
6
THE APPEARANCE MANAGER

Includes Demonstration Program Appearance

Introduction
The Appearance Manager, which was first introduced with Mac OS 8.0, had implications
for the Menu Manager, the Window Manager, the Control Manager, and the Dialog
Manager. The relatively minor implications in respect of the Menu Manager and Window
Manager were incorporated into Chapter 3 — Menus and Chapter 4 — Windows. The
most profound impact of the Appearance Manager, however, has been in the area of user
interface objects known as controls, which are addressed at Chapter 7 — Introduction to
Controls and at Chapter 14 — More on Controls. Accordingly, as a preparation for what is
to come, this chapter now formally introduces the Appearance Manager, a component of
the system software which represents the most significant improvement in the Macintosh
user experience since the introduction of System 7.

Although introduced with Mac OS 8.0, the Appearance Manager's full impact on the
Macintosh user experience was not scheduled to be realised until the release of Mac OS
8.5. Mac OS 8.5 was to be the first release to include several switchable themes, one of
which (the Platinum theme) had, in fact, been included in Mac OS 8.0. The concept of
switchable themes was the main driving force behind the creation of the Appearance
Manager.

Essentially, a theme was intended to be an interface "look" that spanned all elements of
the user interface (windows, menus, dialog boxes, controls, background colours, alert
icons, etc), tying them together with a certain graphic design. Fig 1 shows the same
window as it would have appeared in the three themes originally intended to be included
in Mac OS 8.5. If one of these themes had been selected by the user, all elements of the
user interface (menus, windows, controls, etc.) would have appeared in that theme.

The Appearance Manager CLASSIC EDITION — Version 2.3 6-1

FIG 1 - WINDOWS IN THREE THEMES

HIGH TECH
GIZMO

PLATINUM

The two additional themes (High Tech and Gizmo) shown at Fig 1 were included in pre-
release versions of Mac OS 8.5; however, prior to final release, these two themes were
deleted. The reasons for this decision by Apple remain tantalisingly obscure.

Themes — New Definition
Mac OS 8.5 did, in fact, introduce a theme scheme, though one of an entirely different
flavour to that described above. This is reflected in the Appearance control panel
introduced with Mac OS 8.5, in which the Platinum theme is now referred to as the
Platinum appearance. An appearance (new definition) is now simply one component of a
broader set of user preferences known as a theme (new definition). With the release of
Mac OS 8.5, therefore, the term "theme" took on an entirely new meaning.

Under Mac OS 8.5 and later, an individual theme is a set of user preferences
encompassing:

• An appearance (which unifies the look of human interface objects such as windows,
dialog boxes, alert boxes, menus, controls, etc.), together with a highlight colour (for
selected text) and a variation colour (for menus and controls). (As of Mac OS 8.6,
Platinum remains the only appearance provided by Apple.)

• A large system font (for menus and headings), a small system font (for explanatory
text and labels), a views font (for lists and icons), and an option to turn anti-aliasing
of fonts on screen on or off.

• A desktop picture and desktop pattern.

• Sound preferences relating to opening menus and choosing items, dragging and
resizing windows, interacting with controls, and clicking, dragging, and dropping in
the Finder.

• Scrolling preference (smart scrolling on or off) and collapse-window preference
(double-click title bar to collapse window on or off).

Theme-Compliance
Another significant terminological change ushered in by Mac OS 8.5 was that, whereas
Apple documentation previously spoke of making applications appearance-compliant,
documentation released following the release of Mac OS 8.5 speaks of making
applications theme-compliant. It is assumed that the reason for this change is that,
while the vast bulk of the measures required to make an application theme-compliant
relate to unifying the look of the application's user interface elements (the province of an

6-2 CLASSIC EDITION — Version 2.3 The Appearance Manager

appearance), there are additional measures that the application may take, or may have to
take:

• In response to the user changing the system and/or views fonts, using the Fonts tab
of the Appearance control panel, while the application is running. (This
consideration does not apply if the application uses standard human interface
elements (that is, system-defined windows, controls, and menus), since the fonts
used for these elements automatically change with the theme change. However,
some applications may use custom human interface elements and may, for example,
draw their own text in a dialog box. In such cases, the application must ensure that
the fonts used match the corresponding system fonts in the current theme.)

• To cause theme-compliant sounds to accompany, for example, the opening and
closing of the application's windows and the manipulation by the user of custom
human interface elements.

• To support the proportional scroll boxes1 the user expects when Smart Scrolling is
selected on in the Options tab of the Appearance control panel.

The Appearance Manager
The Appearance Manager, whose influence is evident to a greater or lesser extent in all
Macintosh C demonstration programs and in many chapters of this book:

• Coordinates the look of human interface elements and provides the underlying
support for themes, particularly appearances.

• Enables you to adapt your application's custom human interface elements (if any) to
the coordinated system-wide look, that is, to make those elements theme-compliant.

Appearance Manager Versions
The version of the Appearance Manager delivered with Mac OS 8.5 was Version 1.1. This
was the first version to be included in the System file. Previous versions were delivered as
extensions. These extensions can be installed and used on Macintoshes and Power
Macintoshes running System 7.1 through 7.6.1 (as well as Power Macintoshes running
Mac OS 8.0 or 8.1), meaning that theme-compliant applications running on the System 7
systems can present their human interface elements in the chosen appearance.

The Appearance Manager versions delivered as extensions are Versions 1.0, 1.0.1, 1.0.2,
and 1.0.3. Version 1.0.2 or, preferably, Version 1.0.3 must be used on Macintoshes and
Power Macintoshes running System 7.1 through 7.6.1. Versions 1.0 and 1.0.1 were
delivered with, respectively, Mac OS 8.0 and 8.1; however, it is advisable to upgrade to
Version 1.0.2 or, preferably, Version 1.0.3 on such systems.

The only difference between Versions 1.0.1 and 1.0.2 is that Version 1.0.2 contains extra
code (for backward compatibility) and the ".Keyboard" font. The ".Keyboard" font is used
to display keyboard glyphs in menus.

The only difference between Versions 1.0.2 and 1.0.3 is that Version 1.0.3 no longer
contains the ".Keyboard" font. In Version 1.0.3, this font is delivered as a separate
suitcase, which should be installed into the Fonts folder in the System folder. The
purpose of this latter is to avoid a font ID conflict between the ".Keyboard" font and
Microsoft Internet Explorer's Arial font.

1 Proportional scroll boxes are scroll boxes which vary in size according to the proportion of the document visible in the
window.

The Appearance Manager CLASSIC EDITION — Version 2.3 6-3

New Definition Functions
To provide a system-wide coordination of look and behaviour, new theme-compliant
definition functions were introduced with the Appearance Manager to replace the old pre-
Appearance Manager definition functions for menu bars, menus, windows, and controls.
In addition, many new theme-compliant control definition functions for new types of
controls (slider controls, focus rings, group boxes, etc.) were introduced to obviate the
necessity for developers to provide their own.

Mapping of Pre-Appearance Manager Definition Functions
Another way in which the Appearance Manager achieved a unified look and behaviour was
by mapping the following standard pre-Appearance Manager definition functions to their
theme-compliant equivalents:

• The menu bar definition function (MBDF) with resource ID 0.

• The menu definition function (MDEF) with resource ID 0.

• The window definition function (WDEF) with resource ID 0. (Document windows).

