
More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-1

16B
MORE ON FILES — NAVIGATION SERVICES

Includes Demonstration Program Files2

Introduction

Navigation Services, which was introduced with Mac OS 8.51 as an alternative to, and ultimately as a
replacement for, the Standard File Package described at Chapter 16, provides greatly enhanced
functionality in the area of document management. Navigation Services provides for opening and
saving documents, confirming saves and discarding changes, choosing a volume, folder, file, or file
object, creating a new folder, file format translation, and easier navigation.

The dialog and alert boxes created by Navigation Services are all Appearance-compliant. Provided that
your application provides an event-handling callback function, the primary dialog boxes are resizable
and movable and the alert boxes are movable.

As is the case with the Standard File Package dialogs, the primary Navigation Services dialog boxes may
be customised.

Navigation Services Dialog and Alert Boxes

The primary dialog boxes created by Navigation Services are as follows:

• Open.

• Save.

• Choose a folder.

• Choose a volume.

• Choose a file.

• Choose a file object.

• Create a new folder.

1 Although introduced with Mac OS 8.5, Navigation Services may be used with Mac OS 7.5.5 or later provided Appearance Manager 1.0.1 or
later is present. QuickTime is also required if previews of graphic documents are to be created and viewed. Macintosh Easy Open is required
for document translation and the correct display of file types. On 680x0 systems, Navigation Services requires the CFM-68K Runtime Enabler.

16B-2 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

The alert boxes created by Navigation Services are as follows:

• Save changes.

• Discard changes.

Standard User Interface Elements in Dialog Boxes

The standard user interface elements in Navigation Services primary dialog boxes are shown at Fig 1.

FIG 1 - STANDARD USER INTERFACE ELEMENTS IN NAVIGATION SERVICES DIALOG BOXES

BROWSER

LOCATION POP-UP MENU BUTTON SHORTCUTS BEVEL BUTTON FAVOURITES BEVEL BUTTON RECENT BEVEL BUTTON

CANCEL PUSH BUTTON DEFAULT PUSH BUTTON

BROWSER LIST

SORT
ORDER
BEVEL
BUTTON

SHOW PUSH BUTTON

PREVIEW
BUTTON

SIZE BOX

SORT KEY BEVEL BUTTONS

Note: The Open dialog box is shown. The names of the user interface elements common to all primary Navigation Services dialog boxes appear in boxes.

The menus associated with the standard user interface elements known as the Shortcut, Favourites, and
Recent bevel buttons are shown in more detail at Fig 2.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-3

FIG 2 - SHORTCUTS, FAVOURITES, AND RECENT
BEVEL BUTTON MENUS (TYPICAL)

Commands
section

Documents
section
(Open dialog
only)

Folders and
Volumes
section

Folders and
Volumes
section

SHORTCUTS FAVOURITES

RECENT

Allows quick navigation to any mounted
storage volume, or straight to the desktop.
If ejectable volumes are mounted, an Eject
item appears at the bottom of the menu.

The Add to Favorites command allows the user to
add the currently selected item to this menu. The
Remove from Favorites command opens a dialog
which allows the user to remove items from the menu.

Documents
section
(Open dialog
only)

The number of items in each section of
the Recent menu will not exceed the
number set in the Apple Menu Options
dialog box.

As an alternative to the Add to Favorites command, users can add an
item to the Favourites menu by dragging the file or folder from the
browser list or desktop to the Favourites bevel button.

Moving and Resizing Navigation Services Dialog Boxes

Navigation Services primary dialog boxes are movable and resizable only if your application provides
an application-defined event-handling callback function to handle update events. A universal procedure
pointer to your event-handling function is passed in the eventProc parameter of Navigation Services
functions such as NavGetFile (see below).

Browser List Expansion

When the user resizes the dialog box using the size box, the browser list expands proportionately. The
date format in the browser list changes as the browser list expands.

Sort Keys and Sort Order

Clicking on one of the sort key bevel buttons (Name or Date) causes the browser list to be sorted on that
key. The sort order (ascending or descending) may be toggled by clicking the sort order bevel button.
Navigation Services tracks the sort key and sort order for each application.

Preview Area

Navigation Services provides a preview area in all dialog boxes which open files. This area can be
toggled on or off by the user using the Show/Hide Preview push button. If the preview area is visible,
Navigation Services will automatically display a preview of any file that contains a valid 'pnot'
resource. You can request preview display by ensuring that the kNavAllowPreviews constant is set in the
dialogOptionFlags field of the NavDialogOptions structure (see below).

Persistence

Persistence is the ability of Navigation Services to store information, and to store it on a per-application
basis. For example, when a primary dialog box is displayed, the browser defaults to the directory
location that was in use when that particular dialog box was last closed by the application. In addition,
if a file or folder was selected when the dialog box was last closed, that file or folder is automatically
selected when the dialog is re-opened. The size, position, sort key and sort order of dialog boxes are also
memorised for each application.

16B-4 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

Default Location and Selection

If you pass NULL in the defaultLocation parameter of functions such as NavGetFile (see below),
Navigation Services will display the default location and selection. You can override the default
location and selection of any Navigation Services dialog box by passing a pointer to an Apple event
descriptor (AEDesc) for the new location in the defaultLocation parameter.

Opening Files

The function NavGetFile displays an Open dialog box that prompts the user to select a file (or files) to
open.

Opening Multiple Files

By Shift-clicking in the Open dialog box's browser list, or by choosing the Select All item in the
application's Edit menu, the user can open multiple files.2

The Show Pop-up Menu

The Show pop-up menu in the Open dialog box allows the user to choose the file types to be displayed
by the browser list and opened by Navigation Services. The list of available file types is built from
information supplied by your application when it calls NavGetFile, and by services in the Translation
Manager. (See Fig 3.)

Note: The Show pop-up menu button will not appear in the
Open dialog if you supply the kNavNoTypePopup
constant in the dialogOptionsFlags field of the
NavDialogOptions structure.

The first section contains your application's native file types. Native file types are those whose type
and creator codes appear in the NavTypeList structure whose handle is passed in the openList
parameter of the NavGetFile function. The first item provides the user with a way to see all native
file types at once. The following items provide the user with a way to display files of one type only.

This section contains a list of file types provided by the Translation Manager. Navigation Services
will automatically translate these file types unless you supply the kNavDontAutoTranslate
constant in the dialogOptionsFlags field of the NavDialogOptions structure passed in
the dialogOptions parameter of the NavGetFile function. This section will not appear if you
supply the kNavDontAddTranslateItems constant in the dialogOptionsFlags field.

This section is reserved for other file types. The All Readable item appears if your application supplies
the kNavAllFilesInPopup constant in the dialogOptionsFlags field of the
NavDialogOptions structure passed in the dialogOptions parameter of the NavGetFile
function. This option allows the display of all files regardless of your application's ability to translate or
open them directly.

FIG 3 - THE SHOW POP-UP MENU AND FILE TYPE OPTIONS

Native File Types Section

The first item in the native file types section of the Show pop-up menu defaults to All Readable Files if
you do not assign the name of your application to the clientName field of the NavDialogOptions structure
(see below) passed in the dialogOptions parameter of the NavGetFile function.

The remaining items in the native file types section will default to <Application Name> Document unless
you provide kind strings to describe the file types included in your NavTypeList structure. You can do
this by including a kind resource (a resource of type 'kind') in your application's resource fork. Fig 4
shows the structure of a compiled 'kind' resource and such a resource being created using Resorcerer.3

2 Folders and volumes cannot be multiple-selected.
3 The kind strings from your application's 'kind' resource also appear in the Kind column in Finder window list views.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-5

FIG 4 - STRUCTURE OF A COMPILED 'kind' RESOURCE AND CREATING A 'kind' RESOURCE USING RESORCERER

Note: The special file type 'apnm' has been included so that, whenever Navigation Services encounters a document that belongs to your application, but whose file
type has not been included in the 'kind' resource, a kind string in the form "<application name> document" will be generated.

APPLICATION SIGNATURE

REGION CODE

FILLER

KIND ARRAY COUNT

2

2

FIRST FILE TYPE

BYTES

4

4

2

4

COMPILED 'kind' RESOURCERESORCERER 'kind' RESOURCE EDITING WINDOW

FIRST KIND STRING

LAST FILE TYPE

ALIGNMENT BYTES

LAST KIND STRING

ALIGNMENT BYTES

1 TO 256

1 TO 256

The NavDialogOptions and NavTypeList Structures

Fig 3 referred to the NavTypeList structure, which defines a list of file types that your application is
capable of opening, and the NavDialogOptions structure, which contains dialog box configuration
settings.

