' resources.
//
// • A 'hfdr' resource (purgeable), which provides the customised finder icon help
// override help balloon for theapplication icon.
//
// • A 'vers' resource (purgeable), which provides version information via the
// information window and the Version column in list view windows.
//
// • A 'SIZE' resource with the isHighLevelEventAware, acceptSuspendResumeEvents, and
// and is32BitCompatible flags set.
//
// ◊◊

10-18 CLASSIC EDITION — Version 2.3 Required Apple Events

//
………
…………………………………… includes

#include <Appearance.h>
#include <AERegistry.h>
#include <Devices.h>
#include <Dialogs.h>
#include <Gestalt.h>
#include <ToolUtils.h>

//
………
……………………………………… defines

#define rMenubar 128
#define mApple 128
#define mFile 129
#define iQuit 11
#define rDisplayWindow 128
#define rDocWindow 129
#define rErrorStrings 128
#define eInstallHandler 1
#define eGetRequiredParam 2
#define eGetDescriptorRecord 3
#define eMissedRequiredParam 4
#define eCannotOpenFile 5
#define eCannotPrintFile 6
#define eCannotOpenWindow 7
#define eMenus 8
#define MIN(a,b) ((a) < (b) ? (a) : (b))

//
………
……………… global variables

AEEventHandlerUPP doOpenAppEventUPP;
AEEventHandlerUPP doReopenAppEventUPP;
AEEventHandlerUPP doOpenDocsEventUPP;
AEEventHandlerUPP doPrintDocsEventUPP;
AEEventHandlerUPP doQuitAppEventUPP;

AEEventHandlerUPP doAppearanceChangeUPP;
AEEventHandlerUPP doSysFontChangeUPP;
AEEventHandlerUPP doSmallSysFontChangeUPP;
AEEventHandlerUPP doViewsFontChangeUPP;

Boolean gMacOS85Present = false;
WindowPtr gWindowPtr;
Boolean gDone;
Boolean gApplicationWasOpen = false;
WindowPtr gWindowPtrs[10];
SInt16 gNumberOfWindows = 0;

//
………
……… function prototypes

void main (void);
void doInitManagers (void);
void doInstallAEHandlers (void);
void doEvents (EventRecord *);
pascal OSErrdoOpenAppEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoReopenAppEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoOpenDocsEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoPrintDocsEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoQuitAppEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoAppearanceChangeEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoSysFontChangeEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoSmallSysFontChangeEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErrdoViewsFontChangeEvent (AppleEvent *,AppleEvent *,SInt32);
OSErr doHasGotRequiredParams (AppleEvent *);
Boolean doOpenFile (FSSpec *,SInt32,SInt32);
Boolean doPrintFile (FSSpec *,SInt32,SInt32);
void doPrepareToTerminate (void);
WindowPtr doNewWindow (void);
void doMenuChoice (SInt32);
void doErrorAlert (SInt16);
void doDrawText (Str255);

Required Apple Events CLASSIC EDITION — Version 2.3 10-19

void doConcatPStrings (Str255,Str255);

// ◊◊◊ main

void main(void)
{

OSErr osError;
SInt32 response;
EventRecord EventStructure;
Handle menubarHdl;
MenuHandle menuHdl;
RGBColor foreColour = { 0xFFFF,0xFFFF,0xFFFF };
RGBColor backColour = { 0x4444,0x4444,0x9999 };

//
………
… initialise managers

doInitManagers();

// ……………………………………………………………………………………………………… check whether Mac OS 8.5 or later is
present

osError = Gestalt(gestaltSystemVersion,&response);

if(osError == noErr && response >= 0x00000850)
gMacOS85Present = true;

// ………………………………………………………………… create routine descriptors (required Apple event handlers)

doOpenAppEventUPP = NewAEEventHandlerProc((ProcPtr) doOpenAppEvent);
doReopenAppEventUPP= NewAEEventHandlerProc((ProcPtr) doReopenAppEvent);
doOpenDocsEventUPP = NewAEEventHandlerProc((ProcPtr) doOpenDocsEvent);
doPrintDocsEventUPP = NewAEEventHandlerProc((ProcPtr) doPrintDocsEvent);
doQuitAppEventUPP = NewAEEventHandlerProc((ProcPtr) doQuitAppEvent);

// ………………………………………… create routine descriptor (Appearance Manager Apple event handlers)

doAppearanceChangeUPP = NewAEEventHandlerProc((ProcPtr) doAppearanceChangeEvent);

if(gMacOS85Present)
{

doSysFontChangeUPP = NewAEEventHandlerProc((ProcPtr) doSysFontChangeEvent);
doSmallSysFontChangeUPP = NewAEEventHandlerProc((ProcPtr) doSmallSysFontChangeEvent);
doViewsFontChangeUPP = NewAEEventHandlerProc((ProcPtr) doViewsFontChangeEvent);

