
4B
MORE ON WINDOWS — MAC OS 8.5

WINDOW MANAGER
Includes Demonstration Program Windows2

Introduction
The Mac OS 8.5 Window Manager introduced the following:

• Support for:

• Floating windows.

Note
Although system support for floating windows was introduced with the Mac
OS 8.5 Window Manager, Apple subsequently advised that there were
significant bugs in the window activation area and that the Application
Programming Interfaces (APIs) relating to floating windows should not be
used until further notice.

These bugs were eliminated in Mac OS 8.6. The upshot of all this is that, if
your application uses floating windows, and if it is required to run under
Mac OS 8.5 or earlier, your application will itself have to include the code
necessary to support floating windows. (See Chapter 21 — Floating
Windows — Mac OS 8.5 and Earlier.)

• Window proxy icons.

• Window path pop-up menus.

• Transitional window animations and sounds.

• New functions for:

• Creating and storing windows.

• Accessing window information.

• Zooming, moving, re-sizing, and positioning windows.

• Associating data with a window.

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-1

• Adding and removing rectangles and regions to and from a window's update
region.

• Setting the colour or pattern of a window's content region.

Floating Windows
Floating windows are windows that stay in front of all of an application's document
windows. They are typically used to display tool, pattern, colour, and other choices to be
made available to the user. Examples of floating windows are shown at Fig 1.

FIG 1 - FLOATING WINDOWS - EXAMPLES

Front-To-Back Ordering of On-Screen Objects
The fact that floating windows always remain in front of an application's document
windows leads naturally to a consideration of the correct front-to-back ordering of on-
screen interface objects. Within an application, the correct front-to-back ordering is as
follows:

• Help balloons.

• Menus.

• System windows.1

• Modal and movable modal dialog and alert boxes.

• Floating windows.

• Document windows and modeless dialog boxes.

In terms of front-to-back ordering, floating windows, unlike document windows, are all
basically equal. Unless they actually overlap each other, there is no visual cue of any
front-to-back ordering as there is with normal windows (see Fig 1). Because of this
equality, floating windows almost always appear in the active state. The exception is

1 System windows are windows which can appear in an application’s window list but which are not directly created by the
application. These windows appear in front of all windows created by the application. An example of a system window is a
notification alert box.

4B-2 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

when a modal or movable modal dialog or alert box is presented to the user. When this
occurs, the appearance of all floating windows changes to reflect the inactive state.

Window Activation
Window activation was the most significant aspect of implementing system support for
floating windows. The pre-Mac OS 8.5 Window Manager is based on the principle that, at
any one time, there can be one, and only one, active window. This "one active window"
rule, however, cannot apply in the case of an application which uses floating windows.
(See Fig 1, in which the two floating windows and the frontmost document window are
active at the same time.) Accordingly, applications which require floating windows, and
which are required to run under Mac OS 8.5 or earlier, must include code which, in effect,
subverts the normal window activation activities of the Window Manager. (See Chapter 21
— Floating Windows — Mac OS 8.5 and Earlier.)

In Mac OS 8.5 and later, support for floating windows is built into the Window Manager,
meaning that, amongst other things, the system now supports the activation of more than
one window at a time.

Floating Window Types
The sixteen available window types for floating windows are shown at Figs 4 and 5 at
Chapter 4 — Windows.

Opening, Closing, Showing, and Hiding Floating Windows
Floating windows may be created using the Mac OS 8.5 function CreateNewWindow (see
below) with the constant kFloatingWindowClass passed in the windowClass parameter.

Floating windows should be created at application launch and should remain open until
the application is closed. However, your application should provide the user with a means
to hide or show each individual floating window as and when required. Ordinarily, it
should do this by providing items in an appropriate menu which allow the user to toggle
each floating window between the hidden and showing states.

A floating window's close box should simply hide the window, not close it. For that
reason, the close box in floating windows should be conceived of as a "hide" box rather
than as a go-away box.

Floating windows should be hidden by the owner application when that application
receives a suspend event. This is to avoid user confusion arising from one application's
floating windows being visible when another application is in the foreground. The
application's floating windows should be shown again only when the application receives a
subsequent resume event.

Mac OS 8.5 Functions Relating to Floating Windows
The following Mac OS 8.5 functions are relevant to floating windows:

Function Description
InitFloatingWindows Initialises the Window Manager and enables automatic front-to-

back display ordering of all your application's windows. If your
application uses floating windows, you must call InitFloatingWindows
in lieu of InitWindows.
When InitFloatingWindows has been called, each of your application's
windows is sorted into one of three window display layers: modal,
floating, and document. For windows created with the Mac OS 8.5
function CreateNewWindow (see below), sorting is based on window
class (see below). For windows created using the pre-Mac OS 8.5

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-3

functions, the sort order is based on window definition ID.
HideFloatingWindows Hides an application's floating windows.
ShowFloatingWindows Shows an application's floating windows.
AreFloatingWindowsVisible Indicates whether an application's floating windows are visible.

Window Proxy Icons
Window proxy icons are small icons displayed in the title bar of document windows.
Ordinarily, a specific document file is associated with a specific window, and the proxy
icon serves as a proxy for the document file's icon in the Finder.

Proxy icons:

• May be dragged, in the same way that the document's icon in the Finder may be
dragged, so as to move or copy the document file.

• Provide visual feedback to the user on the current state of the document. For
example, when the document has unsaved changes, your application should cause
the proxy icon to be displayed in the disabled state, thus preventing the user from
dragging it. (Unsaved documents should not be capable of being moved or copied.)

• Provide visual feedback to the user indicating that the document window is a valid
drag-and-drop target. In this case, your application should cause the proxy icon to
appear in the highlighted state.

Fig 2 shows a typical window proxy icon for a document in the enabled, disabled, and
highlighted states.

FIG 2 - WINDOW PROXY ICONS

PROXY ICON IN ENABLED STATE
(DOCUMENT HAS NO UNSAVED CHANGES)

PROXY ICON IN DISABLED STATE
(DOCUMENT HAS UNSAVED CHANGES)

PROXY ICON IN HIGHLIGHTED STATE
(WINDOW IS VALID DRAG-&-DROP TARGET)

At Fig 2, note that, in the drag and drop operation depicted at the right, the window's
content area is highlighted along with the proxy icon. Applications typically call the Drag
Manager function ShowDragHilite to indicate, with this highlighting, that a window is a valid
drag-and-drop target. Under Mac OS 8.5 and later, ShowDragHilite and HideDragHilite highlight
and unhighlight the proxy icon as well as the content area.

Changing the State of a Proxy Icon
Applications typically keep track of the modification state of a document so as to, for
example, inform users that they has made changes to the document which they might wish
to save before closing the document's window. When a document has unsaved changes,
your application should call SetWindowModified with true passed in the modified parameter to
cause the proxy icon to appear in the disabled state. When the changes have been saved,
your application should call SetWindowModified with false passed in the modified parameter to
cause the proxy icon to appear in the enabled state.

4B-4 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

Handling Mouse-Down Events in a Window Proxy Icon
When a mouse-down event occurs in your application's window, and when FindWindow
returns the inProxyIcon result code, your application should simply call TrackWindowProxyDrag.
TrackWindowProxyDrag handles all aspects of the drag process while the user drags the proxy
icon.

File Synchronisation Function
It is always possible that, while a document file is open, the user may drag its Finder icon
to another folder (including the Trash) or change the name of the file via the Finder icon.
The application itself has no way of knowing that this has happened and will assume,
unless it is informed otherwise, that the document's file is still at its original location with
its original name. For this reason applications often include a frequently-called file
synchronisation function which synchronises the application with the actual current
location (and name) of its currently open document files.

A document's proxy icon is much more prominent to the user than the document's Finder
icon. Thus, when proxy icons are used, there is an even a greater possibility that the user
will move the file represented by the proxy icon to a different folder while the document is
open. The provision of a file synchronisation function is therefore imperative when proxy
icons are implemented.

File synchronisation functions should be called after every call to WaitNextEvent and, for each
of the application's document windows, should update the application's internal data
structures to match that of the document file as it exists on disk. The function should also
ensure that, where necessary, the name of the document window is changed to match the
current name of the document file on disk and close the document window if the document
file has been moved to the Trash folder.

Mac OS 8.5 Functions Relating to Window Proxy Icons
The following Mac OS 8.5 functions are relevant to window proxy icons:

Function Description
SetWindowProxyCreatorAndType Sets the proxy icon for a window that lacks an associated file.

A new, untitled window needs a proxy icon to maintain visual
consistency with other windows. Call this function when you
want to establish a proxy icon for the window but the window's
data has not yet been saved to a file.

SetWindowProxyFSSpec Associates a file with a window using a file system specification
(FSSpec) structure, thus establishing a proxy icon for the
window.

GetWindowProxyFSSpec Obtains a file system specification (FSSpec) structure for the file
that is associated with a window.

SetWindowProxyAlias Associates a file with a window using a handle to an AliasRecord
structure, thus establishing a proxy icon for the window.

GetWindowProxyAlias Obtains alias data for the file associated with the window.
SetWindowProxyIcon Overrides the default proxy icon for a window.
GetWindowProxyIcon Obtains a window's proxy icon.
RemoveWindowProxy Dissociates a file from a window.
TrackWindowProxyDrag Handles all aspects of the drag process when the user drags a

proxy icon.

Note that SetPort should be called to set the relevant window's colour graphics port as the
current port before calling SetWindowProxyCreatorAndType, SetWindowProxyFSSpec, SetWindowProxyAlias,
and SetWindowProxyIcon.

