
1
SYSTEM SOFTWARE, MEMORY, AND

RESOURCES
 Includes Demonstration Program SysMemRes

Macintosh System Software
All  Macintosh applications  make many calls,  for  many purposes,  to  Macintosh system
software functions.  Such purposes include, for example, the creation of standard user
interface elements such as windows and menus, the drawing of text and graphics, and the
coordination of the application's actions with other open applications.1

The  majority  of  system  software  functions  are  components  of  either  the  Macintosh
Toolbox or the Macintosh Operating System.  In essence:

• Toolbox functions have to do with mediating your application with the user.  They
relate, in general, to the management of elements of the user interface.

• Operating System functions have to do with mediating your application with the
Macintosh hardware, performing such basic low-level tasks as file input and output,
memory management and process and device control.

Managers
The entire collection of system software functions is further divided into functional groups
which are usually known as managers.2  

Toolbox

The main Toolbox managers are as follows:

1 The main other open application that an application needs to work with is the Finder, which is responsible for keeping
track  of  files  and managing the user’s  desktop.   The Finder  is  not  really  part  of  the system  software,  although it  is
sometimes difficult to tell where the Finder ends and the system software begins.
2 For historical  reasons,  some collections  of  system software  functions  are referred to as  packages.  In general,  the
distinction between managers and packages is unimportant.  Packages are nowadays generally referred to as managers.
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Operating System

The main Operating System managers are as follows:

PROCESS MANAGER MEMORY MANAGER  VIRTUAL MEMORY 
MANAGER FILE MANAGER DISK INITIALIZATION 

MANAGER DEVICE MANAGER

 SCSI MANAGER TIME MANAGER SHUTDOWN 
MANAGER ALIAS MANAGER  VERTICAL RETRACE 

MANAGER

Additional System Software

The system software also includes a number of other components which do not historically
belong  to  either  the  Macintosh  Toolbox  or  Macintosh  Operating  System.   These  are
categorised as follows:

• Text Handling.  Text handling on the Macintosh is fundamentally graphic in that
text is drawn as a sequence of graphic elements, and is designed to support more
than  one  script  (writing  system).   In  addition  to  QuickDraw  (see  above),  the
components of the Macintosh script management system (that is, the essential text
handling managers) include:

FONT MANAGER TEXT UTILITIES  SCRIPT MANAGER  TEXT SERVICES 
MANAGER

• Interapplication  Communication.  The  interapplication  communications
architecture  (IAC)  provides  a  mechanism for  communication  between  Macintosh
applications.  It includes:

APPLE EVENT 
MANAGER  EVENT MANAGER PROGRAM-TO-PROGRAM 

COMMUNICATIONS TOOLBOX

• QuickTime.  QuickTime is  a collection of  managers  and other system software
components  which allow an application to control  time-based data such as video
clips, animation sequences and sound sequences.  It includes:

MOVIE TOOLBOX  IMAGE COMPRESSION 
MANAGER

A SET OF PREDEFINED 
COMPONENTS

• Communications  Toolbox.  The  Communications  Toolbox  is  a  collection  of
system software managers which provide an application with basic networking and
communications services.  It includes:

CONNECTION 
MANAGER TERMINAL MANAGER FILE TRANSFER 

MANAGER
 COMMUNICATIONS 

RESOURCE MANAGER

System Software Functions

Functions in ROM

System software functions, which are also called traps, reside mainly in ROM (read-only
memory).  When an application calls a function, the Operating System intercepts the call
and, ordinarily, executes the relevant code contained in ROM.
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Functions in RAM — Patches

A patch is an additional component of the system software, and is usually stored in the
System  file,  which  is  located  in  the  System  folder.   To  understand  patches,  some
background is necessary.

The mechanism of  the Operating System intercepting the call  to the ROM-based code
provides a simple way for the Operating System to substitute the code that is executed in
response to a call to a particular trap.

All  traps are  numbered,  and a  trap dispatch table in RAM (random-access  memory)
matches each trap's number to its address.  One advantage of this arrangement is that it
makes it easy to correct bugs in the ROM-based code without replacing the ROM. 3  When
a particular trap is called, the trap dispatch table can cause the Operating System to load
some substitute code into RAM and execute that code instead of the ROM-based code.
This RAM-based replacement code is called a patch.

Functions in RAM — Extensions

The System file also contains system software components which are not in ROM.  These
functions are like patches except that, when loaded, they do not replace existing ROM-
based functions.  The current method for adding capabilities to the system software is to
include the code of the new functions as a system extension.  Extensions are located in
the Extensions folder and are loaded into memory at startup.

The Appearance Manager, a system software component introduced with Mac OS 8, is
unique as a manager in that it is actually delivered as an extension.

Glue Functions

Some functions declared in a particular development system’s header files are provided by
the development system itself, not by the system software.  These functions are known as
glue functions and are constructed by modifying available system software functions in
some  way.   Knowing  whether  a  particular  function  is  implemented  as  glue  code  is
generally only relevant to low-level assembly level debugging.

Memory
In the Macintosh’s cooperative multitasking environment, an application can use only part
of the available RAM.  When the Operating System starts up, it divides the available RAM
into  the  system partition and  the  remainder  of  RAM,  the  latter  being  available  for
applications  or  other  software  components.   When  an  application  is  launched,  the
Operating System allocates to it a section of RAM known as an  application partition.
Application partitions are loaded into the top part of RAM first.

Organisation of Memory - 680x0 Run-Time Environment
Macintosh  computers  use  the  Motorola  680x0  microprocessor.   Power  Macintosh
computers use the PowerPC microprocessor.  Although there are broad similarities, the
organisation of memory in the 680x0 microprocessor run-time environment4 differs from
that in the PowerPC microprocessor run-time environment.

3 The other key advantage of this arrangement is that it overcomes the unavoidable difficulty of maintaining the same
address for a particular trap as newer versions of the system software are developed.  (It is easy to keep the trap number
the same over time but difficult to ensure that its address remains forever unchanged.) 
4 A run-time environment is a set of conventions which determine how code is to be loaded into memory, where it is to be
stored, how it is to be addressed, and how functions call other functions and system software routines.
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Fig 1 illustrates the arrangement of memory in the 680x0 run-time environment when
several applications are open at once.  Basically, the system partition occupies the lowest
memory address  space and the remaining space is  allocated to the  Process  Manager,
which creates a partition for each open application.

FIG 1 - MEMORY ORGANIZATION - 680x0 RUN-TIME ENVIRONMENT
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System Heap

The system heap (see Fig 1) is reserved for the exclusive use of the system, which loads
into it various items such as system resources, system code segments, and system data
structures.  System patches and system extensions are loaded during startup.  Hardware
device drivers are loaded when the driver is opened.5

System Global Variables

The Operating System uses  system global variables to maintain information about the
operating environment.  Most of these variables contain information of use to the system
software, for example:

• Ticks, which contains the number of ticks since system startup.  (A tick is 1/60th of a
second.)

• MBarHeight, which contains the height of the menu bar.

• Pointers to the heads of various operating system queues.

Other  system  global  variables  contain  information  about  the  current  application,  for
example:

• ApplZone,  which  contains  the  address  of  the  first  byte  of  the  active  application's
memory partition (see Fig 1).

5 Patches are stored as  code resources  of type  'INIT'.  Device drivers are stored as code resources of type  'DRVR'. (See
Resources, below.)
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• ApplLimit, which contains the address of the last byte the active application's heap can
expand to include (see Fig 1).

• CurrentA5,  which  contains  the  address  of  the  boundary  between  the  active
application's global variables and its application parameters (see Fig 1 and Fig 2).

Application Partitions

As shown at Fig 1, an application's  stack expands downwards towards the  heap, which
expands upwards as necessary during program execution.   The  ApplLimit global variable
marks the upper limit to which the heap can grow.  The Memory Manager will never allow
the heap to grow beyond ApplLimit.

The Stack

The  application  stack  is  used  for  memory  allocation  associated  with  the  execution  of
functions.  When an application calls a function, space is automatically allocated on the
stack for a  stack frame, which contains the function's parameters, local variables and
return address.  Once the call is executed, the local variables and function parameters are
popped off the stack.6

Unlike the heap, the stack is not bounded by ApplLimit.  It is important to understand that
the Memory Manager has no way of preventing the stack from growing beyond  ApplLimit
and possibly encroaching on, and corrupting, the heap.7

By default, the stack can grow to 24KB.  Accordingly, unless your application uses heavy
recursion (one function repeatedly calling itself), you almost certainly will never need to
worry about the possibility of stack overflow.8

If necessary, you can change the default size of the stack using the function  SetApplLimit.
When, for example, you call  SetApplLimit to  increase the size of the stack, you are simply
reducing the maximum size to which the heap can grow by changing the value in the
system global variable  ApplLimit (see Fig 1).   This gives extra space to the stack at the
expense of the heap.