}

//
………
………………… open a window

if(!(gWindowPtr = GetNewCWindow(rDisplayWindow,NULL,(WindowPtr) -1)))
{

doErrorAlert(eCannotOpenWindow);
ExitToShell();

}

SetPort(gWindowPtr);
TextSize(10);
TextFace(bold);
RGBBackColor(&backColour);
RGBForeColor(&foreColour);
EraseRect(&gWindowPtr->portRect);

// …… set
up menu bar and menus

if(!(menubarHdl = GetNewMBar(rMenubar)))
doErrorAlert(eMenus);

SetMenuBar(menubarHdl);
DrawMenuBar();

if(!(menuHdl = GetMenuHandle(mApple)))
doErrorAlert(eMenus);

else
AppendResMenu(menuHdl,'DRVR');

// ……… install
Apple event handlers

10-20 CLASSIC EDITION — Version 2.3 Required Apple Events

doInstallAEHandlers();

//
………
………………………… event loop

gDone = false;

while(!gDone)
{

if(WaitNextEvent(everyEvent,&EventStructure,180,NULL))
doEvents(&EventStructure);

}
}

// ◊◊◊ doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

RegisterAppearanceClient();
}

// ◊◊ doInstallAEHandlers

void doInstallAEHandlers(void)
{

OSErr osErr;

//
……
required Apple events

osErr = AEInstallEventHandler(kCoreEventClass,kAEOpenApplication,doOpenAppEventUPP,
0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);

osErr = AEInstallEventHandler(kCoreEventClass,kAEReopenApplication,doReopenAppEventUPP,
0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);

osErr = AEInstallEventHandler(kCoreEventClass,kAEOpenDocuments,doOpenDocsEventUPP,
0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);

osErr = AEInstallEventHandler(kCoreEventClass,kAEPrintDocuments,doPrintDocsEventUPP,
0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);

osErr = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,doQuitAppEventUPP,
0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);

// …… Appearance
Manager Apple events

osErr = AEInstallEventHandler(kAppearanceEventClass,kAEAppearanceChanged,
doAppearanceChangeUPP,0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);

if(gMacOS85Present)
{

osErr = AEInstallEventHandler(kAppearanceEventClass,kAESystemFontChanged,
doSysFontChangeUPP,0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);

Required Apple Events CLASSIC EDITION — Version 2.3 10-21

osErr = AEInstallEventHandler(kAppearanceEventClass,kAESmallSystemFontChanged,
doSmallSysFontChangeUPP,0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);

osErr = AEInstallEventHandler(kAppearanceEventClass,kAEViewsFontChanged,
doViewsFontChangeUPP,0L,false);

if(osErr != noErr) doErrorAlert(eInstallHandler);
}

}

// ◊◊◊ doEvents

void doEvents(EventRecord *eventStrucPtr)
{

SInt16 partCode;
WindowPtr windowPtr;
SInt32 menuChoice;
SInt8 charCode;

switch(eventStrucPtr->what)
{

case kHighLevelEvent:
AEProcessAppleEvent(eventStrucPtr);
break;

case mouseDown:
partCode = FindWindow(eventStrucPtr->where,&windowPtr);
switch(partCode)
{

case inMenuBar:
menuChoice = MenuSelect(eventStrucPtr->where);
doMenuChoice(menuChoice);
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
break;

}
break;

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)

doMenuChoice(MenuEvent(eventStrucPtr));
break;

case updateEvt:
BeginUpdate((WindowPtr)eventStrucPtr->message);
EndUpdate((WindowPtr)eventStrucPtr->message);
break;

case activateEvt:
if(FrontWindow() == gWindowPtr)

EraseRect(&gWindowPtr->portRect);
break;

case osEvt:
HiliteMenu(0);
break;

}
}

// ◊◊◊ doOpenAppEvent

pascal OSErr doOpenAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefCon)
{

OSErr osErr;
WindowPtr windowPtr;

gApplicationWasOpen = true;

osErr = doHasGotRequiredParams(appEvent);

if(osErr == noErr)
{

doDrawText("\pReceived an Apple event: OPEN APPLICATION.");
doDrawText("\p • Opening an untitled window in response.");

10-22 CLASSIC EDITION — Version 2.3 Required Apple Events

windowPtr = doNewWindow();
SetWTitle(windowPtr,"\pUntitled 1");

return(noErr);
}
else

return(osErr);
}

// ◊◊◊ doReopenAppEvent

pascal OSErr doReopenAppEvent(AppleEvent *appEvent,AppleEvent *reply,
 SInt32 handlerRefCon)