• The window definition function (WDEF) with resource ID 124. (Utility windows).

• The control definition function (CDEF) with resource ID 0. (Buttons, checkboxes,
and radio buttons).

• The control definition function (CDEF) with resource ID 1. (Scroll bars).

• The control definition function (CDEF) with resource ID 63. (Pop-up menus).

Mapping is implemented by a set of mapper definition functions. The mappers have the
same resource ID as the pre-Appearance definition functions to which they relate.

Under Mac OS 8.5 (Appearance Version 1.1), mapping on a system-wide basis is
permanently on. In earlier versions of the Appearance Manager:

• Mapping on a system-wide basis only occurs when the user has selected system-
wide Appearance on in the Appearance control panel.

• You can ensure that mapping on an individual application basis will occur when the
user has selected system-wide Appearance off in the Appearance control panel by
calling the function RegisterAppearanceClient within your application.

Of course, no mapping occurs if your application specifies the new theme-compliant
definition functions, which means that those definition functions will be called directly.
The left side of Figure 2 shows the ways by which it is determined how, and whether,
mapping will occur for a standard definition function, in this case for the pre-Appearance
WDEF for document windows (resource ID 0). The right side of Fig 2 shows the theme-
compliant control definition function being called directly.

6-4 CLASSIC EDITION — Version 2.3 The Appearance Manager

FIG 2 - MAPPING A STANDARD PRE-APPEARANCE DEFINITION FUNCTION TO ITS APPEARANCE-COMPLIANT
EQUIVALENT, AND CALLING AN APPEARANCE-COMPLIANT DEFINITION FUNCTION DIRECTLY

RegisterAppearanceClient
CALLED?

NO NO

YES YES

WDEF 64 IS USED
(DIRECTLY, NO MAPPING)

APPLICATION REQUESTS
WDEF 0

WDEF 64 IS USED
(VIA MAPPING)

WDEF 0 IS USED
(NO MAPPING)

APPLICATION REQUESTS
WDEF 64

SYSTEMWIDE
APPEARANCE

ON?

Selectable prior to Appearance
Manager 1.1 (Mac OS 8.5).
Always on in Mac OS 8.5 .

The RegisterAppearanceClient
Function

The following describes the RegisterAppearanceClient function.

Function Description
RegisterAppearanceClient This function must be called at the beginning of your application,

prior to initialising or drawing any onscreen elements or invoking
any definition functions, such as the menu bar.
Under Appearance Manager 1.0.3 and earlier, applications that call
this function will continue to have the chosen appearance when
system-wide appearance is selected off in the Appearance control
panel.
This function automatically maps standard pre-Appearance
definition functions to their theme-compliant equivalents. Although
they will not make use of mapping, applications that specify theme-
compliant definition function IDs directly should also call this
function in order to receive Appearance Manager Apple events (see
Chapter 10 — Apple Events).

Disadvantages of Calling a Definition
Function Via a Mapper

When a theme-compliant definition function is called via the mappers, the associated
object may have a slightly different look and behaviour than is the case when it is called
directly. For example:

• Since a standard pre-Appearance WDEF cannot specify the inclusion of a horizontal
zoom box, when a pre-Appearance WDEF is mapped to a theme-compliant WDEF,
the resulting window will not have a horizontal zoom box.

• It is never necessary to call DrawGrowIcon to have the grow icon drawn in a window's
size box when a theme-compliant WDEF is called directly. However, when it is
called via the mapper, DrawGrowIcon must be called once for the grow icon to be
drawn.

• When the theme-compliant WDEF for modal and movable modal dialog boxes is
called via the mapper, the three-pixel-wide space between the content region and
the structure region created by the pre-Appearance WDEF will remain. This space

The Appearance Manager CLASSIC EDITION — Version 2.3 6-5

created certain difficulties in the past. When the theme-compliant WDEF is called
directly, the three-pixel-wide space is banished.

For these reasons, and to eliminate the overhead involved in calling a theme-compliant
definition function through the mappers, it is best to call the theme-compliant definition
function directly.

Mapping of Custom Definition
Functions

Custom definition functions cannot be automatically mapped to theme-compliant
equivalents. However, the Appearance Manager does provide ways to coordinate custom
user interface elements with the current appearance. For example, calling
DrawThemeListBoxFrame would create a theme-compliant frame for a custom list box.

Checking For the Presence of the Appearance Manager
Before calling any functions dependent upon the Appearance Manager’s presence, your
application should check for the presence of the Appearance Manager.

The Gestalt function (see Chapter 23 — Miscellany) may be used to acquire a wide range of
information about the operating environment, and may be used to determine:

• Whether the Appearance Manager is present.

• Whether the Macintosh is currently in compatibility mode, that is, whether the
user has switched system-wide Appearance off in the Appearance control panel.
(This applies only under Appearance Manager 1.0.3 and earlier.)

• The version of the Appearance Manager that is present.

You pass a selector in the selector parameter of Gestalt and the function returns a response
in the response parameter. The following example shows how to, in sequence, check that
the Appearance Manager is present, determine whether system-wide Appearance is on,
and determine the version of the Appearance Manager that is present.

OSErr osError;
SInt32 response;
Boolean appearancePresent = false;
Boolean appearance101present = false;
Boolean appearance110present = false;
Boolean inCompatibilityMode = false;

osError = Gestalt(gestaltAppearanceAttr,&response);

// If Gestalt returns no error and the bit in response represented by the constant
// gestaltAppearanceExists is set, proceed, otherwise exit with an error message.

if(osError == noErr && (BitTst(&response,31 - gestaltAppearanceExists)))
{

// At least Version 1.0 is present. Set a flag.

appearancePresent = true;

// If the bit in response represented by the constant gestaltAppearanceCompatMode
// is set, system-wide Appearance is off. The result of this check will be
// relevant only where Versions 1.0 through 1.0.3 are present.

if(BitTst(&response,31 - gestaltAppearanceCompatMode))
inCompatibilityMode = true;

// Call Gestalt again with the gestaltAppearanceVersion selector.

Gestalt(gestaltAppearanceVersion,&response);

// If the low order word in response is 0x0101, Version 1.0.1, 1.0.2, or 1.0.3 is
// present. If the low order word in response is 0x0110, Version 1.1 is available.

6-6 CLASSIC EDITION — Version 2.3 The Appearance Manager

if(response == 0x00000101)
gAppearance101present = true;

else if(response == 0x00000110)
gAppearance110present = true;

}
else
{

// Present nil-Appearance error alert presented here, then exit.
}

Colours, Patterns, and the Current Appearance
The Appearance Manager provides drawing primitives, and the means to set the colours
and patterns, needed to draw consistently in a given appearance. Using these drawing
primitives, colours, and patterns makes it easier to create visual entities and custom
human interface elements that are consistent with the current appearance.

Drawing Appearance Primitives

The Appearance Manager provides functions for drawing Appearance primitives. As
will become apparent at Chapter 7 — Introduction to Controls and at Chapter 14 — More
on Controls, most of these primitives relate to certain controls. The control definition
functions for these controls call these primitives when drawing the relevant control. For
example, the control definition function for a primary group box calls the primitive
DrawThemePrimaryGroup to draw the theme-compliant visual representation of that control.

Your application might use these primitives to, for example:

• Draw a theme-compliant image of a placard, window header, edit text field frame,
etc., when you don’t want to use a control.