The Heap

The application heap is the area of the application partition in which space is dynamically
allocated and released on demand.  It contains:

• The application's executable code segments.

• Those  of  the  application's  resources (see  below)  that  are  currently  loaded  into
memory.

• Other  dynamically  allocated  items  such as  window structures,  dialog  structures,
document data, etc.

Space  within  the  heap  is  allocated,  in  blocks,  by  both  direct  or  indirect  calls  to  the
Memory Manager.  An indirect allocation arises from a call to a function which itself calls
a Memory Manager memory allocation function.

6 The C compiler generates the code that creates and deletes stack frames for each function call.
7 However, every sixtieth of a second an Operating System task checks whether the stack has moved into the heap.  If it
has, the task, known as the stack sniffer, generates a system error (System Error 28), which is useful during de-bugging.
8 The reason that recursion increases  the risk is that, each time the function calls itself,  a  new  copy of that function's
parameters and variables is pushed onto the stack.
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The A5 World

The A5 World contains four kinds of data:

• The application's  jump table,  which contains  an entry  for  each  of  those  of  the
application's functions that are called by code in another code segment, and which is
used  by  the  Segment  Manager  to  determine  the  address  of  any  externally
referenced functions called by a code segment.

• Application parameters, which are 32 bytes of memory reserved for use by the
Operating System, and of which the first long word is a pointer to the application's
QuickDraw global variables (see below).

• The application global variables.

• Application  QuickDraw  global  variables,  which  contain  information  about  the
application's drawing environment (for example, a pointer to the current graphics
port).

JUMP  TABLE

APPLICATION  PARAMETERS
pointer to QUICKDRAW  GLOBAL  VARIABLES

APPLICATION  GLOBAL  VARIABLES

QUICKDRAW  GLOBAL  VARIABLES

CurrentA5

FIG 2 - THE A5 WORLD - 680x0 RUN-TIME ENVIRONMENT

Fig 2 shows the organisation of this data.  Note that the system global variable  CurrentA5
points  to  the  boundary  between  the  current  application's  global  variables  and  its
application  parameters.   The  jump  table,  application  parameters,  application  global
variables and QuickDraw global variables are known collectively as the A5 World because
the Operating System uses the microprocessor's A5 register to point to that boundary.

Virtual Memory

The  Operating  System  can  extend  the  address  space  by  using  part  of  the  available
secondary storage (that is, part of the hard disk) to hold portions of applications and data
that  are  not  currently  needed  in RAM.  When some of  those  portions  of  memory are
needed, the Operating System swaps out unneeded parts of applications or data to the
secondary storage, thereby making room for the parts that are needed.  The secondary
storage area is known as virtual memory.

Organisation of Memory - PowerPC Run-Time Environment
The organisation of memory in the PowerPC run-time environment is reasonably similar to
the organisation of memory in the 680x0 run-time environment in that:

• The system partition occupies the lowest memory address and most of the remaining
space is allocated to the Process Manager, which creates a partition for each open
application.

• The organisation of an application partition is somewhat the same as that for an
application  partition  in  the  680x0  run-time  environment.   In  each  application
partition, there is a stack and a heap, as well as space for the application's global
variables.
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The two main differences  between 680x0 memory organisation  and PowerPC memory
organisation concern the location of  an application's  code section and an application's
global variables.

A  PowerPC  application's  executable  code  and  global  data  are  typically  stored  in  a
fragment container  in  the  application's  data fork  (see  Resources,  below).   When the
application is launched, its code section and data section are loaded into memory.  The
data section is  loaded into the application's  heap.   However,  the location of  the code
section varies, depending on whether or not virtual memory is enabled.

Code Section Location - Virtual 
Memory Off

If  virtual memory is  not enabled, the code section of an application is loaded into the
application heap.  The Finder and Process Manager automatically expand your application
partition as necessary to hold the code section.  The code sections of other fragments are
put  into  part  of  the  Process  Manager's  heap  known  as  temporary  memory.   If  no
temporary memory is available, code sections are loaded into the system heap.  

Application partitions (including the application's stack, heap, and global variables) are
loaded into the Process Manager heap.  Code sections of applications and import libraries
are loaded either into the Process Manager partition or (less commonly) into the system
heap.

Fig 3 illustrates the general organisation of memory when virtual memory is not enabled. 

FIG 3 - ORGANIZATION OF MEMORY - POWERPC RUNTIME ENVIRONMENT - 
VIRTUAL MEMORY IS NOT ENABLED
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If  virtual  memory is  enabled,  the  Virtual  Memory  Manager  uses  a  scheme called  file
mapping to map your application's fragment into memory.  It uses the data fork of your
application  as  the  paging  file for  your  application's  code  section.   The  entire  code
fragment is mapped into the logical address space, though only the needed portions of the
code are actually loaded into physical memory.
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An advantage of this file mapping methodology is that, when it is time to remove some of
your application's code from memory (to page other code and data in), the Virtual Memory
Manager does not need to write the pages back to a paging file. 9  Instead, it simply purges
the code from the needed pages, because it can always read the file-mapped code back
from the paging file (your application's data fork). 

Fig 4 illustrates the general organisation of memory when virtual memory is enabled.  The
virtual  addresses  occupied by the  file-mapped pages  of  an application's  (or  an import
library's)  code are located outside both the system partition and the Process Manager
partition.   As  a  result,  an  application's  file-mapped  code  is  never  located  in  the
application's heap itself.

Application partitions (including the application's heap, stack, and global variables) are
loaded  into  the  Process  Manager  heap,  which  is  paged  to  and  from the  system-wide
backing store file.  Code sections and import libraries are paged directly from the data
fork of the application or import library.

FIG 4 - ORGANIZATION OF MEMORY -  POWERPC RUNTIME 
ENVIRONMENT - VIRTUAL MEMORY ENABLED
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Structure of the System Partition

To  support  existing  680x0  applications  and  other  software  modules  which  access
documented  system  global  variables,  the  structure  of  much  of  the  system  partition
remains unchanged in the PowerPC environment.

Structure of Application Partitions

The organisation of the application partition in the PowerPC environment is substantially
simpler than in the 680x0 environment, comprising only a stack and a heap (see Fig 5).

9 In the 680x0 environment, all unused pages of memory are written into a single system-wide backing-store file and re-
read from there when needed.  This often results in prolonged application launch, because an application's code is loaded
into memory and sometimes immediately written out to the backing-store file.
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FIG 5 - STRUCTURE OF A POWERPC APPLICATION PARTITION
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Demise of the A5 World

The A5 world which occupies part of a 680x0 application partition is largely absent from
the  PowerPC  environment.   The  information  maintained  in  the  A5  world  for  680x0
applications  is  either not needed by PowerPC applications  or is  maintained elsewhere
(usually in the application heap).

Recall that the A5 world of a 680x0 application contains four kinds of data.  The four kinds
of data and their fate in the PowerPC environment, are as follows.

• Jump Table.  A 680x0 application's jump table contains an entry for each of the
application's routines called by code in another segment.  Because the executable
code in a PowerPC application is not segmented, there is no need for a jump table in
a PowerPC application.

• Application Global Variables.  In PowerPC applications, the application's global
variables  are  part  of  the  fragment's  data  section,  which  the  Code  Fragment
Manager  loads  into the  application's  heap (see  Fig  5).   The application's  global
variables are always located in a single nonrelocatable block.

• Application Parameters.   The application parameters  in a 680x0 application
occupy 32 bytes,  the first  four  bytes  of  which are  a  pointer  to the  application's
QuickDraw global variables.  In PowerPC applications, the application parameters
are maintained privately by the Operating System.

• QuickDraw Global Variables.  The QuickDraw global variables in a PowerPC
application are stored as part of the application's global variables.

The Mini-A5 World

QuickDraw has been ported to native PowerPC code.   However,  even for  applications
which have themselves been ported to native PowerPC code, there must be a minimal A5
world to support some non-ported system software which accesses the QuickDraw global
variables  relative to the application's  A5 value.   This  mini-A5 world contains nothing
more than a pointer to the application's QuickDraw global variables which, as previously
stated,  reside  in  the  application's  global  data  section  in  PowerPC  applications.   The
Process  Manager  creates  a  mini-A5  world  for  each  native  PowerPC  application  at
application launch time.

Inside the Heap — Nonrelocatable and Relocatable Memory 
Blocks

An application may use the Memory Manager to allocate two different types of memory
blocks: a nonrelocatable block and a relocatable block.
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Nonrelocatable Blocks

Nonrelocatable blocks are blocks whose location in the heap is fixed.  In its attempts to
avoid  heap  fragmentation  (see  below),  the  Memory  Manager  allocates  nonrelocatable
blocks as low in the heap as possible, where necessary moving relocatable blocks upward
to make space.  Nonrelocatable blocks are referenced using a  pointer  variable of data
type Ptr.  Ptr is defined as follows:

typedef char *Ptr; // A pointer to a signed char.