{
OSErr osErr;
WindowPtr windowPtr;

osErr = doHasGotRequiredParams(appEvent);

if(osErr == noErr)
{

doDrawText("\pReceived an Apple event: RE-OPEN APPLICATION.");
doDrawText("\p • I will check whether I have any windows open.");
doDrawText("\p If no windows are open, I will open a window.");

if(!FrontWindow())
{

windowPtr = doNewWindow();
SetWTitle(windowPtr,"\pUntitled 1");

}

return(noErr);
}
else

return(osErr);
}

// ◊◊ doOpenDocsEvent

pascal OSErr doOpenDocsEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

AEDescList docList;
OSErr osErr, ignoreErr;
SInt32 numberOfItems, index;
DescType returnedType;
FSSpec fileSpec;
AEKeyword keyWord;
Size actualSize;
Boolean result;

osErr = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);

if(osErr == noErr)
{

osErr = doHasGotRequiredParams(appEvent);
if(osErr == noErr)
{

AECountItems(&docList,&numberOfItems);
if(osErr == noErr)
{

for(index=1;index<=numberOfItems;index++)
{

osErr = AEGetNthPtr(&docList,index,typeFSS,&keyWord,&returnedType,
(Ptr) &fileSpec,sizeof(fileSpec),&actualSize);

if(osErr == noErr)
{

if(!(result = doOpenFile(&fileSpec,index,numberOfItems)))
doErrorAlert(eCannotOpenFile);

}
else

doErrorAlert(eGetDescriptorRecord);
}

}
}
else

doErrorAlert(eMissedRequiredParam);

ignoreErr = AEDisposeDesc(&docList);
}

Required Apple Events CLASSIC EDITION — Version 2.3 10-23

else
doErrorAlert(eGetRequiredParam);

return(osErr);
}

// ◊◊◊ doPrintDocsEvent

pascal OSErr doPrintDocsEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

AEDescList docList;
OSErr osErr, ignoreErr;
SInt32 numberOfItems, index;
DescType returnedType;
FSSpec fileSpec;
AEKeyword keyWord;
Size actualSize;
Boolean result;

osErr = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);

if(osErr == noErr)
{

osErr = doHasGotRequiredParams(appEvent);
if(osErr == noErr)
{

AECountItems(&docList,&numberOfItems);
if(osErr == noErr)
{

for(index=1;index<=numberOfItems;index++)
{

osErr = AEGetNthPtr(&docList,index,typeFSS,&keyWord,&returnedType,
(Ptr) &fileSpec,sizeof(fileSpec),&actualSize);

if(osErr == noErr)
{

if(!(result = doPrintFile(&fileSpec,index,numberOfItems)))
doErrorAlert(eCannotPrintFile);

}
else

doErrorAlert(eGetDescriptorRecord);
}

}
}
else

doErrorAlert(eMissedRequiredParam);

ignoreErr = AEDisposeDesc(&docList);
}
else

doErrorAlert(eGetRequiredParam);

return(osErr);
}

// ◊◊◊ doQuitAppEvent

pascal OSErr doQuitAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

OSErr osErr;

osErr = doHasGotRequiredParams(appEvent);

if(osErr == noErr)
{

doPrepareToTerminate();
return(noErr);

}
else

return(osErr);
}

// ◊◊ doAppearanceChangeEvent

pascal OSErr doAppearanceChangeEvent(AppleEvent *appEvent,AppleEvent *reply,
SInt32 handlerRefcon)

{
OSErr osErr;

osErr = doHasGotRequiredParams(appEvent);

10-24 CLASSIC EDITION — Version 2.3 Required Apple Events

if(osErr == noErr)
{

EraseRect(&gWindowPtr->portRect);
MoveTo(8,160);
doDrawText("\pReceived an Apple event: APPEARANCE CHANGED.");
// Action as required by application.

}
else

return(osErr);
}

// ◊◊◊ doSysFontChangeEvent

pascal OSErr doSysFontChangeEvent(AppleEvent *appEvent,AppleEvent *reply,
 SInt32 handlerRefcon)

{
OSErr osErr;
Str255 fontName, theString = "\p Current large system font is: ";

osErr = doHasGotRequiredParams(appEvent);

if(osErr == noErr)
{

doDrawText("\pReceived an Apple event: LARGE SYSTEM FONT CHANGED.");
#if TARGET_CPU_PPC

GetThemeFont(kThemeSystemFont,smSystemScript,fontName,NULL,NULL);
doConcatPStrings(theString,fontName);
doDrawText(theString);

#endif
// Action as required by application.

