
4
WINDOWS

Includes Demonstration Program Windows1

Introduction
A window is a user interface element. More specifically, it is an area on the screen in
which the user can enter or view information. A Macintosh application uses windows for
most communication with the user, from discrete interactions such as presenting and
acknowledging alert boxes to open-ended interactions such as creating and editing
documents. Users generally enter data in windows and your application typically lets the
user save this data to a file.

The Window Manager, which, amongst other things, provides functions for managing
windows, itself depends on QuickDraw. QuickDraw supports drawing into colour
graphics ports, which are individual and complete drawing environments with
independent coordinate systems. Each window represents a colour graphics port.

Your application typically creates document windows, which allow the user to enter and
display text, graphics, or other information. A document window is a view into the
document. If the document is larger than the window, the window is a view of a portion
of the document.

Window Basics
Standard Window Elements

The Window Manager defines and supports a set of standard window elements through
which the user can manipulate windows:

• Title Bar. The bar at the top of a window that displays the window's name,
contains the close, zoom, and collapse boxes, and indicates whether a window is
active. You usually display a newly created window with the title "untitled". When
the user opens a saved document, you assign the document's filename to the
window in which it is displayed.

• Close Box. Offers the user a quick way to close a window. The close box is
sometimes called the go-away box.

Windows CLASSIC EDITION — Version 2.3 4-1

• Full, Vertical, and Horizontal Zoom Boxes. Offer the user a quick way to
choose between two different window sizes, one established by the user and one by
the application.

• Collapse Box. Lets the user collapse and uncollapse a window.

• Size Box. Lets the user change the size of a window.

• Draggable Area. That part of the window's frame less the title bar.

Historical Note
The vertical zoom box, the horizontal zoom box, the collapse box, and the
draggable area were introduced with Mac OS 8 and the Appearance Manager.

Scroll bars, which allow the user to view different parts of a document containing more
information than can be displayed on the screen at the one time, are not part of a
window's structure and must be separately created and managed. By convention, scroll
bars are placed on the right and lower edges of those windows which require them.

Active and Inactive Windows
The window in which the user is currently working is called the active window which is
identified by its general appearance (see Fig 1). The active window is the target of all
keyboard activity and only the active window interacts with the user.

FIG 1 - APPEARANCE OF ACTIVE AND INACTIVE WINDOWS

ACTIVE WINDOW APPEARANCE INACTIVE WINDOW APPEARANCE

When the user activates one of your application's windows, the Window Manager redraws
the window's title bar and frame, the close box, the title text, the zoom box, the collapse
box, and the size box. Your application must reinstate the appearance of the rest of the
window to its state prior to the deactivation, activating any controls (scroll bars, etc.),
drawing the scroll box in the same position, restoring the insertion point, and highlighting
the previous selection, etc.

When a window belonging to your application becomes inactive, the Window Manager
redraws the title bar and frame as shown at Fig 1, hiding the close, zoom, collapse, and
size boxes. Your application must deactivate any controls, remove highlighting from
selections, and so on.

Historical Note
Prior to Mac OS 8 and the Appearance Manager, your application was also
required to draw (on window activation and on receipt of update events) and erase
(on window deactivation) the size box via a call to DrawGrowIcon. The new
Appearance-compliant window definition functions (see below) which were

4-2 CLASSIC EDITION — Version 2.3 Windows

introduced with Mac OS 8 and the Appearance Manager relieve your application of
that responsibility and merge the size box into the window frame.

In Appearance-compliant windows, DrawGrowIcon, if called, will simply draw scroll bar
delimiting lines (single lines extending left and upwards from the top and left side,
respectively, of the size box), and may still be used for that purpose if required.

When the user clicks in an inactive document window, your application should make the
window active but should not make any selections in response to the click. To make a
selection, the user should be required to click again. This behaviour protects the user
from unintentionally losing an existing selection when activating the window.

Types of Appearance-Compliant Windows
The Window Manager defines a large number of Appearance-compliant window types,
which may be classified as follows:

• Document types.

• Dialog and alert types.

• Utility window types (sometimes referred to as floating window types).

Window types are often referred to by the constant used in 'WIND' resources, and by
certain Window Manager functions, to specify the type of window required. That constant
determines both the visual appearance of the window and its behaviour.

Document Types
Fig 2 shows the eight available window types for documents and the constants that
represent those types.

Windows CLASSIC EDITION — Version 2.3 4-3

FIG 2 - WINDOW TYPES FOR DOCUMENTS

kWindowFullZoomGrowDocumentProckWindowFullZoomDocumentProc

kWindowDocumentProc kWindowGrowDocumentProc

kWindowVertZoomGrowDocumentProc

kWindowHorizZoomGrowDocumentProc

kWindowVertZoomDocumentProc

kWindowHorizZoomDocumentProc

Movable window,
size box.

Movable window,
vertical zoom box,
size box.

Movable window,
horizontal zoom box,
size box.

Movable window.

Movable window,
vertical zoom box.

Movable window,
horizontal zoom box.

Movable window,
full zoom box.

Movable window,
full zoom box,
size box.

Dialog and Alert Types
Fig 3 shows the six available window types for modal and movable modal dialogs and
alerts and the constants that represent those types. (The document window type
represented by the constant kWindowDocumentProc is used for modeless dialog boxes,)

4-4 CLASSIC EDITION — Version 2.3 Windows

FIG 3 - WINDOW TYPES FOR DIALOGS AND ALERTS

kWindowAlertProc kWindowMovableAlertProc

kWindowPlainDialogProc

Modal dialog box.

kWindowShadowDialogProc

Modal dialog box,
shadow.

Modal alert box. Movable modal alert box.

kWindowMovableModalGrowProckWindowModalDialogProc kWindowMovableModalDialogProc

Modal dialog box. Movable modal dialog box. Movable modal dialog box with
size box.

Utility (Floating) Window Types
Figs 4 and 5 show the sixteen available window types for utility (floating) windows and
the constants that represent those types.

FIG 4 - WINDOW TYPES FOR UTILITY WINDOWS (TITLE BAR AT TOP)

kWindowFloatProc kWindowFloatGrowProc

kWindowFloatVertZoomProc kWindowFloatVertZoomGrowProc

kWindowFloatHorizZoomProc kWindowFloatHorizZoomGrowProc

kWindowFloatFullZoomProc kWindowFloatFullZoomGrowProc

Utility window. Utility window,
size box.

Utility window,
vertical zoom box.

Utility window
horizontal zoom box.

Utility window,
full zoom box.

Utility window,
vertical zoom box,
size box.

Utility window,
horizontal zoom box,
size box.

Utility window
full zoom box,
size box.

Windows CLASSIC EDITION — Version 2.3 4-5

FIG 5 - WINDOW TYPES FOR UTILITY WINDOWS (PSUEDO TITLE BAR AT SIDE)

FIG X -FLOATING WINDOWS
kWindowFloatSideFullZoomGrowProc

kWindowFloatSideProc kWindowFloatSideGrowProc

kWindowFloatSideVertZoomProc kWindowFloatSideVertZoomGrowProc

kWindowFloatSideHorizZoomProc kWindowFloatSideHorizZoomGrowProc

kWindowFloatSideFullZoomProc

Utility window,
side title bar.

Utility window,
side title bar,
size box.

Utility window,
side title bar,
vertical zoom box.

Utility window,
side title bar,
horizontal zoom box.

Utility window,
side title bar,
full zoom box.

Utility window,
side title bar,
vertical zoom box,
size box.

Utility window,
side title bar,
horizontal zoom box,
size box.

Utility window
side title bar,
full zoom box,
size box.

Window Definition IDs
The constants shown at Figs 2, 3, 4, and 5 each represent a specific window definition
ID. A window definition ID is a 16-bit value which contains the resource ID of the
window's window definition function in the upper 12 bits and a variation code in the
lower 4 bits:

• Window Definition Function. The system software and various Window
Manager functions call a window's window definition function (WDEF) when they
need to perform certain window-related actions, such as drawing or re-sizing a
window's frame. The definition function draws the window's frame, draws the
close, zoom, collapse, and size boxes (if any), draws the window title (if any),
determines which region the cursor is in within the window, calculates the window's
content and structure regions (see below), and performs any special initialisation or
disposal tasks.

• Variation Code. A single WDEF can support up to 16 different window types.
The WDEF defines a variation code, an integer from 0 to 15, for each window type
it supports.

Four WDEFs (resource IDs 64, 65, 66, and 67) are associated with the three
classifications of window types.

Historical Note
These are the resource IDs of the new Appearance-compliant window definition
functions first issued with Mac OS 8 and the Appearance Manager. The old
WDEFs have resource IDs of 0 (document windows), 1 (rDocProc document window),
and 124 (utility windows), and remain in the System file. The new definition
functions are located in the Appearance extension in Mac OS 8.0 and 8.1, and in
the System file in Mac OS 8.5.

4-6 CLASSIC EDITION — Version 2.3 Windows

The window definition ID is derived by multiplying the resource ID of the WDEF by 16 and
adding the variation code to the result, as is shown in the following:

WDEF
Resource

ID

Variatio
n

Code

Window Definition
ID

(Value)

Window Definition ID
(Constant)

64 0 64 * 16 + 0 = 1024 kWindowDocumentProc
64 1 64 * 16 + 1 = 1025 kWindowGrowDocumentProc
64 2 64 * 16 + 2 = 1026 kWindowVertZoomDocumentProc
64 3 64 * 16 + 3 = 1027 kWindowVertZoomGrowDocumentProc
64 4 64 * 16 + 4 = 1028 kWindowHorizZoomDocumentProc
64 5 64 * 16 + 5 = 1029 kWindowHorizZoomGrowDocumentProc
64 6 64 * 16 + 6 = 1030 kWindowFullZoomDocumentProc
64 7 64 * 16 + 7 = 1031 kWindowFullZoomGrowDocumentProc
65 0 65 * 16 + 0 = 1040 kWindowPlainDialogProc
65 1 65 * 16 + 1 = 1041 kWindowShadowDialogProc
65 2 65 * 16 + 2 = 1042 kWindowModalDialogProc
65 3 65 * 16 + 3 = 1043 kWindowMovableModalDialogProc
65 4 65 * 16 + 4 = 1044 kWindowAlertProc
65 5 65 * 16 + 5 = 1045 kWindowMovableAlertProc
65 6 65 * 16 + 6 = 1046 kWindowMovableModalGrowProc
66 1 66 * 16 + 1 = 1057 kWindowFloatProc
66 3 66 * 16 + 3 = 1059 kWindowFloatGrowProc
66 5 66 * 16 + 5 = 1061 kWindowFloatVertZoomProc
66 7 66 * 16 + 7 = 1063 kWindowFloatVertZoomGrowProc
66 9 66 * 16 + 9 = 1065 kWindowFloatHorizZoomProc
66 11 66 * 16 + 11 = 1067 kWindowFloatHorizZoomGrowProc
66 13 66 * 16 + 13 = 1069 kWindowFloatFullZoomProc
66 15 66 * 16 + 15 = 1071 kWindowFloatFullZoomGrowProc
67 1 67 * 16 + 1 = 1073 kWindowFloatSideProc
67 3 67 * 16 + 3 = 1075 kWindowFloatSideGrowProc
67 5 67 * 16 + 5 = 1077 kWindowFloatSideVertZoomProc
67 7 67 * 16 + 7 = 1079 kWindowFloatSideVertZoomGrowProc
67 9 67 * 16 + 9 = 1081 kWindowFloatSideHorizZoomProc
67 11 67 * 16 + 11 = 1083 kWindowFloatSideHorizZoomGrowProc
67 13 67 * 16 + 13 = 1085 kWindowFloatSideFullZoomProc
67 15 67 * 16 + 15 = 1087 kWindowFloatSideFullZoomGrowProc

Historical Note
The old pre-Mac OS 8, pre-Appearance Manager window types, and their
Appearance-compliant (Fig 3) equivalents, are as follows.