A pointer  is  simply  the  address  of  an  arbitrary  byte  in  memory,  and  a  pointer  to  a
nonrelocatable block is simply a pointer to the first byte of that block.  Note that, if a copy
is made of the pointer variable after the block is created, and since the block cannot be
moved, that copy will correctly reference the block until it is disposed of.

The Memory Manager function NewPtr allocates a nonrelocatable block, for example:
Ptr myPointer;
myPointer = NewPtr(sizeof(WindowRecord));

Nonrelocatable blocks are disposed of by a call to DisposePtr.10 

Unlike relocatable blocks, there are only five things that your application can do with a
nonrelocatable block: create it;  obtain its size; resize it; find which heap zone owns it;
dispose of it.

Relocatable Blocks

Relocatable blocks are blocks which can be moved within the heap — for example, during
heap compaction operations (see below).  To reference relocatable blocks, the Memory
Manager  uses  double  indirection,  that  is,  the  Memory  Manager  keeps  track  of  a
nonrelocatable  block  with  a  master  pointer,  which  is  itself  part  of  a  nonrelocatable
master pointer block  in the application heap.   When the Memory Manager moves a
relocatable block, it updates the master pointer so that it always contains the address of
the relocatable block. 

The  Memory  Manager  allocates  one  master  pointer  block,  which  contains  64  master
pointers, for the application at launch time.  This block is located at the very bottom of the
application heap.  MoreMasters may be called by the application to allocate additional master
pointer blocks.  To ensure that these additional (nonrelocatable) blocks are allocated as
low in the heap as possible, the calls to MoreMasters should be made at the beginning of the
program.11 

Relocatable blocks are referenced using a handle variable of data type Handle.  A handle
contains the address  of  a master pointer,  as illustrated at Fig 6.   Handle is  defined as
follows:

typedef Ptr *Handle; // A pointer to a master pointer.

The Memory Manager function NewHandle allocates a relocatable block, for example:
Handle myHandle;
myHandle = NewHandle(sizeof(myDataStructure));

10 Many system software functions can be accessed using more than one spelling of the function's name, depending on the
header files supported by the development environment.  For example, several years ago, the name for this function was
DisposPtr.
11 If  these calls  are  not  made,  the Memory  Manager  will  nonetheless  automatically  allocate  additional  blocks  during
application execution if required.  However, since master pointer blocks are nonrelocatable, such allocation, which will not
be at the bottom of the heap, is a possible cause of heap fragmentation.  MoreMasters should thus be called enough times at
the beginning of the program to ensure that the Memory Manager never needs to call it for you.  For example, if your
application never allocates more than 300 relocatable blocks in its heap, then five calls to MoreMasters should be enough.  (You
can empirically determine how many times to call MoreMasters by using a low-level debugger.)
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A relocatable block can be disposed of by a call to DisposeHandle.  Note, however, that the
Memory  Manager  does  not  change  the  value  of  any  handle  variables  that  previously
referenced that deallocated block.  Instead, those variables still hold the address of what
was once the relocatable block's master pointer.  If  you accidentally use a handle to a
block you have already disposed of, your application could crash or you could get garbled
data.  You can avoid these problems by assigning the value  NULL to the handle variable
after you dispose of the relocatable block.

FIG 6 - A HANDLE TO A RELOCATABLE BLOCK
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Heap Fragmentation, Compaction, and Purging
The  continuous  allocation  and  release  of  memory  blocks  which  occurs  during  an
application's execution can result in a condition called heap fragmentation.  The heap is
said to be fragmented when nonrelocatable blocks or  locked relocatable blocks (see
below) are scattered about the heap, leaving "holes" of memory between those blocks.

The  Memory  Manager  continuously  attempts  to  create  more  contiguous  free  memory
space  through  an  operation  known  as  heap  compaction,  which  involves  moving  all
relocatable  blocks  as  low  in  the  heap  as  possible.   However,  because  the  Memory
Manager  cannot  move  relocatable  blocks  "around"  nonrelocatable  blocks  and  locked
relocatable blocks, such blocks act like log-jams if there is free space below them.  In this
situation,  the  Memory  Manager  may not  be  able  to  satisfy  a  new memory  allocation
request because, although there may be enough total free memory space, that space is
broken up into small non-contiguous blocks.

Heap fragmentation would not occur if  all  memory blocks allocated by the application
were free to move during heap compaction.  However, there are two types of memory
block which are not free to move:  nonrelocatable blocks and relocatable blocks which
have been temporarily locked in place.

Locking and Unlocking Relocatable 
Blocks

Despite the potential of such action to inhibit the Memory Manager's heap compaction
activities,  it  is  nonetheless  necessary  to  lock  relocatable  blocks  in  place  in  certain
circumstances.

For example, suppose you dereference a handle to obtain a pointer (that is, a copy of the
master pointer)  to a relocatable block and, for the sake of increased speed 12,  use that
pointer within a loop to read or write data to or from the block.  If, within that loop, you

12 Accessing a relocatable block by double indirection (that is,  through its handle) instead of by single indirection (ie,
through its master pointer) requires an extra memory reference.
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call  a  function which has the  potential  to  move memory,  and if  that  function actually
causes the relocatable block to be moved, the master pointer will be correctly updated but
your copy (the pointer) will not.  The net result is that your pointer no longer points to the
data and becomes what is known as a dangling pointer.  This situation is illustrated at
Fig 7.

The documentation for system software functions indicates whether a particular function
has the potential to move memory.  Generally, any function that allocates space from the
application heap has this potential.  If such a function is not called in a section of code,
you can safely assume that all blocks will remain stationary while that code executes.

FIG 7 - A DANGLING POINTER
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Relocatable blocks may be locked and unlocked using  HLock and  HUnlock.   The following
example illustrates the use of these functions.

typedef struct
{

short intArray[1000];
char ch;

} Structure, *StructurePointer, **StructureHandle;

void  myFunction(void)
{

StructureHandle theHdl;
StructurePointer thePtr;
short count;

theHdl = (StructureHandle) NewHandle(sizeof(Structure));

HLock(theHdl); // Lock the relocatable block ...
thePtr = *theHdl; // because the handle has been dereferenced ...

for(count=0;count<1000;count++)
{

(*thePtr).intArray[count] = 0; // and used in this loop ...
DrawChar((char)'A'); // which calls a function which could cause

} // the relocatable block to be moved.

HUnlock(theHdl); // On loop exit, unlock the relocatable block.
}

Moving Relocatable Blocks High

The potential for a locked relocatable block to contribute to heap fragmentation may be
avoided by moving the block to the top of the heap before locking it.  This should be done
if new nonrelocatable blocks are to be allocated while the relocatable block in question is
locked.
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MoveHHi is used to move relocatable blocks to the top of the heap.  HLockHi is used to move
relocatable blocks to the top of the heap and then lock them.  Be aware, however, that
MoveHHi and HLockHi cannot move a block to the top of the heap if a nonrelocatable block or
locked relocatable block is located between its current location and the top of the heap.
In  this  situation,  the  block  will  be  moved  to  a  location  immediately  below  the
nonrelocatable block or locked relocatable block.

Purging and Reallocating Relocatable
Blocks

In addition to compacting the heap in order to satisfy a memory allocation request, the
Memory Manager may purge unlocked relocatable memory blocks which have been made
purgeable. 

HPurge and  HNoPurge change a relocatable block from unpurgeable to purgeable and vice
versa.  When you make a relocatable block purgeable, your program should subsequently
check the handle to that block before using it if calls are made to functions which could
move or purge memory.

If the handle's master pointer is set to  NULL, then the Operating System has purged its
block.  To use the information formerly in the block, space must then be reallocated for it
and its contents must be reconstructed.

Effect of a Relocatable Block’s 
Attributes

Two attributes of a relocatable block are whether the block is currently locked/unlocked
or purgeable/non-purgeable.   These attributes  are stored in bits  in the block’s  master
pointer tag byte13.  The following summarises the effect of these attributes on the Memory
Manager’s ability to move and/or purge a relocatable block:

Tag Byte  Indicates Block Is: The Memory Manager Can:
Locked Purgeable Move The

Block
Purge the

Block
NO NO YES NO
NO YES YES YES
YES NO NO NO
YES YES NO NO

Note that a relocatable block created by a call to NewHandle is created initially 
unlocked and unpurgeable, and that locking a relocatable block will also make it
unpurgeable if it is currently purgeable.