• Assist you in making a custom list box theme-compliant by using DrawThemeListBoxFrame
to draw the frame and DrawThemeFocusRect to draw the focus ring.

The following are examples of functions that draw Appearance primitives. Those
appearing on a light gray background are available only in Appearance Version 1.0.1
through 1.0.3 and later. Those appearing on a dark gray background are available only in
Appearance Version 1.1 and later.

Function Description
DrawThemePrimaryGroup Draws a primary group box frame consistent with the current

appearance.
DrawThemeSecondaryGroup Draws a secondary group box frame consistent with the

current appearance. Allows you to nest a secondary group box
frame within the primary group box frame.

DrawThemeSeparator Draws a separator line consistent with the current appearance.
The orientation of the rectangle determines where the
separator line is drawn. If the rectangle is wider than it is tall,
the separator line is horizontal; otherwise it is vertical.

DrawThemeWindowHeader Draws a window header consistent with the current
appearance. This function draws a window header such as
that used by the Finder. The window header is drawn inside
the rectangle that is passed.

DrawThemeWindowListViewHeader Draws a window list view header, such as that used by the
Finder, consistent with the current appearance. The header is
drawn inside the rectangle that is passed in. A window list
view header is drawn without a line on its bottom edge, so that
bevel buttons can be placed against it without overlapping.

DrawThemePlacard Draws a placard consistent with the current appearance.
DrawThemeEditTextFrame Draws an edit text field frame consistent with the current

appearance. The rectangle passed in should be the same as
the one passed in the function DrawThemeFocusRect (see below) so

The Appearance Manager CLASSIC EDITION — Version 2.3 6-7

you get the correct focus look for your edit text field control.
You should not use these frames for items other than edit text
fields.

DrawThemeListBoxFrame Draws a list box frame consistent with the current appearance.
The rectangle passed in should be the same as the one passed
into the function DrawThemeFocusRect (see below) so that you get
the correct focus look for your list box.

DrawThemeFocusRect Draws or erases a focus ring around a specified rectangle. To
achieve the right look, you should first call DrawThemeEditTextFrame
or DrawThemeListBoxFrame and then call DrawThemeFocusRect, passing
the same rectangle in the inRect parameter. If you use
DrawThemeFocusRect to erase the focus ring around an edit text
field frame or list box frame, you will have to redraw the edit
text field frame or list box frame because there is typically an
overlap.

DrawThemeModelessDialogFrame Draws a modeless dialog box frame, like the one drawn by the
Dialog Manager, consistent with the current appearance. This
function may be used to make a custom modeless dialog box
theme-compliant. The purpose of the modeless dialog frame is
to assist in making modeless dialog windows visually
distinguishable from normal document windows.

DrawThemeGenericWell Draws an image well frame consistent with the current
appearance. Image well frames are for use with custom image
well controls. You can specify that the centre of the well be
filled with white.

DrawThemeFocusRegion Draws or erases a theme-compliant focus ring around a
specified region.

DrawThemeTabPane Draws a tab-pane consistent with the current appearance.
DrawThemeTab Draws a tab consistent with the current appearance.

Fig 3 and Fig 4 show examples, in Platinum appearance, of images drawn in both the
active and inactive modes using the Appearance primitives.

6-8 CLASSIC EDITION — Version 2.3 The Appearance Manager

FIG 3 - IMAGES DRAWN WITH OTHER APPEARANCE DRAWING PRIMITIVES

kThemeStateDisabled PASSED IN
inState PARAMETER

kThemeStateActive PASSED IN
inState PARAMETER

WINDOW HEADER

PRIMARY GROUP
BOX FRAME

SECONDARY GROUP
BOX FRAME

EDIT TEXT FIELD FRAME

EDIT TEXT FIELD FRAME AND
KEYBOARD FOCUS RECTANGLE

IMAGE
WELL

IMAGE WELL WITH INTERIOR
IN WHITE

LIST BOX FRAME

PLACARD

SEPARATOR LINE

SEPARATOR LINE

FIG 4 - MODELESS DIALOG FRAME DRAWN WITH APPEARANCE DRAWING PRIMITIVE

ONE-PIXEL
MODELESS

DIALOG FRAME

ONE-PIXEL
MODELESS
DIALOG
FRAME

Draw State Constants

The following constants are passed in the inState parameter of the functions that draw
Appearance primitives (except DrawThemeFocusRect and DrawThemeFocusRegion) to specify
whether the primitive should be drawn in the active or deactivated mode.2

Constant Value Description
kThemeStateDisabled 0 Draw the primitive in the inactive mode.
kThemeStateActive 1 Draw the primitive in the active mode.

2 DrawThemeFocusRect and DrawThemeFocusRegion either draw or erase the focus rectangle depending on whether true or false is
passed in the inHasFocus parameter.

The Appearance Manager CLASSIC EDITION — Version 2.3 6-9

Another draw state constant (kThemeStatePressed) is available to draw certain primitives in
the pressed mode; however, the primitives listed above can only be drawn in the active
and inactive modes.

Drawing in Colours and Patterns
Consistent With the Current
Appearance

The following functions are those used to draw using colours/patterns consistent with the
current appearance. (Patterns are explained at Chapter 11 — QuickDraw Preliminaries.)
The reference to colours and patterns reflects the fact that, depending on the current
appearance, either a colour or a pattern may be used for the drawing.

Function Description
SetThemeWindowBackground Sets the theme-compliant colour/pattern that the window

background will be repainted to when PaintOne is called. This
function sets the colour/pattern to which the Window Manager
will erase the window background.
See also Theme-Compliant Brush Type Constants, below.

SetThemeBackground Sets an element’s background colour/pattern to comply with
the current appearance. This function should be called each
time you wish to draw an element in a specified brush constant
using Appearance Manager draw functions.
See also Theme-Compliant Brush Type Constants, below.

SetThemePen Sets an element’s pen pattern or colour to comply with the
current appearance. This function should be called each time
you wish to draw an element in a specified brush constant
using Appearance Manager draw functions.
See also Theme-Compliant Brush Type Constants, below.

SetThemeTextColor Sets an element’s foreground colour for drawing text to
comply with the current appearance. This function is typically
used inside a DeviceLoop drawing procedure to set the foreground
colour for drawing text in order to coordinate with the current
appearance.
See also Theme-Compliant Text Colour Constants, below.

Theme-Compliant Brush Type Constants

The following constants, which are of type ThemeBrush, may be passed in the inBrush
parameter of calls to SetThemeWindowBackground, SetThemeBackground, and SetThemePen to specify
theme-compliant colours/patterns for user interface elements. For reasons explained
above, these constants can represent either a straight colour or a pattern.

Constant Description
kThemeBrushDialogBackgroundActive An active dialog box’s background colour/ pattern.
kThemeBrushDialogBackgroundInactive An inactive dialog box’s background colour or pattern.
kThemeBrushAlertBackgroundActive An active alert box’s background colour/pattern.
kThemeBrushAlertBackgroundInactive An inactive alert box’s background colour/pattern.
kThemeBrushModelessDialogBackgroundActive An active modeless dialog box’s background

colour/pattern.
kThemeBrushModelessDialogBackgroundInactive An inactive modeless dialog box’s background

colour/pattern.
kThemeBrushUtilityWindowBackgroundActive An active utility window’s background colour/pattern.
kThemeBrushUtilityWindowBackgroundInactive An inactive utility window’s background colour/pattern.
kThemeBrushListViewSortColumnBackground The background colour/pattern of the column upon which

a list view is sorted.
kThemeBrushListViewBackground The background colour/pattern of a list view column that

is not being sorted upon.