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-5

Window Path Pop-Up Menus
If your application supports window path pop-up menus, when the user presses the
Command key and clicks a window's title, your window displays a pop-up menu containing
a standard file system path. The pop-up menu allows the user to open windows for folders
along the file system path. An example of a window path pop-up menu is shown at Fig 3.

FIG 3 - WINDOW PATH POP-UP MENU

Displaying and Handling a Window Path Pop-Up Menu
The window title includes both the proxy icon region and part of the drag region. Your
application must be prepared to respond to a Command-click in either region by
displaying a window path pop-up menu.

When FindWindow returns the inProxyIcon part code, and TrackWindowProxyDrag returns
errUserWantsToDragWindow, your application should proceed on the assumption that the inDrag
part code was returned by FindWindow.

When FindWindow returns the inDrag part code, your application should call
IsWindowPathSelectClick to determine whether the mouse-down event should activate the
window path pop-up menu. If IsWindowPathSelectClick returns true, WindowPathSelect should be
called to display the menu.

If the user chooses a menu item for a folder, your application must ensure that the
associated window is visible by calling an application-defined function which makes the
Finder the frontmost process.

Transitional Window Animation and Sounds
Prior to Mac OS 8.5, the Window Manager supported the playing of a sound to accompany
the transitional animation that occurs when a user clicks a window's collapse box. Mac
OS 8.5 added support for animation and sounds to accompany the hiding and showing of
windows.

The Mac OS 8.5 Window Manager function TransitionWindow may be used in lieu of the older
functions HideWindow and ShowWindow to hide and show windows. TransitionWindow causes a
transitional animation to be displayed, a transitional sound to be played, and the
necessary update and activate events to be generated.

Creating and Storing Windows
Mac OS 8.5 provides the following functions for creating and storing windows:

Function Description
CreateNewWindow Creates a window from parameter data.
CreateWindowFromResource Creates a window from 'wind' resource data.
CreateWindowFromCollection Creates a window from collection data.
StoreWindowIntoCollection Stores data describing a window into a collection.

4B-6 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

Use of the last three of these functions requires a basic understanding of collections,
flattened collections and 'wind' resources.

Collections, Flattened Collections, and 'wind' Resources

Collections

A collection object (or, simply, a collection) is an abstract data type, defined by the
Collection Manager, that allows you to store multiple pieces of related information.

A collection is like an array in that it contains a number of individually accessible items.
However, unlike an array, a collection allows for a variable number of data items and
variable-size items. A collection is also similar to a database, in that you can store
information and retrieve it using a variety of search mechanisms.

The internal structure of a collection is private. This means that you must store
information into a collection and retrieve information from it using Collection Manager
functions.

Using the function StoreWindowIntoCollection, your application can store a window into a
collection. This applies to any window, not just those created using Mac OS 8.5 Window
Manager functions. You can also store data associated with the window (for example,
text) into the same collection. This provides a quick and easy way for your application to
save a simple document.

Using the Mac OS 8.5 function CreateWindowFromCollection, you can create a window from
collection data. Note that CreateWindowFromCollection creates the window invisibly. After
creating the window, you must call the function TransitionWindow to display the window.

Flattened Collections

Using the Collection Manager, you application can create a flattened collection from a
collection. A flattened collection is a stream of address-independent data.

The 'wind' Resource

The 'wind' resource consists of an extensible flattened collection. Using the Resource
Manager, your application can store a flattened collection, consisting of a window and its
data, into a 'wind' resource.

Using the Mac OS 8.5 function CreateWindowFromResource, you can create a window from a
'wind' resource. Note that CreateWindowFromResource creates the window invisibly. After
creating the window, you must call the function TransitionWindow to display the window.

The CreateNewWindow Function
The Mac OS 8.5 function CreateNewWindow creates a window based on the class and
attributes you specify in the windowClass and attributes parameters. The following constants
may be passed in these parameters.

Window Class Constants

Constant Valu
e

Description

kAlertWindowClass 1L Alert box window.
kMovableAlertWindowClass 2L Movable alert box window.
kModalWindowClass 3L Modal dialog box window.
kMovableModalWindowClass 4L Movable modal dialog box window.
kFloatingWindowClass 5L Floating window.

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-7

If your application assigns this constant to a window and
calls the function InitFloatingWindows, the Window Manager
ensures that the window has the proper floating behaviour.
Supported with Mac OS 8.6 and later.

kDocumentWindowClass 6L Document window or modeless dialog box window.
The Window Manager assigns this class to pre–Mac OS 8.5
Window Manager windows.

Window Attribute Constants

Constant Bit Description
kWindowNoAttributes 0L No attributes.
kWindowCloseBoxAttribute 1L << 0 Has close box.
kWindowHorizontalZoomAttribute 1L << 1 Has horizontal zoom

box.
kWindowVerticalZoomAttribute 1L << 2 Has vertical zoom box.
kWindowFullZoomAttribute kWindowVerticalZoomAttribute |

kWindowHorizontalZoomAttribute
Has full zoom box.

kWindowCollapseBoxAttribute 1L << 3 Has a collapse box.
kWindowResizableAttribute 1L << 4 Has size box.
kWindowSideTitlebarAttribute 1L << 5 Has side title bar. This

attribute may be applied
only to floating
windows.

kWindowNoUpdatesAttribute 1L << 16 Does not receive update
events.

kWindowNoActivatesAttribute 1L << 17 Does not receive
activate events.

kWindowStandardDocumentAttributes kWindowCloseBoxAttribute |
kWindowFullZoomAttribute |
kWindowCollapseBoxAttribute |
kWindowResizableAttribute

Has standard document
window attributes, that
is, close box, full zoom
box, collapse box and
size box.

kWindowStandardFloatingAttributes kWindowCloseBoxAttribute |
kWindowCollapseBoxAttribute

Has standard floating
window attributes, that
is, close box and
collapse box.

Note that CreateNewWindow creates the window invisibly. After creating the window, you
must call the function TransitionWindow to display the window.

Accessing Window Information
Mac OS 8.5 includes the following functions for accessing window information:

Function Description
GetWindowClass Obtains the class of a window.
GetWindowAttributes Obtains the attributes of a window.
IsValidWindowPtr Reports whether a pointer is a valid window pointer.
FrontNonFloatingWindow Returns a pointer to the application's frontmost window that is not a

floating window.

4B-8 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

Zooming, Moving, Resizing, and Positioning Windows
Zooming Windows

The Mac OS 8.5 function ZoomWindowIdeal may be used instead of ZoomWindow to zoom a
window, the advantage being that ZoomWindowIdeal zooms the window in accordance with the
following human interface guidelines relating to a window's standard state:

• A window should move as little as possible when zooming between the user state
and standard state, to avoid distracting the user.

• A window in its standard state should be positioned so that it is entirely on one
screen.

• If a window straddles more than one screen in the user state, when it is zoomed to
the standard state it should be zoomed to the screen that contains the largest
portion of the window’s content region.

• If the ideal size for the standard state is larger than the destination screen, the
dimensions of the standard state should be that of the destination screen, minus a
few pixels of boundary. If the destination screen is the main screen, space should
also be left for the menu bar.

• When a window is zoomed from the user state to the standard state, the top left
corner of the window should remain anchored in place; however, if the standard
state of the window cannot fit on the screen with the top left corner anchored, the
window should be “nudged” so that the parts of the window in the standard state
that would fall offscreen are, instead, just onscreen.

The ZoomWindowIdeal function calculates the window's ideal standard state, and updates the
window's user state independently of the WStateData structure. (Previously, the window
definition function was responsible for updating the user state.)

When ZoomWindowIdeal is used, the Mac OS 8 function IsWindowInStandardState must be used to
determine the appropriate part code (inZoomIn or InZoomOut) to pass in ZoomWindowIdeal's
partCode parameter.

The following two additional Mac OS 8.5 functions relating to window zooming allow your
application to access the window's user-state in a Carbon-compliant manner.

Function Description
SetWindowIdealUserState Sets the size and position of a window in its user state. The size

and position of the window are specified in global coordinates in the
userState parameter.

GetWindowIdealUserState Obtains the size and position of a window in its user state. On
return, the userState parameter contains the size and position in
global coordinates.

Ordinarily, your application does not need to use these two functions. They are supplied
for the sake of completeness.

Moving Windows
When your application wishes to move a window for a reason other than a user-instigated
drag, it should use the Mac OS 8.5 function MoveWindowStructure or the earlier function
MoveWindow.

MoveWindow repositions a window's content region, whereas MoveWindowStructure repositions a
window's structure region. The introduction of the MoveWindowStructure function arises from

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-9

the fact that, under the Appearance Manager, the size and shape of a window's frame may
vary from appearance to appearance (see Chapter 6 — The Appearance Manager). This
means that the total dimensions of the window (that is, the window's structure region)
may also vary, causing the window's spatial relationship to the rest of the screen to
change.

The Mac OS 8.5 function SetWindowBounds provides a means to set the size of a window in
addition to simply repositioning it. The size and position of the window are specified in a
rectangle passed in the globalBounds parameter. In addition, you may specify whether this
rectangle represents the bounds of the content region or the bounds of the structure
region by passing either kWindowContentRgn or kWindowStructureRgn in the regionCode parameter.
The sister Mac OS 8.5 function GetWindowBounds obtains the size and position of the
bounding rectangle of the specified window region.

Resizing Windows
The Mac OS 8.6 function ResizeWindow moves a grow image of the window's edges around
the screen, following the user's cursor movements, and handles all user interaction until
the mouse button is released. Unlike the function GrowWindow, there is no need to follow
this call with a call to SizeWindow. Once resizing is complete, ResizeWindow draws the window
in its new size.