Avoiding Heap Fragmentation

The  ideal  heap  is  one  with  all  nonrelocatable  blocks  at  the  bottom of  the  heap,  all
unlocked relocatable blocks above that, free space above that, and all relocatable blocks
which must be locked for significant periods at the top of the heap.  This ideal can be
approached, and significant heap fragmentation avoided, by adherence to the following
rules:

• At the beginning of the program, call MaxApplZone to expand the heap immediately to
ApplLimit.   (If  MaxApplZone is not called, the Memory Manager gradually expands the
heap towards ApplLimit as memory needs dictate.  This gradual expansion can result in
significant heap fragmentation if relocatable blocks have previously been moved to
the previous top of the heap and locked.)14

13 The tag byte is the high byte of a master pointer.  If Bit 5 of the tag byte is set, the block is a resource block (see below).
If Bit 6 is set, the block is purgeable.  If Bit 7 is set, the block is locked.
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• At the beginning of the program, call  MoreMasters enough times to allocate all of the
(nonrelocatable) master pointer blocks required during execution.

• Allocate  all  other  required  nonrelocatable  blocks  at  the  beginning  of  the
application's execution.

• Avoid  disposing  of,  and  then  reallocating,  nonrelocatable  blocks  during  the
application's execution.

• When allocating relocatable blocks that will need to be locked for long periods of
time, use ReserveMem at the beginning of the program to reserve memory for them as
close to the bottom of the heap as possible, and lock the blocks immediately after
allocating them.

• If a relocatable block is to be locked for a short period of time and nonrelocatable
blocks are to be allocated while it is locked, call MoveHHi to move the block to the top
of the heap and then lock it.  When the block no longer needs to be locked, unlock it.

Also bear in mind that, in memory management terms, a relocatable block that is always
locked  is  worse  than a  nonrelocatable  block in  that  nonrelocatable  blocks are  always
allocated as low in the heap as possible, whereas a relocatable block is allocated wherever
the Memory Manager finds it convenient.

Master Pointer Tag Byte - HGetState and HSetState
There  are  certain  circumstances  where  you  will  want  to  save,  and  later  restore,  the
current value of a relocatable block's master pointer tag byte.   Consider the following
example, which involves three of an imaginary application's functions, namely, Function A,
Function B, and Function C:

• Function A creates a relocatable block.  For reasons of its own, Function A locks the
block  before  executing  a  few  lines  of  code.   Function  A  then  calls  Function  C,
passing the handle to that function as a formal parameter.

• Function  B  also  calls  Function  C at  some point,  passing  the  relocatable  block's
handle to it as a formal parameter.  The difference in this instance is that, due to
certain machinations in other areas of the application, the block is unlocked when
the call to Function C is made.

• Function C, for reasons of its own, needs to ensure that the block is locked before
executing a few lines of code, so it  makes a call  to  HLock.   Those lines executed,
Function C then unlocks the block before returning to the calling function.  This will
not be of great concern if the return is to Function B, which expects the block to be
still  unlocked.   However,  if  the  return  is  to  Function  A,  and if  Function  A now
executes some lines of code which assume that the block is still  locked, disaster
could strike.

This is where the Memory Manager functions HGetState and HSetState come in.  The sequence
of events in Function C should have been as follows:

SInt8 theTagByte;
...
theTagByte = HGetState(myHandle); // Whatever the current state is, save it.
HLock(myHandle); // Redundant if Function A is calling, but no harm.

(Bulk of the Function C code, which requires handle to be locked.)

HSetState(myHandle,theTagByte) // Leave it the way it was found.  (It could have 

14 Another reason for calling MaxApplZone at the beginning of the program is that the number of purgeable memory blocks
that may need to be purged by the Memory Manager to satisfy a new memory request is reduced.  (The Memory Manager
expands the heap to fulfill a memory request only after it has exhausted other methods of obtaining the required amount of
space, including compacting the heap and purging blocks marked as purgeable.)  Also, since calling MaxApplZone means that
the heap is expanded only once during the application's execution, memory allocation operations can be significantly faster.
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// been locked.  It could have been unlocked.)
return;

This is an example of a of what might be called a “well-mannered function”.   It  is an
example of a rule that you may wish to apply whenever you write a function that takes a
handle to a relocatable block as a formal parameter:  If that function calls HLock, make sure
that it leaves the block's tag byte (and thus the locked/unlocked bit) in the condition in
which it found it.15

Addressing Modes
Early versions of the system software used 24-bit addressing, where the upper eight bits
of  memory addresses  were  ignored or used as  flag bits.   24-bit  addressing limits  the
address space to 16MB, 8MB of which is reserved for I/O space, ROM and slot space.  The
largest contiguous program address space under 24-bit addressing is thus 8MB.

Later versions of the Memory Manager (specifically, the 32-bit Memory Manager) support
32-bit addressing, under which the maximum program address space is 1GB.

For compatibility reasons, systems with a 32-bit Memory Manager also contain a 24-bit
Memory Manager.  In order for an application to work when the machine is using 32-bit
addressing, it must be 32-bit clean.  Some applications are not 32-bit clean because they
use flag bits in master pointers and manipulate those bits directly (for example, to mark
the associated memory blocks as locked or purgeable) instead of using Memory Manager
functions to achieve the same results.  You must avoid such practices if your application is
to be 32-bit clean.

Memory Leaks
When you have no further use for a block of memory, you ordinarily return that memory to
the Memory Manager by calling DisposePtr or DisposeHandle (or ReleaseResource (see below)).  In
certain circumstances, not disposing of a block which is no longer required can result in
what is known as a memory leak.

Memory leaks can have unfortunate  consequences  for  your application.   For  example,
consider the following function:

void  theFunction(void)
{

PtrthePointer;
OSErr osError;

thePointer = NewPtr(10000);
if(MemError() == memFullErr)

doErrorAlert(eOutOfMemory);

// The nonrelocatable block is used for some temporary purpose here, but is not
// disposed of before the function returns.

}

When theFunction returns, the 10000-byte nonrelocatable block will still exist (even though,
incidentally,  the  local  variable  which  previously  pointed  to  it  will  not).   Thus  a  large
nonrelocatable block for which you have no further use remains in memory (at what is
now, incidentally, an unknown location).  If  theFunction is called several more times, a new
nonrelocatable block will be created by each call and the size of the memory leak will
grow, perhaps eventually causing  MemErr to return  memFullErr.  In this way, memory leaks
can bring you application to a  standstill  and may, in some circumstances,  cause it  to
crash.16

15 Of course, this save/restore precaution will not really be necessary if you are absolutely certain that the block in question
will be in a particular state (locked or unlocked) every time Function C is called. But there is nothing wrong with a little
coding overkill to protect yourself from, for example, some future source code modifications which may add other functions
which call Function C, and which may assume that the block's attributes will be handed back in the condition in which
Function C found them.
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Memory Manager Errors
The  low-memory  address  0x0220,  which  is  represented  by  the  symbolic  name  MemErr,
contains the error code resulting from the last call to a Memory Manager function.  This
error code may be retrieved by calling the function  MemError.   Some of the error codes
which may be returned by MemError are as follows:

Error 
Code

Constant Description

0 noErr No error occurred.
-108 memFullErr No room in heap.
-109 nilHandleErr Illegal operation on a NULL 

handle.

Resources
In  order  to  meet  various  requirements  of  the  system software,  your  application  must
provide its own resources, for example, resources which describe the application's user
interface elements such as menus, windows, controls, dialog boxes and icons.  In addition,
the system software itself provides a number of resources (for example, fonts, patterns,
icons, etc.) which may be used by your application.

The concept of resources reflects the fact that, in the Macintosh environment, inter-mixing
code and data in  a  program is  not  encouraged.   For  example,  it  is  usual  practise  to
separate changeable data, such as message strings which may need to be changed in a
foreign-language  version  of  the  application,  from  the  application's  code.   All  that  is
required in such a case is to create a resource containing the foreign language version of
the message strings.  There is thus no necessity to change and recompile the source code
in order to produce a foreign-language version of the application.

The subject of resources is closely related to the subject of files.  A brief digression into
the world of files is thus necessary.

About Files — The Data Fork and the Resource Fork
On the Macintosh, a file is a named, ordered sequence of bytes stored on a volume and
divided into two forks: 

• The Data Fork.  The data fork typically  contains data created by the user.

• The Resource Fork.  The resource fork of a file contains  resources, which are
collections of data of a defined structure and type.

All Macintosh files contain both a resource fork and a data fork, although one or both of
these forks may be empty.  Note that the resource fork of a file is also called a resource
file, because in some respects you can treat it as if it were a separate file.

The resource fork of a document file contains any document-specific resources, such as
the size and location of the document's window when the document was last closed.  The
resource fork of an application file includes the application's executable 680x0 code and,
typically,  resources  which describe  the  application's  windows,  menus,  controls,  dialog
boxes, icons, etc.   Fig 8 illustrates the typical contents of the data and resource forks of
an application file and a document file.