6-10 CLASSIC EDITION — Version 2.3 The Appearance Manager

kThemeBrushListViewSeparator A list view separator’s colour/pattern.
kThemeBrushDocumentWindowBackground A document window’s background colour/pattern.
kThemeBrushFinderWindowBackground A Finder window’s background colour/pattern. Generally,

you should not use this constant unless you are trying to
create a window that matches the Finder window.

Theme-Compliant Text Colour Constants

Constants of type ThemeTextColor may be passed in the inColor parameter of the function
SetThemeTextColor to specify theme-compliant text colours for user interface elements in their
active, inactive, and highlighted states. Some of these constants are as follows:

Constant Description
kThemeTextColorWindowHeaderActive Text colour for active window header.
kThemeTextColorWindowHeaderInactive Text colour for inactive window header.
kThemeTextColorPlacardActive Text colour for active placard.
kThemeTextColorPlacardInactive Text colour for inactive placard.
kThemeTextColorPlacardPressed Text colour for highlighted placard.
kThemeListViewTextColor Text colour for list view.

Saving and Setting the Colour Graphics Port Drawing State
Chapter 12 — Drawing With QuickDraw addresses certain measures which need to be
taken consequential to the fact that both colours and patterns can be used by the
Appearance functions SetThemeWindowBackground, SetThemeBackground, and SetThemePen. These
measures have to do with saving, restoring, and normalising the drawing state of the
graphics port.

Version 1.1 of the Appearance Manager introduced new functions which simplify this
process. These functions, the uses of which are addressed at Chapter 12, are as follows:

Constant Description
GetThemeDrawingState Obtain the drawing state of the current colour graphics port.
SetThemeDrawingState Set the drawing state of the current graphics port.
NormalizeThemeDrawingState Set the current colour graphics port to the default drawing state.
DisposeThemeDrawingState Release the memory associated with a reference to a graphics

port's drawing state.

Theme-Compliant Cursors
Version 1.1 of the Appearance Manager introduced cursors that can change appearance
with an appearance change. The associated functions, the uses of which are addressed at
Chapter 13 — Offscreen Graphics Worlds, Pictures, Cursors, and Icons, are as follows:

Constant Description
SetThemeCursor Sets the cursor to a version of the cursor consistent with the

current appearance.
SetAnimatedThemeCursor Animates a version of the cursor that is consistent with the

current appearance.

Appearance Manager Apple Events
As previously stated, your application may need to respond to the user changing the
system and/or views fonts using the Fonts tab in the Appearance control panel. In addition,
because an appearance change might result in a change to menu bar height, window
structure dimensions, and colours and patterns currently in use, your application may also

The Appearance Manager CLASSIC EDITION — Version 2.3 6-11

need to respond to the user changing the current appearance using the Appearance tab in
the Appearance control panel..

Provided you have called RegisterAppearanceClient, your application is advised of font and
appearance changes via Appearance Manager Apple events. Appearance Manager
Apple events are addressed at Chapter 10 — Apple Events.

Theme-Compliant Applications
Making a New Application Theme-Compliant

The main consideration involved in making your application theme-compliant is to allow
the system to do as much of your interface work as possible. The following lists the
actions required to make a new application theme-compliant:

• Call RegisterAppearanceClient early in your application code, prior to drawing any on-
screen elements or invoking any definition functions. For many applications, this
will be the only action required to render the application fully theme-compliant.

• Use the system-supplied theme-compliant menu and window definition functions.

• As will be explained at Chapter 7 — Introduction to Controls and at Chapter 14 —
More on Controls, use the system-supplied theme-compliant control definition
functions.

• As will be explained at Chapter 8 — Dialogs and Alerts:

• Use the new 'dlgx' and 'alrx' resources to supplement your 'DLOG' and 'ALRT'
resources.

• Enable embedding and theme-compliant backgrounds.

In addition, and because the Appearance Manager introduces a movable modal alert
and simplifies the handling of movable modal alert and dialog boxes, make all your
alerts and dialogs movable. Also use the StandardAlert routine, introduced with the
Appearance Manager, to create your alerts whenever possible.

• Where you absolutely cannot use the system-supplied definition functions, use
Appearance Manager functions in your custom definition functions to ensure that
your custom human interface elements are theme-compliant.

• Use Appearance Manager functions and constants to get any colours/patterns you
need to draw consistently with the current appearance, and to draw theme-
compliant visual entities such as window headers when you don't want to use a
control of that type.

• Because the measurements of standard interface objects may vary from appearance
to appearance, make no assumptions about the dimensions of menus, windows, or
controls. (For example, if you assume an unchanging menu bar height in order to
position your windows, you could end up with the menu bar overlapping your
windows after an appearance change.) Use Appearance Manager functions such as
GetThemeMenuBarHeight to obtain the measurements used in the current appearance.

• Use the Appearance Manager functions SetThemeCursor and SetAnimatedThemeCursor to
ensure that your application's cursors are theme-compliant.

6-12 CLASSIC EDITION — Version 2.3 The Appearance Manager

Making Old Applications Theme-Compliant
Ultimately, the task of making an old non-theme-compliant application fully theme-
compliant will involve all of the steps listed at Making a New Application Theme-
Compliant, above.

The task may be phased, however, by taking one simple initial step. That step is to simply
insert a call to RegisterAppearanceClient early in your code. This will cause the mappers to
invoke the new definition functions.

When converting an application under Versions 1.0 through 1.0.3 of the Appearance
Manager, be sure to select system-wide Appearance off in the Appearance control panel.
This puts your system back into the old System 7 look for applications that have not
adopted Appearance, which makes it easy for you to tell where you have implemented the
new look and where you still have work to do. (If you are running with system-wide
Appearance selected on, you will not be able to distinguish the changes you’ve made from
those performed automatically by the system.)

Memory Requirements
Some appearances may use simple rectangular shapes, and some may use complex, non-
rectangular shapes, for their interface elements. Accordingly, the variable length Region
structures in which the descriptions of these shapes are stored will occupy more or less
memory depending on the current appearance. If your application's memory usage is fine-
tuned on the basis of an appearance which uses simple rectangular shapes for its
interface elements, you will need to increase the heap size to account for the possibility
that the user will choose an appearance whose interface element shapes are more
complex.

Main Constants, Data Types, and Functions
In the following:

• Those items appearing on a light gray background are available only with
Appearance Version 1.0.1 through 1.0.3 and later.

• Those items appearing on a dark gray background are available only with
Appearance Version 1.1 and later.