Pre-
Appearance

Appearance-
Compliant

Description

noGrowDocProc kWindowDocumentProc Movable window.
documentProc kWindowGrowDocumentProc Movable window, size box.
zoomNoGrow kWindowFullZoomDocumentProc Movable window, full zoom box.
zoomDocProc kWindowFullZoomGrowDocumentProc Movable window, full zoom box, size

box.
rDocProc (None) Round-cornered window.
dBoxProc kWindowModalDialogProc Modal dialog box.
(None) kWindowAlertProc Modal alert box.
movableDBoxProc kWindowMovableModalDialogProc Movable modal dialog box.
(None) kWindowMovableAlertProc Movable modal alert box.
plainDBox kWindowPlainDialogProc Modeless dialog box.
altDBoxProc kWindowShadowDialogProc Modeless dialog box, shadow.
floatProc kWindowFloatProc Utility.
floatGrowProc kWindowFloatGrowProc Utility, size box.
floatZoomProc kWindowFloatFullZoomProc Utility, full zoom box.
floatZoomGrowProc kWindowFloatFullZoomGrowProc Utility, full zoom box, size box.
floatSideProc kWindowFloatSideProc Utility, side title.
floatSideGrowProc kWindowFloatSideGrowProc Utility, side title, size box.
floatSideZoomProc kWindowFloatSideFullZoomProc Utility, side title, full zoom box.

Windows CLASSIC EDITION — Version 2.3 4-7

floatSideZoomGrowProc kWindowFloatSideFullZoomGrowProc Utility , side title, size box, full zoom
box.

Window Type Usage
Window Types For Documents. A kWindowFullZoomGrowDocumentProc window is normally
used for document windows because it supports all window manipulation elements, that
is, title bar, close box, zoom box, and size box. Note that, because you can optionally
suppress the close box when you create the window, the Window Manager does not
necessarily draw that particular element. Also note that, when the related document
contains more data that will fit in the window, you must add scroll bars.

Window Types For Modal Alert Boxes and Modal Dialog Boxes. Modal alert
boxes and modal dialog boxes are merely special-purpose windows that require no
window manipulation elements. Modal alert boxes generally use the window type
kWindowAlertProc and modal dialog boxes generally use window type kWindowModalDialogProc;
however, kWindowPlainDialogProc and kWindowShadowDialogProc may also be used.

Window Types For Movable Modal Alert Boxes and Movable Modal Dialog
Boxes. Movable modal alert boxes and movable modal dialog boxes are used when you
want the user to be able to move the alert or dialog window or to bring another
application to the foreground before the dialog is dismissed. Movable modal alert boxes
use the window type kWindowMovableAlertProc and movable modal dialog boxes use the window
type kWindowMovableModalDialogProc.

Historical Note
Movable Modal Alert boxes were introduced with Mac OS 8 and the Appearance
Manager.

Window Types For Modeless Dialog Boxes. Modeless dialog boxes allow the user
to perform other tasks within the application without first dismissing the dialog box. User
interface guidelines require that the kWindowDocumentProc window type, which can be moved
or closed but not resized or zoomed, be used for modeless dialog boxes.

The creation and handling of alert and dialog boxes is addressed in detail at Chapter 8—
Dialogs and Alerts.

Window Regions
The Window Manager recognises the special-purpose regions1 shown at Fig 6.

FIG 6 - WINDOW REGIONS

TITLE BAR REGION

CLOSE BOX REGION

DRAG REGION

TITLE TEXT REGION ZOOM BOX REGION

COLLAPSE BOX REGION

SIZE BOX REGION

CONTENT REGION

STRUCTURE REGION

1 A region is an arbitrary area, or set of areas, on the QuickDraw coordinate plane. The outline of a region is one or more
closed loops. Regions are explained in more detail at Chapter 12 — Drawing With QuickDraw.

4-8 CLASSIC EDITION — Version 2.3 Windows

Handles to these regions, which are represented by constants of type RegionWindowCode, may
be obtained via a call to GetWindowRegion. The definitions of these regions, and the constants
which represent them, are as follows:

Region Constant Definition
Title bar region kWindowTitleBarRgn The entire area occupied by a window's title bar,

including the title text region.
Title text region kWindowTitleTextRgn That portion of a window's title bar that is occupied

by the name of the window.
Close box region kWindowCloseBoxRgn The area occupied by a window's close box.
Zoom box region kWindowZoomBoxRgn The area occupied by a window's zoom box.
Drag region kWindowDragRgn The draggable area of the window frame, including

the title bar and window outline, but excluding the
close box, zoom box, and collapse box.

Size box region kWindowGrowRgn The area occupied by a window's size box.
Collapse box
region

kWindowCollapseBoxRgn The area occupied by a window's collapse box.

Structure region kWindowStructureRgn The entire area occupied by a window, including the
frame and content region. (The window may be
partially off-screen but its structure region does not
change.)

Content region kWindowContentRgn That part of a window in which the contents of a
document, the size box, and the window's controls
(including scroll bars) are displayed.

Other Regions
Two other regions of relevance to the Window Manager are:

• The Update Region. The update region is a dynamic region which accumulates
all areas of a window's content region which need updating (that is, re-drawing).

• The Gray Region. The entire area of the desktop, that is, the screen area that is
not occupied by the menu bar, is known as the gray region. The Window Manager
maintains a pointer to the gray region in a low-memory global variable named
GrayRgn. You can retrieve a handle to the gray region with the function LMGetGrayRgn.

Controls and Control Lists
Windows may contain controls. The most common control in a window is the scroll bar
(see Fig 7), which should be included in the window when there is more data than can be
shown at one time in the space available. The Control Manager is used to create, display
and manipulate scroll bars.

All controls included in a window "belong" to that individual window and are displayed
within the colour graphics port which represents that window. For each window your
application creates, the Window Manager creates a control list, a series of entries
pointing to the descriptions of controls associated with a window.

Windows CLASSIC EDITION — Version 2.3 4-9

FIG 7 - SCROLL BARS

SCROLL ARROW

SCROLL BOX

SCROLL BAR GRAY AREA

SCROLL ARROW

The Window List
Multiple windows from different applications may appear simultaneously on the desktop.
The Window Manager tracks all windows using its own private data structure called the
window list. Entries in the window list appear in their order on the desktop, beginning
with the frontmost (active) window. When the user changes the ordering of the windows
on the desktop, the Window Manager generates events telling your application to
activate, deactivate and update its windows as necessary.

The Colour Graphics Port and the Colour Window
Structure
The Colour Graphics Port

Each window represents a QuickDraw colour graphics port, which is a drawing
environment with its own coordinate system. The Window Manager creates a colour
graphics port when it creates the window.

The location of a window on the screen is defined in global coordinates, that is,
coordinates which reflect the entire potential drawing space. QuickDraw recognises a
coordinate plane whose origin is the upper left corner of the main screen, whose positive
x-axis extends rightward and whose positive y-axis extends downward (see Fig 8). In
QuickDraw functions, the horizontal offset is ordinarily labelled h, and the vertical offset v.
The coordinate plane is bounded by the limits of QuickDraw coordinates, which range
from -32768 to 32,767.

4-10 CLASSIC EDITION — Version 2.3 Windows

FIG 8 - A WINDOW'S LOCAL AND GLOBAL COORDINATE SYSTEMS

- h

+ v

v

(h=0, v=0) IN GLOBAL COORDINATES

(h=70, v=60) IN GLOBAL COORDINATES
(h=0, v=0) IN LOCAL COORDINATES

(h=200, v=100) IN LOCAL COORDINATES
(h=270, v=160) IN GLOBAL COORDINATES

- v

+ h

h

When QuickDraw creates a new colour graphics port (usually, when you create a new
window), it defines a bounding rectangle for the port in global coordinates. Ordinarily,
the bounding rectangle represents the entire area of the screen on which the window
appears. The bounding rectangle is stored in the colour graphics port data structure, in
the bounds field of a structure called a pixel map in Color QuickDraw.

The colour graphics port data structure also includes a field called portRect, which defines
the rectangle to be used for drawing. In a colour graphics port representing a window,
the portRect rectangle represents the window's content region. Within the port rectangle,
the drawing area is described in local coordinates. Fig 8 illustrates the local and global
coordinate systems for a window which is 100 pixels high by 200 pixels wide, and which is
placed with its content region 70 pixels down and 60 pixels to the right of the upper left
corner of the screen.2

When the Window Manager creates a window, it places the origin of the local coordinate
system at the upper-left corner of the window's port rectangle. Note, however, that the
Event Manager describes mouse events in global coordinates, and that you must do most
of your window manipulation in global coordinates.

Colour Window Structure
The Window Manager stores information about a window in a colour window structure.
A colour window structure is defined by the data type CWindowRecord:

struct CWindowRecord
{

CGrafPort port; // Window's colour graphics port.
short windowKind; // Class of window.
Boolean visible; // true if window is visible.
Boolean hilited; // true if window is highlighted.
Boolean goAwayFlag; // true if window has close box.
Boolean spareFlag; // true if window has zoom box.
RgnHandle strucRgn; // Handle to structure region.
RgnHandle contRgn; // Handle to content region.
RgnHandle updateRgn; // Handle to update region.
Handle windowDefProc; // Handle to window definition function.
Handle dataHandle; // Handle to window state data structure.
StringHandle titleHandle; // Handle to window's title.
short titleWidth; // Title width in pixels.
ControlRef controlList; // Handle to window's control list.
CWindowPeek nextWindow; // Pointer to next window structure in window list.
PicHandle windowPic; // Handle to an optional picture.
long refCon; // Reference constant.

};

2 The colour graphics port is addressed in detail at Chapter 11 — QuickDraw Preliminaries.

Windows CLASSIC EDITION — Version 2.3 4-11

typedef struct CWindowRecord CWindowRecord;
typedef CWindowRecord *CWindowPeek;

Historical Note
There is another window structure called the window structure, which is defined
by the data type WindowRecord. The window structure traces its origins back to the
era of black-and-white Macintoshes, and had to be used on any Macintosh when
Color QuickDraw was not present. Since Color QuickDraw is always available with
Mac OS 8 and the Appearance Manager, the window structure is now redundant.
The only difference between a window structure and a colour window structure is
that the port field is a graphics port (GrafPort) rather than a colour graphics port
(CGrafPort).

It is important to note that the colour graphics port is the first field of the colour window
structure and that the data type CWindowPtr is defined as a pointer to the colour graphics
port, not to the colour window structure. Fields in the colour window structure are
accessed using CWindowPeek, which is a pointer to a colour window structure. (CWindowPeek is
rarely used, however, since you usually do not need to access or directly modify fields in a
colour window structure. The Window Manager automatically updates the colour window
structure when you make changes to a window, and supplies functions for changing and
reading some fields of the colour window structure.)

The close box region, drag region, zoom box region, collapse box region, and size box
region are not included in the colour window structure. The WDEF determines the
location of those particular regions.

Compatibility

For compatibility purposes, the WindowPtr data type points to either a colour graphics port
or a graphics port and the WindowPeek data type points to either a colour window structure
or a window structure.

Events in Windows
As stated at Chapter 2 — Low-Level and Operating System Events, the Window Manager
itself generates two types of events central to window management, namely, activate
events and update events.

One of the more basic functions of the Window Manager is to report where the cursor is
when the application receives a mouse-down event. As was also stated at Chapter 2, the
Window Manager function FindWindow tells your application whether the cursor is in a
window and, if it is in a window, in exactly which window and which part of that window.
FindWindow is thus used as a first filter for mouse-down events, separating events which
merely affect the window display from events which manipulate data.

Creating Your Application's Windows
You typically create document and utility windows from resources of type 'WIND', although
you can create them programmatically using the function NewCWindow.

'WIND' Resources
When creating resources with Resorcerer, it is advisable that you refer to a diagram and
description of the structure of the resource and relate that to the various items in the

4-12 CLASSIC EDITION — Version 2.3 Windows

Resorcerer editing windows. Accordingly, the following describes the structure of the
resource associated with the creation of document and utility windows.

Structure of a Compiled 'WIND'
Resource

Fig 9 shows the structure of a compiled 'WIND' resource and how it "feeds" the colour
window structure.