}
else

return(osErr);
}

// ◊◊ doSmallSysFontChangeEvent

pascal OSErr doSmallSysFontChangeEvent(AppleEvent *appEvent,AppleEvent *reply,
SInt32 handlerRefcon)

{
OSErr osErr;
Str255 fontName, theString = "\p Current small system font is: ";

osErr = doHasGotRequiredParams(appEvent);

if(osErr == noErr)
{

doDrawText("\pReceived an Apple event: SMALL SYSTEM FONT CHANGED.");
#if TARGET_CPU_PPC

GetThemeFont(kThemeSmallSystemFont,smSystemScript,fontName,NULL,NULL);
doConcatPStrings(theString,fontName);
doDrawText(theString);

#endif
// Action as required by application.

}
else

return(osErr);
}

// ◊◊◊ doViewsFontChangeEvent

pascal OSErr doViewsFontChangeEvent(AppleEvent *appEvent,AppleEvent *reply,
SInt32 handlerRefcon)

{
OSErr osErr;
Str255 fontName, fontSizeString, theString = "\p Current views font is: ";
SInt16 fontSize;

osErr = doHasGotRequiredParams(appEvent);

if(osErr == noErr)
{

doDrawText("\pReceived an Apple event: VIEWS FONT CHANGED.");
#if TARGET_CPU_PPC

GetThemeFont(kThemeViewsFont,smSystemScript,fontName,&fontSize,NULL);
doConcatPStrings(theString,fontName);
doConcatPStrings(theString,"\p ");
NumToString((SInt32) fontSize,fontSizeString);

Required Apple Events CLASSIC EDITION — Version 2.3 10-25

doConcatPStrings(theString,fontSizeString);
doConcatPStrings(theString,"\p point");
doDrawText(theString);

#endif
// Action as required by application.

}
else

return(osErr);
}

// ◊◊◊ doHasGotRequiredParams

OSErr doHasGotRequiredParams(AppleEvent *appEvent)
{

OSErr osErr;
DescType returnedType;
Size actualSize;

osErr = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,
NULL,0,&actualSize);

if(osErr == errAEDescNotFound)
return(noErr);

else if(osErr == noErr)
return(errAEParamMissed);

}

// ◊◊◊ doOpenFile

Boolean doOpenFile(FSSpec *fileSpecPtr,SInt32 index,SInt32 numberOfItems)
{

WindowPtr windowPtr;

gApplicationWasOpen = true;

if(index == 1)
doDrawText("\pReceived an Apple event: OPEN DOCUMENTS.");

if(numberOfItems == 1)
{

doDrawText("\p • The file to open is: ");
DrawString(fileSpecPtr->name);
doDrawText("\p • Opening titled window in response.");

}
else
{

if(index == 1)
{

doDrawText("\p • The files to open are: ");
DrawString(fileSpecPtr->name);

}
else
{

DrawString("\p and ");
DrawString(fileSpecPtr->name);
doDrawText("\p • Opening titled windows in response.");

}
}

if(windowPtr = doNewWindow())
{

SetWTitle(windowPtr,fileSpecPtr->name);
return(true);

}
else

return(false);
}

// ◊◊ doPrintFile

Boolean doPrintFile(FSSpec *fileSpecPtr,SInt32 index,SInt32 numberOfItems)
{

WindowPtr windowPtr;
UInt32 finalTicks;

if(index == 1)
doDrawText("\pReceived an Apple event: PRINT DOCUMENTS");

if(numberOfItems == 1)

10-26 CLASSIC EDITION — Version 2.3 Required Apple Events

{
doDrawText("\p • The file to print is: ");
DrawString(fileSpecPtr->name);
windowPtr = doNewWindow();
SetWTitle(windowPtr,fileSpecPtr->name);
doDrawText("\p • I would present the Print dialog box first and then print");
doDrawText("\p the document when the user has made his settings.");
Delay(60,&finalTicks);
doDrawText("\p • Assume that I am now printing the document.");
Delay(120,&finalTicks);

}
else
{

if(index == 1)
{

doDrawText("\p • The first file to print is: ");
DrawString(fileSpecPtr->name);
doDrawText("\p I would present the Print dialog box for the first file");
doDrawText("\p only and use the user's settings to print both files.");

}
else
{

Delay(200,&finalTicks);
doDrawText("\p • The second file to print is: ");
DrawString(fileSpecPtr->name);
doDrawText("\p I am using the Print dialog box settings used for the");
doDrawText("\p first file.");

}

windowPtr = doNewWindow();
SetWTitle(windowPtr,fileSpecPtr->name);
doDrawText("\p • Assume that I am now printing the document.");