Constants
Checking For Appearance, Appearance Functions, and
Version
gestaltAppearanceAttr = FOUR_CHAR_CODE('appr')
gestaltAppearanceExists = 0
gestaltAppearanceCompatMode = 1
gestaltAppearanceVersion = FOUR_CHAR_CODE('apvr')

Theme-Compliant Brush Type Constants
kThemeBrushDialogBackgroundActive = 1
kThemeBrushDialogBackgroundInactive = 2
kThemeBrushAlertBackgroundActive = 3
kThemeBrushAlertBackgroundInactive = 4
kThemeBrushModelessDialogBackgroundActive = 5
kThemeBrushModelessDialogBackgroundInactive = 6
kThemeBrushUtilityWindowBackgroundActive = 7
kThemeBrushUtilityWindowBackgroundInactive = 8
kThemeBrushListViewSortColumnBackground = 9

The Appearance Manager CLASSIC EDITION — Version 2.3 6-13

kThemeBrushListViewBackground = 10
kThemeBrushListViewSeparator = 12
kThemeBrushDocumentWindowBackground = 15
kThemeBrushFinderWindowBackground = 16

Theme-Compliant Text Colour Constants
kThemeTextColorWindowHeaderActive = 7
kThemeTextColorWindowHeaderInactive = 8
kThemeTextColorPlacardActive = 9
kThemeTextColorPlacardInactive = 10
kThemeTextColorPlacardPressed = 11
kThemeTextColorListView = 22

Theme-Compliant Draw State Constants (For
Primitives)
kThemeStateDisabled = 0
kThemeStateActive = 1
kThemeStatePressed = 2

Theme Cursor Constants
kThemeArrowCursor = 0
kThemeCopyArrowCursor = 1
kThemeAliasArrowCursor = 2
kThemeContextualMenuArrowCursor = 3
kThemeIBeamCursor = 4
kThemeCrossCursor = 5
kThemePlusCursor = 6
kThemeWatchCursor = 7 // Can animate
kThemeClosedHandCursor = 8
kThemeOpenHandCursor = 9
kThemePointingHandCursor = 10
kThemeCountingUpHandCursor = 11 // Can animate
kThemeCountingDownHandCursor = 12 // Can animate
kThemeCountingUpAndDownHandCursor = 13 // Can animate
kThemeSpinningCursor = 14 // Can animate
kThemeResizeLeftCursor = 15
kThemeResizeRightCursor = 16
kThemeResizeLeftRightCursor = 17

Data Types
typedef UInt32 ThemeDrawState;
typedef SInt16 ThemeBrush;
typedef SInt16 ThemeTextColor;

Functions
Initialising the Appearance Manager
OSStatus RegisterAppearanceClient (void);

Drawing Appearance Primitives
OSStatus DrawThemeWindowHeader(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeWindowListViewHeader(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemePlacard(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeEditTextFrame(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeListBoxFrame(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeFocusRect(const Rect *inRect,Boolean inHasFocus);
OSStatus DrawThemePrimaryGroup(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeSecondaryGroup(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeSeparator(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeModelessDialogFrame(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeGenericWell(const Rect *inRect,ThemeDrawState inState,

Boolean inFillCenter);
OSStatus DrawThemeFocusRegion(RgnHandle inRegion,Boolean inHasFocus);
OSStatus DrawThemeTab(const Rect *inRect,ThemeTabStyle inStyle,ThemeTabDirection inDirection,

ThemeTabTitleDrawUPP labelProc,UInt32 userData);
OSStatus DrawThemeTabPane(const Rect *inRect,ThemeDrawState inState);

6-14 CLASSIC EDITION — Version 2.3 The Appearance Manager

Drawing in Colours/Patterns Consistent With the Current
Appearance
OSStatus SetThemeWindowBackground(WindowPtr inWindow,ThemeBrush inBrush,Boolean inUpdate);
OSStatus SetThemeBackground(ThemeBrush inBrush,SInt16 inDepth,Boolean inIsColorDevice);
OSStatus SetThemePen(ThemeBrush inBrush,SInt16 inDepth,Boolean inIsColorDevice);
OSStatus SetThemeTextColor(ThemeTextColor inColor,SInt16 inDepth,Boolean inIsColorDevice);

Saving and Setting the Colour Graphics Port Drawing State
OSStatus NormalizeThemeDrawingState(void);
OSStatus GetThemeDrawingState(ThemeDrawingState *outState);
OSStatus SetThemeDrawingState(ThemeDrawingState inState,Boolean inDisposeNow);
OSStatus DisposeThemeDrawingState(ThemeDrawingState inState);

Setting Appearance Cursors
OSStatus SetThemeCursor(ThemeCursor inCursor);
OSStatus SetAnimatedThemeCursor(ThemeCursorinCursor,UInt32 inAnimationStep);

Demonstration Program
// ◊◊
// Appearance.c
// ◊◊
//
// This program opens two kWindowDocumentProc windows containing:
//
// • In the first window, a theme-compliant list view.
//
// • In the second window, various images drawn with Appearance primitives and window
// header text drawn in the correct appearance colour.
//
// Two of the images in the second window are edit text field frames and one is a list
// box frame. At any one time, one of these will have a keyboard focus frame drawn
// around it. Clicking in one of the other frames will move the keyboard focus frame
// to that frame.
//
// The program is terminated by the choosing the Quit item in the File menu.
//
// The program utilises the following resources:
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit, and Demonstration
// menus, and the pop-up menus (preload, non-purgeable).
//
// • Two 'WIND' resources (purgeable) (initially not visible).
//
// • 'hrct' and 'hwin' resources (both purgeable), which provide help balloons
// describing the contents of the windows.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch,
// and is32BitCompatible flags set.
//
// ◊◊

//
………
…………………………………… includes

#include <Appearance.h>
#include <Devices.h>
#include <Gestalt.h>
#include <LowMem.h>
#include <Sound.h>
#include <ToolUtils.h>

//
………
……………………………………… defines

#define rMenubar 128
#define rNewWindow1 128
#define rNewWindow2 129
#define mApple 128

The Appearance Manager CLASSIC EDITION — Version 2.3 6-15

#define iAbout 1
#define mFile 129
#define iQuit 11

#define MAXLONG 0x7FFFFFFF
#define topLeft(r) (((Point *) &(r))[0])

//
………
……………… global variables

Boolean gAppearancePresent = false;
Boolean gInCompatibilityMode = false;
Boolean gAppearance101present = false;
Boolean gAppearance110present = false;
Boolean gDone;
Boolean gInBackground;
WindowPtr gWindowPtr1, gWindowPtr2;
SInt16 gPixelDepth;
Boolean gIsColourDevice = false;
Rect gCurrentRect;

//
………
……… function prototypes

void main (void);
void doInitManagers (void);
void doEvents (EventRecord *);
void doUpdate (EventRecord *);
void doActivate (EventRecord *);
void doActivateWindow (WindowPtr,Boolean);
void doOSEvent (EventRecord *);
void doDrawAppearancePrimitives (ThemeDrawState);
void doDrawAppearanceCompliantText (WindowPtr,ThemeDrawState);
void doDrawListView (WindowPtr);
void doChangeKeyBoardFocus (Point);
void doGetDepthAndDevice (void);

// ◊◊◊ main

void main(void)
{

OSErr osError;
SInt32 response;
Handle menubarHdl;
MenuHandle menuHdl;
EventRecord EventStructure;

// ……………………… check for Appearance and functions, compatibility mode, Appearance version

osError = Gestalt(gestaltAppearanceAttr,&response);

if(osError == noErr && (BitTst(&response,31 - gestaltAppearanceExists)))
{

gAppearancePresent = true;

if(BitTst(&response,31 - gestaltAppearanceCompatMode))
gInCompatibilityMode = true;

Gestalt(gestaltAppearanceVersion,&response);

if(response == 0x00000101)
gAppearance101present = true;

else if(response >= 0x00000110)
gAppearance110present = true;

}
else
{

SysBeep(10);
ExitToShell();