Note
ResizeWindow is supported only under Mac OS 8.6 and later.

ResizeWindow informs your application of the new window bounds, so that, if necessary, your
application can respond to any changes in the window's position. (This latter possibility
arises from the fact that some appearances may allow the window to be resized from any
corner, not just the bottom right, as a result of which the window may move on the screen
and not simply change size.)

Positioning Windows
Generally speaking, a new window should be placed on the desktop where the user
expects it to appear. For new document windows, this usually means just below and to
the right of the last document window in which the user was working, although this is not
necessarily the case on computers with multiple monitors.

The Mac OS 8.5 function RepositionWindow allows you to position a window relative to another
window or a display screen. The required window positioning method may be specified by
passing one of the following constants in the method parameter.

Window Positioning Constants

Constant Value Description
kWindowCenterOnMainScreen 0x00000001 Centre on the screen that contains

the menu bar.
kWindowCenterOnParentWindow 0x00000002 Centre on the parent window. If the

window to be centred is wider than
the parent window, its left edge is
aligned with the parent window's left
edge.

kWindowCenterOnParentWindowScreen 0x00000003 Centre on the screen containing the
parent window.

kWindowCascadeOnMainScreen 0x00000004 Place the window just below the
menu bar at the left edge of the main
screen. Place subsequent windows
relative to the first window such that

4B-10 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

the frame of the preceding window
remains visible behind the current
window.

kWindowCascadeOnParentWindow 0x00000005 Place the window a distance below and
to the right of the upper-left corner of
the parent window such that the frame
of the parent window remains visible
behind the current window.

kWIndowCascadeOnParentWindowScreen 0x00000006 Place the window just below the
menu bar at the left edge of the
screen containing the parent window.
Place subsequent windows on the
screen relative to the first window
such that the frame of the preceding
window remains visible behind the
current window.

kWindowAlertPositionOnMainScreen 0x00000007 Centre the window horizontally, and
position it vertically on the screen
that contains the menu bar such that
about one-fifth of the screen is above
it.

kWindowAlertPositionOnParentWindow 0x00000008 Centre the window horizontally, and
position it vertically such that about
one-fifth of the parent window is
above it.

kWindowAlertPositionOnParentWindowScreen 0x00000009 Centre the window horizontally, and
position it vertically such that about
one-fifth of the screen containing the
parent window is above it.

These constants should not be confused with the pre-Mac OS 8.5 positioning specification
constants (see Chapter 4 — Windows), and should not be used where those older
constants are required (for example, in 'WIND', 'DLOG', and 'ALRT' resources, and in the
StandardAlert function).

Associating Data With Windows
The pre-Mac OS 8.5 function SetWRefCon allows your application to associate a pointer to
data with a pointer to a window. An alternative method of associating data with windows
is to use the standard mechanism provided by the Mac OS 8.5 Window Manager. (Both
methods, incidentally, are Carbon-compliant.)

The Mac OS 8.5 Window Manager provides the following functions relating to associating
data with windows:

Function Description
SetWindowProperty Associates an arbitrary piece of data with a window.
GetWindowProperty Obtains a piece of data associated with a window.
GetWindowPropertySize Obtains the size of a piece of data associated with a window.
RemoveWindowProperty Removes a piece of data associated with a window.

Adding To and Removing From the Update Region
The Mac OS 8.5 Window Manager provides enhanced functions for manipulating the
update region. Unlike their pre-Mac OS 8.5 counterparts, the new functions allow the
window on which they operate to be explicitly specified, meaning that they do not require
the graphics port to be set prior to their use.

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-11

The following are the Mac OS 8.5 functions for manipulating the update region:

Function Description
InvalWindowRect Adds a rectangle to the window's update region.
InvalWindowRgn Adds a region to the window's update region.
ValidWindowRect Removes a rectangle from the window's update region.
ValidWindowRgn Removes a region from the window's update region.

Setting Content Region Colour and Pattern
The Mac OS 8.5 Window Manager provides the following functions for setting the colour
or pattern of a window's content region:

Function Description
SetWindowContentColor Sets the colour to which a window's content region is redrawn on

receipt of an update event.
GetWindowContentColor Obtains the colour to which a window's content region is redrawn.
SetWindowContentPattern Sets the pattern to which a window's content region is redrawn on

receipt of an update event.
GetWindowContentPattern Obtains the pattern to which a window's content region is redrawn.

These functions do not affect the colour graphics port's background colour or pattern.

Main Constants, Data Types, and Functions
In the following, those constants and functions supported only under Mac OS 8.6 and later
appear on a light gray background.

Constants
Window Class
KAlertWindowClass = 1L
kMovableAlertWindowClass = 2L
kModalWindowClass = 3L
kMovableModalWindowClass = 4L
kFloatingWindowClass = 5L
kDocumentWindowClass = 6L

Window Attributes
kWindowNoAttributes = 0L
kWindowCloseBoxAttribute = 1L << 0
kWindowHorizontalZoomAttribute = 1L << 1
kWindowVerticalZoomAttribute = 1L << 2
kWindowFullZoomAttribute = kWindowVerticalZoomAttribute |

 kWindowHorizontalZoomAttribute
kWindowCollapseBoxAttribute = 1L << 3
kWindowResizableAttribute = 1L << 4
kWindowSideTitlebarAttribute = 1L << 5
kWindowNoUpdatesAttribute = 1L << 16
kWindowNoActivatesAttribute = 1L << 17
kWindowStandardDocumentAttributes = kWindowCloseBoxAttribute |

 kWindowFullZoomAttribute |
 kWindowCollapseBoxAttribute |
 kWindowResizableAttribute)

kWindowStandardFloatingAttributes = kWindowCloseBoxAttribute |
 kWindowCollapseBoxAttribute

Window Positioning
kWindowCenterOnMainScreen = 0x00000001

4B-12 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

kWindowCenterOnParentWindow = 0x00000002
kWindowCenterOnParentWindowScreen = 0x00000003
kWindowCascadeOnMainScreen = 0x00000004
kWindowCascadeOnParentWindow = 0x00000005
kWIndowCascadeOnParentWindowScreen = 0x00000006
kWindowAlertPositionOnMainScreen = 0x00000007
kWindowAlertPositionOnParentWindow = 0x00000008
kWindowAlertPositionOnParentWindowScreen = 0x00000009

Window Transition Action and Effect
kWindowShowTransitionAction = 1
kWindowHideTransitionAction = 2
kWindowZoomTransitionEffect = 1

Data Types
Property Types
typedef OSType PropertyCreator;
typedef OSType PropertyTag;

Window Class and Attributes
typedef UInt32 WindowClass;
typedef UInt32 WindowAttributes;

Window Positioning
typedef UInt32 WindowPositionMethod;

Window Transitioning
typedef UInt32 WindowTransitionEffect;
typedef UInt32 WindowTransitionAction;

Functions
Floating Windows
OSStatus InitFloatingWindows (void);
OSStatus HideFloatingWindows(void);
OSStatus ShowFloatingWindows(void);
Boolean AreFloatingWindowsVisible(void);

Window Proxy Icons
OSStatus SetWindowProxyCreatorAndType(WindowPtr window,OSType fileCreator,OSType fileType,

SInt16 vRefNum);
OSStatus SetWindowProxyFSSpec(WindowPtr window,const FSSpec *inFile);
OSStatus GetWindowProxyFSSpec(WindowPtr window,FSSpec * outFile);
OSStatus GetWindowProxyAlias(WindowPtr window,AliasHandle *alias);
OSStatus SetWindowProxyAlias(WindowPtr window,AliasHandle alias);
OSStatus SetWindowProxyIcon(WindowPtr window,IconRef icon);
OSStatus GetWindowProxyIcon(WindowPtr window,IconRef * outIcon);
OSStatus RemoveWindowProxy(WindowPtr window);
OSStatus TrackWindowProxyDrag(WindowPtr window,Point startPt);

Window Path Pop-Up Menus
Boolean IsWindowPathSelectClick(WindowPtr window,EventRecord *event);
OSStatus WindowPathSelect(WindowPtr window,MenuHandle menu,SInt32 *outMenuResult);

Transitional Window Animations and Sounds
OSStatus TransitionWindow(WindowPtr window,WindowTransitionEffect effect,

WindowTransitionAction action,const Rect *rect);

Creating and Storing Windows

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-13

OSStatus CreateNewWindow(WindowClass windowClass,WindowAttributes attributes,
const Rect *bounds,WindowPtr *outWindow);

OSStatus CreateWindowFromResource(SInt16 resID,WindowPtr *outWindow);
OSStatus CreateWindowFromCollection(Collectioncollection,WindowPtr *outWindow);
OSStatus StoreWindowIntoCollection(WindowPtr window,Collection collection);

Accessing Window Information
OSStatus GetWindowClass(WindowPtr window,WindowClass *outClass);
OSStatus GetWindowAttributes (WindowPtr window,WindowAttributes *outAttributes);
Boolean IsValidWindowPtr(GrafPtr grafPort);
WindowPtr FrontNonFloatingWindow(void);