The NavTypeList Structure

The NavTypeList structure is as follows:

struct NavTypeList
{

OSType componentSignature; // Your application signature.
short reserved;
short osTypeCount; // How many file types will be defined.
OSType osType[1]; // A list of file types your application can open.

};

You can create your file type list dynamically or you can use an 'open' resource. Fig 5 shows the
structure of a compiled 'open' resource and such a resource being created using Resorcerer.

FIG 5 - STRUCTURE OF A COMPILED 'open' RESOURCE AND CREATING AN 'open' RESOURCE USING RESORCERER

APPLICATION SIGNATURE

FILLER

FILE TYPE COUNT

FIRST FILE TYPE

2

2

LAST FILE TYPE

BYTES

4

4

4

COMPILED 'open' RESOURCE

RESORCERER 'open' RESOURCE EDITING WINDOW

16B-6 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

The NavDialogOptions Structure

The NavDialogOptions structure is as follows:

struct NavDialogOptions
{

UInt16 version;
NavDialogOptionFlags dialogOptionFlags;
Point location;
Str255 clientName;
Str255 windowTitle;
Str255 actionButtonLabel;
Str255 cancelButtonLabel;
Str255 savedFileName;
Str255 message;
UInt32 preferenceKey;
Handle popupExtension;

};

Field Descriptions

dialogOptionsFlags One of the following constants of type NavDialogOptionFlags:

Constant Description
kNavDefaultNavDlogOptions Use default options. The defaults are as follows:

• No custom control titles.
• No banner or prompt message.
• Automatic resolution of aliases.
• Support for file previews.
• No invisible file objects are displayed.
• Support for stationery.

kNavNoTypePopup Don't show file type pop-up.

kNavDontAutoTranslate Don't auto-translate on Open.

kNavDontAddTranslateItems Don't add translation choices.

kNavAllFilesInPopup Add "All Files" menu item.

kNavAllowStationery Allow stationery files.

kNavAllowPreviews Allow previews.

kNavAllowMultipleFiles Allow multiple selection.

kNavAllowInvisibleFiles Show invisible objects.

kNavDontResolveAliases Don't resolve aliases.

kNavSelectDefaultLocation Make default location the browser selection.

kNavSelectAllReadableItem Make All Readable Items default selection.

kNavSupportPackages Recognise file system packages.

kNavAllowOpenPackages Allow opening of packages.

kNavDontAddRecents Don't add chosen objects to Recents list.

kNavDontUseCustomFrame Don't add the bevelled custom frame.

Those appearing on a gray background are available only in Navigation Services
Version 2.0 or later. Version 2.0 was first issued with Mac OS 9.0.

location The upper-left location of the dialog box, in global coordinates. If the
dialogOptionFlags field is NULL or the coordinate value is (-1,-1), then the dialog
box appears in the same location as when last closed. The size and location of the
dialog box is persistent, but defaults to opening in the middle of the main screen if
any portion is not visible when opened at the persistent location and size.

clientName A string that identifies your application in the dialog box window title.

windowTitle A string that you can provide to override the default window title.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-7

actionButtonLabel An alternative button title for the dialog box’s action push button. If you do not
specify a label, the push button will use the default label (Open or Save, for
example.)

cancelButtonLabel An alternative button title for the Cancel push button in dialog boxes.

savedFileName The default file name for a saved file.

message The string for the banner, or prompt, below the browser list. This message can
provide more descriptive instructions for the user. If you don’t provide a message
string, the browser list will expand to fill that area.

preferenceKey An application-defined value that identifies which set of dialog box preferences
Navigation Services should use. If your application maintains multiple sets of
preferences for a particular type of dialog box, you can determine which set is
active by specifying the appropriate value in the preferenceKey field. For
example, an application may allow one set of preferences when it calls the function
NavGetFile to open text files and a different set of preferences when opening
movie files. If you do not wish to provide a preference key, specify zero for the
preferenceKey value.

popupExtension A handle to one or more structures of type NavMenuItemSpec used to add extra
menu items to the Show pop-up menu in an Open dialog box or the Format pop-up
menu in Save dialog boxes. Using NavMenuItemSpec structures allows your
application to add additional document types to be opened or saved, or different
ways of saving a file (with or without line breaks, for example).

The function NavGetDefaultDialogOptions may be called to initialise a structure of type
NavDialogOptions with the default dialog box options.

The NavReplyRecord Structure

The second parameter in the NavGetFile function, and in other Navigation Services functions, is a
pointer to a structure of type NavReplyRecord. Navigation Services uses this structure to provide your
application with information about the user's actions. The NavReplyRecord structure is as follows:

struct NavReplyRecord
{

UInt16 version;
Boolean validRecord;
Boolean replacing;
Boolean isStationery;
Boolean translationNeeded;
AEDescList selection;
ScriptCode keyScript;
FileTranslationSpec **fileTranslation;

};

Field Descriptions

validRecord true if the user closes a dialog box by pressing Return or Enter, or by pressing the
default button in an Open or Save dialog box. If this field is false, all other fields
are unused and do not contain valid data.

replacing true if the user chooses to save a file by replacing an existing file (thereby
necessitating the removal or renaming of the existing file).

isStationery A Boolean value informing your application that the file about to be saved should
be saved as a stationery document.

translationNeeded A Boolean value indicating that translation was or will be needed for files selected
in Open and Save dialog boxes.

16B-8 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

0 An Apple event descriptor list (AEDescList) created from FSSpec references to items
selected through the dialog box. Navigation Services creates this list, which is
automatically disposed of when your application calls the function NavDisposeReply
(see below). You can determine the number of items in the list by calling the Apple
Event Manager function AECountItems. (Some dialog boxes may return one or more
items; a Save dialog box will always return one.) Each selected item is described in
an AEDesc structure by the descriptor type typeFSS. You can coerce this descriptor
into an FSSpec structure to perform operations such as opening the file.

keyScript The keyboard script system used for the filename.

fileTranslation A handle to a FileTranslationSpec structure. This structure contains a
corresponding translation array for each file reference returned in the selection
field. When opening files, Navigation Services will perform the translation
automatically unless you set the kNavDontAutoTranslate flag in the
dialogOptionFlags field of the NavDialogOptions structure. When Navigation
Services performs an automatic translation, the FileTranslationSpec structure is
strictly for the Translation Manager’s use. If you turn off automatic translation,
your application may use the FileTranslationSpec structure for its own translation
scheme. If the user chooses a translation for a saved file, the FileTranslationSpec
structure contains a single translation reference for the saved file and the
translationNeeded field of the NavReplyRecord structure is set to true. The handle
to the FileTranslationSpec structure is locked, so you can safely use dereferenced
pointers.

When your application has finished using this structure, it should dispose of it by calling the function
NavDisposeReply.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-9

Saving Files

The function NavPutFile displays the Save dialog box (see Fig 6).

FIG 6 - THE SAVE DIALOG BOX (PARTIAL), THE FORMAT POP-UP MENU, THE STATIONERY OPTION DIALOG
BOX, AND THE NEW FOLDER DIALOG BOX

The first item is defined by the document type specified by your application in the fileType and
fileCreator parameters of the NavPutFile function. The item's menu title is obtained from the Translation
Manager.

After setting the first item, Navigation Services calls the Translation Manager to determine whether to
display subsequent menu items describing alternative file types.

The Stationery Option item displays the Stationery option dialog box, which lets the user decide
whether a new document or a copy of a document should be saved as a document or as stationery.

When the user selects a folder,
the default push button title
toggles from Save to Open.

When the user selects the
Name editable text field, the
default push button title reverts
to Save.

When no filename is displayed
in the Name editable text field,
the default push button is
disabled.

Note: The Format pop-up menu button will not appear in the Save dialog if you supply the kNavNoTypePopup constant in the dialogOptionsFlags field of the
NavDialogOptions structure.

The New push button enables the user to
create a new folder for saving a document.

You should always call the function NavCompleteSave to complete any save operation. Amongst other
things, NavCompleteSave performs any needed translation.

Translating Files on Save

As stated at Fig 6, your application supplies its default file type and creator for saved files to the function
NavPutFile and Navigation Services uses this information to build a pop-up menu of available
translation choices obtained from the Translation Manager.