}

//
………
… initialise managers

doInitManagers();

6-16 CLASSIC EDITION — Version 2.3 The Appearance Manager

// …… set
up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

ExitToShell();
SetMenuBar(menubarHdl);
DrawMenuBar();

menuHdl = GetMenuHandle(mApple);
if(menuHdl == NULL)

ExitToShell();
else

AppendResMenu(menuHdl,'DRVR');

// ………………………………………………………………………… open windows, set font size, show windows, move windows

if(!(gWindowPtr1 = GetNewCWindow(rNewWindow1,NULL,(WindowPtr)-1)))
ExitToShell();

SetPort(gWindowPtr1);
TextSize(10);
ShowWindow(gWindowPtr1);

if(!(gWindowPtr2 = GetNewCWindow(rNewWindow2,NULL,(WindowPtr)-1)))
ExitToShell();

SetPort(gWindowPtr2);
TextSize(10);
ShowWindow(gWindowPtr2);

// …………………………………………………………………… set theme-compliant colour/pattern for second window

SetThemeWindowBackground(gWindowPtr2,kThemeBrushDialogBackgroundActive,true);

// ……………………… get pixel depth and whether colour device for certain Appearance functions

doGetDepthAndDevice();

// …………… set top edit text field rectangle as target for initial keyboard focus frame

SetRect(&gCurrentRect,20,141,239,162);

//
………
…………… enter eventLoop

gDone = false;

while(!gDone)
{

if(WaitNextEvent(everyEvent,&EventStructure,MAXLONG,NULL))
doEvents(&EventStructure);

}
}

// ◊◊◊ doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

RegisterAppearanceClient();
}

// ◊◊◊ doEvents

void doEvents(EventRecord *eventStrucPtr)

The Appearance Manager CLASSIC EDITION — Version 2.3 6-17

{
SInt8 charCode;
SInt32 menuChoice;
SInt16 menuID, menuItem;
SInt16 partCode;
WindowPtr windowPtr;
Str255 itemName;
SInt16 daDriverRefNum;

switch(eventStrucPtr->what)
{

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)
{

menuChoice = MenuEvent(eventStrucPtr);
menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);
if(menuID == mFile && menuItem == iQuit)

gDone = true;
}
break;

case mouseDown:
if(partCode = FindWindow(eventStrucPtr->where,&windowPtr))
{

switch(partCode)
{

case inMenuBar:
menuChoice = MenuSelect(eventStrucPtr->where);
menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
if(menuItem == iAbout)

SysBeep(10);
else
{

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);

}
break;

case mFile:
if(menuItem == iQuit)

gDone = true;
break;

}
HiliteMenu(0);
break;

case inContent:
if(windowPtr != FrontWindow())

SelectWindow(windowPtr);
else
{

if(FrontWindow() == gWindowPtr2)
{

SetPort(gWindowPtr2);
doChangeKeyBoardFocus(eventStrucPtr->where);

}
}
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
break;

}
}
break;

case updateEvt:
doUpdate(eventStrucPtr);

6-18 CLASSIC EDITION — Version 2.3 The Appearance Manager

break;

case activateEvt:
doActivate(eventStrucPtr);
break;

case osEvt:
doOSEvent(eventStrucPtr);
HiliteMenu(0);
break;

}
}

// ◊◊◊ doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;

windowPtr = (WindowPtr) eventStrucPtr->message;

BeginUpdate(windowPtr);

SetPort(windowPtr);

if(windowPtr == gWindowPtr2)
{

if(gWindowPtr2 == FrontWindow() && !gInBackground)
{

doDrawAppearancePrimitives(kThemeStateActive);
doDrawAppearanceCompliantText(windowPtr,kThemeStateActive);
DrawThemeFocusRect(&gCurrentRect,true);

}
else
{

doDrawAppearancePrimitives(kThemeStateDisabled);
doDrawAppearanceCompliantText(windowPtr,kThemeStateDisabled);

}
}

if(windowPtr == gWindowPtr1)
doDrawListView(windowPtr);

EndUpdate(windowPtr);
}

// ◊◊◊ doActivate

void doActivate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
Boolean becomingActive;

windowPtr = (WindowPtr) eventStrucPtr->message;
becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);
doActivateWindow(windowPtr,becomingActive);

}

// ◊◊◊ doActivateWindow

void doActivateWindow(WindowPtr windowPtr,Boolean becomingActive)
{

if(windowPtr == gWindowPtr2)
{

SetPort(gWindowPtr2);

doDrawAppearancePrimitives(becomingActive);
doDrawAppearanceCompliantText(windowPtr,becomingActive);
DrawThemeFocusRect(&gCurrentRect,becomingActive);

}
}

// ◊◊ doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{

switch((eventStrucPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:

The Appearance Manager CLASSIC EDITION — Version 2.3 6-19

gInBackground = (eventStrucPtr->message & resumeFlag) == 0;
doActivateWindow(FrontWindow(),!gInBackground);
break;

}
}

// ◊◊ doDrawAppearancePrimitives

void doDrawAppearancePrimitives(ThemeDrawState inState)
{

Rect theRect;

SetRect(&theRect,-1,-1,261,26);
DrawThemeWindowHeader(&theRect,inState);

SetRect(&theRect,20,46,119,115);
DrawThemePrimaryGroup(&theRect,inState);

SetRect(&theRect,140,46,239,115);
DrawThemeSecondaryGroup(&theRect,inState);

SetRect(&theRect,20,127,240,128);
DrawThemeSeparator(&theRect,inState);

SetRect(&theRect,20,141,239,162);
DrawThemeEditTextFrame(&theRect,inState);

SetRect(&theRect,20,169,239,190);
DrawThemeEditTextFrame(&theRect,inState);

if(gAppearance101present || gAppearance110present)
{

SetRect(&theRect,20,203,62,245);
DrawThemeGenericWell(&theRect,inState,false);

}

SetRect(&theRect,20,258,62,300);
DrawThemeGenericWell(&theRect,inState,true);

SetRect(&theRect,75,202,76,302);
DrawThemeSeparator(&theRect,inState);

SetRect(&theRect,90,203,239,300);
DrawThemeListBoxFrame(&theRect,inState);

SetRect(&theRect,-1,321,261,337);
DrawThemePlacard(&theRect,inState);

}

// ◊◊ doDrawAppearanceCompliantText

void doDrawAppearanceCompliantText(WindowPtr windowPtr,ThemeDrawState inState)
{

SInt16 windowWidth, stringWidth;
Str255 message = "\pBalloon help is available";

if(inState == kThemeStateActive)
SetThemeTextColor(kThemeTextColorWindowHeaderActive,gPixelDepth,gIsColourDevice);

else
SetThemeTextColor(kThemeTextColorWindowHeaderInactive,gPixelDepth,gIsColourDevice);

windowWidth = (windowPtr)->portRect.right - (windowPtr)->portRect.left;
stringWidth = StringWidth(message);
MoveTo((windowWidth / 2) - (stringWidth / 2), 17);
DrawString("\pBalloon help is available");

}

// ◊◊◊ doDrawListView

void doDrawListView(WindowPtr windowPtr)
{

Rect theRect;
SInt16 a;

theRect = windowPtr->portRect;

SetThemeBackground(kThemeBrushListViewBackground,gPixelDepth,gIsColourDevice);
EraseRect(&theRect);