Zooming, Moving, Resizing, and Positioning Windows
OSStatus ZoomWindowIdeal(WindowPtr window,SInt16 partCode,Point *ioIdealSize);
Boolean IsWindowInStandardState(WindowPtr window,Point *idealSize,Rect *idealStandardState);
OSStatus SetWindowIdealUserState(WindowPtr window,Rect *userState);
OSStatus GetWindowIdealUserState(WindowPtr window,Rect *userState);
OSStatus MoveWindowStructure(WindowPtr window,short hGlobal,short vGlobal);
OSStatus SetWindowBounds(WindowPtr window,WindowRegionCode regionCode,

const Rect *globalBounds);
OSStatus GetWindowBounds(WindowPtr window,WindowRegionCode regionCode,Rect *globalBounds);
Boolean ResizeWindow(WindowPtr window,Point startPoint,const Rect *sizeConstraints,

Rect *newContentRect);
OSStatus RepositionWindow(WindowPtr window,WindowPtr parentWindow,

WindowPositionMethod method);

Associating Data With Windows
OSStatus SetWindowProperty(WindowPtr window,PropertyCreator propertyCreator,

PropertyTag propertyTag,UInt32 propertySize,void *propertyBuffer);
OSStatus GetWindowProperty(WindowPtr window,PropertyCreator propertyCreator,

PropertyTag propertyTag,UInt32 bufferSize,UInt32 *actualSize,void *propertyBuffer);
OSStatus GetWindowPropertySize(WindowPtr window,PropertyCreator creator,PropertyTag tag,

UInt32 *size);
OSStatus RemoveWindowProperty(WindowPtr window,PropertyCreator propertyCreator,

PropertyTag propertyTag);

Adding To and Removing From the Update Region
OSStatus InvalWindowRect(WindowPtr window,const Rect *bounds);
OSStatus InvalWindowRgn(WindowPtr window,RgnHandle region);
OSStatus ValidWindowRect(WindowPtr window,const Rect *bounds);
OSStatus ValidWindowRgn(WindowPtr window,RgnHandle region);

Setting Content Region Colour and Pattern
OSStatus SetWindowContentColor(WindowPtr window,RGBColor *color);
OSStatus GetWindowContentColor(WindowPtr window,RGBColor *color);
OSStatus GetWindowContentPattern(WindowPtr window,PixPatHandle outPixPat);
OSStatus SetWindowContentPattern(WindowPtr window,PixPatHandle pixPat);

Demonstration Program
// ◊◊
// Windows2.c
// ◊◊
//
// This program demonstrates Mac OS 8.5 Window Manager features and functions relating
// to:
//
// • Creating floating windows and document windows using CreateNewWindow. (Note that
// floating windows will not be created unless the program is run under Mac OS 8.6 or
// later.)
//
// • Saving document windows and their associated data to a 'wind' resource.
//
// • Creating document windows from 'wind' resources using CreateWindowFromResource.
//
// • Managing windows in a floating windows environment.
//
// • Setting and getting a window's property.

4B-14 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

//
// • Re-sizing a window using ResizeWindow and zooming a window using ZoomWindowIdeal.
//
// • Showing and hiding windows using TransitionWindow.
//
// • Displaying window proxy icons.
//
// Those aspects of the Mac OS 8.5 Window Manager not demonstrated in this program
// (full implementation of window proxy icons and window path pop-up menus) are
// demonstrated at the demonstration program associated with Chapter 16B (Files2).
//
// The program utilises the following resources:
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit, Document Windows
// and Floating Windows menus (preload, non-purgeable).
//
// • 'TEXT' resources for the document windows (non-purgeable).
//
// • 'PICT' resources for the floating windows (non-purgeable).
//
// • An 'ALRT' resource (purgeable), plus associated 'DITL', 'alrx', and 'dftb'
// resources (all purgeable), for a modal alert box invoked when the user chooses the
// About Windows2... item from the Apple menu.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch,
// and is32BitCompatible flags set.
//
// In addition, the program itself creates a 'wind' resource, and saves it to the
// resource fork of the application file, when the user chooses CreateNewWindow from the
// Document Windows menu.
//
// Note that floating windows will not be created unless the program is run under Mac OS
// 8.6 or later.
//
// ◊◊

//
………
…………………………………… includes

#include <Appearance.h>
#include <Devices.h>
#include <Folders.h>
#include <Gestalt.h>
#include <Resources.h>
#include <Sound.h>
#include <ToolUtils.h>

//
………
……………………………………… defines

#define mApple 128
#define iAbout 1
#define mFile 129
#define mEdit 130
#define iQuit 11
#define mDocumentWindows 131
#define iCreateWindow 1
#define iCreateFromResource 2
#define mFloatingWindows 132
#define iColours 1
#define iTools 2
#define rMenubar 128
#define rAboutAlert 128
#define rText 128
#define rColoursPicture 128
#define rToolsPicture 129
#define rWind 128
#define MIN(a,b) ((a) < (b) ? (a) : (b))

//
………
…………………………………… typedefs

typedef struct
{

TEHandle editStrucHdl;
} docStructure, **docStructureHandle;

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-15

//
………
……………… global variables

Boolean gMacOS86Present = false;
SInt16 gAppResFileRefNum;
WindowPtr gColoursFloatingWindowPtr;
WindowPtr gToolsFloatingWindowPtr;
Boolean gDone;
Boolean gInBackground;

//
………
……… function prototypes

void main (void);
void doInitManagers (void);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doUpdate (EventRecord *);
void doUpdateDocumentWindow (WindowPtr);
void doActivate (EventRecord *);
void doActivateDocumentWindow (WindowPtr,Boolean);
void doOSEvent (EventRecord *);
void doAdjustMenus (void);
void doMenuChoice (SInt32);
void doDocumentWindowsMenu (SInt16);
void doFloatingWindowsMenu (SInt16);
OSErr doCreateNewWindow (void);
OSErr doSaveWindow (WindowPtr);
OSErr doCreateWindowFromResource (void);
OSErr doCreateFloatingWindows (void);
void doCloseWindow (WindowPtr);
void doErrorAlert (SInt16);
void doConcatPStrings (Str255,Str255);

// ◊◊◊ main

void main(void)
{

OSErr osError;
SInt32 response;
Handle menubarHdl;
MenuHandle menuHdl;
EventRecord eventStructure;
SInt32 sleepTime;
WindowPtr windowPtr;
docStructureHandle docStrucHdl;
UInt32 actualSize;

// ……………………………………………………………………………… check whether Mac OS 8.5 and 8.6 or later are present

osError = Gestalt(gestaltSystemVersion,&response);

if(osError == noErr && response < 0x00000850)
ExitToShell();

if(osError == noErr && response >= 0x00000860)
gMacOS86Present = true;

//
………
… initialise managers

doInitManagers();

// …… set
up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

ExitToShell();
SetMenuBar(menubarHdl);
DrawMenuBar();

menuHdl = GetMenuHandle(mApple);
if(menuHdl == NULL)

ExitToShell();
else

4B-16 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

AppendResMenu(menuHdl,'DRVR');

// …………………………………………………………………………… set current resource file to application resource fork

gAppResFileRefNum = CurResFile();

// ……
create floating windows

if(gMacOS86Present)
{

if(osError = doCreateFloatingWindows())
doErrorAlert(osError);

}
else
{

menuHdl = GetMenuHandle(mFloatingWindows);
DisableItem(menuHdl,0);
menuHdl = GetMenuHandle(mApple);
DisableItem(menuHdl,iAbout);
DrawMenuBar();

}

//
………
…………… enter eventLoop

gDone = false;
sleepTime = LMGetCaretTime();

while(!gDone)
{

if(WaitNextEvent(everyEvent,&eventStructure,sleepTime,NULL))
doEvents(&eventStructure);

else
{

if(windowPtr = FrontNonFloatingWindow())
{

 if(!(GetWindowProperty(windowPtr,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl)))

TEIdle((*docStrucHdl)->editStrucHdl);
}

}
}

}

// ◊◊◊ doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
if(gMacOS86Present)

InitFloatingWindows();
else

InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

RegisterAppearanceClient();
}

// ◊◊◊ doEvents

void doEvents(EventRecord *eventStrucPtr)
{

SInt8charCode;

switch(eventStrucPtr->what)
{

case mouseDown:

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-17

doMouseDown(eventStrucPtr);
break;

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)
{

doAdjustMenus();
doMenuChoice(MenuEvent(eventStrucPtr));

}
break;

case updateEvt:
doUpdate(eventStrucPtr);
break;

case activateEvt:
doActivate(eventStrucPtr);
break;

case osEvt:
doOSEvent(eventStrucPtr);
HiliteMenu(0);
break;

}
}

// ◊◊ doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
SInt16 partCode, zoomPart;
WindowClass windowClass;
Rect growRect, newContentRect;
SInt32 newSize;
Point idealSize;

partCode = FindWindow(eventStrucPtr->where,&windowPtr);

switch(partCode)
{

case inMenuBar:
doAdjustMenus();
doMenuChoice(MenuSelect(eventStrucPtr->where));
break;

case inContent:
GetWindowClass(windowPtr,&windowClass);
if(windowClass == kFloatingWindowClass)
{

if(windowPtr != FrontWindow())
SelectWindow(windowPtr);

else
{

if(windowPtr == gColoursFloatingWindowPtr)
; // Appropriate action for Colours floating window here.

else if(windowPtr == gToolsFloatingWindowPtr)
; // Appropriate action for Tools floating window here.

}
}
else
{

if(windowPtr != FrontNonFloatingWindow())
SelectWindow(windowPtr);

else
; // Appropriate action for active document window here.