16 The dynamic memory inspection tool  ZoneRanger,  which is  included with Metrowerks  CodeWarrior,  can be used to
check your application for memory leaks.
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FIG 8 - TYPICAL CONTENTS OF DATA FORKS AND RESOURCE FORKS IN APPLICATION AND  DOCUMENT FILES 
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The data fork can contain any kind of data organised in any fashion.  Your application can
store data in the data fork of a document file in whatever way it deems appropriate, but it
needs to keep track of the exact byte location of each particular piece of saved data in
order to be able to access that data when required.  The resource fork, on the other hand,
is highly structured.  As will be seen, all resource forks contain a map which, amongst
other things, lists the location of all resources in the resource fork.  This greatly simplifies
the task of accessing those resources.

Resources and the Application
During its execution, an application may read resources from:

• The application's resource file, which is opened automatically when the application
is launched.

• The System file,  which is  opened by the Operating System at startup and which
contains resources which are shared by all applications (for example, fonts, icons,
sounds, etc.) and resources which applications may use to help present the standard
user interface.

• Other resource files, such as a preferences file in the Preferences folder holding the
user's  application-specific  preferences,  or  the  resource  fork  of  a  document  file,
which might define certain document-specific preferences.

The Resource Manager provides functions which allow your application to read in these
resources and, in addition, to create, delete, open, modify and write resources in, from
and  to  any  Macintosh  file.   The  following,  however,  is  concerned  only  with  creating
resources for the application's resource file and with reading in standard resources from
the  application  and  System  files.   Other  aspects  of  resources,  including  custom
resources and  resources  in  files  other  than  the  application  and  System  files,  are
addressed at Chapter 17 — More on Resources.

Resource Types and Resource IDs
An  application  refers  to  a  resource  by  passing  the  Resource  Manager  a  resource
specification, which consists of the resource type and a resource ID:

• Resource  Type.  A  resource  type  is  specified  by  any  sequence  of  four
alphanumeric characters, including the space character, which uniquely identifies a
specific type of resource.  Both uppercase and lowercase characters are used.  Some
of the standard resource types defined by the system software are as follows:

Type Description Typ
e

Description

System Software, Memory and Resources CLASSIC EDITION — Version 2.3 1-17



'ALRT' Alert box template. 'CODE' Application code segment.
'DITL' Item list in dialog or alert box. 'DLOG' Dialog box template.
'FONT' Bitmapped font. 'ICON' Large black-and-white icon.
'MBAR' Menu bar. 'PAT ' Pattern. (Space character is required.)
'PICT' QuickDraw picture. 'SIZE' Size of application's partition and other

info.
'STR#' String list. 'WIND' Window template.
'snd ' Sound. (Space character is 

required.)
'sfnt' Outline font.

You  can  also  create  your  own custom resource  types  if  your  application  needs
resources other than the standard types.  An example would be a custom resource
type for application-specific preferences stored in a preferences file.17

• Resource ID.  A resource ID  identifies a specific resource of  a given type by
number.  System resource IDs range from -32768 to 127.  In general, resource IDs
from 128 to 32767 are available for resources that you create yourself, although the
numbers you can use for some types of resources (for example, font families) are
more restricted.  An application's definition functions (see below) should use IDs
between 128 and 4095.

Creating a Resource
At  the  very  least,  you  will  need  to  create  resources  for  the  standard  user  interface
elements used by your application.  You typically define the user interface elements in
resources and then use Menu Manager,  Window Manager,  Dialog Manager or Control
Manager functions  to create  these  elements,  based  on their  resource  descriptions,  as
needed.

You can create resource descriptions using a resource editor such as Resorcerer (which
uses  the  familiar  point-and-click  approach),  or  you  can  provide  a  textual,  formal
description  of  resources  in  a  file  and  then  use  a  resource  compiler,  such  as  Rez,  to
compile the description into a resource.18 An example of a resource definition for a window
in Rez input format is as follows:

resource 'WIND' (128, preload, purgeable)
{

{64,60,314,460}, /* Window rectangle. (Initial window size and location.) */
kWindowDocumentProc, /* Window definition ID. */
invisible, /* Window is initially invisible. */
goAway, /* Window has a close box. */
0x0, /* Reference constant. */
"untitled", /* Window title. */
staggerParentWindowScreen /* Optional positioning specification. */

};

The structure of the compiled 'WIND' resource is shown at Fig 9.

17 When choosing the characters to identify your custom resource types, note that Apple reserves for its own use resource
types consisting entirely of lowercase characters and special symbols.  Your custom resource types should therefore contain
at least one uppercase character.
18  Macintosh C assumes the use of Resorcerer, and all demonstration program reources were created using Resorcerer.

1-18 CLASSIC EDITION — Version 2.3 System Software, Memory and Resources



FIG 9 - STRUCTURE OF A COMPILED WINDOW ('WIND') RESOURCE
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Note the words preload and purgeable in the preceding 'WIND' resource definition.  These are
constants  representing  resource attributes,  which  are  flags  which  tell  the  Resource
Manager how to handle the resource.  Resource attributes are described by bits in the
low-order byte of an integer value: 

Bit Constant Description
1 resChanged Resource has been changed.
2 resPreload Resource is to be read into memory immediately after the resource fork is 

opened.
3 resProtected Application cannot change the resource ID, modify the resource's contents

or remove the resource from the resource fork.
4 resLocked Relocatable block occupied by the resource is to be locked.  (Overrides the

resPurgeable attribute.)
5 resPurgeable Relocatable block occupied by the resource is to be purgeable.
6 resSysHeap Read the resource into the system heap rather than the application heap.

Note that, if both the resPreload and the resLocked attributes are set, the Resource Manager
loads the resource as low as possible in the heap.

Resources  Which  Must  Be  Unpurgeable.  Some  resources  must  not be  made
purgeable.   For  example,  the  Menu  Manager  expects  menu  resources  to  remain  in
memory at all times.

Resources Which May Be Purgeable.  Other resources, such as those relating to
windows,  controls,  and  dialog  boxes,  do  not  have  to  remain  in  memory  once  the
corresponding  user  interface  element  has  been  created.   You  may  therefore  set  the
purgeable  attribute  for  those  kinds  of  resources  if  you  so  desire.   The  following
considerations  apply  to  the  decision  as  to  whether  to  make  a  resource  purgeable  or
unpurgeable:

• The concept of purgeable resources dates back to the time when RAM was limited
and programmers had to be very careful about allowing resources which were not in
use to continue to occupy precious memory.  Nowadays, however, RAM is not so
limited,  and programmers  need not be overly  concerned about,  say,  a few  'DLOG'
resources (24 bytes each) remaining in memory when they are not required.

• Some resources (for example, large 'PICT' resources and 'snd ' resources) do require a
lot  of  memory,  even  by  today's  standards.   Accordingly,  such  resources  should
generally be made purgeable.
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• As will  be seen,  there  are  certain  hazards associated with the use of  purgeable
resources.   These  hazards  must  be  negated  by  careful  programming  involving
additional lines of code.

Given these considerations, a sound policy would be to make all small and basic resources
unpurgeable  and  set  the  resPurgeable attribute  only  in  the  case  of  comparatively  large
resources which are not required to remain permanently in memory.

Template Resources and Definition Resources
The  'WIND' resource defined above is an example of a  template resource.   A template
resource  defines the  characteristics  of  a  desktop object,  in  this  case  a window's  size,
location,  etc.,  and  the  window  definition  function (specified  by  the  constant
kWindowDocumentProc) to be used to draw it.  Definition functions, which determine the look
and  behaviour  of  a  desktop  object,  are  executable  code  segments  contained  within
another kind of resource called a definition resource. 

The definition function specified by the constant kWindowDocumentProc is contained within the
'WDEF'  resource with ID 64 in the System file.  Note that it is possible to write your own
custom window definition  function  (and,  indeed,  custom definition  functions  for  other
desktop objects such as menus), store it in a  'WDEF'  resource in you application file, and
specify it in the relevant field of your 'WIND' resource definitions.

Resources in Action

The Resource Map

Your  application  file's  resource  fork  contains,  in  addition  to  the  resources  you  have
created for your application, an automatically created resource map.  The resource map
contains entries for each resource in the resource fork.

When your application is launched, the system first gets the Memory Manager to create
the application heap and allocate a block of master pointers at the bottom of the heap.
The Resource Manager then opens your application file's resource fork and reads in the
resource map, followed by those resources which have the resPreload attribute set.

The handles to the resources which have been loaded are stored in the resource map in
memory.  The following is a diagrammatic representation of a simple resource map in
memory  immediately  after  the  resource  map,  together  with  those  resources  with  the
preload attribute set, have been loaded.