6-20 CLASSIC EDITION — Version 2.3 The Appearance Manager

theRect.left += 130;

SetThemeBackground(kThemeBrushListViewSortColumnBackground,gPixelDepth,gIsColourDevice);
EraseRect(&theRect);

SetThemePen(kThemeBrushListViewSeparator,gPixelDepth,gIsColourDevice);

theRect = windowPtr->portRect;
for(a=theRect.top;a<=theRect.bottom;a+=18)
{

MoveTo(theRect.left,a);
LineTo(theRect.right - 1,a);

}

SetThemeTextColor(kThemeTextColorListView,gPixelDepth,gIsColourDevice);

for(a=theRect.top;a<=theRect.bottom +18;a+=18)
{

MoveTo(theRect.left,a - 5);
DrawString("\p List View Background List View Sort Column");

}
}

// ◊◊ doChangeKeyBoardFocus

void doChangeKeyBoardFocus(Point mouseXY)
{

Rect edit1Rect, edit2Rect, listRec;

DrawThemeFocusRect(&gCurrentRect,false);
DrawThemeEditTextFrame(&gCurrentRect,kThemeStateActive);

SetRect(&edit1Rect,20,141,239,162);
SetRect(&edit2Rect,20,169,239,190);
SetRect(&listRec,90,203,239,300);

SetPort(gWindowPtr2);
GlobalToLocal(&mouseXY);

if(PtInRect(mouseXY,&edit1Rect))
SetRect(&gCurrentRect,20,141,239,162);

else if(PtInRect(mouseXY,&edit2Rect))
SetRect(&gCurrentRect,20,169,239,190);

else if(PtInRect(mouseXY,&listRec))
SetRect(&gCurrentRect,90,203,239,300);

DrawThemeFocusRect(&gCurrentRect,true);
}

// ◊◊ doGetDepthAndDevice

void doGetDepthAndDevice(void)
{

GDHandle deviceHdl;

deviceHdl = LMGetMainDevice();
gPixelDepth = (*(*deviceHdl)->gdPMap)->pixelSize;
if(BitTst(&(*deviceHdl)->gdFlags,gdDevType))

gIsColourDevice = true;
}

// ◊◊

Demonstration Program Comments
When this program is run, the user should:

• First drag the top window to a position where the content of the bottom window is visible.

• Choose Show Balloons from the Help menu and move the cursor over the frames in the window titled "Drawing With
Primitives" window (when active), and the left and right sides of the window titled "Theme-Compliant List View"
(when active), noting the descriptions in the balloons.

• With the "Drawing With Primitives" window frontmost, click in the edit text field frame not currently outlined with the
keyboard focus frame, or in the list box frame, so as to move the keyboard focus frame to that rectangle.

The Appearance Manager CLASSIC EDITION — Version 2.3 6-21

• Click on the desktop to send the application to the background and note the changed appearance of the frames and
text in the "Drawing With Primitives" window. Note also that there is no change to the appearance of the content
region of the "Theme-Compliant List View" window. Click on the "Drawing With Primitives" window to bring the
application to the foreground with that window active, noting the changed appearance of the frames and text.

In the following, reference is made to graphics devices and pixel depth. Graphics devices and pixel depth are
explained at Chapter 11 — QuickDraw Preliminaries.

#define
The first block establishes constants representing menu IDs, resources, and menu items, and window and menu bar
resources.

MAXLONG is defined as the maximum possible long value, and is used in the WaitNextEvent function. The last line defines a
common macro which converts the top and left fields of a Rect structure to a Point.

Global Variables
gAppearancePresent will be assigned true if at least Version 1.0 of the Appearance Manager is present.
gInCompatibilityMode will be assigned true if the machine on which the demonstration is running is in compatibility mode
(applicable only to Versions 1.0 through 1.0.3 only). gAppearance101present will be assigned true if Versions 1.0.1, 1.0.2, or
1.0.3 are present. gAppearance110present will be assigned true if Version 1.1 is present.

gDone, when set to true, causes the main event loop to be exited and the program to terminate. gInBackground relates to
foreground/background switching. gWindowPtr1 and gWindowPtr2 will be assigned window pointers.

gPixelDepth will be assigned the pixel depth of the main device. gIsColourDevice will be assigned true if the graphics device
is a colour device and false if it is a monochrome device. The values in these two variables are required by certain
Appearance functions. gCurrentRect will be assigned the rectangle which is to be the current target for the keyboard focus
frame.

main
Gestalt is called to determine whether some version of the Appearance Manager is present. If so, bit 1 in response is tested
to determine whether the machine on which the program is running is currently in compatibility mode (relevant only where
Appearance Manager Versions 1.0 through 1.0.3 are present), and Gestalt is called again to determine whether Version 1.0.1
through 1.0.3, or Version 1.1 or later, is present. If the Appearance Manager is not present, the system alert sound is played
and the program simply terminates.

Note that the assignment to the global variable gInCompatibilityMode is for demonstration purposes only; the program does
not use this variables for any purpose.

After the menus are set up, each window is created. After each window is created, its graphics port is set as the current port
and the text size for that port is set to 10pt, the window is shown.

SetThemeWindowBackground sets a theme-compliant colour/pattern for the "Drawing With Primitives" window's content
area. This means that the content area will be automatically repainted with that colour/pattern when required with no
further assistance from the application. When true is passed in the third parameter, the content region of the window is
invalidated and the content region is repainted immediately.

The call to the application-defined function doGetDepthAndDevice determines the current pixel depth of the graphics port,
and whether the current graphics device is a colour device, and assigns the results to the global variables gPixelDepth and
gIsColourDevice.

The call to SetRect establishes the initial target for the keyboard focus frame. This is the rectangle used by the first edit text
field frame.

doInitManagers
DoInitManagers is called from main immediately after it has been determined that the Appearance Manager is present. In
this demonstration program, and in all subsequent demonstration programs, a call to RegisterAppearanceClient has been
added to this function.

If this program is run under Appearance Manager Versions 1.0 through 1.0.3, one effect of the call to
RegisterAppearanceClient is that the new theme-compliant menu bar definition function (resource ID 63) will be used
regardless of whether system-wide Appearance is selected on or off in the Appearance control panel.

doEvents
At the mouseDown case, the inContent case within the partCode switch is of relevance to the demonstration.

If the mouse-down was within the content region of a window, and if that window is not the front window, SelectWindow is
called to bring that window to the front and activate it.

6-22 CLASSIC EDITION — Version 2.3 The Appearance Manager

However, if the window is the front window, and if that window is the "Drawing With Primitives" window, that window's
graphics port is set as the current graphics port for drawing, and the application-defined function doChangeKeyBoardFocus is
called. That function determines whether the mouse-down was within one of the edit text field frames or the list box frame,
and moves the keyboard focus if necessary.

doUpdate
Within the doUpdate function, if the window to which the update event relates is the "Drawing With Primitives" window, and
if that window is currently the front window:

• Application-defined functions are called to draw the primitives and the window header text in the active mode.

• DrawThemeFocusRect is called to draw the keyboard focus frame using the rectangle currently assigned to the global
variable gCurrentRect.

If, however, the "Drawing With Primitives" window is not the front window, the same calls are made but with the primitives
and text being drawn in the inactive mode. Note that no call is required to erase the keyboard focus frame because this will
already have been erased when the window was deactivated (see below).