}
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
break;

case inGoAway:
GetWindowClass(windowPtr,&windowClass);
if(windowClass == kFloatingWindowClass)
{

4B-18 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

if(TrackGoAway(windowPtr,eventStrucPtr->where) == true)
TransitionWindow(windowPtr,kWindowZoomTransitionEffect,

 kWindowHideTransitionAction,NULL);
}
else

if(TrackGoAway(windowPtr,eventStrucPtr->where) == true)
doCloseWindow(windowPtr);

break;

case inGrow:
growRect = qd.screenBits.bounds;
growRect.top = 80;
growRect.left = 160;

if(gMacOS86Present)
{

ResizeWindow(windowPtr,eventStrucPtr->where,&growRect,&newContentRect);
InvalWindowRect(windowPtr,&windowPtr->portRect);

}
else
{

newSize = GrowWindow(windowPtr,eventStrucPtr->where,&growRect);
if(newSize != 0)
{

SizeWindow(windowPtr,LoWord(newSize),HiWord(newSize),true);
InvalWindowRect(windowPtr,&windowPtr->portRect);

}
}
break;

case inZoomIn:
case inZoomOut:

idealSize.v = qd.screenBits.bounds.bottom - 100;
idealSize.h = qd.screenBits.bounds.right - 200;

if(IsWindowInStandardState(windowPtr,&idealSize,NULL))
zoomPart = inZoomIn;

else
zoomPart = inZoomOut;

if(TrackBox(windowPtr,eventStrucPtr->where,partCode))
ZoomWindowIdeal(windowPtr,zoomPart,&idealSize);

break;
}

}

// ◊◊◊ doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{

GrafPtr oldPort;
WindowPtr windowPtr;

GetPort(&oldPort);
windowPtr = (WindowPtr) eventStrucPtr->message;

BeginUpdate(windowPtr);

SetPort(windowPtr);
doUpdateDocumentWindow(windowPtr);

EndUpdate(windowPtr);

SetPort(oldPort);
}

// ◊◊◊ doUpdateDocumentWindow

void doUpdateDocumentWindow(WindowPtr windowPtr)
{

Rect contentRect;
OSStatus osError;
UInt32 actualSize;
docStructureHandle docStrucHdl;
TEHandle editStrucHdl;

EraseRgn(windowPtr->visRgn);
DrawGrowIcon(windowPtr);

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-19

if(!(osError = GetWindowProperty(windowPtr,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl)))

{
contentRect = windowPtr->portRect;
contentRect.right -= 15;
contentRect.bottom -= 15;
editStrucHdl = (*docStrucHdl)->editStrucHdl;
(*editStrucHdl)->destRect = (*editStrucHdl)->viewRect = contentRect;
TECalText(editStrucHdl);
TEUpdate(&contentRect,(*docStrucHdl)->editStrucHdl);

}
}

// ◊◊◊ doActivate

void doActivate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
Boolean becomingActive;

windowPtr = (WindowPtr) eventStrucPtr->message;
becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);

doActivateDocumentWindow(windowPtr,becomingActive);
}

// ◊◊◊ doActivateDocumentWindow

void doActivateDocumentWindow(WindowPtr windowPtr,Boolean becomingActive)
{

docStructureHandle docStrucHdl;
UInt32 actualSize;
OSStatus osError;

if(!(osError = GetWindowProperty(windowPtr,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl)))

{
if(becomingActive)

TEActivate((*docStrucHdl)->editStrucHdl);
else

TEDeactivate((*docStrucHdl)->editStrucHdl);
}

}

// ◊◊ doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;

switch((eventStrucPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:
gInBackground = (eventStrucPtr->message & resumeFlag) == 0;

windowPtr = FrontNonFloatingWindow();
if(windowPtr != NULL)

doActivateDocumentWindow(windowPtr,!gInBackground);

if(gInBackground)
HideFloatingWindows();

else
ShowFloatingWindows();

break;
}

}

// ◊◊ doAdjustMenus

void doAdjustMenus(void)
{

MenuHandle floatMenuHdl;
Boolean isVisible;

floatMenuHdl = GetMenuHandle(mFloatingWindows);

isVisible = ((WindowPeek) gColoursFloatingWindowPtr)->visible;
CheckItem(floatMenuHdl,iColours,isVisible);

4B-20 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

isVisible = ((WindowPeek) gToolsFloatingWindowPtr)->visible;
CheckItem(floatMenuHdl,iTools,isVisible);

DrawMenuBar();
}

// ◊◊◊ doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{

SInt16 menuID, menuItem;
Str255 itemName;
SInt16 daDriverRefNum;

menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
if(menuItem == iAbout)
{

Alert(rAboutAlert,NULL);
HiliteWindow(gColoursFloatingWindowPtr,true);
HiliteWindow(gToolsFloatingWindowPtr,true);

}
else
{

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);

}
break;

case mFile:
if(menuItem == iQuit)

gDone = true;
break;

case mDocumentWindows:
doDocumentWindowsMenu(menuItem);
break;

case mFloatingWindows:
doFloatingWindowsMenu(menuItem);
break;

}

HiliteMenu(0);
}

// ◊◊ doDocumentWindowsMenu

void doDocumentWindowsMenu(SInt16 menuItem)
{

OSErr osError;

switch(menuItem)
{

case iCreateWindow:
if(osError = doCreateNewWindow())

doErrorAlert(osError);
break;

case iCreateFromResource:
if(osError = doCreateWindowFromResource())

doErrorAlert(osError);
break;

}
}

// ◊◊ doFloatingWindowsMenu

void doFloatingWindowsMenu(SInt16 menuItem)
{

Boolean isVisible;

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-21

if(menuItem == iColours)
{

isVisible = ((WindowPeek) gColoursFloatingWindowPtr)->visible;
if(isVisible)

TransitionWindow(gColoursFloatingWindowPtr,kWindowZoomTransitionEffect,
 kWindowHideTransitionAction,NULL);

else
TransitionWindow(gColoursFloatingWindowPtr,kWindowZoomTransitionEffect,

 kWindowShowTransitionAction,NULL);
}
else if(menuItem == iTools)
{

isVisible = ((WindowPeek) gToolsFloatingWindowPtr)->visible;
if(isVisible)

TransitionWindow(gToolsFloatingWindowPtr,kWindowZoomTransitionEffect,
 kWindowHideTransitionAction,NULL);

else
TransitionWindow(gToolsFloatingWindowPtr,kWindowZoomTransitionEffect,

 kWindowShowTransitionAction,NULL);
}

}

// ◊◊ doCreateFloatingWindows

OSErr doCreateFloatingWindows(void)
{

Rect contentRect;
OSStatus osError;
PicHandle pictureHdl;

SetRect(&contentRect,102,59,391,132);

if(!(osError = CreateNewWindow(kFloatingWindowClass,
 kWindowStandardFloatingAttributes +
 kWindowSideTitlebarAttribute,
 &contentRect,&gColoursFloatingWindowPtr)))

{
if(pictureHdl = GetPicture(rColoursPicture))

SetWindowPic(gColoursFloatingWindowPtr,pictureHdl);

osError = TransitionWindow(gColoursFloatingWindowPtr,kWindowZoomTransitionEffect,
 kWindowShowTransitionAction,NULL);

}

if(osError != noErr)
return osError;

SetRect(&contentRect,149,88,213,280);

if(!(osError = CreateNewWindow(kFloatingWindowClass,
 kWindowStandardFloatingAttributes,
 &contentRect,&gToolsFloatingWindowPtr)))

{
if(pictureHdl = GetPicture(rToolsPicture))

SetWindowPic(gToolsFloatingWindowPtr,pictureHdl);

osError = TransitionWindow(gToolsFloatingWindowPtr,kWindowZoomTransitionEffect,
 kWindowShowTransitionAction,NULL);

}

return osError;
}

// ◊◊ doCreateNewWindow

OSErr doCreateNewWindow(void)
{

Rect contentRect;
OSStatus osError;
WindowPtr windowPtr;
docStructureHandle docStrucHdl;
Handle textHdl;

SetRect(&contentRect,10,40,470,340);

do
{

if(osError = CreateNewWindow(kDocumentWindowClass,kWindowStandardDocumentAttributes,

4B-22 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

 &contentRect,&windowPtr))
break;

if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
{

osError = MemError();
break;

}

if(osError = SetWindowProperty(windowPtr,0,'docs',sizeof(docStructure),
 &docStrucHdl))

break;

SetPort(windowPtr);
TextSize(10);

textHdl = GetResource('TEXT',rText);
osError = ResError();
if(osError != noErr)

break;

OffsetRect(&contentRect,-contentRect.left,-contentRect.top);
contentRect.right -= 15;
contentRect.bottom -= 15;

(*docStrucHdl)->editStrucHdl = TENew(&contentRect,&contentRect);
TEInsert(*textHdl,GetHandleSize(textHdl),(*docStrucHdl)->editStrucHdl);

SetWTitle(windowPtr,"\pCreateNewWindow");

if(osError = SetWindowProxyCreatorAndType(windowPtr,0,'TEXT',kOnSystemDisk))
break;

if(osError = SetWindowModified(windowPtr,false))
break;

if(osError = RepositionWindow(windowPtr,NULL,kWindowCascadeOnMainScreen))
break;

if(osError = TransitionWindow(windowPtr,kWindowZoomTransitionEffect,
kWindowShowTransitionAction,NULL))

break;

if(osError = doSaveWindow(windowPtr))
break;

} while(false);

if(osError)
{

if(windowPtr)
DisposeWindow(windowPtr);

if(docStrucHdl)
DisposeHandle((Handle) docStrucHdl);

}

return osError;
}

// ◊◊◊ doSaveWindow

OSErr doSaveWindow(WindowPtr windowPtr)
{

Collection collection = NULL;
OSStatus osError;
docStructureHandle docStrucHdl;
UInt32 actualSize;
Handle flatCollectHdl, flatCollectResHdl, existingResHdl;

do
{

if(!(collection = NewCollection()))
{

osError = MemError();
break;