FIG 9 - STRUCTURE OF A COMPILED WINDOW ('WIND') RESOURCE

struct CWindowRecord
{
 CGrafPort port;
 short windowKind;
 Boolean visible;
 Boolean hilited;
 Boolean goAwayFlag;
 Boolean spareFlag;
 RgnHandle strucRgn;
 RgnHandle contRgn;
 RgnHandle updateRgn;
 Handle windowDefProc;
 Handle dataHandle;
 StringHandle titleHandle;
 short titleWidth;
 ControlRef controlList;
 CWindowPeek nextWindow;
 PicHandle windowPic;
 longrefCon;
};

INITIAL RECTANGLE

WINDOW DEFINITION ID

VISIBILITY STATUS

PRESENCE OF CLOSE BOX

REFERENCE CONSTANT

LENGTH (n) OF WINDOW TITLE

POSITIONING SPECIFICATION

8

2

2

2

4

1

n

2

BYTES

WINDOW TITLE

Windows CLASSIC EDITION — Version 2.3 4-13

The following describes the main fields of the 'WIND' resource:

Field Description
INITIAL RECTANGLE The upper-left and lower-right corners, in global coordinates, of a

rectangle that defines the initial size and placement of the window's
content region. Your application can change this rectangle before
displaying the window, either programmatically or through an optional
positioning code (see below).

WINDOW DEFINITION ID The window's definition ID, which incorporates the resource ID of the
WDEF that will handle the window and an optional variation code.

VISIBILITY STATUS A specification that determines whether the window is visible or
invisible. This characteristic controls only whether the Window
Manager displays the window, not necessarily whether the window can
be seen on the screen. (A visible window entirely covered by other
windows, for example, is "visible" even though the user cannot see it.)
You typically create a new window in an invisible state, build the content
area of the window, and then display the completed window.

PRESENCE OF CLOSE BOX A specification that determines whether or not the window has a close
box. The Window Manager draws the close box when it draws the
window frame. The window type specified in the second field determines
whether a window can support a close box; this field determines whether
the close box is present.

REFERENCE CONSTANT A reference constant which your application can use for whatever data it
needs to store. When it builds a new colour window structure, the
Window Manager stores, in the refCon field, whatever value you specify in
this field. You can also set the refCon field of the colour window structure
programmatically via a call to SetWRefCon.

WINDOW TITLE A Pascal string that specifies the window's title.
POSITIONING
SPECIFICATION

An optional positioning specification that overrides the window position
established by the rectangle in the first field.
The positioning constants (see below) are convenient when the user is
creating new documents or when you are handling your own dialog boxes
and alert boxes. When you are creating a new window to display a
previously saved document, however, you should display the new
window in the same rectangle as that in which it was previously
displayed.

Positioning Specification

The constants for the positioning specification field are as follows:

Constant Value Meaning
kWindowDefaultPosition 0x0000 Use initial location.
kWindowCenterMainScreen 0x280A Centre on main screen.
kWindowAlertPositionMainScreen 0x300A Place in alert position on main

screen.
kWindowStaggerMainScreen 0x380A Stagger on main screen.
kWindowCenterParentWindow 0xA80A Center on parent window.
kWindowAlertPositionParentWindow 0xB00A Place in alert position on parent

window.
kWindowStaggerParentWindow 0xB80A Stagger relative to parent window.
kWindowCenterParentWindowScreen 0x680A Center on parent window screen.
kWindowAlertPositionParentWindowScreen 0x700A Alert position on parent window

screen.
kWindowStaggerParentWindowScreen 0x780A Stagger on parent window screen.

Creating a 'WIND' Resource Using Resorcerer
Fig 10 shows a 'WIND' resource being created with Resorcerer.

4-14 CLASSIC EDITION — Version 2.3 Windows

FIG 10 - CREATING A 'WIND' RESOURCE USING RESORCERER

INITIAL RECTANGLE

WINDOW DEFINITION ID

VISIBILITY STATUS

PRESENCE OF CLOSE BOX

REFERENCE CONSTANT

LENGTH (n) OF WINDOW TITLE

POSITIONING SPECIFICATION

WINDOW TITLE

These clickable icons pertain to the old superseded
window types. For the new Appearance-compliant
types, simply enter the required window definition ID at
the ProcID: item.
The resource ID of the window definition function and
the variation code appear automatically when the
window definition ID is entered at the ProcID: item.

Creates 'wctb' resources. The use
of 'wctb' resources is inconsistent
with the concept of themes and
Appearance-compliance.

STRUCTURE OF A COMPILED 'WIND' RESOURCE

RESORCERER 'WIND' RESOURCE EDITING WINDOW

Creating the Window From the 'WIND' Resource
GetNewCWindow is used to create a window from a 'WIND' resource.

You can allow GetNewCWindow to itself allocate memory for your colour window structure;
however, memory fragmentation effects will be minimised by allocating the memory
yourself from a non-relocatable block allocated for such purposes during your
application's initialisation function, and then passing the pointer to GetNewCWindow.

Windows CLASSIC EDITION — Version 2.3 4-15

Historical Note

The 'wctb' Resource. Prior to the introduction of the Appearance-compliant
WDEFs, the colours of the various elements of a window were controlled by the
window colour table, which contained a series of part codes for different window
elements, together with the RGB (red-green-blue) values associated with each part.
Applications typically used the default colour table; however, it was possible to
explicitly control the colours used in a window by creating a window colour table
('wctb') resource with the same resource ID as the window's 'WIND' resource. The
Appearance-compliant WDEFs ignore all information in the window colour table
structure except the field that controls the background colour for the window's
content region.

Adding Scroll Bars

If a window requires scroll bars, you typically create them from 'CNTL' resources at the
time that you create the document window, and then display them when you make the
window visible. (See Chapter 7 — Introduction to Controls).

Window Visibility

If the 'WIND' resource specifies that the new window is visible, GetNewCWindow displays the
window immediately. If you are creating a document window, however, it is best to
create the window in an invisible state and then make it visible when you are ready to
display it. The right time to display a window depends on whether the window is
associated with a new or saved document:

• If you are creating a window because the user is creating a new document, you can
display the window immediately by calling ShowWindow. (This change in visibility adds
to the update region and triggers an update event. Your application should respond
to the update event by calling its own function for drawing the content region.)

• If you are creating a new window to display a saved document, you should retrieve
the user's data before displaying the window.

Positioning a New Document Window on the DeskTop
New document windows should be placed just below and to the right of the last document
window in which the user was working. On Macintoshes with a single screen, positioning
windows is fairly straightforward. The first new document should be positioned on the
upper-left corner of the desktop and each additional new document window is opened
with its upper-left corner below and to the right of the upper-left corner of its
predecessor. If the user closes one or more documents, subsequently opened windows
should be located in the vacated positions.

The positioning constants previously described allow you to position new windows
automatically. When used, those positioning constants concerned with staggering new
window placement will ensure that the Window Manager will use any vacated position for
the next new window.

Positioning a Saved Document Window on the DeskTop
When you open a saved document, you should replicate the size and location of the
window as it was when the document was last saved. When the user saves a document,
you must therefore save the user state rectangle and the current zoom state of the
window (that is, whether the window is in the user state or the standard state).

4-16 CLASSIC EDITION — Version 2.3 Windows

Some explanation of user state and standard state is necessary. The user state is the last
size and location the user, through sizing and dragging actions, established for a window.
The standard state is the size and location that your application determines is the most
convenient size for the window. For windows with full zoom boxes, this typically the gray
area of the screen minus three pixels all round.

The user and standard states are stored in the state data structure, whose handle is
assigned to the dataHandle field of the colour window structure:

struct WStateData
{

Rect userState; // Size and location established by user.
Rect stdState; // Size and location established by application.

};

typedef struct WStateData WStateData;
typedef WStateData *WStateDataPtr, **WStateDataHandle;

Returning to the matter of saving the user state and the current state of the window, for
windows with full zoom boxes you typically store this data as a custom resource in the
resource fork of the document file. The following is an application-defined data type
which will support this process by storing the user state rectangle and current zoom state
while the document remains open:

typedef struct
{

Rect userStateRect; // User state rectangle.
Boolean zoomState; // Window state: true = standard state, false = user state.

} windowState;

typedef windowState *windowStatePtr;
typedef windowStatePtr *windowStateHdl;

This structure can be transformed into an application-defined resource which may then be
stored in the resource fork of the document when the user saves the document.3

Drawing a Window's Contents
Your application is responsible for drawing a window's contents. It typically uses the
Control Manager to draw the window's controls and then draws the user data itself.

As stated at Chapter 2 — Low-Level and Operating System Events, if the window contains
a static display such as a picture, you can let the Window Manager take care of updating
the content region by assigning a handle to the picture in the windowPic field of the colour
window structure.

Managing Multiple Windows
Your application is likely to have multiple windows open on the desktop at once (perhaps
one or more document windows and one or more dialog boxes) and it will need to keep
track of them all.

You can use different strategies for keeping track of windows, including different kinds of
windows. As previously stated, the refCon field in the colour window structure is set aside
specifically for use by applications and can be used to store different kinds of data, such
as a number representing a window type or a handle to a structure containing data
relating to window management.

As an example, the refCon field could hold a number representing the type of dialog box or,
in the case of document windows, a handle to an application-defined document
structure. The document structure might typically hold a handle to the text being edited,

3 The demonstration program MoreResources.c at Chapter 17 — More on Resources shows how to save the window state
to the resource fork of a document file.

Windows CLASSIC EDITION — Version 2.3 4-17

handles to the scroll bars, a file reference number and a file system specification for the
document's file, plus a flag indicating whether data has changed since the last save, as
shown in this example application-defined document structure:

typedef struct
{

TEHandle editRec;
ControlHandle vScrollBar;
Controlhandle hScrollbar;
short fileRefNum;
FSSpec fileFSSpec;
boolean windowDirty;

} docStructure;

typedef docStructure *docStructurePtr;
typedef docStructurePtr *docStructureHdl;

For dialog boxes, a value of, say, 20 in the refCon field might specify a modeless dialog box
which accepts input for the Find command, while a value of, say, 21 might specify a
modeless dialog box that accepts input for a spelling checker. These reference constants
could then control branching to application-defined window management functions
specific to the particular dialog concerned.

Handling Events
Handling Mouse Events

When your application is active, it receives notice of all mouse-down events in the menu
bar or in one of its windows. When it receives a mouse-down event, your application
should call FindWindow to ascertain which window the mouse-down occurred in and to map
the cursor location to a window region. The application should then take the appropriate
action based on which window, and in which region of that window, the mouse-down
occurred.

Mouse-Downs in Inactive Windows

When you receive a mouse-down event in an inactive document window or modeless
dialog box, and if the active window is a document window or a modeless dialog box, you
should call SelectWindow, passing it the window pointer. SelectWindow re-layers the windows
as necessary, removes highlighting from the previously active window, brings the newly-
activated window to the front, highlights it and generates the activate and update events
necessary to tell all affected applications which windows must be redrawn.

Note that, if the active window is a modal or movable modal alert or dialog box, no action
is required by your application. Modal and movable modal alert and dialog boxes are
handled by the ModalDialog function, which does not pass the event to your application.

Handling Keyboard Events
Whenever your application is the foreground process, it receives key-down events for all
keyboard activity (except, of course, for the standard and user-defined Command-Shift-
number key sequences).

When you receive a key-down event, you should first check whether the user is holding
down a modifier key and another key at the same time. Your application should respond
to key-down events by inserting data into the document, changing the display or taking
other appropriate actions. Typically, your application provides feedback for standard
keystrokes by drawing the character on the screen.

4-18 CLASSIC EDITION — Version 2.3 Windows

Handling Update Events
The Window Manager maintains an update region, which represents the parts of your
content region that have been affected by changes to the desktop. The Event Manager
continually scans the updateRgn fields of the window structures of all the windows on the
desktop. If it finds an update region that is not empty, it generates an update event for
that window.

When your application receives an update event, it should redraw the content area. When
your application redraws the content area, the Window Manager ensures that it does not
accidentally draw into other windows by clipping all screen drawing to the visible region
of the window's colour graphics port. The visible region is that part of a colour graphics
port that is actually visible on screen, that is, the part that is not covered by other
windows. The Window Manager stores a handle to the visible region in the visRgn field of
the colour graphics port structure.