}

if(numberOfItems == index)
{

if(!gApplicationWasOpen)
{

doDrawText("\p Since the application was not already open, I expect to");
doDrawText("\p receive a QUIT APPLICATION event when I have finished.");

}
else
{

doDrawText("\p Since the application was already open, I do NOT expect");
doDrawText("\p to receive a QUIT APPLICATION event when I have finished.");

}

Delay(180,&finalTicks);
doDrawText("\p • Finished print job.");

}

DisposeWindow(windowPtr);
return(true);

}

// ◊◊◊ doPrepareToTerminate

void doPrepareToTerminate(void)
{

UInt32 finalTicks;

doDrawText("\pReceived an Apple event: QUIT APPLICATION");

if(gApplicationWasOpen)
{

doDrawText("\p • I would now ask the user to save any unsaved files before");
doDrawText("\p terminating myself in response to the event.");
doDrawText("\p • Click the mouse when ready to terminate.");
while(!Button()) ;

}
else
{

doDrawText("\p • Terminating myself in response");
Delay(300,&finalTicks);

}

// If the user did not click the Cancel button in a Save dialog box:

gDone = true;

Required Apple Events CLASSIC EDITION — Version 2.3 10-27

}

// ◊◊ doNewWindow

WindowPtr doNewWindow(void)
{

if(!(gWindowPtrs[gNumberOfWindows] = GetNewCWindow(rDocWindow,NULL,(WindowPtr) -1)))
doErrorAlert(eCannotOpenWindow);

gNumberOfWindows++;

return(gWindowPtrs[gNumberOfWindows -1]);
}

// ◊◊◊ doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{

SInt16 menuID, menuItem;
Str255 itemName;
SInt16 daDriverRefNum;

menuID=HiWord(menuChoice);
menuItem=LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);
break;

case mFile:
if(menuItem == iQuit)

gDone = true;
break;

}

HiliteMenu(0);
}

// ◊◊◊ doErrorAlert

void doErrorAlert(SInt16 errorType)
{

AlertStdAlertParamRec paramRec;
Str255 errorString;
SInt16 itemHit;

paramRec.movable = true;
paramRec.helpButton = false;
paramRec.filterProc = NULL;
paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
paramRec.cancelText = NULL;
paramRec.otherText = NULL;
paramRec.defaultButton = kAlertStdAlertOKButton;
paramRec.cancelButton = 0;
paramRec.position = kWindowDefaultPosition;

GetIndString(errorString,rErrorStrings,errorType);

if(errorType < 7)
StandardAlert(kAlertCautionAlert,errorString,NULL,¶mRec,&itemHit);

else
{

StandardAlert(kAlertStopAlert,errorString,NULL,¶mRec,&itemHit);
ExitToShell();

}
}

// ◊◊◊ doDrawText

void doDrawText(Str255 eventString)
{

RgnHandle tempRegion;
SInt16 a;

10-28 CLASSIC EDITION — Version 2.3 Required Apple Events

UInt32 finalTicks;

tempRegion = NewRgn();

for(a=0;a<15;a++)
{

ScrollRect(&gWindowPtr->portRect,0,-1,tempRegion);
Delay(4,&finalTicks);

}

DisposeRgn(tempRegion);

MoveTo(8,160);
DrawString(eventString);

}

// ◊◊◊ doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{

SInt16 appendLength;

appendLength = MIN(appendString[0],255 - targetString[0]);

if(appendLength > 0)
{

BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
targetString[0] += appendLength;

}
}

// ◊◊

Demonstration Program Comments
The demonstration requires that the user open the window containing the AppleEvents application in order to access the
Apple Events application icon and two document icons.

Using all of the methods available in the Finder (that is, double clicking the icons, dragging document icons to the
application icon, selecting the icons and choosing Open and Print from the Finder's File menu) the user should launch the
application, open the simulated documents and "print" the documents, noting the descriptive text printed in the non-
document window in response to the receipt of the resulting Apple events.

When the application is open, the user should double-click the application icon, or select it and choose Open from the
Finder's File menu, noting the receipt of the Re-Open Application event.

The user should also choose Restart or Shut Down from the Finder's Special menu while the application is running, also
noting the displayed text resulting from receipt of the Quit Application event. Opening and printing should be attempted
when the application is already running and when the application is not running.

With regard to the Appearance Manager Apple events, the user should make changes to the system font, small system font,
and views font in the Fonts tab of the Mac OS 8.5 Appearance control panel, noting the descriptive text that appears in the
non-document window.

Although not related to the required Apple events aspects of the program, the following aspects of the demonstration may
also be investigated:

• The customised finder icon help override help balloon for the application icon. (The 'hfdr' resource refers.)