If the window to which update event relates is the "Theme-Compliant List View" window, an application-defined function for
drawing the window's content area is called. Note that, for this window, there is no differentiation between active and
inactive modes. This is because, for list views, the same brush type constants are used regardless of whether the window is
active or inactive.

doActivateWindow
When an activate event is received for the "Drawing With Primitives" window, the application-defined functions for drawing
the primitives and the window header text, together with the Appearance function which draws and erases the keyboard
focus rectangle, are called. To eliminate the necessity for if/else coding, the becomingActive value is used to ensure that,
firstly, the primitives and text are drawn in the appropriate mode and, secondly, that the keyboard focus frame is either
drawn or erased, depending on whether the window is coming to the front or being sent to the back.

Once again, the "Theme-Compliant List View" window is treated differently because the list view brush constants to be used
are the same regardless of whether the window is activated and deactivated.

doDrawAppearancePrimitives
doDrawAppearancePrimitives uses Appearance Manager functions for drawing Appearance primitives, and is called to draw
the various frames in the "Drawing With Primitives" window. The mode in which the primitives are drawn (active or inactive)
is determined by the Boolean value passed in the inState parameter.

Note that DrawThemeGenericWell, which was introduced with Version 1.0.1 of the Appearance Manager, is called only if
Versions 1.0.1 through 1.0.3, or Version 1.1, are present.

doDrawAppearanceCompliantText
doDrawAppearanceCompliantText is called to draw some advisory text in the window header of the "Drawing With
Primitives" window. The QuickDraw drawing function DrawString does the drawing; however, before the drawing begins, the
Appearance function SetThemeTextColor is used to set the foreground colour for drawing text, in either the active or inactive
modes, so as to comply with the current appearance.

At the first two lines, if "Drawing With Primitives" is the active window, SetThemeTextColor is called with the
kThemeTextColorWindowHeaderActive text colour constant passed in the first parameter. At the next two lines, if the
window is inactive, SetThemeTextColor is called with kThemeTextColorWindowHeaderInactive passed in the first parameter.
Note that SetThemeTextColor requires the pixel depth of the graphics port, and whether the graphics device is a colour
device or a monochrome device, passed in the second and third parameters.

The next three lines simply adjust QuickDraw's pen location so that the text is drawn centered laterally in the window header
frame. The call to DrawString draws the specified text.

doDrawListView
doDrawListView draws a theme-compliant list view background in the specified window.

The first line copies the window's port rectangle to a local variable of type Rect.

The call to SetThemeBackground sets the background colour/pattern to the colour/pattern represented by the theme-
compliant brush type constant kThemeBrushListViewBackground. The QuickDraw function EraseRect fills the whole of the
port rectangle with this colour/pattern.

The next line adjusts the Rect variable's left field so that the rectangle now represents the right half of the port rectangle.
The same drawing process is then repeated, but this time with kThemeBrushListViewSortColumnBackground passed in the
first parameter of the SetThemeBackground call.

The Appearance Manager CLASSIC EDITION — Version 2.3 6-23

SetThemePen is then called with the colour/pattern represented by the constant kThemeBrushListViewSeparator passed in
the first parameter. The rectangle for drawing is then expanded to equate with the port rectangle before the following five
lines draw one-pixel-wide horizontal lines, at 18-pixel intervals, from the top to the bottom of the port rectangle.

Finally, some text is drawn in the list view in the theme-compliant colour for list views. SetThemeTextColour is called with
the kThemeTextColorListView passed in, following which a for loop draws some text, at 18-pixel intervals, from the top to the
bottom of the port rectangle.

doChangeKeyBoardFocus
doChangeKeyBoardFocus is called when a mouse-down occurs in the content region of the "Drawing With Primitives"
window.

At the first two lines, Appearance functions are used to, firstly, erase the keyboard focus frame from the rectangle around
which it is currently drawn and, secondly, redraw an edit text field frame around that rectangle.

The next three lines make three local variables of type Rect equal to the rectangles for the two edit text field frames and the
list box frame.

The call to GlobalToLocal converts the coordinates of the mouse-down to the local coordinates required by the following calls
to PtInRect. PtInRect returns true if the mouse-down is within the rectangle passed in the second parameter. If one of the
calls to PtInRect returns true, that rectangle is made the current rectangle for keyboard focus by assigning it to the global
variable gCurrentRect.

Whatever rectangle is assigned to gCurrentRect, the call to DrawThemeFocusRect draws a theme-compliant keyboard focus
frame around that rectangle.

doGetDepthAndDevice
doGetDepthAndDevice determines the pixel depth of the graphics port, and whether the graphics device is a colour device or
a monochrome device, and assigns the results to two global variables. This information is required by certain Appearance
functions.

6-24 CLASSIC EDITION — Version 2.3 The Appearance Manager

	THE APPEARANCE MANAGER
	Includes Demonstration Program Appearance
	Introduction
	Themes — New Definition
	Theme-Compliance
	The Appearance Manager
	Appearance Manager Versions
	New Definition Functions
	Mapping of Pre-Appearance Manager Definition Functions
	The RegisterAppearanceClient Function
	Disadvantages of Calling a Definition Function Via a Mapper
	Mapping of Custom Definition Functions
	Checking For the Presence of the Appearance Manager
	// is set, system-wide Appearance is off. The result of this check will be
	Gestalt(gestaltAppearanceVersion,&response);
	Colours, Patterns, and the Current Appearance
	Drawing Appearance Primitives
	Draw State Constants
	Drawing in Colours and Patterns Consistent With the Current Appearance
	Theme-Compliant Brush Type Constants
	Theme-Compliant Text Colour Constants
	Saving and Setting the Colour Graphics Port Drawing State
	Theme-Compliant Cursors
	Appearance Manager Apple Events
	Theme-Compliant Applications
	Making a New Application Theme-Compliant
	Making Old Applications Theme-Compliant
	Memory Requirements
	Main Constants, Data Types, and Functions
	Constants
	Checking For Appearance, Appearance Functions, and Version
	Theme-Compliant Brush Type Constants
	Theme-Compliant Text Colour Constants
	Theme-Compliant Draw State Constants (For Primitives)
	Theme Cursor Constants
	Data Types
	Functions
	Initialising the Appearance Manager
	Drawing Appearance Primitives
	Drawing in Colours/Patterns Consistent With the Current Appearance
	Saving and Setting the Colour Graphics Port Drawing State
	Setting Appearance Cursors
	Demonstration Program
	// box frame. At any one time, one of these will have a keyboard focus frame drawn
	Gestalt(gestaltAppearanceVersion,&response);
	SetThemeWindowBackground(gWindowPtr2,kThemeBrushDialogBackgroundActive,true);
	SetRect(&gCurrentRect,20,141,239,162);
	BeginUpdate(windowPtr);
	SetPort(windowPtr);
	SetPort(gWindowPtr2);
	SetThemePen(kThemeBrushListViewSeparator,gPixelDepth,gIsColourDevice);
	SetThemeTextColor(kThemeTextColorListView,gPixelDepth,gIsColourDevice);
	Demonstration Program Comments
	#define
	Global Variables
	main
	doInitManagers
	doEvents
	doUpdate
	doActivateWindow
	doDrawAppearancePrimitives
	doDrawAppearanceCompliantText
	doDrawListView
	The first line copies the window's port rectangle to a local variable of type Rect.
	doChangeKeyBoardFocus
	doGetDepthAndDevice