}

if(osError = StoreWindowIntoCollection(windowPtr,collection))
break;

if(osError = GetWindowProperty(windowPtr,0,'docs',sizeof(docStrucHdl),&actualSize,

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-23

 &docStrucHdl))
break;

if(osError = AddCollectionItemHdl(collection,'TEXT',1,
(*(*docStrucHdl)->editStrucHdl)->hText))

break;

if(!(flatCollectHdl = NewHandle(0)))
{

osError = MemError();
break;

}

if(osError = FlattenCollectionToHdl(collection,flatCollectHdl))
break;

existingResHdl = Get1Resource('wind',rWind);
osError = ResError();
if(osError != noErr && osError != resNotFound)

break;

if(existingResHdl != NULL)
RemoveResource(existingResHdl);

osError = ResError();
if(osError != noErr)

break;

AddResource(flatCollectHdl,'wind',rWind,"\p");
osError = ResError();
if(osError != noErr)

break;

flatCollectResHdl = flatCollectHdl;
flatCollectHdl = NULL;

WriteResource(flatCollectResHdl);
osError = ResError();
if(osError != noErr)

break;

UpdateResFile(gAppResFileRefNum);
osError = ResError();
if(osError != noErr)

break;
} while(false);

if(collection)
DisposeCollection(collection);

if(flatCollectHdl)
DisposeHandle(flatCollectHdl);

if(flatCollectResHdl)
ReleaseResource(flatCollectResHdl);

return osError;
}

// ◊◊◊ doCreateWindowFromResource

OSErr doCreateWindowFromResource(void)
{

OSStatus osError;
WindowPtr windowPtr;
Collection unflattenedCollection = NULL;
Handle windResHdl;
docStructureHandle docStrucHdl;
SInt32 dataSize = 0;
Handle textHdl;
Rect contentRect;

do
{

if(osError = CreateWindowFromResource(rWind,&windowPtr))
break;

if(!(unflattenedCollection = NewCollection()))
{

osError = MemError();
break;

}

4B-24 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

windResHdl = GetResource('wind',rWind);
osError = ResError();
if(osError != noErr)

break;

if(osError = UnflattenCollectionFromHdl(unflattenedCollection,windResHdl))
break;

if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
{

osError = MemError();
break;

}

if(osError = GetCollectionItem(unflattenedCollection,'TEXT',1,&dataSize,
 kCollectionDontWantData))

break;

if(!(textHdl = NewHandle(dataSize)))
{

osError = MemError();
break;

}

if(osError = GetCollectionItem(unflattenedCollection,'TEXT',1,kCollectionDontWantSize,
 *textHdl))

break;

contentRect = windowPtr->portRect;
contentRect.right -= 15;
contentRect.bottom -= 15;
SetPort(windowPtr);
TextSize(10);
(*docStrucHdl)->editStrucHdl = TENew(&contentRect,&contentRect);
TEInsert(*textHdl,dataSize,(*docStrucHdl)->editStrucHdl);

if(osError = SetWindowProperty(windowPtr,0,'docs',sizeof(docStrucHdl),&docStrucHdl))
break;

SetWTitle(windowPtr,"\pCreateWindowFromResource");

if(osError = SetWindowProxyCreatorAndType(windowPtr,0,'TEXT',kOnSystemDisk))
break;

if(osError = SetWindowModified(windowPtr,false))
break;

if(osError = RepositionWindow(windowPtr,NULL,kWindowCascadeOnMainScreen))
break;

if(osError = TransitionWindow(windowPtr,kWindowZoomTransitionEffect,
kWindowShowTransitionAction,NULL))

break;
} while(false);

if(unflattenedCollection)
DisposeCollection(unflattenedCollection);

if(windResHdl)
ReleaseResource(windResHdl);

return osError;
}

// ◊◊ doCloseWindow

void doCloseWindow(WindowPtr windowPtr)
{

OSStatus osError;
docStructureHandle docStrucHdl;
UInt32 actualSize;

do
{

if(osError = TransitionWindow(windowPtr,kWindowZoomTransitionEffect,
kWindowHideTransitionAction,NULL))

break;

if(osError = GetWindowProperty(windowPtr,0,'docs',sizeof(docStrucHdl),&actualSize,
 &docStrucHdl))

break;
} while(false);

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-25

if(osError)
doErrorAlert(osError);

if((*docStrucHdl)->editStrucHdl)
TEDispose((*docStrucHdl)->editStrucHdl);

if(docStrucHdl)
DisposeHandle((Handle) docStrucHdl);

DisposeWindow(windowPtr);
}

// ◊◊◊ doErrorAlert

void doErrorAlert(SInt16 errorCode)
{

AlertStdAlertParamRec paramRec;
Str255 errorCodeString;
Str255 theString = "\pAn error occurred. The error code is ";
SInt16 itemHit;

paramRec.movable = false;
paramRec.helpButton = false;
paramRec.filterProc = NULL;
paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
paramRec.cancelText = NULL;
paramRec.otherText = NULL;
paramRec.defaultButton = kAlertStdAlertOKButton;
paramRec.cancelButton = 0;
paramRec.position = kWindowAlertPositionMainScreen;

NumToString((SInt32) errorCode,errorCodeString);
doConcatPStrings(theString,errorCodeString);

StandardAlert(kAlertStopAlert,theString,NULL,¶mRec,&itemHit);
ExitToShell();

}

// ◊◊◊ doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{

SInt16 appendLength;

appendLength = MIN(appendString[0],255 - targetString[0]);

if(appendLength > 0)
{

BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
targetString[0] += appendLength;

}
}

// ◊◊

Demonstration Program Comments
This program will run only under Mac OS 8.5 or later. The program's floating windows will be created only if the program is
run under Mac OS 8.6 or later.

Two Mac OS 8.5 Window Manager features (full window proxy icon implementation and window path pop-up menus) are not
demonstrated in this program. However, they are demonstrated at the demonstration program associated with Chapter 16B
(Files2).

When the program is run, the user should:

• Choose CreateNewWindow from the Document Windows menu, noting that, when the new window is displayed, the
floating windows and the new (document) window are all active.

(Note: As well as creating the window, the program loads and displays a 'TEXT' resource (simulating a document
associated with the window) and then saves the window and the text to a 'wind' resource.)

• Choose CreateWindowFromResource from the Document Windows menu, noting that the window is created from the
'wind' resource saved when CreateNewWindow was chosen.

4B-26 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

• Choose About Windows2... from the Apple menu, noting that the floating windows appear in the deactivated state
when the alert box opens.

• Hide the floating windows by clicking their close boxes, and toggle the floating windows between hidden and showing
by choosing their items in the Floating Windows menu, noting the transitional animations and sounds.

• Click in the Finder to send the application to the background, noting that the floating windows are hidden by this
action. Then click in one of the application's windows, noting that the floating windows re-appear.

• Drag a document window to various locations on the screen, zoom the window in and out at those locations, and note
that the zoom out to the standard state conforms with human interface guidelines.

• Resize the document windows.

• Note the transitional animations and sounds when the document windows are opened and closed.

#define
The first twelve #defines establish constants representing menu IDs and resources, menu item numbers, and the menu bar
resource ID. The next five represent the resource IDs for an 'ALRT' resource (and associated 'DITL', 'alrx', and 'dfnt'
resources), a 'TEXT' resource, two 'PICT' resources, and the 'wind' resource created by the program. The (fairly common)
macro which follows is required by the application-defined string concatenation doConcatPStrings.

#typedef
A document structure of type docStructure will be "attached" to each document window. The single field in the document
structure (editStrucHdl) will be assigned a handle to a TextEdit edit structure, which will contain the text displayed in the
window.

Global Variables
gMacOS86Present will be assigned true if Mac OS 8.6 or later is present. gAppResFileRefNum will be assigned the file
reference number for the application file's resource fork. gColoursFloatingWindowPtr and gToolsFloatingWindowPtr will be
assigned pointers to the colour graphics port structures for the floating windows. gDone, when set to true, will cause the
main event loop to exit and the program to terminate. gInBackground relates to foreground/background switching.

main
Gestalt is called to determine which version of the Mac OS is present. If Mac OS 8.5 or later is not present, the program
terminates. If Mac OS 8.6 or later is present, the global variable gMacOS86Present is set to true.

The next block sets up the menus. Note that error handling in this block is very rudimentary: the program simply
terminates.

At the next block CurResFile is called to set the application's resource fork as the current resource file. This is necessary
because the program will be saving a 'wind' resource to the application file's resource fork.

If Mac OS 8.6 is present, an application-defined function is called to create and show the floating windows, otherwise the
Floating Windows menu and the About Windows2... item in the Apple menu are disabled.

In the next block (the main event loop), WaitNextEvent's sleep parameter is assigned the value returned by LMGetCaretTime.
(LMGetCaretTime returns the value stored in the low memory global CaretTime, which determines the blinking rate for the
insertion point caret as set by the user using the General Controls Control Panel.) This ensures that TEIdle, which causes the
caret to blink, will be called at the correct interval.

When WaitNextEvent returns a NULL event, the Mac OS 8.5 function FrontNonFloatingWindow is called to obtain a pointer to
the front document window. If such a window exists, the Mac OS 8.5 function GetWindowProperty is called to retrieve a
handle to the window's document structure. The handle to the TextEdit edit structure, which is stored in the window's
document structure, is then passed in the call to TEIdle, which causes the caret to blink.

doInitManagers
Note that, if Mac OS 8.6 is present, the Mac OS 8.5 function InitFloatingWindows is called, otherwise InitWindows is called.

doMouseDown
doMouseDown continues the processing of mouse-down events, switching according to the part code.