If the user selects an output file type that is different from the native type, Navigation Services prepares
a translation specification and supplies a handle to it in the fileTranslation field of a NavReplyRecord
structure. If you choose to provide your own translation, Navigation Services informs you that
translation is required by setting the translationNeeded field of the NavReplyRecord structure to true.

If you wish to turn off automatic translation, set the value of the translationNeeded field of the
NavReplyRecord structure to false before calling the NavCompleteSave function.

By default, the NavPutFile function saves translations as a copy of the original file. Your application can
direct Navigation Services to replace the original with the translation by passing the
kNavTranslateInPlace constant in the howToTranslate parameter of the NavCompleteSave function.

16B-10 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

Choosing A Folder

The function NavChooseFolder displays a dialog box that prompts the user to choose a folder (see Fig 7.)

FIG 7 - CHOOSE A FOLDER DIALOG BOX

If a string assigned to the message field of the
NavDialogOptions structure, it is displayed here.

The browser list in the Choose Folder dialog
displays only directories and volumes.

Several Navigation Services functions return Apple event descriptors for file objects. When Navigation
Services passes your application an AEDesc structure of type typeFSS describing a file, the name field will
contain the file’s name and the parID field will contain the directory ID of the file’s parent directory.
However, when Navigation Services passes your application an AEDesc structure of type typeFSS
describing a directory, the name field is empty and the parID field contains the directory ID of that
directory.4

Choosing Volumes, Files, File Objects, and Creating a New Folder

The function NavChooseVolume displays a dialog box that prompts the user to choose a volume.

The function NavChooseFile displays a dialog box that prompts the user to choose a file. This file can be
a preferences file, dictionary, or other specialised file.

The function NavChooseObject displays a dialog box that prompts the user to choose a file object. This
function is useful when you need the user to select an object which might be one of several different
types.

The function NavNewFolder displays a dialog box that prompts the user to create a new folder.

As with the Choose Folder dialog box, these dialog boxes will display a string assigned to the message
field of the NavDialogOptions structure immediately below the browser list.

4 This means, incidentally, that you can use the name field to determine whether an object is a file or a folder.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-11

Save Changes and Discard Changes Alert Boxes

Save Changes Alert Box

To display a standard Save Changes alert box, your application passes the document title to the function
NavAskSaveChanges, which creates an alert box similar to that shown at Fig 8.

FIG 8 - STANDARD SAVE CHANGES ALERT BOX (QUITTING APPLICATION)

One of the following constants is passed in the action parameter of the NavAskSaveChanges function:

kNavSaveChangesClosingDocument = 1
kNavSaveChangesQuittingApplication = 2
kNavSaveChangesOther = 0

After the user closes the alert box, Navigation Services tells your application which push button the user
clicked by returning one of the following constants:

kNavAskSaveChangesSave = 1
kNavAskSaveChangesCancel = 2
kNavAskSaveChangesDontSave = 3

You can display a customised Save Changes alert box using the function NavCustomAskSaveChanges. A
typical customised Save Changes alert box might contain text such as "You have not saved your work for
ten minutes. Do you want to save now?". The message field of the NavDialogOptions structure passed in
the dialogOptions parameter of NavCustomAskSaveChanges is the only one you must supply with a value.

Save Changes alert boxes are movable only if your application provides an application-defined event-
handling callback function to handle update events.

Discard Changes Alert Box

To support a Revert To Saved item in your application's File menu, Navigation Services provides the
Discard Changes alert box (see Fig 9), which is created by the function NavAskDiscardChanges.

FIG 9 - DISCARD CHANGES ALERT BOX

16B-12 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

After the user closes the alert box, Navigation Services tells your application which button the user
clicked by returning one of the following constants:

kNavAskDiscardChanges = 1
kNavAskDiscardChangesCancel = 2

Discard Changes alert boxes are movable only if your application provides an application-defined event-
handling callback function to handle update events.

Application-Defined Functions

Application-Defined Event Handling

As previously stated, Navigation Services primary dialog boxes are movable and resizable, and
Navigation Services alert boxes are movable, only if your application provides an application-defined
event-handling function to handle update events. A universal procedure pointer to your event-handling
function is passed in the eventProc parameter of Navigation Services functions such as NavGetFile and
NavAskSaveChanges.

The following is an example of an event-handling function:

pascal void myEventFunction(NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,void *callBackUD)

{
WindowPtr window;

WindowPtr = (WindowPtr) callBackParms->eventData.event->message;

switch (callBackSelector)
{

case kNavCBEvent:
switch (callBackParms->eventData.event->what)
{

case updateEvt:
doUpdate(window,(EventRecord *) callBackParms->eventData.event);
break;

}
break;

}

The formal parameter callBackSelector receives an event message constant indicating which type of
call Navigation Services is making to the event-handling function. One such constant is kNavCBEvent,
which indicates that an event has occurred, and which is the only message that needs to be processed by
applications that do not customise the Open and Save dialog boxes. callBackParms is a pointer to a
structure of type NavCBRec. The event's event structure resides in the eventData field of the NavCBRec
structure.

Application-Defined Object Filtering

The process of choosing which files, folders and volumes to display in the browser list and the
ShortCuts, Favourites, and Recent menus is known as object filtering. If your application needs simple,
straightforward object filtering, and as previously described, you simply pass a pointer to a structure of
type NavTypeList to the relevant Navigation Services function. If you desire more specific filtering,
Navigation Services lets you implement an application-defined filter function. Filter functions give you
more control over what can and cannot be displayed.

You can use both an NavTypeList structure and a filter function if you wish, but be aware that your filter
function is directly affected by the NavTypeList structure. For example, if the NavTypeList structure
contains only TEXT and PICT types, only TEXT and PICT files will be passed into your filter function.

You pass a universal procedure pointer to your filter function in the filterProc parameter of functions
such as NavGetFile. Your filter function should return true if an object is to be displayed.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-13

The following is an example of a simple filter function:

pascal void myFilterFunction(AEDesc* theItem,void* info,
NavCallBackUserData callBackUD,
NavFilterModes filterMode)

{
 OSErr theErr = noErr;
 Boolean display = true;
 NavFileOrFolderInfo* theInfo = (NavFileOrFolderInfo*) info;

 if(theItem->descriptorType == typeFSS)
 if(!theInfo->isFolder)
 if(theInfo->fileAndFolder.fileInfo.finderInfo.fdType != 'TEXT')
 display = false;

 return display;
}

Application-Defined Previews

To override how previews are drawn and handled, you can create a preview function and pass a
universal procedure pointer to it in the previewProc parameter of Navigation Services functions such as
NavGetFile. Your preview function must be defined like this:

pascal Boolean myPreviewProc(NavCBRecPtr callBackParms,NavCallBackUserData callBackUD);

callBackParms A pointer to a NavCBRec structure that contains event data needed for your function
to draw the preview.

callBackUD A value set by your application. When the NavGetFile function calls back your
event-handling function, the callBackUD value is passed back to your application.

Return: true if your preview function successfully draws the file preview. If your preview function
returns false, Navigation Services will display the preview if the file contains a valid 'pnot'
resource.

Your application can use the function NavCustomControl to determine if the preview area is visible and, if
so, what its dimensions are.

Adding Controls to a Navigation Services Dialog Box

To add controls to a Navigation Services dialog box, you should:

• Provide an event-handling function to communicate with Navigation Services.

• Within the event-handling function, respond to the kNavCBCustomize event message constant,
which your application can obtain from the param field of the NavCBRec structure. (See
Application-Defined Event Handling, above.) The customRect field of the NavCBRec structure
defines a rectangle in the local coordinates of the window. The top-left coordinates of this
rectangle define the anchor point for the customisation rectangle, which is the area Navigation
Services provides for your application to add custom dialog items. Your application responds by
passing the values which will complete the dimensions of your required customisation rectangle.
Navigation Services inspects the customRect field to determine if the requested dimensions can be
accommodated in the screen space available. If not, the rectangle will be set to the largest size
that can be accommodated and your application will be sent another kNavCBCustomize constant.
Your application can continue to negotiate by examining the customRect field and requesting a
different size until Navigation Services provides an acceptable rectangle value. The minimum
dimensions for the customisation area are 400 pixels wide by 40 pixels high.5

5 The customRect field contains an empty rectangle if customisation is not allowed (i.e. dialog boxes other than Open or Save). In this case,
your application can simply ignore the call.