Type ID Attributes Handl
e

Prelo
ad

Lock Purgea
ble

CODE 1 • • 1234
CODE 2 • NULL
MENU 128 • 123C
WIND 128 • NULL
PICT 128 • NULL
PICT 129 • NULL

Note that the handle entry in the resource map contains  NULL for those resources which
have  not  yet  been  loaded.   Note  also  that  this  handle  entry  is  filled  in  only  when a
resource is  loaded for  the first time,  and that that entry  remains even if  a  purgeable
resource is later purged by the Memory Manager.
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Reading in Non-Preloaded Resources

Some system software managers use the Resource Manager to read in resources for you.
Using the  'WIND' resource  listed  in  the  above  resource  map as  an example,  when  the
Window Manager function GetNewCWindow is called to create a new window (specifying 128
as the resource ID), GetNewCWindow, in turn, calls the Resource Manager function GetResource.
GetResource loads the resource (assuming that it is not currently in memory), returns the
handle to  GetNewCWindow, and copies the handle to the appropriate entry in the resource
map.  This is an example of an indirect call to the Resource Manager.

Other resources are read in by direct calls to the Resource Manager.  For example, the
'PICT' resources  listed  in the above example resource map would be read in by calling
another of the Get… family of resource-getting functions directly, for example:

#define rPicture1 128
#define rPicture2 129
...
PicHandle pic1Hdl;
PicHandle pic2Hdl;
...
pic1Hdl = GetPicture(rPicture1);
pic2Hdl = GetPicture(rPicture2);

Once again, and assuming that the resources have not previously been loaded, the handle
returned by each GetPicture call is copied to the appropriate entry in the resource map.

Purgeable Resources

When a resource which has the resPurgeable attribute set has been loaded for the first time,
the handle to that resource is copied to the appropriate entry in the resource map in the
normal  way.   If  the  Memory  Manager  later  purges  the  resource,  the  master  pointer
pointing to that resource is set to NULL by the Memory Manager but the handle entry in the
resource map remains.  This creates what is known as an empty handle.

If the application subsequently calls up the resource, the Resource Manager first checks
the resource map handle entry to determine whether the resource has ever been loaded
(and thus whether a master pointer exists for the resource).  If the resource map indicates
that  the  resource  has  never  been  loaded,  the  Resource  Manager  loads  the  resource,
returns its handle to the calling function, and copies the handle to the resource map.

If, on the other hand, the resource map indicates that the resource has previously been
loaded (that is, the handle entry in the resource map contains the address of a master
pointer), the Resource Manager checks the master pointer.  If the master pointer contains
NULL, the Resource Manager knows that the resource has been purged, so it reloads the
resource and updates the master pointer.  Having satisfied itself that the resource is in
memory, the Resource Manager returns the resource's handle to the application.

Problems with Purgeable Resources

Using purgeable resources optimises heap space; however, misuse of purgeable resources
can crash an application.  For example, consider the following code example, which loads
two purgeable  'PICT' resources and then uses the drawing instructions contained in those
resources to draw each picture.

pic1Hdl = GetPicture(rPicture1); // Load first 'PICT' resource.
pic2Hdl = GetPicture(rPicture2); // Load second 'PICT' resource.
if(pic1Hdl) // If the handle to first resource is not NULL ...

DrawPicture(pic1Hdl,&destRect); // ... draw the second picture.
if(pic2Hdl) // If the handle to second resource is not NULL 

DrawPicture(pic2Hdl,&destRect); // ... draw the second picture.

GetPicture is one of the many functions that can cause memory to move.  When memory is
moved, the Memory Manager may purge memory to obtain more heap space.   If  heap
space is extremely limited at the time of the second call to GetPicture, the first resource will
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be purged by the Memory Manager, which will set the master pointer to the first resource
to  NULL to reflect this condition.  The variable  pic1Hdl will now contain an empty handle.
Passing an empty handle to DrawPicture just about guarantees a system crash.

There is a second problem with this code.  Like GetPicture, DrawPicture also has the potential to
move memory blocks.  If  the second call to  GetPicture did not result in the first resource
being purged, the possibility remains that it will be purged while it is being used (that is,
during the execution of the DrawPicture function). 

To avoid such problems when using purgeable resources, you should observe these steps:

• Get (that is, load) the resource only when it is needed.

• Immediately make the resource unpurgeable.

• Use the resource immediately after making it unpurgeable.

• Immediately after using the resource, make it purgeable.

The following revised version of the above code demonstrates this approach:
pic1Hdl = GetPicture(rPicture1); // Load first 'PICT' resource.
if(pic1Hdl) // If the resource was successfully loaded ...
{

HNoPurge((Handle) pic1Hdl); // make the resource unpurgeable ...
DrawPicture(pic1Hdl,&destRect); // draw the first picture ...
HPurge((Handle) pic1Hdl); // and make the resource purgeable again.

}

pic2Hdl = GetResource(rPicture2); // Repeat for the second 'PICT' resource.
if(pic2Hdl)
{

HNoPurge((Handle) pic2Hdl );
DrawPicture(pic2Hdl,&destRect);
HPurge((Handle) pic2Hdl );

}

Note that this procedure only applies when you use functions which get resources directly
(for  example  GetResource,  GetPicture,  etc.).   It  is  not  required  when  you  call  GetResource
indirectly (for example, when you call the Window Manager function GetNewWindow) because
functions like GetNewWindow know how to treat purgeable resources properly.

Note also that LoadResource may be used to ensure that a previously loaded, but purgeable,
resource is in memory before an attempt is made to use it.  If the specified resource is not
in memory,  LoadResource will load it.  The essential difference between LoadResource and the
Get… family of resource-getting functions is that the latter return a handle to the resource
(loading the resource if necessary), whereas LoadResource takes a handle to a resource as a
parameter and loads the resource if necessary.

Releasing Resources

When you have  finished  using  a  resource  loaded  by  a  function  which  gets  resources
directly, you should call the appropriate function to release the memory associated with
that resource.  For example, ReleaseResource is used in the case of generic handles obtained
with  the  GetResource function.   ReleaseResource frees  up  all  the  memory  occupied  by  the
resource and sets the resource's handle in the resource map to NULL.

You do not need to be concerned with explicitly releasing resources loaded indirectly (for
example, by a call to GetNewCWindow).  Using the case of a window resource template as an
example, the sequence of events following a call to GetNewCWindow is as follows:

• GetNewCWindow calls  GetResource to read in the window resource template whose ID is
specified in the GetNewCWindow call.
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• A relocatable block is created for the template resource and marked as purgeable,
as  specified  by  the  resource's  attributes.   (You  should  always  specify  window
template resources as purgeable.)

• The window template's block is then temporarily marked as unpurgeable while:

• A nonrelocatable  block is  created for a data structure known as a window
structure.

• Data is copied from the resource template into certain fields in the window
structure.

• The window template's block is then marked as purgeable.

Resource Manager Errors
The  low-memory  address  0x0A60,  which  is  represented  by  the  symbolic  name  ResErr,
contains the error code resulting from the last call to a Resource Manager function.  This
error code may be retrieved by calling the function ResError.  Some of the error codes which
may be returned by ResError are as follows:

Error 
Code

Constant Description

0 noErr No error occurred.
-192 resNotFound Resource not found.
-193 resFNotFound Resource file not 

found.

Main Memory Manager Data Types and Functions
Data Types
typedef char *Ptr; // Pointer to nonrelocatable block.
typedef Ptr *Handle; // Handle to relocatable block.
typedef long Size; // Size of a block in bytes.

Functions
Setting Up the Application Heap
void MaxApplZone(void);
void MoreMasters(void);
Ptr GetApplLimit(void);
void SetApplLimit(void *zoneLimit);

Allocating and Releasing NonRelocatable Blocks of Memory
Ptr NewPtr(Size byteCount);
Ptr NewPtrClear(Size byteCount);
Ptr NewPtrSys(Size byteCount);
Ptr NewPtrSysClear(Size byteCount);
void DisposePtr(Ptr p);

Allocating and Releasing Relocatable Blocks of Memory
Handle NewHandle(Size byteCount);
Handle NewHandleClear(Size byteCount);
Handle NewHandleSys(Size byteCount);
Handle NewHandleSysClear(Size byteCount);
Handle NewEmptyHandle(void);
Handle NewEmptyHandleSys(void);
void DisposeHandle(Handle h);

System Software, Memory and Resources CLASSIC EDITION — Version 2.3 1-23



Changing the Sizes of Nonrelocatable and Relocatable Blocks
Size GetPtrSize(Ptr p);
void SetPtrSize(Ptr p,Size newSize);
Size GetHandleSize(Handle h);
void SetHandleSize(Handle h,Size newSize);

Setting the Properties of Relocatable Blocks
void HLock(Handle h);
void HUnlock(Handle h);
void HPurge(Handle h);
void HNoPurge(Handle h);
SInt8 HGetState(Handle h);
void HSetState(Handle h,SInt8 flags);

Managing Relocatable Blocks
void EmptyHandle(Handle h);
void ReallocateHandle(Handle h,Size byteCount);
Handle RecoverHandle(Ptr p);
void ReserveMem(Size cbNeeded);
void ReserveMemSys(Size cbNeeded);
void MoveHHi(Handle h);
void HLockHi(Handle h);