The inContent case is handled differently depending on whether the event is in a floating window or a document window.
The Mac OS 8.5 function GetWindowClass returns the window's class. If the window is a floating window, and if that window
is not the front floating window, SelectWindow is called to bring that floating window to the front. If the window is the front
floating window, the identity of the window is determined and the appropriate further action is taken. (In this demonstration,
no further action is taken.)

If the window is not a floating window, and if the window is not the front non-floating window, SelectWindow is called to:

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-27

• Unhighlight the currently active non-floating window, bring the specified window to the front of the non-floating
windows, and highlight it.

• Generate activate events for the two windows.

• Move the previously active non-floating window to a position immediately behind the specified window.

If the window is the front non-floating window, the appropriate further action is taken. (In this demonstration, no further
action is taken.)

The inGoAway case is also handled differently depending on whether the event is in a floating window or a document
window. TrackGoAway is called in both cases to track user action while the mouse-button remains down. If the pointer is
still within the go away box when the mouse-button is released, and if the window is a floating window, the Mac OS 8.5
function TransitionWindow is called to hide the window. If the window is a non-floating window, the application-defined
function doCloseWindow is called to close the window.

The inGrow case first sets up the Rect passed in the third parameter of the ResizeWindow and GrowWindow calls which, in
turn, will limit the minimum and maximum sizes to which the window can be resized. The top, left, bottom and right fields
must contain, respectively, the minimum vertical, the minimum horizontal, the maximum vertical, and the maximum
horizontal measurements. At the first line, this Rect is set to the boundaries of the screen, which is a reasonable way to get
reasonable values into the bottom and right fields. The top and left fields, however, need to be manually set to some
reasonable values (the two next lines).

If Mac OS 8.6 or later is present, the Mac OS 8.6 function ResizeWindow is called to retain control while the mouse-button
remains down, and to draw the window frame in its new size when the mouse button is released. (When ResizeWindow
returns, its newContentRect parameter contains the new dimension of the window's content region in global coordinates,
although this information is not used in this demonstration.) The call to the Mac OS 8.5 function InvalWindowRect will cause
the entire content region to be erased and redrawn (see doUpdateDocumentWindow).

If Mac OS 8.5 or earlier is present, GrowWindow is called and retains control until the user releases the mouse button, at
which time the Rect variable newSize will contain the new window size coordinates. (Note that GrowWindow does not
redraw the window in this size.) The SizeWindow call then redraws the window frame. The call to the Mac OS 8.5 function
InvalWindowRect will cause the entire content region to be erased and redrawn (see doUpdateDocumentWindow).

At the inZoomIn and InZoomOut cases, the first two lines set the fields of a Point variable to equal the height and width of
the main screen less 100 and 200 pixels respectively. This represents what this application considers to be the ideal size for
the window. The call to the Mac OS 8.5 function IsWindowInStandardState compares the window's current size with this
ideal size and, if they are equal, inZoomIn is assigned to the local variable zoomPart, meaning that the window is to be
zoomed in to the user state. If they are not equal, inZoomOut is assigned to zoomPart, meaning that the window is to be
zoomed out to the standard state. TrackBox retains control until the user releases the mouse button. If the pointer is still
within the zoom box when the mouse button is released, the Mac OS 8.5 function ZoomWindowIdeal is called to zoom the
window in accordance with human interface guidelines, and in the direction specified by zoomPart.

doUpdate
doUpdate further processes update events. When an update event is received, doUpdate calls doUpdateDocumentWindow.
(As will be seen, in this particular demonstration, the Window Manager will not generate updates for the floating windows.)

doUpdateDocumentWindow
doUpdateDocumentWindow is concerned with the redrawing of the content region of the non-floating windows.

Firstly, the window's visible region, which at this point equates to the update region, is erased and DrawGrowIcon is called to
draw the scroll bar delimiting lines. (This latter call is for cosmetic purposes only and would not be made if the window
contained scroll bars.)

The Mac OS 8.5 function GetWindowProperty is then called to retrieve the handle to the window's document structure, which,
as previously stated, contains a handle to a TextEdit edit text structure containing the text displayed in the window. If the
call is successful, measures are taken to redraw the text in the window, taking account of the current height and width of the
content region less the area that would ordinarily be occupied by scroll bars. (The TextEdit is calls in this section are
incidental to the demonstration. TextEdit is addressed at Chapter 19 — Text and TextEdit.)

doActivate
doActivate attends to those aspects of window activation not handled by the Window Manager. The modifiers field of the
event structure is tested to determine whether the window in question is being activated or deactivated. The result of this
test is passed as a parameter in a call to the application-defined function for activating non-floating windows.

doActivateDocumentWindow
doActivateDocumentWindow performs, for the non-floating windows, those window activation actions for which the
application is responsible. In this demonstration, that action is limited to calling TEActivate or TEDeactivate to show or
remove the insertion point caret.

4B-28 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

The Mac OS 8.5 function GetWindowProperty is called to retrieve the handle to the window's document structure, which
contains a handle to the TextEdit edit text structure containing the text displayed in the window. If this call is successful,
and if the window is being activated, TEActivate is called to display the insertion point caret. If the window is being
deactivated, TEDeactivate is called to remove the insertion point caret.

doOSEvent
doOSEvent handles operating system events. In this demonstration, action is taken only in the case of suspend and resume
messages.

If the event is a suspend event, the global variable gInBackground is assigned true, otherwise it is assigned false. The call to
the Mac OS 8.5 function FrontNonFloatingWindow and the following line determines whether there are any non-floating
windows present. If so, a pointer to the front non-floating window is passed in the call to the application-defined function for
activating and deactivating no-floating windows. In the next block, if the event was a suspend event, the Mac OS 8.5
function HideFloatingWindows is called to hide the floating windows, otherwise the Mac OS 8.5 function
ShowFloatingWindows is called to show the floating windows.

doAdjustMenus
doAdjustMenus is called in the event of a mouse-down event in the menu bar when a key is pressed together with the
Command key. The function checks or unchecks the items in the Floating Windows menu depending on whether the
associated floating window is currently showing or hidden.

doMenuChoice
doMenuChoice switches according to the menu choices of the user.

If the user chooses the About Windows2... item from the Apple menu, Alert is called to display the About Windows2... alert
box.

The calls to HiliteWindow explicitly activate the two floating windows when the alert box is dismissed. This is a workaround
to compensate for what appears to be a Window Manager window activation anomaly. This anomaly is evidenced as follows:

• When the application is launched and a document window is opened before the alert box is invoked, the floating
windows appear in the deactivated state while the alert box is present and in the activated state when the alert box is
dismissed. This is the expected correct behaviour.

• However, if a document window is not opened before the alert box is invoked, the floating windows remain in the
deactivated state when the alert box is dismissed.

The calls to HiliteWindow have been included to cater for the second of the above situations.

If the user chooses the Quit item in the File menu, the global variable gDone is set to true, causing the program to terminate.

doDocumentWindowsMenu
doDocumentWindowsMenu further processes choices from the Document Windows menu. If the user chose the first item,
the application-defined function doCreateNewWindow is called. If the user chose the second item, the application-defined
function doCreateWindowFromResource is called. If either of these functions return an error, an application-defined error-
handling function is called.

doFloatingWindowsMenu
doFloatingWindowsMenu further processes choices from the Floating Windows menu.

When an item is chosen, the visible field of the window's colour window structure is examined to determine whether the
window is currently showing or hidden. The Mac OS 8.5 function TransitionWindow is then called, with the appropriate
constant passed in the action parameter, to hide or show the window, depending on the previously determined current
visibility state.

doCreateFloatingWindows
doCreateFloatingWindows is called from main to create the floating windows.

The Colours floating window is created first. SetRect is called to define a rectangle which will be used to establish the size of
the window and its opening location in global coordinates. The Mac OS 8.5 function CreateNewWindow is then called to
create a floating window (first parameter) with a close box, a collapse box, and a side title bar (second parameter), and with
the previously defined content region size and location (third parameter).

If this call is successful, GetPicture is called to load the specified 'PICT' resource. If the resource is loaded successfully,
SetWindowPic is called to store the handle to the picture structure in the windowPic field of the window's colour window
structure. This latter means that the Window Manager will draw the picture in the window instead of generating update
events for it. Finally, the Mac OS 8.5 function TransitionWindow is called to make the window visible (with animation and
sound).

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-29

The same general procedure is then followed to create the Tools floating window.

doCreateNewWindow
doCreateNewWindow is called when the user chooses Create New Window from the Document Windows menu. In addition to
creating a window, and for the purposes of this demonstration, doCreateNewWindow also saves the window and its
associated data (text) in a 'wind' resource.

Firstly, SetRect is called to define a rectangle that will be used to establish the size of the window and its opening location in
global coordinates. The call to the Mac OS 8.5 function CreateNewWindow creates a document window (first parameter) with
a close box, a full zoom box, a collapse box, and a size box (second parameter), and with the previously defined content
region size and location (third parameter).

NewHandle is then called to create a relocatable block for the document structure to be associated with the window. The
Mac OS 8.5 function SetWindowProperty associates the document structure with the window. 0 is passed in the
propertyCreator parameter because this demonstration has no application signature. The value passed in the propertyTag
parameter ('docs') is just a convenient value with which to identify the data.

The call to SetPort sets the window's colour graphics port as the current port and the call to TextSize ensures that the size of
the text to be drawn in the window will be 10 points.