16B-14 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

• With the customisation rectangle established, check for the kNavCBStart event message constant
in the param field of the NavCBRec structure. kNavCBStart indicates that Navigation Services is
opening the dialog box. After you obtain this constant, you can add your interface elements to
the customisation rectangle. You can do this by providing a 'DITL' resource (in local coordinates,
relative to the anchor point of the customisation rectangle) and passing the
kNavCtlAddControlList constant in the selector parameter of the function NavCustomControl.
The following shows one way to do this:

gDitlList = GetResource('DITL',kControlListID);
theErr = NavCustomControl(callBackParms->context,kNavCtlAddControlList,gDitlList);

The advantage of using a 'DITL' resource is that the Dialog Manager will handle all control
movement and tracking.

• When Navigation Services supplies the kNavCBTerminate event message constant in the param
field of the NavCBRec structure (after the user closes the dialog box), dispose of the control or
resource.

Main Navigation Services Constants, Data Types, and Functions

In the following, those constants and functions appearing on a gray background are available only in
Navigation Services Version 2.0 or later. Version 2.0 was first issued with Mac OS 9.0.

Constants

Configuration Options

kNavDefaultNavDlogOptions = 0x000000E4 // Use defaults for all the options
kNavNoTypePopup = 0x00000001 // Don't show file type/extension popup on Open/Save
kNavDontAutoTranslate = 0x00000002 // Don't automatically translate on Open
kNavDontAddTranslateItems = 0x00000004 // Don't add translation choices on Open/Save
kNavAllFilesInPopup = 0x00000010 // "All Files" menu item in the type popup on Open
kNavAllowStationery = 0x00000020 // Allow saving of stationery files
kNavAllowPreviews = 0x00000040 // Allow to show previews
kNavAllowMultipleFiles = 0x00000080 // Allow multiple items to be selected
kNavAllowInvisibleFiles = 0x00000100 // Allow invisible items to be shown
kNavDontResolveAliases = 0x00000200 // Don't resolve aliases
kNavSelectDefaultLocation = 0x00000400 // Make the default location the browser selection
kNavSelectAllReadableItem = 0x00000800 // Make dialog select "All Readable Documents" on Open
kNavSupportPackages = 0x00001000 // Recognize file system packages
kNavAllowOpenPackages = 0x00002000 // Allow opening of packages
kNavDontAddRecents = 0x00004000 // Don't add chosen objects to the recents list
kNavDontUseCustomFrame = 0x00008000 // Don't add the bevelled custom frame

Save Changes Request

kNavSaveChangesClosingDocument = 1
kNavSaveChangesQuittingApplication = 2
kNavSaveChangesOther = 0

Save Changes Action

kNavAskSaveChangesSave = 1
kNavAskSaveChangesCancel = 2
kNavAskSaveChangesDontSave = 3

Discard Changes Action

kNavAskDiscardChanges = 1
kNavAskDiscardChangesCancel = 2

Event Message

kNavCBEvent = 0 // An event has occurred (update, idle events, etc.)
kNavCBCustomize = 1 // Protocol for negotiating customization space

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-15

kNavCBStart = 2 // The navigation dialog is starting up
kNavCBTerminate = 3 // The navigation dialog is closing down
kNavCBAdjustRect = 4 // The navigation dialog is being resized
kNavCBNewLocation = 5 // User has chosen a new location in the browser
kNavCBShowDesktop = 6 // User has navigated to the desktop
kNavCBSelectEntry = 7 // User has made a selection in the browser
kNavCBPopupMenuSelect = 8 // Signifies that a popup menu selection was made
kNavCBAccept = 9 // User has accepted the navigation dialog
kNavCBCancel = 10 // User has cancelled the navigation dialog
kNavCBAdjustPreview = 11 // Preview button clicked or preview was resized
kNavCBOpenSelection = (long) 0x80000000 // User has opened or chosen an object

Object Filtering

kNavFilteringBrowserList = 0
kNavFilteringFavorites = 1
kNavFilteringRecents = 2
kNavFilteringShortCutVolumes = 3

Data Types

NavDialog Options Structure

struct NavDialogOptions
{

UInt16 version;
NavDialogOptionFlags dialogOptionFlags;
Point location;
Str255 clientName;
Str255 windowTitle;
Str255 actionButtonLabel;
Str255 cancelButtonLabel;
Str255 savedFileName;
Str255 message;
UInt32 preferenceKey;
Handle popupExtension;
char reserved[494];

};
typedef struct NavDialogOptions NavDialogOptions;

Nav Reply Structure

struct NavReplyRecord
{

UInt16 version;
Boolean validRecord;
Boolean replacing;
Boolean isStationery
Boolean translationNeeded;
AEDescList selection;
ScriptCode keyScript;
FileTranslationSpec **fileTranslation;
UInt32 reserved1;
char reserved[231];

};
typedef struct NavReplyRecord NavReplyRecord;

NavTypeList

struct NavTypeList
{

OSType componentSignature;
short reserved;
short osTypeCount;
OSType osType[1];

};
typedef struct NavTypeList NavTypeList;
typedef NavTypeList *NavTypeListPtr;
typedef NavTypeListPtr *NavTypeListHandle;

16B-16 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

Functions

Calling Navigation Services

OSErr NavLoad(void);
OSErr NavUnload(void);
OSErr NavGetDefaultDialogOptions(NavDialogOptions *dialogOptions);
OSErr NavDisposeReply(NavReplyRecord *reply);

Choosing Files, Folders, and Volumes

OSErr NavGetFile(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavPreviewUPP previewProc,
NavObjectFilterUPP filterProc,NavTypeListHandle typeList,
NavCallBackUserData callBackUD);

OSErr NavChooseFile(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavPreviewUPP previewProc,
NavObjectFilterUPP filterProc,NavTypeListHandle typeList,
NavCallBackUserData callBackUD);

OSErr NavChooseVolume(AEDesc *defaultSelection,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavObjectFilterUPP filterProc,
NavCallBackUserData callBackUD);

OSErr NavChooseFolder(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavObjectFilterUPP filterProc,
NavCallBackUserData callBackUD);

OSErr NavChooseObject(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavObjectFilterUPP filterProc,
NavCallBackUserData callBackUD);

OSErr NavNewFolder(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,NavCallBackUserData callBackUD);

OSErr NavCreatePreview(AEDesc *theObject,OSType previewDataType,const void *previewData,
Size previewDataSize);

Saving Files

OSErr NavPutFile(AEDesc *defaultLocation,NavReplyRecord *reply,
NavDialogOptions *dialogOptions,NavEventUPP eventProc,OSType fileType,
OSType fileCreator, NavCallBackUserData callBackUD);

OSErr NavAskSaveChanges(NavDialogOptions *dialogOptions,NavAskSaveChangesAction action,
NavAskSaveChangesResult *reply,NavEventUPP eventProc,NavCallBackUserData callBackUD);

OSErr NavCustomAskSaveChanges(NavDialogOptions *dialogOptions,
NavAskSaveChangesResult *reply,NavEventUPP eventProc,NavCallBackUserData callBackUD);

OSErr NavAskDiscardChanges(NavDialogOptions *dialogOptions,
NavAskDiscardChangesResult *reply,NavEventUPP eventProc,
NavCallBackUserData callBackUD);

OSErr NavCompleteSave(NavReplyRecord *reply,NavTranslationOptions howToTranslate);

Demonstration Program

// ##
// Files2.h
// ##
//
// This program demonstrates:
//
// • The use of Navigation Services rather than the Standard File Package to display
// Open, Save, and Choose a Folder dialog boxes.
//
// • The use of Navigation Services rather than the Dialog Manager to display Save
// Changes and Discard Changes alert boxes.
//
// • Application-defined file handling functions associated with:
//
// • The user invoking the File menu Open…, Close, Save, Save As…, Revert to Saved,
// and Quit commands of a typical application.
//
// • Handling of the required Apple events Open Application, Re-open Application,
// Open Documents and Quit Application.
//
// These functions are essentially the same as those in the demonstration program
// Files1 except that the safe-save methodology used in Files1 is not used, all