Before redrawing the content area, your application should call BeginUpdate and, when it
has completed the drawing, it should call EndUpdate. As shown at Fig 11, BeginUpdate
temporarily adjusts the visible region to equate to the intersection of the visible region
and the update region. Because QuickDraw limits its drawing to this temporarily modified
visible region, only those parts of the window which actually need updating are drawn.
BeginUpdate also clears the update region, thus ensuring that the Event Manager does not
continue sending an endless stream of update events.

When the drawing is completed, and as shown at Fig 11, EndUpdate restores the visible
region of the colour graphics port to the full visible region.

FIG 11 - EFFECTS OF BeginUpdate AND EndUpdate ON VISIBLE AND UPDATE REGIONS

BEFORE SCREEN CHANGE BEFORE BeginUpdate AFTER BeginUpdate AFTER EndUpdate
VISIBLE REGION LIMITED TO
INTERSECTION OF UPDATE
REGION AND VISIBLE REGION

VISIBLE REGION

UPDATE REGION

VISIBLE REGION RESTORED

The reason for these update region/visible region machinations is that the handle to the
update region is stored in the window structure's updateRgn field while the handle to the
visible region is stored in the colour graphics port structure's visRgn field. QuickDraw

Windows CLASSIC EDITION — Version 2.3 4-19

knows the colour graphics port structure intimately, but knows nothing about the window
structure or its updateRgn field. QuickDraw needs something it can work with, hence the
above process whereby the visible region is temporarily made the equivalent of the
update region while QuickDraw does its drawing.

Manipulating the Update Region

Your application can force or suppress update events by manipulating the update region.
You can call InValRect to add an area to the update region, thus causing an update event to
be generated and, as a consequence, that area to be redrawn. You can also remove an
area from the update region by calling ValidRect so as to decrease the time spent
redrawing. For example, an unaffected text area could be removed from the update
region of a window that is being resized.

Type-Dependent Update Functions

An application-defined update function should typically first determine whether the type
of window being updated is a document window or some other application-defined
window. If the window is a document window, an application-defined document window
updating function should be called. If the window is a modeless dialog box, an
application-defined updating function for that modeless dialog should be called.

Handling Activate Events
Activate events are generated by the Window Manager to inform your application that a
window is becoming active or is about to be made inactive. Each activate event specifies
the window to be changed and the direction of that change (that is, whether the window
is to be activated or deactivated).

Your application typically triggers activate events itself by calling SelectWindow following a
mouse-down event. SelectWindow brings the selected window to the front, removes
highlighting from the previously selected window and adds highlighting to the selected
window. It then generates two activate events, the first to tell your application to
deactivate the previously active window and the second to activate the newly activated
window.

When your application receives the event for the window about to be made inactive, it
should hide the controls and remove any highlighting of selections. When your
application receives the event for the newly activated window, it should draw the controls
and restore the content area as necessary, adding the insertion point in its former
location or highlighting previously highlighted sections as appropriate.

The application-defined function for handling activate events should typically first
determine whether the window being activated/deactivated is a document window or a
modeless dialog box. It should then perform the appropriate activation/deactivation
actions. The function does not need to check for modal alert or modal dialog boxes
because the Dialog Manager's ModalDialog function automatically handles activate events for
those windows.

Manipulating Windows
Moving a Window

When a mouse-down event occurs in the title bar, your application should call DragWindow,
which tracks the user's actions until the mouse button is released. DragWindow draws a
dotted outline of the window on the screen and moves the outline as the user moves the
mouse. When the user releases the mouse, the application should call MoveWindow, which
redraws the window in its new location.

4-20 CLASSIC EDITION — Version 2.3 Windows

Zooming a Window

Windows With Full Zoom Boxes

The zoom box allows the user to alternate quickly between two window sizes and
positions. These two sizes and positions are the user state and the standard state. To
amplify the previous description of user state and standard state:

• The user state is the window size and location established by the user. If your
application does not supply an initial user state, the user state is simply the size and
location of the window when it was created, until the user resizes it.

• The standard state is the window size and location that your application considers
most convenient. Typically, this might be the screen gray area minus three pixels
all round. In a word-processing program, however, a standard state window might
show a full page, if possible, or a page of full width and as much length as will fit on
the screen. If the user changes the page size using the print Style dialog box, the
application might adjust the standard state to reflect the new page size.

• If your application does not define a standard state, the Window Manager will
automatically set it to the entire gray region of the main screen minus a three-pixel
border on all sides. The user cannot change a window's standard state.

• The user and standard states are stored in a structure whose handle appears in the
dataHandle field of the colour window structure. The Window Manager sets the initial
values of the userState and stdState fields when it fills in the window structure and it
updates the userState whenever the user resizes the window.

When the user presses the mouse button with the cursor in the zoom box, FindWindow
"knows" whether the window is in the user state (zoomed-in) or the standard state
(zoomed-out). When the window is in the standard state, FindWindow returns inZoomIn,
meaning that the window is to be zoomed "in" to the user state. When the window is in
the user state, inZoomOut is returned, meaning that the window is to be zoomed "out" to the
standard state.

When FindWindow returns either inZoomIn or inZoomOut, your application should call TrackBox to
handle highlighting of the zoom box and to determine whether the cursor is inside or
outside the zoom box when the button is released. If TrackBox returns true, your application
should call ZoomWindow to resize the window, following which it should redraw the content
region.

Windows With Vertical or Horizontal
Zoom Boxes

For windows with vertical or horizontal zoom boxes, you will typically want to change the
size of the window when the zoom box is clicked, but not the location. This means that
your application will need to define both the standard state and the user state, setting
both states according to the current position of the window. You will thus need to
determine the current location of the window, and set the standard and user states,
immediately before the call to ZoomWindow.

Your application should ensure that, when a vertical zoom box is clicked, only the vertical
size of the associated window changes. Similarly, when a horizontal zoom box is clicked,
your application should ensure that only the horizontal size of the associated window
changes.

Windows CLASSIC EDITION — Version 2.3 4-21

Re-Sizing a Window
When the user presses the mouse button in the size box, your application should call
GrowWindow. This function displays a grow image, a dotted outline of the window frame
and scroll bar area which expands and contracts as the user drags the size box.

To avoid unmanageably large or small windows, you supply upper and lower size limits
when you call GrowWindow. The sizeRect parameter of GrowWindow specifies the upper and
lower size limits in a single structure of type Rect. Note that the values in the structure
represent window dimensions, not screen coordinates:

• sizeRect.top represents the minimum vertical measurement.

• sizeRect.left represents the minimum horizontal measurement.

• sizeRect.bottom represents the maximum vertical measurement.

• sizeRect.right represents the maximum horizontal measurement.

Most applications specify a minimum size big enough to include all parts of the structure
area and the scroll bars. Because the user cannot move the cursor beyond the edges of
the screen, you can safely set the maximum size to the largest possible rectangle.

When the user releases the mouse button, GrowWindow returns a long integer which
describes the window's new height (in the high-order word) and width (in the low-order
word). A value of zero indicates that the window size did not change. When GrowWindow
returns a value other than zero, you call SizeWindow to resize the window.

When the mouse-button is released and GrowWindow returns a non-zero value, the
application-defined function for re-sizing windows should call SizeWindow to draw the
window in its new size. The scroll bars and window contents should then be adjusted to
the new size.

Closing a Window
The user closes a window by either clicking in the close box or by choosing Close from the
File menu.

When the user clicks in the close box, TrackGoAway should be called to track the mouse until
the user releases the mouse button. If TrackGoAway returns true, meaning that the user did
not release the mouse button outside the close box, your application should invoke its
function for closing down the window.

The specific steps you take when closing a window depend on what kind of information
the window contains and whether the contents need to be saved. The application-defined
function should cater for different types of windows, that is, modeless dialog boxes (which
may be merely hidden with HideWindow rather than closed completely) and standard
document windows. In the latter case, the function should check whether any changes
have been made to the document since it was opened and, if so, provide the user with an
opportunity to save the document to a file before closing the window. (This whole process
is explained in detail at Chapter 16 — Files.)

DisposeWindow and CloseWindow

DisposeWindow removes a window from the screen, removes it from the window list, and
discards all of its data storage, including the window structure. DisposeWindow should be
used if you allowed the system to allocate storage for the window structure, that is, if you
passed NULL as the wStorage parameter in the NewCWindow or GetNewCWindow call.

4-22 CLASSIC EDITION — Version 2.3 Windows

CloseWindow removes a window from the screen, removes it from the window list, and
discards its data storage except for the window structure. CloseWindow should be used
when you have allocated storage for the window structure manually, that is, if you created
a nonrelocatable block for the window structure and passed the pointer as the wStorage
parameter in the NewCWindow or GetNewCWindow call. In this case, the nonrelocatable block
containing the window structure must be disposed of separately.

Hiding and Showing a Window
Whenever the user clicks the close box, you ordinarily remove the window from the
screen. Sometimes, however, you might find it more convenient to merely hide the
window instead of removing its data structures. If your application includes, for example,
a Find modeless dialog box which searches for a string, you might want to keep its
structures in memory as long as the user is working. In this case, a click on the close box
should simply hide the window through a call to HideWindow. Then, when the user next
chooses the Find command, the dialog box is already available, in the same location and
with the same text as when it was last used.

ShowWindow will make the window visible and SelectWindow will make it the active window.

Providing Help Balloons
Help Balloons —'hrct' and 'hwin' Resources

The system software provides help balloons for the title bar, draggable area, close box,
zoom box, and collapse box for windows created with the standard WDEFs. Where
applicable, you should provide help balloons for the content area of your windows.

How you choose to provide help balloons for the content area depends mainly on whether
your windows are static or dynamic. A static window does not change its title or
reposition any of the objects within its content area. A dynamic window can reposition
any of it objects within its content area, or its title may change. For example, any window
that scrolls past areas of interest to the user is a dynamic window because the object with
associated help balloons can change location as the user scrolls. The following addresses
the case of static windows only.

Help balloons for static document and utility windows are defined in 'hrct' and 'hwin'
resources.

Creating 'hrct' and 'hwin' Resources Using Resorcerer
The 'hrct' (rectangle help) resource is used to define hot rectangles for displaying help
balloons in a static window and to specify the help messages for those balloons. All 'hrct'
resources must have resource IDs equal to or greater than 128. Fig 12 shows an 'hrct'
resource being created using Resorcerer.

Windows CLASSIC EDITION — Version 2.3 4-23

FIG 12 - CREATING AN 'hrct' RESOURCE USING RESORCERER

Use the string specified within this component of this 'hrct' resource. (Specified in this example.)
Use the picture stored in the specified 'PICT' resource.
Use the specified text string stored in the specified 'STR#' resource.
Use the styled text stored in the specified 'TEXT' and 'styl' resources.
Use the text string stored in the specified 'STR ' resource.
No help message. Skip this item.

Pascal string in
this component
Coordinates of
balloon's tip

Coordinates of
hot rectangle

Help message

HELP MANAGER VERSION

OPTIONS

BALLOON DEFINITION FUNCTION

VARIATION CODE

HOT RECTANGLE COMPONENT COUNT

FIRST HOT RECTANGLE COMPONENT

LAST HOT RECTANGLE COMPONENT

Help Manager version

Variation code for WDEF. Governs the location of the balloon's tip.
The number of hot rectangle components defined in the rest of this resource.

Header component

Resource ID of the window definition function (WDEF) used for drawing help balloons.
The standard WDEF's resource ID is 126. This can be specified by 0 in Resorcerer.

STRUCTURE OF A COMPILED hrct' RESOURCE

A number of options. 0, below, is irrelevant. 1 is not relevant for static windows. 2 and
3 relate to the three different ways that the Help Manager draws and removes balloons.
4 is used in 'hwin' resources only.