Manipulating Blocks of Memory
void BlockMove(const void *srcPtr,void *destPtr,Size byteCount);
void BlockMoveData(const void *srcPtr,void *destPtr,Size byteCount);
OSErr PtrToHand(const void *srcPtr,Handle *dstHndl,long size);
OSErr PtrToXHand(const void *srcPtr,Handle dstHndl,long size);
OSErr HandToHand(Handle *theHndl);
OSErr HandAndHand(Handle hand1,Handle hand2);
OSErr PtrAndHand(const void *ptr1,Handle hand2,long size);

Accessing Memory Conditions
long FreeMem(void);
long FreeMemSys(void);
long MaxBlock(void);
long MaxBlockSys(void);
void PurgeSpace(long *total,long *contig);
long StackSpace(void);

Freeing Memory
Size CompactMem(Size cbNeeded);
Size CompactMemSys(Size cbNeeded);
void PurgeMem(Size cbNeeded);
void PurgeMemSys(Size cbNeeded);
Size MaxMem(size *grow);
Size MaxMemSys(size *grow);

Allocating Temporary Memory
Handle TempNewHandle(Size logicalSize,OSErr *resultCode);
long TempFreeMem(void);
Size TempMaxMem(Size *grow);

Checking for Errors
OSErr MemError(void);
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Main Resource Manager Constants, Data Types, and 
Functions
Constants
Resource Attributes
resSysHeap = 64 System or application heap?
resPurgeable = 32 Purgeable resource?
resLocked = 16 Load it in locked?
resProtected = 8 Protected?
resPreload = 4 Load in on OpenResFile?
resChanged = 2 Resource changed?

Data Types
typedef unsigned long FourCharCode;
typedef FourCharCode ResType;

Functions
Reading Resources Into Memory
Handle GetResource(ResType theType,short theID);
Handle Get1Resource(ResType theType,short theID);
void LoadResource(Handle theResource);

Disposing of Resources
void ReleaseResource(Handle theResource);

Checking for Errors
short ResError(void);

Demonstration Program
// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
// SysMemRes.c
// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
//
// This program:
//
// • Initialises the system software managers.
//
// • Creates a nonrelocatable block of memory for a window structure.
//
// • Loads a window template ('WIND') resource and creates a window.
//
// • Loads a purgeable 'PICT' resource and a non-purgeable 'STR ' resource and draws
// them in the window.
//
// • Checks if any error codes were generated as a result of calls to to Memory Manager 
// and Resource Manager functions.
//
// • Terminates when the mouse button is clicked.
//
// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

// 
………………………………………………………………………………………………………………………………………………………………………
…………………………………… includes

◊include <MacMemory.h>
◊include <Resources.h>
◊include <Sound.h>
◊include <TextUtils.h>
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// 
………………………………………………………………………………………………………………………………………………………………………
……………………………………… defines

◊define rWindowResourceID 128
◊define rStringResourceID 128
◊define rPictureResourceID 128

// 
………………………………………………………………………………………………………………………………………………………………………
……… function prototypes

void main (void);
void doInitManagers (void);
void doNewWindow (void);
void doDrawPictAndString (void);

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ main

void  main(void)
{

doInitManagers();
doNewWindow();
doDrawPictAndString();
while(!Button()) ;

}

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ initManagers

void  doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
}

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ doNewWindow

void  doNewWindow(void)
{

WindowPtr windowPtr;
Ptr windowRecPtr;

windowRecPtr = NewPtr(sizeof(WindowRecord));
if(windowRecPtr == NULL)
{

SysBeep(10);
ExitToShell();

}

windowPtr = GetNewCWindow(rWindowResourceID,windowRecPtr,(WindowPtr) -1);
if(windowPtr == NULL)
{

SysBeep(10);
ExitToShell();

}

SetPort(windowPtr);
TextFont(systemFont);

}

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ doDrawPictAndString

void  doDrawPictAndString(void)
{

PicHandle pictureHdl;
StringHandle stringHdl;
Rect pictureRect;
SInt16 resourceError;
OSErr memoryError;
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pictureHdl = GetPicture(rPictureResourceID);
if(pictureHdl == NULL)
{

SysBeep(10);
ExitToShell();

}

SetRect(&pictureRect,148,25,353,170);

HNoPurge((Handle) pictureHdl);
DrawPicture(pictureHdl,&pictureRect);
HPurge((Handle) pictureHdl);

stringHdl = GetString(rStringResourceID);
if(stringHdl == NULL)
{

SysBeep(10);
ExitToShell();

}

MoveTo(105,210);
DrawString(*stringHdl);

ReleaseResource((Handle) pictureHdl);
ReleaseResource((Handle) stringHdl);

resourceError = ResError();
if(resourceError == noErr)
{

MoveTo(162,240);
DrawString("\pNo Resource Manager errors");

}

memoryError = MemError();
if(memoryError == noErr)
{

MoveTo(165,255);
DrawString("\pNo Memory Manager errors");

}
}

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

Demonstration Program Comments
◊includes
The following explains the inclusion of each of the specified header files:

MacMemory.h Prototypes: MaxApplZone  NewPtr  HNoPurge  HPurge  MemError

Resources.h Prototypes: ReleaseResource  ResError

Sound.h Prototypes: SysBeep

Sound.h itself includes Dialogs.h, which contains:
Prototypes: InitDialogs

Dialogs.h also includes TextEdit.h, which contains
Prototypes: TEInit

Dialogs.h also includes MacWindows.h, which contains:
Prototypes: InitWindows  GetNewCWindow
Data Types: WindowRecord

MacWindows.h itself includes Events.h, which contains:
Prototypes: Button

Dialogs.h also includes Controls.h, which includes Menus.h, which contains:
Prototypes: InitMenus

Menus.h itself includes MacTypes.h, which contains:
DataTypes: SInt16, Ptr  StringHandle  Rect  OSErr  Handle
Constants: noErr
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Menus.h also includes Fonts.h, which contains:
Prototypes: InitFonts
Constants: systemFont

Menus.h also includes Quickdraw.h, which contains:
Prototypes: InitGraf  InitCursor  SetPort  SetRect  DrawPicture

MoveTo  GetPicture
Data Types: WindowPtr  PicHandle
QuickDraw Global Variable: thePort

Quickdraw.h itself includes QuickdrawText.h, which contains:
Prototypes: TextFont  DrawString

Menus.h also includes Processes.h, which contains:
Prototypes: ExitToShell

TextUtils.h Prototypes: GetString

◊defines
Constants are established for the resource IDs of the 'WIND', 'PICT' and 'STR ' resources.

main
The main function calls the application-defined functions which initialise the system software managers, create a window, 
and draw a picture and text in the window.  It then waits for a button click before terminating the program.

doInitManagers
doInitManagers grows the application heap, creates a block of master pointers, initialises the system software managers, 
and sets the cursor to the standard arrow shape.

Note that the function name is somewhat of a misnomer in that it does more than initialise the system software managers.  
However, since growing the heap, creating additional master pointer blocks, and setting the standard arrow cursor shape are
invariably part of an application's setting up process, it is convenient to attend to those matters within the doInitManagers 
function.  This practice will continue in all other demonstration programs.

The call to MaxApplZone is really not required for this simple program.  However, it should be the first call in any serious 
application.  The call grows the heap immediately to the maximum permissible size, assisting in the prevention of heap 
fragmentation, reducing the number of blocks which the Memory Manager has to purge when satisfying a memory request 
and speeding up memory allocation operations.

The call to MoreMasters to allocate a block of master pointers is really not required in this simple program because the 
Operating System automatically allocates one block of master pointers at application launch.  However, in larger applications
where more than 64 master pointers are required, the call, or calls, to MoreMasters should be made here so that all master 
pointer (nonrelocatable) blocks are located at the bottom of the heap.  This will assist in preventing heap fragmentation.

The next six lines initialise certain system software managers.  Not all of the data structures and variables inititialised by 
these calls will be used by this simple program; however, any serious application will require the full initialisation shown.  It 
is also relevant that some managers require the use of information in other managers, so those other managers need to be 
initialised at least for that purpose.  Some explanatory notes on the various calls are as follows:

• InitGraf initialises the QuickDraw global variables.  The first element in the QuickDraw global data area is a pointer 
(thePort) to the current graphics port.  Because it is the first QuickDraw global, passing its address to InitGraf tells 
QuickDraw where all the other QuickDraw globals are located.  Other QuickDraw globals initialised by InitGraf are:

• The pattern variables qd.white, qd.black, qd.gray, qd.ltGray, qd.dkGray.

• qd.arrow, which contains the standard cursor arrow shape and which can be passed as an argument to 
QuickDraw's cursor functions.