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-17

// saves being direct to the target file.
//
// To keep the code not specifically related to files and file-handling to a minimum, an
// item is included in the Demonstration menu which allows the user to simulate
// "touching" a window (that is, modifying the contents of the associated document).
// Choosing the first menu item in this menu sets the window-touched flag in the window's
// document structure to true and draws the text "WINDOW TOUCHED" in the window in a
// large font size, this latter so that the user can keep track of which windows have
// been "touched".
//
// This program is also, in part, an extension of the demonstration program Windows2 in
// that it also demonstrates certain file-related Window Manager features introduced with
// the Mac OS 8.5 Window Manager. These features are:
//
// • Window proxy icons.
//
// • Window path pop-up menus.
//
// Those sections of the source code relating to these features is identified with /////
// at the right of each line.
//
// The program utilises the following resources:
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration
// menus (preload, non-purgeable).
//
// • A 'WIND' resource (purgeable) (initially not visible).
//
// • A 'STR ' resource containing the "missing application name" string, which is copied
// to all document files created by the program.
//
// • 'STR#' resources (purgeable) containing error strings, the application's name (for
// certain Navigation Services functions), and a message string for the Choose a
// Folder dialog box.
//
// • A 'kind' resource (purgeable) describing file types, which is used by Navigation
// Services to build the native file types section of the Show pop-up menu in the
// Open dialog box.
//
// • An 'open' resource (purgeable) containing the file type list for the Open dialog
// box.
//
// • A 'pnot' and associated 'PICT' resource (both purgeable), which provide the preview
// for the PICT file.
//
// • The 'BNDL' resource (non-purgeable), 'FREF' resources (non-purgeable), signature
// resource (non-purgeable), and icon family resources (purgeable), required to
// support the built application.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, isHighLevelEventAware, and
// is32BitCompatible flags set (non-purgeable).
//
// ##

// ……… includes

#include <Appearance.h>
#include <AERegistry.h>
#include <Devices.h>
#include <Folders.h>
#include <Gestalt.h> /////
#include <Navigation.h>
#include <Resources.h>
#include <Sound.h>
#include <ToolUtils.h>

// ……… typedefs

typedef struct
{

TEHandle editStrucHdl;
PicHandle pictureHdl;
SInt16 fileRefNum;
FSSpec fileFSSpec;
AliasHandle aliasHdl; /////
Boolean windowTouched;

16B-18 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

} docStructure, *docStructurePointer, **docStructureHandle;

typedef StandardFileReply *standardFileReplyPtr;

// …… defines

#define mApple 128
#define iAbout 1
#define mFile 129
#define iNew 1
#define iOpen 2
#define iClose 4
#define iSave 5
#define iSaveAs 6
#define iRevert 7
#define iQuit 12
#define mDemonstration 131
#define iTouchWindow 1
#define iChooseAFolderDialog 3
#define rNewWindow 128
#define rMenubar 128
#define rRevertAlert 128
#define rCloseFileAlert 129
#define rCustomOpenDialog 130
#define iPopupItem 10
#define rSelectDirectoryDialog 131
#define iSelectButton 10
#define rErrorStrings 128
#define eInstallHandler 1000
#define eMaxWindows 1001
#define eFileIsOpen opWrErr
#define eNoNavServices 1002
#define eCantFindFinderProcess 1003 /////
#define rMiscStrings 129
#define sApplicationName 1
#define sChooseAFolder 2
#define rOpenResource 128
#define kMaxWindows 10
#define MAXLONG 0x7FFFFFFF
#define MIN(a,b) ((a) < (b) ? (a) : (b))

// …… function prototypes

void main (void);
void eventLoop (void);
void doInitManagers (void);
void doInstallAEHandlers (void);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doBringFinderToFront (void); /////
OSErr doFindProcess (OSType,OSType,ProcessSerialNumber *); /////
void doUpdate (EventRecord *);
void doMenuChoice (SInt32);
void doFileMenu (SInt16);
void doAdjustMenus (void);
void doErrorAlert (SInt16);
void doCopyPString (Str255,Str255);
void doConcatPStrings (Str255,Str255);
void doTouchWindow (void);
void doSynchroniseFiles (void); /////
pascal OSErr doOpenAppEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErr doReopenAppEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErr doOpenDocsEvent (AppleEvent *,AppleEvent *,SInt32);
pascal OSErr doQuitAppEvent (AppleEvent *,AppleEvent *,SInt32);
OSErr doHasGotRequiredParams (AppleEvent *);

OSErr doNewCommand (void);
OSErr doOpenCommand (void);
OSErr doCloseCommand (NavAskSaveChangesAction);
OSErr doSaveCommand (void);
OSErr doSaveAsCommand (void);
OSErr doRevertCommand (void);
OSErr doQuitCommand (NavAskSaveChangesAction);
OSErr doNewDocWindow (Boolean,OSType);
OSErr doOpenFile (FSSpec,OSType);
OSErr doReadTextFile (WindowPtr);

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-19

OSErr doReadPictFile (WindowPtr);
OSErr doCloseFile (WindowPtr,docStructureHandle,NavAskSaveChangesAction);
OSErr doWriteFile (WindowPtr,Boolean);
OSErr doWriteTextData (WindowPtr,SInt16);
OSErr doWritePictData (WindowPtr,SInt16);
OSErr doCopyResources (WindowPtr);
OSErr doCopyAResource (ResType,SInt16,SInt16,SInt16);
pascal void navEventFunction (NavEventCallbackMessage,NavCBRecPtr,NavCallBackUserData);

OSErr doChooseAFolderDialog (FSSpec *);

// ##
// Files2.c
// ##

// ……… includes

#include "Files2.h"

// ……… global variables

Boolean gMacOS85Present = false; /////
Boolean gDone;
Boolean gInBackground;
AEEventHandlerUPP doOpenAppEventUPP;
AEEventHandlerUPP doReopenAppEventUPP;
AEEventHandlerUPP doOpenDocsEventUPP;
AEEventHandlerUPP doQuitAppEventUPP;
SInt16 gAppResFileRefNum;

extern SInt16 gCurrentNumberOfWindows;
extern Rect gDestRect,gViewRect;

// ### main

void main(void)
{

OSErr osError; /////
SInt32 response; /////
Handle menubarHdl;
MenuHandle menuHdl;

// ………initialise managers

doInitManagers();

// ……………………………………………………………………………………………………… check whether Mac OS 8.5 or later is present

osError = Gestalt(gestaltSystemVersion,&response); /////
/////

if(osError == noErr && response >= 0x00000850) /////
gMacOS85Present = true; /////

// …………………………………………………………………………… check for Navigation Services, and pre-load (optional)

if(NavServicesAvailable())
NavLoad();

else
doErrorAlert(eNoNavServices);

// ……………………………………………………………………………………… create routine decriptors for Apple event handlers

doOpenAppEventUPP = NewAEEventHandlerProc((ProcPtr) doOpenAppEvent);
doReopenAppEventUPP = NewAEEventHandlerProc((ProcPtr) doReopenAppEvent);
doOpenDocsEventUPP = NewAEEventHandlerProc((ProcPtr) doOpenDocsEvent);
doQuitAppEventUPP = NewAEEventHandlerProc((ProcPtr) doQuitAppEvent);

// ……………………………………………………………………… set application's resource fork as current resource file

gAppResFileRefNum = CurResFile();

// …… set up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

doErrorAlert(MemError());

16B-20 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

SetMenuBar(menubarHdl);
DrawMenuBar();

menuHdl = GetMenuHandle(mApple);
if(menuHdl == NULL)

doErrorAlert(MemError());
else

AppendResMenu(menuHdl,'DRVR');

// …… install required Apple event handlers

doInstallAEHandlers();

// ……… enter event loop

eventLoop();
}

// ## eventLoop

void eventLoop(void)
{

EventRecord eventStructure;

gDone = false;

while(!gDone)
{

if(WaitNextEvent(everyEvent,&eventStructure,MAXLONG,NULL))
doEvents(&eventStructure);

#if TARGET_CPU_PPC /////
else /////

if(gMacOS85Present) /////
doSynchroniseFiles(); /////

#endif /////
}

}

// ### doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

RegisterAppearanceClient();
}

// ## doInstallAEHandlers

void doInstallAEHandlers(void)
{

OSErr osError;

osError = AEInstallEventHandler(kCoreEventClass,kAEOpenApplication,doOpenAppEventUPP,
0L,false);

if(osError != noErr) doErrorAlert(eInstallHandler);

osError = AEInstallEventHandler(kCoreEventClass,kAEReopenApplication,
doReopenAppEventUPP,0L,false);

if(osError != noErr) doErrorAlert(eInstallHandler);

osError = AEInstallEventHandler(kCoreEventClass,kAEOpenDocuments,doOpenDocsEventUPP,
0L,false);

if(osError != noErr) doErrorAlert(eInstallHandler);

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-21

osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,doQuitAppEventUPP,
0L,false);

if(osError != noErr) doErrorAlert(eInstallHandler);
}

// ### doEvents

void doEvents(EventRecord *eventStrucPtr)
{

SInt8 charCode;

switch(eventStrucPtr->what)
{

case kHighLevelEvent:
AEProcessAppleEvent(eventStrucPtr);
break;

case mouseDown:
doMouseDown(eventStrucPtr);
break;