SIZE

TYPE OF DATA

TIP'S COORDINATES

HOT RECTANGLE

TEXT STRING

ALIGNMENT BYTES

The structure of the hot rectangle component depends
on the item chosen in the Message Type pop-up menu
in the Resorcerer editing window below, which sets the
TYPE OF DATA field. The pop-up menu items
specify the format of the help balloon messages. The
available formats are as follows:

STRUCTURE OF HOT RECTANGLE COMPONENT

Use these strings
Use 'PICT' resources
Use 'STR#' resources
Used styled text resources
Use 'STR ' resources
Skip missing item
RESORCERER 'hrct' RESOURCE EDITING WINDOW

The 'hwin' (window help) resource is used to associate the help balloons defined in an 'hrct'
resource with a particular window. All 'hrct' resources must have resource IDs equal to or
greater than 128. Fig 13 shows an 'hwin' resource being created using Resorcerer.

4-24 CLASSIC EDITION — Version 2.3 Windows

FIG 13 - CREATING AN 'hwin' RESOURCE USING RESORCERER

HELP MANAGER VERSION

OPTIONS

WINDOW COMPONENT COUNT

RESOURCE ID OF 'hrct' OR 'hdlg' RESOURCE

TYPE OF ASSOCIATED RESOURCE ('hrct' OR 'hdlg')

LENGTH OF COMPARISON STRING,
OR A windowKind VALUE

ALIGNMENT BYTES

WINDOW TITLE STRING FOR COMPARISON

RESOURCE ID OF 'hrct' OR 'hdlg' RESOURCE

TYPE OF ASSOCIATED RESOURCE ('hrct' OR 'hdlg')

LENGTH OF COMPARISON STRING,
OR A windowKind VALUE

ALIGNMENT BYTES

WINDOW TITLE STRING FOR COMPARISON

Help Manager version

The number of window components defined in the rest of the resource.

Header component

One option only. (0, 1, 2, and 3, below, are irrelevant to 'hwin' resources.) 4 must be
set to On to match windows containing a specified number of sequential characters
starting with any character in the window title. If 4 is Off, the Help Manager matches
characters starting with the first character of the window title.

Specifies the type of the associated resource ('hrct' for static windows).

Specifies the resource ID of the associated 'hrct' resource that specifies
the help messages for the window.

The 'hwin' resource identifies windows by their titles or by the value in the
windowKind field of the window's colour window structure. Accordingly, your
window's colour window structure must specify either a title or a windowKind
value that adequately distinguishes it from other windows. (Note that
windowKind values of 0, 1, and 3 to 7 are reserved by the system and that
dialog and alert boxes have 2 assigned to their windowKind field. Your ability
to distinguish between untitled dialog and alert boxes is thus somewhat
limited.)

STRUCTURE OF A COMPILED 'hwin' RESOURCE

Specifies the window title string. If the previous field is a positive
integer, this field consists of characters that the Help Manager uses to
match this component to a window by the window's title. If the previous
field is negative, this is an empty string.

Last window item component

First window item component

You can list all of your windows within one 'hwin' resource, or you can create
separate 'hwin' resources for your separate windows. You need separate 'hwin'
resources for windows that require different options (for example, one requires
a precise string match, another matches the string anywhere in the title.)

RESORCERER 'hwin' RESOURCE EDITING WINDOW

Specifies the length of the comparison string or a windowKind value. If the
integer of this element is positive, this is the number of characters used for
matching this component to a window's title. If the integer is negative, this
is the value used for matching this component to a window by the value in
the windowKind field of the window's colour window structure. (See below.)

Windows CLASSIC EDITION — Version 2.3 4-25

Main Window Manager Constants, Data Types and
Functions

In the following:

• The constants, data types, and functions introduced with Mac OS 8 and the
Appearance Manager are shown on a light gray background.

• Those older constants, data types and functions affected by the introduction of Mac
OS 8 and the Appearance Manager, but which may still be used in certain
circumstances, are shown against a black background.

Constants
Theme-Compliant Window Types
kWindowDocumentProc = 1024 // Document windows
kWindowGrowDocumentProc = 1025
kWindowVertZoomDocumentProc = 1026
kWindowVertZoomGrowDocumentProc = 1027
kWindowHorizZoomDocumentProc = 1028
kWindowHorizZoomGrowDocumentProc = 1029
kWindowFullZoomDocumentProc = 1030
kWindowFullZoomGrowDocumentProc = 1031
kWindowPlainDialogProc = 1040 // Dialogs and Alerts
kWindowShadowDialogProc = 1041
kWindowModalDialogProc = 1042
kWindowMovableModalDialogProc = 1043
kWindowAlertProc = 1044
kWindowMovableAlertProc = 1045
kWindowFloatProc = 1057 // Utility (floating) windows
kWindowFloatGrowProc = 1059
kWindowFloatVertZoomProc = 1061
kWindowFloatVertZoomGrowProc = 1063
kWindowFloatHorizZoomProc = 1065
kWindowFloatHorizZoomGrowProc = 1067
kWindowFloatFullZoomProc = 1069
kWindowFloatFullZoomGrowProc = 1071
kWindowFloatSideProc = 1073
kWindowFloatSideGrowProc = 1075
kWindowFloatSideVertZoomProc = 1077
kWindowFloatSideVertZoomGrowProc = 1079
kWindowFloatSideHorizZoomProc = 1081
kWindowFloatSideHorizZoomGrowProc = 1083
kWindowFloatSideFullZoomProc = 1085
kWindowFloatSideFullZoomGrowProc = 1087

Window Kind
kDialogWindowKind = 2
kApplicationWindowKind = 8

Part Codes Returned by FindWindow
inDesk = 0
inNoWindow = 0
inMenuBar = 1
inSysWindow = 2
inContent = 3
inDrag = 4
inGrow = 5
inGoAway = 6
inZoomIn = 7
inZoomOut = 8
inCollapseBox = 11

Window Regions
kWindowTitleBarRgn = 0
kWindowTitleTextRgn = 1
kWindowCloseBoxRgn = 2

4-26 CLASSIC EDITION — Version 2.3 Windows

kWindowZoomBoxRgn = 3
kWindowDragRgn = 5
kWindowGrowRgn = 6
kWindowCollapseBoxRgn = 7
kWindowStructureRgn = 32
kWindowContentRgn = 33

Data Types
Colour Window Structure
struct CWindowRecord
{

CGrafPort port; // Window's colour graphics port.
short windowKind; // Class of window.
Boolean visible; // true if window is visible.
Boolean hilited; // true if window is highlighted.
Boolean goAwayFlag; // true if window has close box.
Boolean spareFlag; // true if window has zoom box.
RgnHandle strucRgn; // Handle to structure region.
RgnHandle contRgn; // Handle to content region.
RgnHandle updateRgn; // Handle to update region.
Handle windowDefProc; // Handle to window definition function.
Handle dataHandle; // Handle to window state data structure.
StringHandle titleHandle; // Handle to window's title.
short titleWidth; // Title width in pixels.
ControlRef controlList; // Handle to window's control list.
CWindowPeek nextWindow; // Pointer to next window structure in window list.
PicHandle windowPic; // Handle to an optional picture.
long refCon; // Reference constant.

};
typedef struct CWindowRecord CWindowRecord;
typedef CWindowRecord *CWindowPeek;

State Data Structure
struct WStateData
{

Rect userState; // User state.
Rect stdState; // Standard state.

};
typedef struct WStateData WStateData;
typedef WStateData *WStateDataPtr, **WStateDataHandle;

Functions
Initializing the Window Manager
void InitWindows(void);

Creating Windows
WindowPtr GetNewCWindow(short windowID,void *wStorage,WindowPtr behind);
WindowPtr NewCWindow(void *wStorage,const Rect *boundsRect,ConstStr255Param title,Boolean

visible,short procID,WindowPtr behind,Boolean goAwayFlag,long refCon);

Naming Windows
void GetWTitle(WindowPtr theWindow,Str255 title);
void SetWTitle(WindowPtr theWindow,ConstStr255Param title);

Displaying Windows
void DrawGrowIcon(WindowPtr theWindow);
void SelectWindow(WindowPtr theWindow);
void ShowWindow(WindowPtr theWindow);
void HideWindow(WindowPtr theWindow);
void ShowHide(WindowPtr theWindow,Boolean showFlag);
void HiliteWindow(WindowPtr theWindow,Boolean fHilite);
void BringToFront(WindowPtr theWindow);
void SendBehind(WindowPtr theWindow,WindowPtr behindWindow);

Windows CLASSIC EDITION — Version 2.3 4-27

Retrieving Mouse Information
short FindWindow(Point thePoint,WindowPtr *theWindow);
WindowPtr FrontWindow(void);

Moving Windows
void MoveWindow(WindowPtr theWindow,short hGlobal,short vGlobal,Boolean front);
void DragWindow(WindowPtr theWindow,Point startPt,const Rect *boundsRect);
long DragGrayRgn(RgnHandle theRgn,Point startPt,const Rect *boundsRect,const Rect

*slopRect,short axis,DragGrayRgnProcPtr actionProc);

Resizing Windows
void SizeWindow(WindowPtr theWindow,short w,short h,Boolean fUpdate);
long GrowWindow(WindowPtr theWindow,Point startPt,const Rect *bBox);

Zooming Windows
Boolean TrackBox(WindowPtr theWindow,Point thePt,short partCode);
void ZoomWindow(WindowPtr theWindow,short partCode,Boolean front);

Closing and Deallocating Windows
Boolean TrackGoAway(WindowPtr theWindow,Point thePt);
void CloseWindow(WindowPtr theWindow);
void DisposeWindow(WindowPtr theWindow);

Maintaining the Update Region
void BeginUpdate(WindowPtr theWindow);
void EndUpdate(WindowPtr theWindow);
void InvalRect(const Rect *badRect);
void InvalRgn(RgnHandle badRgn);
void ValidRect(const Rect *goodRect);
void ValidRgn(RgnHandle goodRgn);

Setting and Retrieving Other Window Characteristics
void SetWindowPic(WindowPtr theWindow,PicHandle pic);
PicHandle GetWindowPic(WindowPtr theWindow);
long GetWRefCon(WindowPtr theWindow);
void SetWRefCon(WindowPtr theWindow,long data);
short GetWVariant(WindowPtr theWindow);

Retrieving Window Information
OSStatus GetWindowRegion(WindowPtr inWindow,WindowRegionCode inRegionCode,

RgnHandle ioWinRgn)

Collapsing Windows
Boolean IsWindowCollapsable(WindowPtr inWindow);
Boolean IsWindowCollapsed(WindowPtr inWindow);
OSStatus CollapseWindow(WindowPtr inWindow,Boolean inCollapseIt);
OSStatus CollapseAllWindows(Boolean inCollapseEm);

Manipulating the Desktop
void SetDeskCPat(PixPatHandle deskPixPat);
void GetWMgrPort(GrafPtr *wPort);
void GetCWMgrPort(CGrafPtr *wMgrCPort);
RgnHandle LMGetGrayRgn(void);

4-28 CLASSIC EDITION — Version 2.3 Windows

Demonstration Program
// ◊◊
// Windows1.c
// ◊◊
//
// This program:
//
// • Allows the user to open any number of kWindowFullZoomGrowDocumentProc windows, up
// to the maximum specified by the constant assigned to the symbolic name kMaxWindows,
// using the File menu Open Command or its keyboard equivalent.
//
// • Allows the user to close opened windows using the close box, the File menu Close
// command or the Close command's keyboard equivalent.
//
// • Adds menu items representing each window to a Windows menu as each window is
// opened (A keyboard equivalent is included in each menu item for windows 1 to 9.)
//
// • Deletes menu items from the Windows menu as each window is closed.
//
// • Fills each window with a plain colour pattern as a means of proving, for
// demonstration purposes, the window update process.
//
// • Facilitates activation of a window by mouse selection.
//
// • Facilitates activation of a window by Windows menu selection.
//
// • Correctly performs all dragging, zooming and sizing operations.
//
// • Demonstrates the provision of balloon help for static windows.
//
// The program utilises the following resources:
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Windows menus
// (preload, non-purgeable).
//
// • A 'WIND' resource (purgeable) (initially not visible).
//
// • An 'ALRT' resource and 'DITL' resource for use by Stop Alerts (purgeable).
//
// • A 'STR#' resource containing strings for the window title and error Alert box
// (purgeable).
//
// • An 'hrct' resource and an 'hwin' resource for balloon help (both purgeable).
//
// • Ten 'ppat' (pixel pattern) resources (purgeable), which are used to draw a plain
// colour pattern in the windows
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch,
// and is32BitCompatible flags set.
//
// ◊◊