The next three blocks load a 'TEXT' resource, insert the text into a TextEdit edit text structure, and assign a handle to that
structure to the editStrucHdl field of the window's document structure. This is all for the purpose of simulating some text
that the user has typed into the window.

SetWTitle sets the window's title.

The window lacks an associated file, so the Mac OS 8.5 function SetWindowProxyCreatorAndType is called to cause a proxy
icon to be displayed in the window's drag bar. 0 passed in the fileCreator parameter and 'TEXT' passed in the fileType
parameter cause the system's default icon for a document file to be displayed. The Mac OS 8.5 function SetWindowModified
is then called with false passed in the modified parameter to cause the proxy icon to appear in the enabled state (indicating
no unsaved changes).

The call to the Mac OS 8.5 function RepositionWindow positions the window relative to other windows according to the
constant passed in the method parameter.

As the final step in creating the window, the Mac OS 8.5 function TransitionWindow is called to make the window visible (with
animation and sound).

To facilitate the demonstration of creating a window from a 'wind' resource (see the function
doCreateWindowFromResource), an application-defined function is called to save the window and its data (the text) to a
'wind' resource in the application's resource fork.

If an error occurred within the do/while loop, if a window was created, it is disposed of. Also, if a nonrelocatable block for the
document structure was created, it is disposed of.

doSaveWindow
doSaveWindow is called by doCreateNewWindow to save the window and its data (the text) to a 'wind' resource.

The call to the Collection Manager function NewCollection allocates memory for as new collection object and initializes it.
The call to the Mac OS 8.5 function StoreWindowIntoCollection stores data describing the window into the collection.

The Mac OS 8.5 function GetWindowProperty retrieves the handle to the window's document structure.

The handle to the window's text is is stored in the hText field of the TextEdit edit text structure. The handle to the edit text
structure is, in turn, stored in the window's document structure. The Collection Manager function AddCollectionItemHdl adds
a new item to the collection, specifically, a copy of the text.

The call to NewHandle allocates a zero-length handle which will be used to hold a flattened collection. The Collection
Manager function FlattenCollectionToHdl flattens the collection into a Memory Manager handle.

The next six blocks use Resource Manager functions to save the flattened collection as a 'wind' resource in the resource fork
of the application file.

Get1Resource attempts to load a 'wind' resource with ID 128. If ResError reports an error, and if the error is not the
"resource not found" error, the whole save process is aborted. (Accepting the "resource not found" error as an acceptable
error caters for the possibility that this may be the first time the window and its data have been saved.)

If Get1Resource successfully loaded a 'wind' resource with ID 128, RemoveResource is called to remove that resource from
the resource map, AddResource is called to make the flattened collection in memory into a 'wind' resource, assigning a
resource type, ID and name to that resource, and inserting an entry in the resource map for the current resource file.
WriteResource is called to write the resource to the application's resource fork. Since the resource map has been changed,
UpdateResFile is called to update the resource map on disk.

Below the do/while loop, the collection and the flattened collection block are disposed of and the resource in memory is
released.

4B-30 CLASSIC EDITION — Version 2.3 More on Windows — Mac OS 8.5 Window Manager

doCreateWindowFromResource
doCreateWindowFromResource creates a window from the 'wind' resource created by doSaveWindow.

The Mac OS 8.5 function CreateWindowFromResource creates a window, invisibly, from the 'wind' resource with ID 128.

The call to the Collection Manager function NewCollection creates a new collection. GetResource loads the 'wind' resource
with ID 128. The Collection Manager function UnflattenCollectionFromHdl unflattens the 'wind' resource and stores the
unflattened collection in the collection object unflattenedCollection.

NewHandle allocates a relocatable block the size of a window document structure.

The Collection Manager function GetCollectionItem is called twice, the first time to get the size of the text data, not the data
itself. (The item in the collection is specified by the second and third parameters (tag and ID)). This allows the call to
NewHandle to create a relocatable block of the same size. GetCollection is then called again, this time to obtain a copy of
the text itself.

The next block creates a new TextEdit edit text structure (TENew), assigning its handle to the editStrucHdl field of the
document structure which will shortly be associated with the window. TEInsert inserts the copy of the text obtained by the
second call to GetCollectionItem into the edit text structure.

The call to the Mac OS 8.5 function SetWindowProperty associates the document structure with the window, thus associating
the edit text structure and its text with the window.

SetWTitle sets the window's title.

The window lacks an associated file, so the Mac OS 8.5 function SetWindowProxyCreatorAndType is called to cause a proxy
icon to be displayed in the window's drag bar. 0 passed in the fileCreator parameter and 'TEXT' passed in the fileType
parameter cause the system's default icon for a document file to be displayed. The Mac OS 8.5 function SetWindowModified
is then called with false passed in the modified parameter to cause the proxy icon to appear in the enabled state (indicating
no unsaved changes).

The call to the Mac OS 8.5 function RepositionWindow positions the window relative to other windows according to the
constant passed in the method parameter.

As the final step in creating the window, the Mac OS 8.5 function TransitionWindow is called to make the window visible (with
animation and sound).

Below the do/while loop, the unflattened collection is disposed of and the 'wind' resource is released.

doCloseWindow
doCloseWindow is called when the user clicks the close box of a document window.

TransitionWindow is called to hide the window (with animation and sound). The Mac OS 8.5 function GetWindowProperty is
then called to retrieve a handle to the window's document structure, allowing the memory occupied by the edit text
structure and document structure associated with the window to be disposed of. DisposeWindow is then called to remove
the window from the window list and discard all its data storage.

doErrorAlert and doConcatPStrings
doErrorAlert is called when errors are detected. In this demonstration, the action taken is somewhat rudimentary. A stop
alert box displaying the error number is invoked. When the user dismisses the alert box, the program terminates.

doConcatPStrings is called from doErrorAlert to concatenate two strings into the single string displayed in the alert box.

More on Windows — Mac OS 8.5 Window Manager CLASSIC EDITION — Version 2.3 4B-31

	4B
	MORE ON WINDOWS — MAC OS 8.5 WINDOW MANAGER
	Includes Demonstration Program Windows2
	Introduction
	The Mac OS 8.5 Window Manager introduced the following:
	Note
	Floating Windows
	Front-To-Back Ordering of On-Screen Objects
	• System windows.
	Window Activation
	Floating Window Types
	Opening, Closing, Showing, and Hiding Floating Windows
	Mac OS 8.5 Functions Relating to Floating Windows
	The following Mac OS 8.5 functions are relevant to floating windows:
	Window Proxy Icons
	Proxy icons:
	Changing the State of a Proxy Icon
	Handling Mouse-Down Events in a Window Proxy Icon
	File Synchronisation Function
	Mac OS 8.5 Functions Relating to Window Proxy Icons
	The following Mac OS 8.5 functions are relevant to window proxy icons:
	Window Path Pop-Up Menus
	Displaying and Handling a Window Path Pop-Up Menu
	Transitional Window Animation and Sounds
	Creating and Storing Windows
	Mac OS 8.5 provides the following functions for creating and storing windows:
	Collections, Flattened Collections, and 'wind' Resources
	Collections
	Flattened Collections
	The 'wind' Resource
	The CreateNewWindow Function
	Window Class Constants
	Window Attribute Constants
	Accessing Window Information
	Mac OS 8.5 includes the following functions for accessing window information:
	Zooming, Moving, Resizing, and Positioning Windows
	Zooming Windows
	Moving Windows
	Resizing Windows
	Note
	Positioning Windows
	Window Positioning Constants
	Associating Data With Windows
	Adding To and Removing From the Update Region
	The following are the Mac OS 8.5 functions for manipulating the update region:
	Setting Content Region Colour and Pattern
	Main Constants, Data Types, and Functions
	Constants
	Window Class
	Window Attributes
	Window Positioning
	Window Transition Action and Effect
	Data Types
	Property Types
	Window Class and Attributes
	Window Positioning
	Window Transitioning
	Functions
	Floating Windows
	Window Proxy Icons
	Window Path Pop-Up Menus
	Transitional Window Animations and Sounds
	Creating and Storing Windows
	Accessing Window Information
	Zooming, Moving, Resizing, and Positioning Windows
	Associating Data With Windows
	Adding To and Removing From the Update Region
	Setting Content Region Colour and Pattern
	Demonstration Program
	// (full implementation of window proxy icons and window path pop-up menus) are
	// resource fork of the application file, when the user chooses CreateNewWindow from the
	BeginUpdate(windowPtr);
	EndUpdate(windowPtr);
	WindowPtr windowPtr;
	SetRect(&contentRect,102,59,391,132);
	SetRect(&contentRect,149,88,213,280);
	SetRect(&contentRect,10,40,470,340);
	SetWTitle(windowPtr,"pCreateNewWindow");
	SetWTitle(windowPtr,"pCreateWindowFromResource");
	Demonstration Program Comments
	#define
	#typedef
	Global Variables
	main
	doInitManagers
	doMouseDown
	doUpdate
	doUpdateDocumentWindow
	doActivate
	doActivateDocumentWindow
	doOSEvent
	doAdjustMenus
	doMenuChoice
	The calls to HiliteWindow have been included to cater for the second of the above situations.
	doDocumentWindowsMenu
	doFloatingWindowsMenu
	doCreateFloatingWindows
	doCreateNewWindow
	SetWTitle sets the window's title.
	doSaveWindow
	doCreateWindowFromResource
	NewHandle allocates a relocatable block the size of a window document structure.
	SetWTitle sets the window's title.
	doCloseWindow
	doErrorAlert and doConcatPStrings