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)
{

doAdjustMenus();
doMenuChoice(MenuEvent(eventStrucPtr));

}
break;

case updateEvt:
doUpdate(eventStrucPtr);
break;

case osEvt:
switch((eventStrucPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:
gInBackground = (eventStrucPtr->message & resumeFlag) == 0;
break;

}
HiliteMenu(0);
break;

}
}

// ## doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
SInt16 partCode;
OSStatus osStatus; /////
Boolean handled = false; /////
SInt32 itemSelected; /////

partCode = FindWindow(eventStrucPtr->where,&windowPtr);

switch(partCode)
{

case inMenuBar:
doAdjustMenus();
doMenuChoice(MenuSelect(eventStrucPtr->where));
break;

case inContent:
if(windowPtr != FrontWindow())

SelectWindow(windowPtr);
break;

case inGoAway:
if(TrackGoAway(windowPtr,eventStrucPtr->where) == true)

doCloseCommand(kNavSaveChangesClosingDocument);
break;

16B-22 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

#if TARGET_CPU_PPC /////
case inProxyIcon: /////

osStatus = TrackWindowProxyDrag(windowPtr,eventStrucPtr->where); /////
if(osStatus == errUserWantsToDragWindow) /////

handled = false; /////
else if(osStatus == noErr) /////

handled = true; /////
#endif /////

case inDrag: /////
#if TARGET_CPU_PPC /////

if(gMacOS85Present) /////
{ /////

if(!handled) /////
{ /////

if(IsWindowPathSelectClick(windowPtr,eventStrucPtr)) /////
{ /////

if(WindowPathSelect(windowPtr,NULL,&itemSelected) == noErr) /////
{ /////

if(LoWord(itemSelected) > 1) /////
doBringFinderToFront(); /////

} /////
/////

handled = true; /////
} /////

} /////
if(!handled) /////

DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds); /////
} /////
else /////

#endif /////
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);

break;
}

}

#if TARGET_CPU_PPC /////
// ### doBringFinderToFront

void doBringFinderToFront(void) /////
{ /////

ProcessSerialNumber finderProcess; /////
/////

if(doFindProcess('MACS','FNDR',&finderProcess) == noErr) /////
SetFrontProcess(&finderProcess); /////

else /////
doErrorAlert(eCantFindFinderProcess); /////

} /////

// ## doFindProcess

OSErr doFindProcess(OSType creator,OSType type,ProcessSerialNumber *outProcSerNo)
{ /////

ProcessSerialNumber procSerialNo; /////
ProcessInfoRec procInfoStruc; /////
OSErr osError = 0; /////

/////
procSerialNo.highLongOfPSN = 0; /////
procSerialNo.lowLongOfPSN = kNoProcess; /////

/////
procInfoStruc.processInfoLength = sizeof(ProcessInfoRec); /////
procInfoStruc.processName = NULL; /////
procInfoStruc.processAppSpec = NULL; /////
procInfoStruc.processLocation = NULL; /////

/////
while(true) /////
{ /////

osError = GetNextProcess(&procSerialNo); /////
if(osError != noErr) /////

break; /////
/////

osError = GetProcessInformation(&procSerialNo,&procInfoStruc); /////
if(osError != noErr) /////

break; /////
if((procInfoStruc.processSignature == creator) && (procInfoStruc.processType == type))

break; /////

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-23

} /////
/////

*outProcSerNo = procSerialNo; /////
/////

return osError; /////
} /////
#endif /////

// ### doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
GrafPtr oldPort;
Rect destRect;

windowPtr = (WindowPtr) eventStrucPtr->message;
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

GetPort(&oldPort);
SetPort(windowPtr);

BeginUpdate(windowPtr);

if((*docStrucHdl)->pictureHdl)
{

destRect = (*(*docStrucHdl)->pictureHdl)->picFrame;
OffsetRect(&destRect,170,54);
HLock((Handle) (*docStrucHdl)->pictureHdl);
DrawPicture((*docStrucHdl)->pictureHdl,&destRect);
HUnlock((Handle) (*docStrucHdl)->pictureHdl);

}
else if((*docStrucHdl)->editStrucHdl)
{

HLock((Handle) (*docStrucHdl)->editStrucHdl);
TEUpdate(&gDestRect,(*docStrucHdl)->editStrucHdl);
HUnlock((Handle) (*docStrucHdl)->editStrucHdl);

}

if((*docStrucHdl)->windowTouched)
{

TextSize(48);
MoveTo(30,170);
DrawString("\pWINDOW TOUCHED");
TextSize(12);

}

EndUpdate((WindowPtr)eventStrucPtr->message);

SetPort(oldPort);
}

// ### doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{

SInt16 menuID, menuItem;
Str255 itemName;
SInt16 daDriverRefNum;
OSErr osError;
FSSpec fileSpec;
Rect theRect;
Str255 theString, numberString;

menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);

16B-24 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

break;

case mFile:
doFileMenu(menuItem);
break;

case mDemonstration:
if(menuItem == iTouchWindow)

doTouchWindow();
else if(menuItem == iChooseAFolderDialog)
{

if((osError = doChooseAFolderDialog(&fileSpec)) && osError != userCanceledErr)
doErrorAlert(osError);

else
{

if(FrontWindow())
{

SetPort(FrontWindow());
TextSize(10);
SetRect(&theRect,0,271,600,300);
EraseRect(&theRect);
if(osError != userCanceledErr)
{

doCopyPString(fileSpec.name,theString);
doConcatPStrings(theString, "\p Volume Reference Number: ");
NumToString((SInt32) fileSpec.vRefNum,numberString);
doConcatPStrings(theString,numberString);
doConcatPStrings(theString, "\p Parent Directory ID: ");
NumToString((SInt32) fileSpec.parID,numberString);
doConcatPStrings(theString,numberString);
MoveTo(10,290);
DrawString(theString);

}
}

}
}
break;

}

HiliteMenu(0);
}

// ### doFileMenu

void doFileMenu(SInt16 menuItem)
{

OSErr osError;

switch(menuItem)
{

case iNew:
if(osError = doNewCommand())

doErrorAlert(osError);
break;

case iOpen:
if(osError = doOpenCommand())

doErrorAlert(osError);
break;

case iClose:
if((osError = doCloseCommand(kNavSaveChangesClosingDocument)) &&

osError != kNavAskSaveChangesCancel)
doErrorAlert(osError);

break;

case iSave:
if(osError = doSaveCommand())

doErrorAlert(osError);
break;

case iSaveAs:
if(osError = doSaveAsCommand())

doErrorAlert(osError);
break;

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-25

case iRevert:
if(osError = doRevertCommand())

doErrorAlert(osError);
break;

case iQuit:
if((osError = doQuitCommand(kNavSaveChangesQuittingApplication)) &&

osError != kNavAskSaveChangesCancel)
doErrorAlert(osError);

if(osError != kNavAskSaveChangesCancel)
{

NavUnload();
gDone = true;

}
break;

}
}

// ## doAdjustMenus

void doAdjustMenus(void)
{

MenuHandle menuHdl;
WindowPtr windowPtr;
docStructureHandle docStrucHdl;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

menuHdl = GetMenuHandle(mFile);

if(gCurrentNumberOfWindows > 0)
{

menuHdl = GetMenuHandle(mFile);
EnableItem(menuHdl,iClose);
if((*docStrucHdl)->windowTouched)
{

EnableItem(menuHdl,iSave);
EnableItem(menuHdl,iRevert);

}
else
{

DisableItem(menuHdl,iSave);
DisableItem(menuHdl,iRevert);

}
EnableItem(menuHdl,iSaveAs);

menuHdl = GetMenuHandle(mDemonstration);
if((*docStrucHdl)->windowTouched == false)

EnableItem(menuHdl,iTouchWindow);
else

DisableItem(menuHdl,iTouchWindow);
}
else
{

menuHdl = GetMenuHandle(mFile);
DisableItem(menuHdl,iClose);
DisableItem(menuHdl,iSave);
DisableItem(menuHdl,iSaveAs);
DisableItem(menuHdl,iRevert);
menuHdl = GetMenuHandle(mDemonstration);
DisableItem(menuHdl,iTouchWindow);

}

DrawMenuBar();
}

// ### doErrorAlert

void doErrorAlert(SInt16 errorCode)
{

AlertStdAlertParamRec paramRec;
Str255 errorString, theString;
SInt16 itemHit;

paramRec.movable = true;