//
……
……………………………………… includes

#include <Appearance.h>
#include <Devices.h>
#include <Sound.h>
#include <ToolUtils.h>

//
……
………………………………………… defines

#define mApple 128
#define iAbout 1
#define mFile 129
#define mEdit 130
#define iNew 1
#define iClose 4
#define iQuit 11
#define mWindows 131
#define rNewWindow 128

Windows CLASSIC EDITION — Version 2.3 4-29

#define rMenubar 128
#define rStringList 128
#define sUntitled 1
#define eMaxWindows2
#define eFailWindow 4
#define eFailMenus 5
#define eFailMemory 6
#define rPixelPattern 128
#define kMaxWindows 10
#define MAXLONG 0x7FFFFFFF

#define MIN(a,b) ((a) < (b) ? (a) : (b))

//
……
………………… global variables

Boolean gDone;
Boolean gInBackground;
Ptr gPreAllocatedBlockPtr;
SInt32 gUntitledWindowNumber = 0;
SInt32 gCurrentNumberOfWindows = 0;
WindowPtr gWindowPtrArray[kMaxWindows + 2];

//
……
………… function prototypes

void main (void);
void doInitManagers (void);
void eventLoop (void);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doUpdate (EventRecord *);
void doUpdateWindow (EventRecord *);
void doActivate (EventRecord *);
void doActivateWindow (WindowPtr,Boolean);
void doOSEvent (EventRecord *);
void doMenuChoice (SInt32);
void doFileMenu (SInt16);
void doWindowsMenu (SInt16);
void doNewWindow (void);
void doCloseWindow (void);
void doInvalidateScrollBarArea(WindowPtr);
void doSetStandardState (WindowPtr);
void doConcatPStrings (Str255,Str255);
void doErrorAlert (SInt16);

// ◊◊◊ main

void main(void)
{

Handle menubarHdl;
MenuHandle menuHdl;
SInt16 a;

// …………………………………………………… get nonrelocatable block low in heap for first window structure

if(!(gPreAllocatedBlockPtr = NewPtr(sizeof(WindowRecord))))
doErrorAlert(eFailMemory);

//
……
…… initialise managers

doInitManagers();

// …… cause the Appearance-compliant menu bar definition function to be called directly

RegisterAppearanceClient();

// …… set
up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

doErrorAlert(eFailMenus);
SetMenuBar(menubarHdl);
DrawMenuBar();

4-30 CLASSIC EDITION — Version 2.3 Windows

menuHdl = GetMenuHandle(mApple);
if(menuHdl == NULL)

doErrorAlert(eFailMenus);
else

AppendResMenu(menuHdl,'DRVR');

// …… initialize
window pointer array

for(a=0;a<kMaxWindows+2;a++)
gWindowPtrArray[a] = NULL;

//
……
……………… enter eventLoop

eventLoop();
}

// ◊◊◊ doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();
MoreMasters();
MoreMasters();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

}

// ◊◊ eventLoop

void eventLoop(void)
{

EventRecord eventStructure;

gDone = false;

while(!gDone)
{

if(WaitNextEvent(everyEvent,&eventStructure,MAXLONG,NULL))
doEvents(&eventStructure);

if(gPreAllocatedBlockPtr == NULL)
if(!(gPreAllocatedBlockPtr = NewPtr(sizeof(WindowRecord))))

doErrorAlert(eFailMemory);
}

}

// ◊◊◊ doEvents

void doEvents(EventRecord *eventStrucPtr)
{

SInt8charCode;

switch(eventStrucPtr->what)
{

case mouseDown:
doMouseDown(eventStrucPtr);
break;

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)

doMenuChoice(MenuEvent(eventStrucPtr));
break;

Windows CLASSIC EDITION — Version 2.3 4-31

case updateEvt:
doUpdate(eventStrucPtr);
break;

case activateEvt:
doActivate(eventStrucPtr);
break;

case osEvt:
doOSEvent(eventStrucPtr);
HiliteMenu(0);
break;

}
}

// ◊◊ doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
SInt16 partCode;
Rect growRect;
SInt32 newSize;

partCode = FindWindow(eventStrucPtr->where,&windowPtr);

switch(partCode)
{

case inMenuBar:
doMenuChoice(MenuSelect(eventStrucPtr->where));
break;

case inContent:
if(windowPtr != FrontWindow())

SelectWindow(windowPtr);
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
break;

case inGoAway:
if(TrackGoAway(windowPtr,eventStrucPtr->where) == true)

doCloseWindow();
break;

case inGrow:
growRect = qd.screenBits.bounds;
growRect.top = 80;
growRect.left = 160;
newSize = GrowWindow(windowPtr,eventStrucPtr->where,&growRect);
if(newSize != 0)
{

doInvalidateScrollBarArea(windowPtr);
SizeWindow(windowPtr,LoWord(newSize),HiWord(newSize),true);
doInvalidateScrollBarArea(windowPtr);

}
break;

case inZoomIn:
case inZoomOut:

if(TrackBox(windowPtr,eventStrucPtr->where,partCode))
{

SetPort(windowPtr);
EraseRect(&windowPtr->portRect);
ZoomWindow(windowPtr,partCode,false);

}
break;

}
}

// ◊◊◊ doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;

windowPtr = (WindowPtr) eventStrucPtr->message;

4-32 CLASSIC EDITION — Version 2.3 Windows

BeginUpdate(windowPtr);

SetPort(windowPtr);
doUpdateWindow(eventStrucPtr);

EndUpdate(windowPtr);
}

// ◊◊◊ doUpdateWindow

void doUpdateWindow(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
Rect theRect;
SInt32 windowRefCon;
PixPatHandle pixpatHdl;
RGBColor whiteColour = { 0xFFFF,0xFFFF,0xFFFF };
SInt16 a;

windowPtr = (WindowPtr) eventStrucPtr->message;

EraseRgn(windowPtr->visRgn);

theRect = windowPtr->portRect;
theRect.right -= 15;
theRect.bottom -= 15;

windowRefCon = GetWRefCon(windowPtr);
pixpatHdl = GetPixPat(rPixelPattern + windowRefCon);
FillCRect(&theRect,pixpatHdl);
DisposePixPat(pixpatHdl);

DrawGrowIcon(windowPtr);

RGBForeColor(&whiteColour);
TextSize(10);

for(a=0;a<2;a++)
{

SetRect(&theRect,a*90+10,10,a*90+90,33);
FrameRect(&theRect);
MoveTo(a*90+18,25);

DrawString("\pHot Rectangle");
}

}

// ◊◊◊ doActivate

void doActivate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
Boolean becomingActive;

windowPtr = (WindowPtr) eventStrucPtr->message;

becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);

doActivateWindow(windowPtr,becomingActive);
}

// ◊◊◊ doActivateWindow

void doActivateWindow(WindowPtr windowPtr,Boolean becomingActive)
{

MenuHandle windowsMenu;
SInt16 menuItem, a = 1;

windowsMenu = GetMenuHandle(mWindows);

while(gWindowPtrArray[a] != windowPtr)
a++;

menuItem = a;

if(becomingActive)
CheckMenuItem(windowsMenu,menuItem,true);

else
CheckMenuItem(windowsMenu,menuItem,false);

}

Windows CLASSIC EDITION — Version 2.3 4-33

// ◊◊ doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{

switch((eventStrucPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:
if(gCurrentNumberOfWindows > 0)
{

gInBackground = (eventStrucPtr->message & resumeFlag) == 0;
doActivateWindow(FrontWindow(),!gInBackground);

}
break;

}
}

// ◊◊◊ doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{

SInt16 menuID, menuItem;
Str255 itemName;
SInt16 daDriverRefNum;

menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
if(menuItem == iAbout)

SysBeep(10);
else
{

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);

}
break;

case mFile:
doFileMenu(menuItem);
break;

case mWindows:
doWindowsMenu(menuItem);
break;

}

HiliteMenu(0);
}

// ◊◊◊ doFileMenu

void doFileMenu(SInt16 menuItem)
{

switch(menuItem)
{

case iNew:
doNewWindow();
break;

case iClose:
doCloseWindow();
break;

case iQuit:
gDone = true;
break;

}
}

// ◊◊ doWindowsMenu

void doWindowsMenu(SInt16 menuItem)
{

4-34 CLASSIC EDITION — Version 2.3 Windows

WindowPtr windowPtr;

windowPtr = gWindowPtrArray[menuItem];
SelectWindow(windowPtr);

}

// ◊◊ doNewWindow

void doNewWindow(void)
{

WindowPtr windowPtr;
Str255 untitledString;
Str255 numberAsString;
MenuHandle windowsMenu;

if(gCurrentNumberOfWindows == kMaxWindows)
{

doErrorAlert(eMaxWindows);
return;

}

if(!(windowPtr = GetNewCWindow(rNewWindow,gPreAllocatedBlockPtr,(WindowPtr)-1)))
doErrorAlert(eFailWindow);

gPreAllocatedBlockPtr = NULL;

GetIndString(untitledString,rStringList,sUntitled);
NumToString(++gUntitledWindowNumber,numberAsString);
doConcatPStrings(untitledString,numberAsString);
SetWTitle(windowPtr,untitledString);

doSetStandardState(windowPtr);

ShowWindow(windowPtr);

if(gUntitledWindowNumber <10)
{

doConcatPStrings(untitledString,"\p/");
NumToString(gUntitledWindowNumber,numberAsString);
doConcatPStrings(untitledString,numberAsString);

}
windowsMenu = GetMenu(mWindows);
InsertMenuItem(windowsMenu,untitledString,CountMenuItems(windowsMenu));

SetWRefCon(windowPtr,gCurrentNumberOfWindows);

gCurrentNumberOfWindows ++;
gWindowPtrArray[gCurrentNumberOfWindows] = windowPtr;

if(gCurrentNumberOfWindows == 1)
{

EnableItem(GetMenu(mFile),iClose);
EnableItem(GetMenu(mWindows),0);
DrawMenuBar();

}
}

// ◊◊ doCloseWindow

void doCloseWindow(void)
{

WindowPtr windowPtr;
MenuHandle windowsMenu;
SInt16 a = 1;

windowPtr = FrontWindow();
CloseWindow(windowPtr);
DisposePtr((Ptr) (WindowPeek) windowPtr);
gCurrentNumberOfWindows --;

windowsMenu = GetMenu(mWindows);
while(gWindowPtrArray[a] != windowPtr)

a++;
gWindowPtrArray[a] = NULL;
DeleteMenuItem(windowsMenu,a);

for(a=1;a<kMaxWindows+1;a++)
{

if(gWindowPtrArray[a] == NULL)

Windows CLASSIC EDITION — Version 2.3 4-35

{
gWindowPtrArray[a] = gWindowPtrArray[a+1];
gWindowPtrArray[a+1] = NULL;

}
}

if(gCurrentNumberOfWindows == 0)
{

DisableItem(GetMenu(mFile),iClose);
DisableItem(GetMenu(mWindows),0);
DrawMenuBar();

}
}

// ◊◊ doInvalidateScrollBarArea

void doInvalidateScrollBarArea(WindowPtr windowPtr)
{

Rect tempRect;

SetPort(windowPtr);

tempRect = windowPtr->portRect;
tempRect.left = tempRect.right - 15;
InvalRect(&tempRect);

tempRect = windowPtr->portRect;
tempRect.top = tempRect.bottom - 15;
InvalRect(&tempRect);

}

// ◊◊◊ doSetStandardState

void doSetStandardState(WindowPtr windowPtr)
{

WindowPeek windowRecPtr;
WStateData *winStateDataPtr;
Rect tempRect;

tempRect = qd.screenBits.bounds;
windowRecPtr = (WindowPeek) windowPtr;
winStateDataPtr = (WStateData *) *(windowRecPtr->dataHandle);

SetRect(&(winStateDataPtr->stdState),tempRect.left+40,tempRect.top+60,
tempRect.right-40,tempRect.bottom-40);

}

// ◊◊◊ doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{

SInt16 appendLength;

appendLength = MIN(appendString[0],255 - targetString[0]);

if(appendLength > 0)
{

BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
targetString[0] += appendLength;

}
}

// ◊◊◊ doErrorAlert

void doErrorAlert(SInt16 errorType)
{

AlertStdAlertParamRec paramRec;
Str255 labelText;
Str255 narrativeText;
SInt16 itemHit;

paramRec.movable = false;
paramRec.helpButton = false;
paramRec.filterProc = NULL;
paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
paramRec.cancelText = NULL;
paramRec.otherText = NULL;
paramRec.defaultButton = kAlertStdAlertOKButton;
paramRec.cancelButton = 0;

4-36 CLASSIC EDITION — Version 2.3 Windows

paramRec.position = kWindowAlertPositionMainScreen;

GetIndString(labelText,rStringList,errorType);

if(errorType == eMaxWindows)
{

GetIndString(narrativeText,rStringList,errorType + 1);
StandardAlert(kAlertCautionAlert,labelText,narrativeText,¶mRec,&itemHit);

}
else
{

StandardAlert(kAlertStopAlert,labelText,0,¶mRec,&itemHit);
ExitToShell();

}
}

// ◊◊

Demonstration Program Comments
When this program is run, the user should:

• Open and close windows using both the Open and Close commands from the File menu and their keyboard
equivalents, noting that, whenever a window is opened or closed, a menu item representing that window is added
to, or deleted from, the Windows menu.