• The version information for the application in the Finder's Get Info… window and in the window containing the
AppleEvents application when list view and show version column are selected. (The 'vers' resource refers.)

#define
Constants are established relating to menu, alert box, error message string, and window resources, menus IDs and menu
item numbers.

Global Variables
The first five global variables will be assigned universal procedure pointers to the required Apple events handling functions.
The next four global variables will be assigned universal procedure pointers to the appearance Apple event handling
functions.

GMacOS85Present will be assigned true if Mac OS 8.5 or later is present. gWindowPtr will be assigned the pointer to the text
display window. gDone controls program termination.

Required Apple Events CLASSIC EDITION — Version 2.3 10-29

gApplicationWasOpen will be used to control the manner of program termination when a Quit Application event is received,
depending on whether the event followed a Print Documents event or resulted from the user choosing Restart of Shut Down
from the Finder's Special menu.

gWindowPtrs will be assigned pointers to the document windows. gNumberOfWindows is used to increment the
gWindowPtrs[] array element after each document window is created.

main
The main function initialises the system software managers and then determines whether Mac OS 8.5 is present.

The next block calls NewAEEventHandlerProc nine times to create routine descriptors for each of the required Apple event
and appearance Apple event handling functions. Note that the last three calls are made only if Mac OS 8.5 or later is
present; this is because the Mac OS 8.5 Appearance control panel was the first to contain pop-up menus allowing the user to
change the system, small system, and views fonts.

The next block calls GetNewCWindow to open the text display window, makes that window the current graphics port, sets
the text size for that graphics port to 10pt, sets the text style to bold, sets the foreground and background colours, and calls
EraseRect to draw the window' content area in the new background colour.

The menus are then set up. Note that here, and in other areas of the program, an error will cause the application-defined
error-handling function doErrorAlert to be called.

The call to doInstallAEHandlers installs the Apple event handlers. Finally, the main event loop is entered.

doInstallAEHandlers
doInstallAEHandlers installs the handlers for the required Apple events and the Appearance Manager Apple events in the
application's Apple event dispatch table. Note that the last three are only installed if Mac OS 8.5 or later is present.

doEvents
doEvents switches according to the event type received.

The kHighLevelEvent case accommodates the receipt of a high-level event, in which case AEProcessAppleEvent is called.
(AEProcessAppleEvent looks in the application's Apple event dispatch table for a match to the event class and event ID
contained in, respectively, the event structure's message and where fields, and calls the appropriate handler.)

doMouseDown
doMouseDown performs such mouse-down processing as is necessary to support the demonstration aspects of the program.

doOpenAppEvent
doOpenAppEvent is the handler for the Open Application event.

At the first line, the global variable gApplicationWasOpen, which controls the manner of program termination when a Quit
Application event is received, is set to true. (This line is required for demonstration program purposes only.)

The application-defined function doHasGotRequiredParams is then called to check whether the Apple event contains any
required parameters. If so, the handler returns an error because, by definition, the Open Application event should not
contain any required parameters.

If noErr is returned by doHasGotRequiredParams, the handler does what the user expects the application to do when it is
opened, that is, it opens an untitled document window (the call to doNewWindow and the subsequent call to SetWTitle). The
handler then returns noErr.

The last two lines mean that, if errAEParamMissed is returned by doHasGotRequiredParams, this is returned by the handler.

The calls to doDrawText simply print some text in the text window for demonstration program purposes.

doReopenAppEvent
doRepenAppEvent is the handler for the Re-open Documents event.

At the first line, the application-defined function doHasGotRequiredParams is called to check whether the Apple event
contains any required parameters. If so, the handler returns an error because, by definition, the Re-open Application event
should not contain any required parameters.

If noErr is returned by dHasGotRequiredParams, and if there are currently no open windows, the handler opens an untitled
document window and returns noErr.

The last two lines mean that, if errAEParamMissed is returned by doHasGotRequiredParams, this is returned by the handler.

10-30 CLASSIC EDITION — Version 2.3 Required Apple Events

The calls to doDrawText simply print some text in the text window for demonstration program purposes.

doOpenDocsEvent
doOpenDocsEvent is the handler for the Open Documents event.

At the first line, AEGetParamDesc is called to get the direct parameter (specified in the keyDirectObject keyword) out of the
Apple event. The constant typeAEList specifies the descriptor type as a list of descriptor structures. The descriptor list is
received by the docList variable.

Before proceeding further, the handler checks that it has received all the required parameters by calling the application-
defined function doHasGotRequiredParams (Line 324).