• qd.screenBits, a data structure which describes the main screen.  The field screenBits.bounds contains a 
rectangle which encloses the main screen.

• qd.randSeed, which is used to seed the random number generator.

Note:  The header file Quickdraw.h defines the following data type:

struct QDGlobals
{

char privates[76];
long randSeed;
BitMap screenBits;
Cursor arrow;
Pattern dkGray;
Pattern ltGray;
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Pattern gray;
Pattern black;
Pattern white;
GrafPtr thePort;

};
typedef struct QDGlobals QDGlobals;
extern QDGlobals qd;

In the 680x0 environment, the runtime libraries define the QuickDraw global variable qd.  There is no need for your 
application to do this.

• InitFont initialises the Font Manager and loads the system font into memory.  Since the Window Manager uses the 
Font Manager to draw the window's title, etc., InitFonts must be called before InitWindows. Also, it must be called 
after InitGraf.

• InitWindows initialises the Window Manager port.  It must be called after InitGraf and InitFonts.  It draws the familiar 
rounded rectangle desktop with an empty menu bar at the top.  The fill pattern used is the resource whose resource 
ID is represented by the constant deskPatID.  (If a different fill pattern is required, it can be specified in the 
application's resource file.)  The call establishes a nonrelocatable block (the Window Manager port) in the application
heap.

• InitMenus allocates heap storage for the menu list and draws an empty menu bar.  (For some unknown reason, 
InitWindows and InitMenus both draw the menu bar.)  InitMenus must be called after InitGraf, InitFonts and 
InitWindows.

• TEInit initialises TextEdit, the Text editing manager, by allocating an internal handle for the TextEdit scrap (not the 
same as the "desk scrap" maintained by the Desk Manager).  It should be called even if the application does not 
explicitly use TextEdit functions, since it ensures that dialog boxes and alert boxes work correctly.

• InitDialogs initialises the Dialog Manager and optionally installs a function to get control after a fatal system error.  It 
installs the standard sound procedure (for alerts) and sets all text replacement parameters to empty strings (see the 
function ParamText).

InitCursor sets the cursor shape to the standard arrow cursor and sets the cursor level to 0, making it visible.  (The 68-byte 
Cursor structure for the standard arrow cursor can be found in the QuickDraw data area.)

doNewWindow
doNewWindow creates a window.

NewPtr is used to allocate a nonrelocatable block of memory for the window structure.  If the call is not successful, the 
system alert sound is played and the program is terminated by a call to ExitToShell, which releases the heap and hands 
control to the Finder.  (Note that error handling here, and in the rest of the program, is thus somewhat rudimentary.  Note 
also that SysBeep's parameter is nowadays ignored, but must be included for historical reasons.)

The call to GetNewCWindow creates a window using the 'WIND' template resource  specified in the first parameter, and using
the pointer to the nonrelocatable block already allocated for the window structure as the second parameter.  (The third 
parameter tells the Window Manager to open the window in front of all other windows.)  The type, size, location, appearance,
title and visibility of the window are all established by the 'WIND' resource.

Recall that, as soon as the data from the 'WIND' template resource is copied to the window structure during the creation of 
the window, the nonrelocatable block occupied by the template will automatically be marked as purgeable.

The call to SetPort makes the new window's graphics port the current port for drawing operations.  The call to TextFont at 
sets the font for that port to the standard system default font (Chicago or Charcoal, depending on the setting in the 
Appearance control panel).

doDrawPictAndString
doDrawPictAndString draws a picture and some text strings in the window.

GetPicture reads in the 'PICT' resource corresponding to the ID specified in the GetPicture call.  If the call is not successful, 
the system alert sound is played and the program terminates.

The SetRect call assigns values to the left, top, right and bottom fields of a Rect variable.  This Rect is required for a later call
to DrawPicture.

The basic rules applying to the use of purgeable resources are to load it, immediately make it unpurgeable, use it 
immediately, and immediately make it purgeable.  Accordingly, the HNoPurge call makes the relocatable block occupied by 
the resource unpurgeable, the DrawPicture call draws the picture in the window's graphics port, and the HPurge call makes 
the relocatable block purgeable again.

Note that, because HNoPurge and HPurge expect a parameter of type Handle, pictureHdl (a variable of type PicHandle) must 
be cast to a variable of type Handle.

GetString then reads in the specified 'STR ' resource.  Once again, if the call is not successful, the system alert sound is 
played and the program terminates.  MoveTo moves the graphics "pen" to an appropriate position before DrawString draws 
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the string in the window's graphics port.  (Since the 'STR ' resource, unlike the 'PICT' resource, does not have the purgeable 
bit set, there is no requirement to take the precaution of a call to HNoPurge in this case.)

Note the parameter in the call to DrawString.  stringHdl, like any handle, is a pointer to a pointer.  It contains the address of 
a master pointer which, in turn, contains the address of the data.  Dereferencing the handle once, therefore, get the required
parameter for DrawString, which is a pointer to a string.

The calls to ReleaseResource release the 'PICT' and 'STR ' resources.  These calls release the memory occupied by the 
resources and set the associated handles in the resource map in memory to NULL.

The ResError call returns the error code of the most recent resource-related operation.  If the call returns noErr (indicating 
that no error occurred as a result of the most recent call by a Resource Manager function), some advisory text is drawn in 
the graphics port.

The next six lines examine the result of the most recent call to a memory manager function and draw some advisory text if 
no error occurred as a result of that call.

Note that the last two calls to DrawString utilise "hard-coded" strings.  This sort of thing is discouraged in the Macintosh 
programming environment.  Such strings should ordinarily be stored in a 'STR◊' (string list) resource rather than hard-coded 
into the source code.  The \p token causes the compiler to compile these strings as Pascal strings.

PASCAL STRINGS

As stated in the Preface, when it comes to the system software, the ghost of the Pascal language forever haunts the 
C programmer.  For example, a great many system software functions take Pascal strings as a required parameter, 
and some functions return Pascal strings.

Pascal and C strings differ in their formats.  A C string comprises the characters followed by a terminating 0 (or NULL
byte):

+---+---+---+---+---+---+---+---+---+---+
| M | Y |   | S | T | R | I | N | G | 0 |

+---+---+---+---+---+---+---+---+---+---+

In a Pascal string, the first byte contains the length of the string, and the characters follow that byte:

+---+---+---+---+---+---+---+---+---+---+
| 9 | M | Y |   | S | T | R | I | N | G |

+---+---+---+---+---+---+---+---+---+---+

Not surprisingly, then, Pascal strings are often referred to as "length-prefixed" strings.

In Chapter 3, you will encounter the data type Str255.  Str255 is the C name for a Pascal-style string capable of 
holding up to 255 characters.  As you would expect, the first byte of a Str255 holds the length of the string and the 
following bytes hold the characters of the string.

Utilizing 256 bytes for a string will simply waste memory in many cases.  Accordingly, the header file Types.h defines
the additional types Str63, Str32, Str31, Str27, and Str15, as well as the Str255 type:-

    typedef unsigned char Str255[256];
    typedef unsigned char Str63[64];
    typedef unsigned char Str32[33];
    typedef unsigned char Str31[32];
    typedef unsigned char Str27[28];
    typedef unsigned char Str15[16];
    
Note, then, that a variable of type Str255 holds the address of an array of 256 elements, each element being one 
byte long.

As an aside, in some cases you may want to use C strings, and use standard C library functions such as strlen, 
strcpy, etc., to manipulate them.  Accordingly, be aware that functions exist (C2PStr, P2CStr) to convert a string from
one format to the other.

You may wish to make a "working" copy of the SysMemRes demonstration program file package and, using the 
working copy of the source code file SysMemRes.c, replace the function doDrawPictAndString with the following, 
compile-link-run, and note the way the second and third strings appear in the window.

    void  doDrawPictAndString(void)
    {
      Str255  string1 = "\pIs this a Pascal string I see before me?";
      Str255  string2 = "Is this a Pascal string I see before me?";
      Str255  string3 = "%s this a Pascal string I see before me?";
      Str255  string4;
      SInt16  a;

      // Draw string1    
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      MoveTo(30,100);
      DrawString(string1);

      // Change the length byte of string1 and redraw

      string1[0] = (char) 23;
      MoveTo(30,120);
      DrawString(string1);

      // Leave the \p token out at your peril
      // I (ASCII code 73) is now interpreted as the length byte

      MoveTo(30,140);
      DrawString(string2);

      // More peril:-  % (ASCII code 37) is now the length byte

      MoveTo(30,160);
      DrawString(string3);

      // A hand-built Pascal string

      for(a=1;a<27;a++)
        string4[a] = (char) a + 64;

      string4[0] = (char) 26;

      MoveTo(30,180);
      DrawString(string4);

      // But is there a Mac OS function to draw the C strings correctly?

      MoveTo(30,200);
      DrawText(string2,0,40);  // Look it up in your on-line reference
    }
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