16B-26 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

paramRec.helpButton = false;
paramRec.filterProc = NULL;
paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
paramRec.cancelText = NULL;
paramRec.otherText = NULL;
paramRec.defaultButton = kAlertStdAlertOKButton;
paramRec.cancelButton = 0;
paramRec.position = kWindowDefaultPosition;

if(errorCode == eInstallHandler)
GetIndString(errorString,rErrorStrings,1);

else if(errorCode == eMaxWindows)
GetIndString(errorString,rErrorStrings,2);

else if(errorCode == eFileIsOpen)
GetIndString(errorString,rErrorStrings,3);

else if(errorCode == eNoNavServices)
GetIndString(errorString,rErrorStrings,4);

else if(errorCode == eCantFindFinderProcess)
GetIndString(errorString,rErrorStrings,5);

else
{

GetIndString(errorString,rErrorStrings,6);
NumToString((SInt32) errorCode,theString);
doConcatPStrings(errorString,theString);

}

if(errorCode != memFullErr && errorCode != eNoNavServices)
StandardAlert(kAlertCautionAlert,errorString,NULL,¶mRec,&itemHit);

else
{

StandardAlert(kAlertStopAlert,errorString,NULL,¶mRec,&itemHit);
ExitToShell();

}
}

// ## doCopyPString

void doCopyPString(Str255 sourceString,Str255 destinationString)
{

SInt16 stringLength;

stringLength = sourceString[0];
BlockMove(sourceString + 1,destinationString + 1,stringLength);
destinationString[0] = stringLength;

}

// ### doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{

SInt16 appendLength;

appendLength = MIN(appendString[0],255 - targetString[0]);

if(appendLength > 0)
{

BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
targetString[0] += appendLength;

}
}

// ## doTouchWindow

void doTouchWindow(void)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

SetPort(windowPtr);

TextSize(48);
MoveTo(30,170);
DrawString("\pWINDOW TOUCHED");

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-27

TextSize(12);

(*docStrucHdl)->windowTouched = true;

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////

SetWindowModified(windowPtr,true); /////
#endif /////
}

// ### doSynchroniseFiles

#if TARGET_CPU_PPC /////
void doSynchroniseFiles(void) /////
{ /////

UInt32 currentTicks; /////
WindowPtr windowPtr; /////
SInt16 trashVRefNum; /////
SInt32 trashDirID; /////
static UInt32 nextSynchTicks = 0; /////
docStructureHandle docStrucHdl; /////
Boolean aliasChanged; /////
AliasHandle aliasHdl; /////
FSSpec newFSSpec; /////
OSErr osError; /////

/////
currentTicks = TickCount(); /////
windowPtr = FrontNonFloatingWindow(); /////

/////
if(currentTicks > nextSynchTicks) /////
{ /////

while(windowPtr != NULL) /////
{ /////

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr); /////
/////

if(docStrucHdl != NULL) /////
{ /////

if((*docStrucHdl)->aliasHdl == NULL) /////
break; /////

/////
aliasChanged = false; /////
aliasHdl = (*docStrucHdl)->aliasHdl; /////
ResolveAlias(NULL,aliasHdl,&newFSSpec,&aliasChanged); /////

/////
if(aliasChanged) /////
{ /////

(*docStrucHdl)->fileFSSpec = newFSSpec; /////
SetWTitle(windowPtr,newFSSpec.name); /////

} /////
/////

osError = FindFolder(kOnSystemDisk,kTrashFolderType,kDontCreateFolder, /////
 &trashVRefNum,&trashDirID); /////

/////
if(osError == noErr) /////
{ /////

do /////
{ /////

if(newFSSpec.parID == fsRtParID) /////
break; /////

/////
if((newFSSpec.vRefNum == trashVRefNum) && (newFSSpec.parID == trashDirID))
{ /////

FSClose((*docStrucHdl)->fileRefNum); /////
if((*docStrucHdl)->editStrucHdl) /////

TEDispose((*docStrucHdl)->editStrucHdl); /////
if((*docStrucHdl)->pictureHdl) /////

KillPicture((*docStrucHdl)->pictureHdl); /////
DisposeHandle((Handle) docStrucHdl); /////
DisposeWindow(windowPtr); /////
gCurrentNumberOfWindows --; /////
break; /////

} /////
} while(FSMakeFSSpec(newFSSpec.vRefNum,newFSSpec.parID,"\p",&newFSSpec) == noErr);

} /////
} /////

/////

16B-28 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

windowPtr = GetNextWindow(windowPtr); /////
} /////

/////
nextSynchTicks = currentTicks + 15; /////

} /////
} /////
#endif /////

// ### doOpenAppEvent

pascal OSErr doOpenAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefCon)
{

OSErr osError;

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)

osError = doNewCommand();

return(osError);
}

// ### doReopenAppEvent

pascal OSErr doReopenAppEvent(AppleEvent *appEvent,AppleEvent *reply,
 SInt32 handlerRefCon)

{
OSErr osError;

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)

if(!FrontWindow())
osError = doNewCommand();

return(osError);
}

// ## doOpenDocsEvent

pascal OSErr doOpenDocsEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

FSSpec fileSpec;
AEDescList docList;
OSErr osError, ignoreErr;
SInt32 index, numberOfItems;
Size actualSize;
AEKeyword keyWord;
DescType returnedType;
FInfo fileInfo;

osError = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);

if(osError == noErr)
{

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)
{

AECountItems(&docList,&numberOfItems);
if(osError == noErr)
{

for(index=1;index<=numberOfItems;index++)
{

osError = AEGetNthPtr(&docList,index,typeFSS,&keyWord,&returnedType,
(Ptr) &fileSpec,sizeof(fileSpec),&actualSize);

if(osError == noErr)
{

osError = FSpGetFInfo(&fileSpec,&fileInfo);
if(osError == noErr)
{

if(osError = doOpenFile(fileSpec,fileInfo.fdType))
doErrorAlert(osError);

}
}
else

doErrorAlert(osError);
}

}

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-29

}
else

doErrorAlert(osError);

ignoreErr = AEDisposeDesc(&docList);
}
else

doErrorAlert(osError);

return(osError);
}

// ### doQuitAppEvent

pascal OSErr doQuitAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

OSErr osError;

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)
{

while(FrontWindow())
{

osError = doCloseCommand(kNavSaveChangesQuittingApplication);

if(osError != noErr && osError != kNavAskSaveChangesCancel)
doErrorAlert(osError);

if(osError == kNavAskSaveChangesCancel)
return;

}
}

NavUnload();
gDone = true;

return(osError);
}

// ### doHasGotRequiredParams

OSErr doHasGotRequiredParams(AppleEvent *appEvent)
{

DescType returnedType;
Size actualSize;
OSErr osError;

osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,
NULL,0,&actualSize);

if(osError == errAEDescNotFound)
return(noErr);

else if(osError == noErr)
return(errAEParamMissed);

}

// ##
// NewOpenCloseSave.c
// ##

// ……… includes

#include "Files2.h"

// ……… global variables

WindowPtr gWindowPtr;
SInt16 gCurrentNumberOfWindows = 0;
Rect gDestRect,gViewRect;

extern SInt16 gAppResFileRefNum;
extern Boolean gMacOS85Present; /////

// ### doNewCommand

OSErr doNewCommand(void)
{

OSErr osError;

16B-30 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

OSType documentType = 'TEXT';

osError = doNewDocWindow(true,documentType);

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////
{ /////

if(osError == noErr) /////
SetWindowProxyCreatorAndType(gWindowPtr,'kBkB','TEXT',kOnSystemDisk); /////

} /////
#endif /////

return(osError);
}

// ## doOpenCommand

OSErr doOpenCommand(void)
{

OSErr osError = noErr;
NavDialogOptions dialogOptions;
NavTypeListHandle fileTypeListHdl = NULL;
NavEventUPP navEventFunctionUPP;
NavReplyRecord navReplyStruc;
SInt32 count, index;
AEKeyword theKeyword;
DescType actualType;
FSSpec fileSpec;
Size actualSize;
FInfo fileInfo;
OSType documentType;

osError = NavGetDefaultDialogOptions(&dialogOptions);

if(osError == noErr)
{

GetIndString((unsigned char*) &dialogOptions.clientName,rMiscStrings,sApplicationName);
fileTypeListHdl = (NavTypeListHandle) GetResource('open',rOpenResource);

navEventFunctionUPP = NewNavEventUPP(navEventFunction);
fileTypeListHdl = (NavTypeListHandle) GetResource('open',rOpenResource);

osError = NavGetFile(NULL,&navReplyStruc,&dialogOptions,navEventFunctionUPP,
 NULL,NULL,fileTypeListHdl,NULL);