• Note that keyboard equivalents are added to the menu items in the Windows menu for the first nine windows
opened.

• Activate individual windows by both clicking the content region and pressing the keyboard equivalent for the
window.

• Send the application to the background and bring it to the foreground, noting window activation/deactivation.

• Zoom, close, and resize windows using the zoom, close and size boxes, noting window updating and activation.

• Choose Show Balloons from the Help menu and move the cursor over the hot rectangles in any window.

If an attempt is made to open more than 10 windows, a modal alert box appears. If Show Balloons has been chosen, the
user will note that the windows are not updated when overlaying balloons are closed. The reason for this, and the cure, is
addressed at Chapter 8 — Dialogs and Alerts.

#define
The first ten #defines establish constants representing menu IDs and resources, and window and menu bar resources. The
next six establish constants representing the resource ID of a 'STR#' resource and the various strings in that resource.
rPixelPattern represents the resource ID of the first of ten 'ppat' (pixel pattern) resources.

kMaxWindows controls the maximum number of windows allowed to be open at one time. MAXLONG is defined as the
maximum possible long value. (This will be assigned to WaitNextEvent's sleep parameter.) The (fairly common) macro
which follows is required by the application-defined string concatenation function doConcatPStrings.

Global Variables
The global variable gDone, when set to true, causes the main event loop to be exited and the program to terminate.
gInBackground relates to foreground/background switching.

gPreAllocatedBlockPtr will be assigned a pointer to a pre-allocated block of memory for a window structure.
gUntitledWindowNumber keeps track of the window numbers to be inserted into the window's title bar. This number is
incremented each time a new window is opened. gCurrentNumberOfWindows keeps track of how many windows are open at
any one time.

gWindowPtrArray[] is central to the matter of maintaining an association between item numbers in the Windows menu and
the windows to which they refer, regardless of how many windows are opened and closed, and in what sequence. When, for
example, a Windows menu item is chosen, the program must be able to locate the window structure for the window
represented by that menu item number so as to activate the correct window.

The strategy adopted by this program is to assign the pointers for each opened window to the elements of
gWindowPtrArray[], starting with gWindowPtrArray[1] and leaving gWindowPtrArray[0] unused. If, for example, six windows
are opened in sequence, gWindowPtrArray[1] to gWindowPtrArray[6] are assigned the window pointers for each of those six
windows. (At the same time, menu items representing each of those windows are progressively added to the Windows
menu.)

If, say, the third window opened is then closed, gWindowPtrArray[3] is set to NULL and the window pointers in
gWindowPtrArray[4] to gWindowPtrArray[6] are moved down in the array to occupy gWindowPtrArray[3] to

Windows CLASSIC EDITION — Version 2.3 4-37

gWindowPtrArray[5]. Since the Windows menu item for the third window is deleted from the menu when the window is
closed, there remains five windows and their associated menu items, the "compaction" of the array having maintained a
direct relationship between the number of the array element to which each window pointer is assigned and the number of
the menu item for that window.

main
The first line in the main function requires some explanation. When a window is created, its window structure is contained
in a nonrelocatable block of memory. Any program that allows the user to open many windows at any time during program
execution must have a strategy for allocating all window structures as low in the heap as possible, since nonrelocatable
blocks scattered within the heap contribute to memory fragmentation and impede effective heap compaction by the Memory
Manager.

The best times to allocate nonrelocatable blocks so as to ensure that they are located as low in the heap as possible are:

• At the beginning of the program (just before the system software managers are initialised).

• At the bottom of the event loop just after all events have been handled to completion. At this time, the heap is as
empty as it will ever be.

This program adopts that strategy. The first line in main() pre-allocates a nonrelocatable block which will later be used by
the window structure of the first window to be created. The pointer returned by the first call to GetNewCWindow, which will
be copied to gWindowPtrArray[1], will point to this block. gPreAllocatedBlockPtr will then be set to NULL. At the bottom of
the event loop, gPreAllocatedBlockPtr will be checked. If it contains NULL, the pre-allocated block must now be occupied by
a window structure, in which circumstance a new block will be allocated in preparation for the next window to be opened.

If the call to NewPtr fails, the following line invokes an Alert box.

The system software managers are then initialised.

The call to RegisterAppearanceClient means that the new Appearance-compliant menu bar definition function (resource ID
63) will be used regardless of whether system-wide Appearance is selected on or off in the Appearance control panel.

The next block sets up the menus. Note that error handling involving the invocation of alert boxes is introduced in this
program. If an error occurs, the application-defined function doErrorAlert will display an alert box advising of the nature of
the error before terminating the program.

In the final three lines, gWindowPtrArray[] is initialised and the main event loop is entered.

doInitManagers
Note that MoreMasters must be called four times to provide sufficient master pointers for this particular program. (The
requirement for two calls to MoreMasters was determined by watching master pointer usage during program execution
using ZoneRanger.)

eventLoop
eventLoop will exit when gDone is set to true, which occurs when the user selects Quit from the File menu. (As an aside,
note that the sleep parameter in the WaitNextEvent call is set to MAXLONG, which is defined as the maximum possible long
value.)

At the bottom of the event loop, a new nonrelocatable block is allocated in preparation for the next window to be opened if
the global variable gPreAllocatedBlockPtr contains NULL.

doEvents
doEvents switches according to the event type received.

mouseDown, upDate, activateEvt and osEvt events are of significance to the windows aspects of this demonstration. To that
extent, keyDown events are significant only with regard to Windows menu keyboard equivalents.

Note that the call to HiliteMenu at the second last line is required to unhighlight the Apple menu title when the application is
brought to the foreground again following a period of dalliance with an item in the Apple menu (other than the About…
item).

doMouseDown
doMouseDown continues the processing of mouseDown events, switching according to the part code.

The inContent case results in a call to SelectWindow if the window in which the mouse-down occurred is not the front
window. SelectWindow:

• Unhighlights the currently active window, brings the specified window to the front and highlights it.

• Generates activate events for the two windows.

4-38 CLASSIC EDITION — Version 2.3 Windows

• Moves the previously active window to a position immediately behind the specified window.

The inDrag case results in a call to DragWindow, which retains control until the user releases the mouse button. The third
parameter in the DragWindow call establishes the limits, in global screen coordinates, within which the user is allowed to
drag the window. screenBits is a QuickDraw global variable of type BitMap. The bounds field of screenBits is a Rect
containing the coordinates of a rectangle which encloses the main screen.

The inGoAway case results in a call to TrackGoAway, which retains control until the user releases the mouse button. If the
pointer was still within the go away box when the button was released, the application-defined function doCloseWindow is
called.

The inGrow case first sets up the Rect used in the third parameter of the GrowWindow call which, in turn, will limit the
maximum size to which the window can be resized. The top, left, bottom and right fields must contain, respectively, the
minimum vertical, the minimum horizontal, the maximum vertical, and the maximum horizontal measurements. At the first
line, this Rect is set to the boundaries of the screen, which is a reasonable way to get reasonable values into the bottom and
right fields. The top and left fields, however, need to be manually set to some reasonable values (the two lines before the
GrowWindow call).

GrowWindow retains control until the user releases the mouse button, at which time the Rect variable newSize will contain
the new window size coordinates. (Note that GrowWindow does not redraw the window in this size.) The SizeWindow call
then redraws the window frame and title and, where window height and/or width has been increased, adds the newly-
exposed areas to the update region.

The call SizeWindow is bracketed by two calls to the application-defined function doInvalidateScrollBarArea. In this
program, scroll bars are not used but it has been decided to, firstly, limit update drawing to the window's content area less
the areas normally occupied by scroll bars and, secondly, to use DrawGrowIcon to draw the draw scroll bar delimiting lines.
(This is the usual practice for windows with a size box but no scroll bars.)

The first call to doInvalidateScrollBarArea is necessary to cater for the case where the window is resized larger. If this call is
not made, the scroll bar areas prior to the resize will not be redrawn by the window updating function unless these areas are
programmatically added to the new update region created by the Window Manager as a result of the resizing action.

The second call to doInvalidateScrollBarArea is necessary to cater for the case where the window is resized smaller. This
call works in conjunction with the EraseRgn call in the application-defined function doUpdateWindow. The call to
doInvalidateScrollBarArea results in an update event being generated, and the call to EraseRgn in the doUpdateWindow
function causes the update region (that is, in this case, the scroll bar areas) to be erased. (Remember that, between the
calls to BeginUpdate and EndUpdate, the visible region equates to the update region and that QuickDraw limits its drawing
to the update region.)

The inZoomIn and inZoomOut cases result in a call to TrackBox, which takes control until the user releases the mouse
button. If the mouse button is released while the pointer is still within the zoom box, the current colour graphics port is set
to that associated with the active window. the content region is erased, and ZoomWindow is called to redraw the window
frame and title in the new zoomed state, which will be either the user state or the standard state. (ZoomWindow knows
which way to go because the Window Manager keeps track of the current state, which is contained in the partCode variable
returned by FindWindow and passed to ZoomWindow as its second parameter.)

doUpdate
doUpdate attends to basic window updating. The call to BeginUpdate clips the visible region to the intersection of the
visible region and the update region. The visible region is now a sort of proxy for the update region. The colour graphics
port is then set before the application-defined function doUpdateWindow is called to redraw the content region. The
EndUpdate call restores the window's true visible region.

doUpdateWindow
doUpdateWindow is concerned with redrawing the window's contents less the scroll bar areas. Following the extraction of
the window pointer from the message field of the event structure, EraseRgn is called for reasons explained at
doMouseDown, above.

A Rect is then assigned the coordinates of that window's colour graphics port portRect field, following which the right and
bottom fields are adjusted to exclude the scroll bar areas. The next four lines fill this rectangle with a plain colour pattern
provided by a 'ppat' resource, simply as a means of proving the correctness of the window updating process.

Note the call to GetWRefCon, which retrieves the value in the window structure's refCon field. As will be seen, whenever a
new window is opened, a value between 1 and kMaxWindows is assigned to this field. In this function, this is just a
convenient number to be added to the base resource ID (128) in the single parameter of the GetPixPat call, ensuring that
FillCRect has a different pixel pattern to draw in each window.

The call to DrawGrowIcon draws the scroll bar delimiting lines. Note that this call, the preceding EraseRgn call, and the calls
to doInvalidateScrollbarArea are made for "cosmetic" purposes only and would not be required if the window contained
scroll bars.

The remaining lines draw two rectangles and some text in the windows to visually represent to the user the otherwise
invisible "hot rectangles" defined in the 'hrct' resource and associated with the window by the 'hwin' resource. When Show
Balloons is chosen from the Help menu, the help balloons will be invoked when the cursor moves over these rectangles.