Having retrieved the descriptor list from the Apple event, the handler calls AECountItems to count the number of descriptors
in the list.

Using the returned number as an index, AEGetNthPtr is called to get the data of each descriptor structure in the list. In the
AEGetNthPtr call, the parameter typeFSS specifies the desired type of the resulting data, causing the Apple Event Manager to
coerce the data in the descriptor structure to a file system specification structure. Note also that keyWord receives the
keyword of the specified descriptor structure, returnedType receives the descriptor type, fileSpec receives a pointer to the
file system specification structure, sizeof(fileSpec) establishes the length, in bytes, of the data returned, and actualSize
receives the actual length, in bytes, of the data for the descriptor structure.

After extracting the file system specification structure describing the document to open, the handler calls the application-
defined function for opening files (doOpenFile). (In a real application, that function would typically be the same as that
invoked when the user chooses Open from the application's File menu.)

If the call to AEGetNthPtr does not return noErr, the application-defined error handling function (doErrorAlert) is called.
(AEGetNthPtr will return an error code if there was insufficient room in the heap, the data could not be coerced, the
descriptor structure was not found, the descriptor was of the wrong type or the descriptor structure was not a valid
descriptor structure.)

If the call to doHasGotRequiredParams does not return noErr, the application-defined error handling function (doErrorAlert) is
called. (doHasGotRequiredParams returns noErr only if you got all the required parameters.)

Since the handler has no further requirement for the data in the descriptor list, AEDisposeDesc is called to dispose of the
descriptor list.

If the call to AEGetParamDesc does not return noErr the application-defined error handling function (doErrorAlert) is called.
(AEGetParamDesc will return an error code for much the same reasons as will AEGetNthPtr.)

doPrintDocsEvent
doPrintDocsEvent is the handler for the Print Documents event.

The code is identical to that for the Open Documents event handler doOpenDocs except that the application-defined function
for printing files (doPrintFile) is called rather than the function for simply opening files (doOpenFile).

doQuitAppEvent
doQuitAppEvent is the handler for the Quit Application event.

After checking that it has received all the required parameters by calling the application-defined function
doHasGotRequiredParams, the handler calls the application-defined function doPrepareToTerminate.

doAppearanceChangeEvent,
doSysFontChangeEvent,
doSmallSysFontChange, and
doViewsFontChangeEvent
doAppearanceChangeEvent, doSysFontChangeEvent, doSmallSysFontChange, and doViewsFontChangeEvent are the
handlers for the Appearance Manager Apple events.

After checking that they have received all the required parameters by calling the application-defined function
doHasGotRequiredParams, the handlers draw some advisory text in the non-document window indicating that the event has
been received, call the Appearance Manager function GetThemeFont to obtain information about the relevant font (large
system, small system, or views), and draw the font name (and, in the case of the views font, the font size).

doHasGotRequiredParams

Required Apple Events CLASSIC EDITION — Version 2.3 10-31

doHasGotRequiredParams is the application-defined function called by doOpenAppEvent and doThemeSwitch to confirm that
the event passed to it contains no required parameters, and by the other required Apple event handlers to check that they
have received all the required parameters.

The first parameter in the call to AEGetAttributePtr is a pointer to the Apple event in question. The second parameter is the
Apple event keyword; in this case the constant keyMissedKeywordAttr is specified, meaning the first required parameter
remaining in the event. The third parameter specifies the descriptor type; in this case the constant typeWildCard is
specified, meaning any descriptor type. The fourth parameter receives the descriptor type of the returned data. The fifth
parameter is a pointer to the data buffer
which stores the returned data. The sixth parameter is the maximum length of the data buffer to be returned. Since we do
not need the data itself, these parameters are set to NULL and 0 respectively. The last parameter receives the actual length,
in bytes, of the data buffer for the attribute.

AEGetAttributePtr returns the result code errAEDescNotFound if the specified descriptor type (typeWildCard, that is, any
descriptor type) is not found, meaning that the handler extracted all the required parameters. In this event,
doHasGotRequiredParams returns noErr.

If AEGetAttributePtr returns noErr, the handler has not extracted all of the required parameters, in which case, the handler
should return errAEParamMissed and not handle the event. Accordingly, errAEParamMissed is returned to the handler (and,
in turn, by the handler) if noErr is returned by AEGetAttributePtr .

doOpenFile
doOpenFile takes the file system specification structure and opens a window with the filename contained in that structure
repeated in the window's title bar (the calls to doNewWindow and SetWTitle). The rest of the doOpenFile code simply draws
explanatory text in the text window.