Windows CLASSIC EDITION — Version 2.3 4-39

doActivate
doActivate attends to those aspects of window activation not handled by the Window Manager.

The modifiers field of the event structure is tested to determine whether the window in question is being activated or
deactivated. The result of this test is passed as a parameter in the call to the application-defined function
doActivateWindow.

doActivateWindow
In this demonstration, the remaining actions carried out in response to an activateEvt are limited to placing and removing
checkmarks from items in the Windows menu.

The first step in the function doActivateWindow is to associate the received WindowPtr with its item number in the Windows
menu. At the while loop, the array maintained for that purpose is searched until a match is found. The array element
number at which the match is found correlates directly with the menu item number; accordingly this is assigned to the
variable menuItem, which is used in the following CheckMenuItem calls. Whether the checkmark is added or removed
depends on whether the window in question is being activated or deactivated, a condition passed to the call to
doActivateWindow as its second parameter.

Note that, if you required scroll bar delimiting lines to be drawn in the window, you would call DrawGrowIcon within this
function. (In Appearance-compliant windows, DrawGrowIcon does not draw the grow icon itself.)

doOSEvent
doOSEvent handles operating system events. In this demonstration, action is taken only in the case of suspend and resume
events (first line) and then only if at least one window is open (second line).

The action taken is to set the global variable gInBackground to true or false depending on whether the event is a suspend
event or a resume event. In the case of a suspend event, window deactivation tasks needs to be performed. In the case of a
resume event, activation tasks need to be attended to. Accordingly, doActivateWindow is called with the second parameter
set to true for a resume and to false for a suspend.

doMenuChoice
doMenuChoice switches according to the menu choices of the user.

doFileMenu
doFileMenu switches according to the File menu item choice of the user.

doWindowsMenu
doWindowsMenu takes the item number of the selected Windows menu item and, since this equates to the number of the
array element in which the associated window pointer is stored, extracts the window pointer associated with the menu item.
This is used in the call to SelectWindow, which generates the activateEvts required to activate and deactivate the
appropriate windows.

doNewWindow
doNewWindow opens a new window and attends to associated tasks.

In the first block, if the current number of open windows equals the maximum allowable specified by kMaxWindows, a
Caution Alert is called up via the application-defined doErrorAlert function (with the string represented by eMaxWindows
displayed) and an immediate return is executed when the user clicks the Alert's OK button.

At the next block, the new window is created. The second parameter of the GetNewCWindow call is a pointer to the pre-
allocated block of memory allocated earlier in the program, and the third parameter specifies that the window is to be
opened in front of all other windows. If the call is not successful for any reason, a Stop Alert is called up via the function
doErrorAlert (with the string represented by eFailWindow displayed) and the program terminates when the user clicks the
Alert's OK button.

If the window was successfully opened, gPreAllocatedBlockPtr is set to NULL so that a new pre-allocated block will be
created at the bottom of the event loop in preparation for the next window to be opened.

The next four lines insert the number of the window into the title bar (for example, "Untitled 1" for the first window opened).
GetIndString retrieves the string "Untitled " from the 'STR#' resource. Within the first parameter of the NumToString call,
the global variable which keeps track of the numbers for the title bar is incremented before NumToString converts that
number to a Pascal string. The next line concatenates this string to the "Untitled " string. The SetWTitle call then changes
the window's title and redraws the title bar.

The window's standard state is set by the call to the application-defined function doSetStandardState. (If the standard state
is not set programmatically like this, the system will automatically set it 3 pixels inside the screen's gray region boundary.)

4-40 CLASSIC EDITION — Version 2.3 Windows

The ShowWindow call makes the window visible.

The next block adds the metacharacter \ and the window number to the string used to set the window title (thus setting up
the Command key equivalent) before InsertMenuItem is called to create a new menu item to the Windows menu. Note that
the Command-key equivalent is only added for the first nine opened windows.)

The SetWRefCon call assigns a value to the window structure's reference constant (refCon) field. As previously stated, in
this demonstration this is used to select a pixel pattern to draw in each window's content region.

At the next two lines, the variable which keeps track of the current number of opened windows is incremented and the
appropriate element of the window pointer array is assigned the window pointer of the newly opened window.

The last block enables the Windows menu and the Close item in the File menu when the first window is opened.

doCloseWindow
The function doCloseWindow closes an open window and attends to associated tasks.

At the first two lines, a pointer to the frontmost window is retrieved and that window is closed by a call to CloseWindow.
CloseWindow, rather than DisposeWindow, must be used where storage for the window structure was allocated manually,
that is, where the second parameter in the GetNewCWindow call was not NULL. Because CloseWindow is used, the following
call to DisposePtr is necessary to dispose of the non-relocatable block occupied by the window structure. With the window
closed, the global variable which keeps track of the number of windows currently open is decremented.

The next block deletes the associated menu item from the windows menu. At the first four lines, the array element in which
the WindowPtr in question is located is searched out, the element number (which correlates directly with the menu item
number) is noted and the element is set to NULL. The call to DeleteMenuItem then deletes the menu item.

The for loop "compacts" the array, that is, it moves the contents of all elements above the NULLed element down by one,
maintaining the correlation with the Windows menu.

The last block disables the Windows menu and the Close item in the File menu if no windows remain open as a result of this
closure.

doInvalidateScrollBarArea
doInvalidateScrollBarArea invalidates that part of the window's content are which would be occupied by scroll bars. The
function simply retrieves the coordinates of the content area into a Rect and reduces this Rect to the relevant scroll bar area
before invalidating that area, that is, adding it to the window's update region.

doSetStandardState
The function doSetStandardState sets the window's standard state. First the coordinates of the screen boundary are placed
in a Rect. Then, in the next two lines, the handle in the window structure's dataHandle field is dereferenced to a pointer and
cast to a pointer to a WStateData structure. At the last two lines, this pointer is then used in the call to SetRect, which sets
the required top, left, bottom, and right values in the stdState field of the window's WStateData structure.

doConcatPStrings
The function doConcatPStrings concatenates two Pascal strings.

doErrorAlert
doErrorAlert displays either a Caution Alert or a Stop Alert with a specified string (two strings in the case of the
eMaxWindows error) extracted from the 'STR#' resource identified by rStringList.

The creation of Alerts using the StandardAlert function is addressed at Chapter 8 — Dialogs and Alerts.

Handling Horizontal and Vertical Zoom Boxes
The following details those changes that would be required to handle a vertical zoom box in the windows of the Windows
demonstration program. It assumes that, when the vertical zoom box is clicked, the window position is to remain
unchanged and the window size is to change only in the vertical direction.

Firstly, using Resorcerer, change the window definition ID in the 'WIND' resource editing window to
kWindowVertZoomDocumentProc (1026). (This will simply change the appearance of the zoom box.) Then make the
following changes to the source code.

Delete the function prototype for doSetStandardState and insert this new function prototype:

Windows CLASSIC EDITION — Version 2.3 4-41

void doSetUserAndStandardState (WindowPtr);

In the function doNewWindow, change the line doSetStandardState(windowPtr); to:

doSetUserAndStandardState(WindowPtr);

In the function doMouseDown, change the inDrag case as follows:

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
doSetUserAndStandardState(windowPtr); // New call to set the user and standard state to

// reflect the new window location after the drag.
break;

Replace the function doSetStandardState with this new function

// ◊◊ doSetUserAndStandardState

void doSetUserAndStandardState(WindowPtr windowPtr)
{

WindowPeek windowRecPtr;
WStateData *winStateDataPtr;
Rect tempRect;
Point topLeft;

// Convert the top left corner of the window's content region to global coordinates.
// (This gets the current location of the window.)

SetPort(windowPtr);
topLeft.v = 0;
topLeft.h = 0;
LocalToGlobal(&topLeft);

// Get a pointer to the window's WStateData structure

windowRecPtr = (WindowPeek) windowPtr;
winStateDataPtr = (WStateData *) *(windowRecPtr->dataHandle);

// Set the standard state to equate with the current position of the window and the
// required size of the window in the zoomed-out state (100 pixels higher than in the
// zoomed-in state)..

SetRect(&(winStateDataPtr->stdState),topLeft.h,topLeft.v,topLeft.h + 460,
topLeft.v + 300 + 100);

// Set the user state to equate with the current position of the window and the required
// size of the window in the zoomed-in state.

SetRect(&(winStateDataPtr->userState),topLeft.h,topLeft.v,topLeft.h + 460,
topLeft.v + 300);

}

4-42 CLASSIC EDITION — Version 2.3 Windows

	WINDOWS
	Includes Demonstration Program Windows1
	Introduction
	Window Basics
	Standard Window Elements
	Historical Note
	Active and Inactive Windows
	Historical Note
	Types of Appearance-Compliant Windows
	Document Types
	Dialog and Alert Types
	Utility (Floating) Window Types
	Window Definition IDs
	Historical Note
	Window Type Usage
	Historical Note
	Window Regions
	Other Regions
	Controls and Control Lists
	The Window List
	The Colour Graphics Port and the Colour Window Structure
	The Colour Graphics Port
	Colour Window Structure
	Historical Note
	Compatibility
	Events in Windows
	Creating Your Application's Windows
	'WIND' Resources
	Structure of a Compiled 'WIND' Resource
	Positioning Specification
	Creating a 'WIND' Resource Using Resorcerer
	Creating the Window From the 'WIND' Resource
	Historical Note
	Adding Scroll Bars
	Window Visibility
	Positioning a New Document Window on the DeskTop
	Positioning a Saved Document Window on the DeskTop
	Drawing a Window's Contents
	Managing Multiple Windows
	Handling Events
	Handling Mouse Events
	Mouse-Downs in Inactive Windows
	Handling Keyboard Events
	Handling Update Events
	Manipulating the Update Region
	Type-Dependent Update Functions
	Handling Activate Events
	Manipulating Windows
	Moving a Window
	Zooming a Window
	Windows With Full Zoom Boxes
	Windows With Vertical or Horizontal Zoom Boxes
	Re-Sizing a Window
	Closing a Window
	DisposeWindow and CloseWindow
	Hiding and Showing a Window
	Providing Help Balloons
	Help Balloons —'hrct' and 'hwin' Resources
	Creating 'hrct' and 'hwin' Resources Using Resorcerer
	Main Window Manager Constants, Data Types and Functions
	Constants
	Theme-Compliant Window Types
	Window Kind
	Part Codes Returned by FindWindow
	Window Regions
	Data Types
	Colour Window Structure
	State Data Structure
	Functions
	Initializing the Window Manager
	Creating Windows
	Naming Windows
	Displaying Windows
	Retrieving Mouse Information
	Moving Windows
	Resizing Windows
	Zooming Windows
	Closing and Deallocating Windows
	Maintaining the Update Region
	Setting and Retrieving Other Window Characteristics
	Retrieving Window Information
	Collapsing Windows
	Manipulating the Desktop
	Demonstration Program
	RegisterAppearanceClient();
	BeginUpdate(windowPtr);
	EraseRgn(windowPtr->visRgn);
	DrawGrowIcon(windowPtr);
	ShowWindow(windowPtr);
	SetWRefCon(windowPtr,gCurrentNumberOfWindows);
	SetPort(windowPtr);
	GetIndString(labelText,rStringList,errorType);
	Demonstration Program Comments
	#define
	Global Variables
	main
	If the call to NewPtr fails, the following line invokes an Alert box.
	The system software managers are then initialised.
	doInitManagers
	eventLoop
	doEvents
	doMouseDown
	doUpdate
	doUpdateWindow
	doActivate
	doActivateWindow
	doOSEvent
	doMenuChoice
	doFileMenu
	doWindowsMenu
	doNewWindow
	The ShowWindow call makes the window visible.
	doCloseWindow
	The function doCloseWindow closes an open window and attends to associated tasks.
	doInvalidateScrollBarArea
	doSetStandardState
	doConcatPStrings
	doErrorAlert
	Handling Horizontal and Vertical Zoom Boxes
	Replace the function doSetStandardState with this new function
	// required size of the window in the zoomed-out state (100 pixels higher than in the