In a real application, this is the function that would open files as a result of, firstly, the receipt of the Open Documents event
and, secondly, the user choosing Open from the application's File menu and then choosing a file or files from the resulting
Open dialog box.

doPrintFile
doPrintFile is the function which, in a real application, would take the file system specification structure passed to it from the
Print Documents event handler, extract the filename and control the printing of that file. In this demonstration, most of the
doPrintFile code is related to drawing explanatory text in the text window.

If your application can interact with the user, it should open windows for the documents, display a print Job dialog for the
first document, and use the settings entered by the user for the first document to print all documents.

Note that, if your application was not running when the user selected a document icon and chose Print from the Finder's File
menu, the Finder will send a Quit Application event following the print operation.

doPrepareToTerminate
doPrepareToTerminate is the function called by the Quit Application event handler. In this demonstration, gDone will be set
to true, and the program will thus terminate immediately, if the Quit Application event resulted from the user initiating a
print operation from the Finder when the application was not running.

If the application was running (gApplicationWasOpen contains true) and the Quit Application event thus arose from the user
selecting Restart or Shut Down from the Finder's File menu, the demonstration waits for a button click before setting gDone
to true. (In a real application, and where appropriate, this area of the code would invoke dialog boxes to ascertain whether
the user wished to save any changed documents before closing down.)

Note that, when your application is ready to quit, it must call ExitToShell from the main event loop, not from the handlers for
the Quit Application event. Your application should quit only after the handler returns noErr as its function result.

doNewWindow
doNewWindow opens document windows in response to calls from the Open Application and Open Documents event
handlers.

doMenuChoice, doErrorAlert,
doDrawText, and doConcatPStrings
doMenuChoice handles menu selections. gDone is set to true when the user selects Quit from the application's File menu.
doErrorAlert handles errors, displaying a movable modal alert box with descriptive text and, where necessary, terminating
the program. doDrawText draws scrolling explanatory text in the text window as each event is received. DoConcatPStrings
concatenates two Pascal strings.

10-32 CLASSIC EDITION — Version 2.3 Required Apple Events

	APPLE EVENTS
	Includes Demonstration Program AppleEvents
	Introduction
	Apple Events
	Historical Note
	Historical Note
	Apple Event Attributes and Parameters
	Apple Event Attributes
	Event Class
	Event ID
	Target Application
	Apple Event Parameters
	Direct Parameters
	Additional Parameters
	Required and Optional Parameters
	Interpreting Apple Event Attributes and Parameters
	Data Structures Within Apple Events
	Descriptor Structures
	Address Descriptor Structure
	Keyword-Specified Descriptor Structures
	Descriptor Lists, AE Structures, and AppleEvent Structures
	Descriptor Lists
	AE Structure
	Apple Event Structure
	Passing Descriptor Lists, AE Structures and Apple Event Structures to Apple Event Manager Functions
	Example Complete Apple Event
	Handling Apple Events
	Apple Event Handlers
	OSErr theEventHandler(AppleEvent *appleEvent,AppleEvent *reply,long handlerRefcon);
	Extracting and Checking Data
	Interacting With the User
	Performing the Requested Action and Returning a Result
	Disposing of Copies of Descriptor Structures
	Required Apple Events - Contents and Required Action
	Main Apple Event Manager and Appearance Manager Constants, Data Types, and Functions Relevant to Required Apple Events and Appearance Manager Apple Events
	Constants
	High Level Event
	Event Classes for Required Apple Event and Appearance Manager Apple Event
	Event IDs for Required Apple Events
	Event IDs for Appearance Manager Apple Events
	Keywords for Apple Event Attributes
	Keywords for Apple Event Parameters
	Apple Event Descriptor Types
	Result Codes
	Theme Font ID Constants
	Data Types
	Descriptor Structure
	Keyword-Specified Descriptor Structure
	Functions
	Creating and Managing Apple Event Dispatch Tables
	Dispatching Apple Events
	Getting Data or Descriptor Structures Out of Apple Event Parameters and Attributes
	Counting the Items in Descriptor Lists
	Getting Items From Descriptor Lists
	Deallocating Memory for Descriptor Structures
	Accessing Theme Font Information
	Demonstration Program
	Demonstration Program Comments
	#define
	Global Variables
	main
	doInstallAEHandlers
	doEvents
	doMouseDown
	doOpenAppEvent
	doReopenAppEvent
	doOpenDocsEvent
	doPrintDocsEvent
	doQuitAppEvent
	doAppearanceChangeEvent, doSysFontChangeEvent, doSmallSysFontChange, and doViewsFontChangeEvent
	doHasGotRequiredParams
	doOpenFile
	doPrintFile
	doPrepareToTerminate
	doNewWindow
	doMenuChoice, doErrorAlert, doDrawText, and doConcatPStrings