DisposeNavEventUPP(navEventFunctionUPP);

if(osError == noErr && navReplyStruc.validRecord)
{

osError = AECountItems(&(navReplyStruc.selection),&count);
if(osError == noErr)
{

for(index=1;index<=count;index++)
{

osError = AEGetNthPtr(&(navReplyStruc.selection),index,typeFSS,&theKeyword,
&actualType,&fileSpec,sizeof(fileSpec),&actualSize);

if((osError = FSpGetFInfo(&fileSpec,&fileInfo)) == noErr)
{

documentType = fileInfo.fdType;
osError = doOpenFile(fileSpec,documentType);

}
}

}

osError = NavDisposeReply(&navReplyStruc);
}

if(fileTypeListHdl != NULL)
ReleaseResource((Handle) fileTypeListHdl);

}

if(osError == userCanceledErr)
osError = noErr;

return osError;

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-31

}

// ### doCloseCommand

OSErr doCloseCommand(NavAskSaveChangesAction action)
{

WindowPtr windowPtr;
SInt16 windowKind;
docStructureHandle docStrucHdl;
OSErr osError = noErr;

windowPtr = FrontWindow();
windowKind = ((WindowPeek) windowPtr)->windowKind;

switch(windowKind)
{

case kApplicationWindowKind:
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

osError = doCloseFile(windowPtr,docStrucHdl,action);

if(osError == kNavAskSaveChangesCancel)
return(kNavAskSaveChangesCancel);

else if(osError == noErr)
{

DisposeWindow(windowPtr);
gCurrentNumberOfWindows --;

}
break;

case kDialogWindowKind:
// Hide or close modeless dialog, as required.
break;

}

return(osError);
}

// ## doSaveCommand

OSErr doSaveCommand(void)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
OSErr osError = noErr;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

if((*docStrucHdl)->fileRefNum)
{

osError = doWriteFile(windowPtr,false);

SetPort(windowPtr);
EraseRect(&windowPtr->portRect);
InvalRect(&windowPtr->portRect);

}
else

osError = doSaveAsCommand();

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////
{ /////

if(osError == noErr) /////
SetWindowModified(windowPtr,false); /////

} /////
#endif /////

return(osError);
}

// ## doSaveAsCommand

OSErr doSaveAsCommand(void)
{

OSErr osError = noErr;

16B-32 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

NavDialogOptions dialogOptions;
WindowPtr windowPtr;
docStructureHandle docStrucHdl;
NavEventUPP navEventFunctionUPP;
OSType fileType;
NavReplyRecord navReplyStruc;
AEKeyword theKeyword;
DescType actualType;
FSSpec fileSpec;
Size actualSize;
SInt16 fileRefNum;
Rect portRect;

osError = NavGetDefaultDialogOptions(&dialogOptions);

if(osError == noErr)
{

windowPtr = FrontWindow();

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
GetWTitle(windowPtr,dialogOptions.savedFileName);
GetIndString((unsigned char*) &dialogOptions.clientName,rMiscStrings,sApplicationName);

navEventFunctionUPP = NewNavEventUPP(navEventFunction);

if((*docStrucHdl)->editStrucHdl)
fileType = 'TEXT';

else if((*docStrucHdl)->pictureHdl)
fileType = 'PICT';

osError = NavPutFile(NULL,&navReplyStruc,&dialogOptions,navEventFunctionUPP,
 fileType,'kBkB',NULL);

DisposeNavEventUPP(navEventFunctionUPP);

if(navReplyStruc.validRecord && osError == noErr)
{

if((osError = AEGetNthPtr(&(navReplyStruc.selection),1,typeFSS,&theKeyword,
&actualType,&fileSpec,sizeof(fileSpec),&actualSize)) == noErr)

{
if(!navReplyStruc.replacing)
{

osError = FSpCreate(&fileSpec,'kBkB',fileType,navReplyStruc.keyScript);
if(osError != noErr)
{

NavDisposeReply(&navReplyStruc);
return(osError);

}
}

(*docStrucHdl)->fileFSSpec = fileSpec;

if((*docStrucHdl)->fileRefNum != 0)
{

osError = FSClose((*docStrucHdl)->fileRefNum);
(*docStrucHdl)->fileRefNum = 0;

}

if(osError == noErr)
osError = FSpOpenDF(&(*docStrucHdl)->fileFSSpec,fsRdWrPerm,&fileRefNum);

if(osError == noErr)
{

(*docStrucHdl)->fileRefNum = fileRefNum;
SetWTitle(windowPtr,fileSpec.name);

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////
{ /////

SetPort(windowPtr); /////
SetWindowProxyFSSpec(windowPtr,&fileSpec); /////
GetWindowProxyAlias(windowPtr,&((*docStrucHdl)->aliasHdl)); /////
SetWindowModified(windowPtr,false); /////

} /////
#endif /////

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-33

osError = doWriteFile(windowPtr,!navReplyStruc.replacing);
}

NavCompleteSave(&navReplyStruc,kNavTranslateInPlace);
}

NavDisposeReply(&navReplyStruc);
}

SetPort(windowPtr);
EraseRect(&windowPtr->portRect);
InvalRect(&windowPtr->portRect);

}

if(osError == userCanceledErr)
osError = noErr;

return(osError);
}

// ## doRevertCommand

OSErr doRevertCommand(void)
{

NavEventUPP navEventFunctionUPP;
WindowPtr windowPtr;
docStructureHandle docStrucHdl;
Str255 fileName;
NavDialogOptions dialogOptions;
NavAskSaveChangesResult reply;
OSErr osError = noErr;

navEventFunctionUPP = NewNavEventProc((ProcPtr) navEventFunction);

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

SetPort(windowPtr);

GetWTitle(windowPtr,fileName);
BlockMoveData(fileName,dialogOptions.savedFileName,fileName[1]);

osError = NavAskDiscardChanges(&dialogOptions,&reply,navEventFunctionUPP,0);

if(reply == kNavAskDiscardChanges)
{

EraseRect(&windowPtr->portRect);

if((*docStrucHdl)->editStrucHdl)
{

osError = doReadTextFile(windowPtr);
}
else if((*docStrucHdl)->pictureHdl)
{

KillPicture((*docStrucHdl)->pictureHdl);
(*docStrucHdl)->pictureHdl = NULL;

osError = doReadPictFile(windowPtr);
}

(*docStrucHdl)->windowTouched = false;

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////

SetWindowModified(windowPtr,false); /////
#endif /////

InvalRect(&windowPtr->portRect);
}

return(osError);
}

// ## doQuitCommand

OSErr doQuitCommand(NavAskSaveChangesAction action)

16B-34 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

{
OSErr osError = noErr;

while(FrontWindow())
{

osError = doCloseCommand(action);
if(osError != noErr)

return(osError);
}

return(osError);
}

// ### doNewDocWindow

OSErr doNewDocWindow(Boolean showWindow,OSType documentType)
{

docStructureHandle docStrucHdl;

if(gCurrentNumberOfWindows == kMaxWindows)
return(eMaxWindows);

if(!(gWindowPtr = GetNewCWindow(rNewWindow,NULL,(WindowPtr)-1)))
return(MemError());

SetPort(gWindowPtr);

if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
{

DisposeWindow(gWindowPtr);
return(MemError());

}

SetWRefCon(gWindowPtr,(SInt32) docStrucHdl);

(*docStrucHdl)->editStrucHdl = NULL;
(*docStrucHdl)->pictureHdl = NULL;
(*docStrucHdl)->fileRefNum = 0;
(*docStrucHdl)->windowTouched = false;
(*docStrucHdl)->aliasHdl = NULL; /////

if(documentType == 'TEXT')
{

gDestRect = gWindowPtr->portRect;
InsetRect(&gDestRect,6,6);
gViewRect = gDestRect;

MoveHHi((Handle) docStrucHdl);
HLock((Handle) docStrucHdl);

if(!((*docStrucHdl)->editStrucHdl = TENew(&gDestRect,&gViewRect)))
{

DisposeWindow(gWindowPtr);
DisposeHandle((Handle) docStrucHdl);
return(MemError());

}

HUnlock((Handle) docStrucHdl);
}

if(showWindow)
ShowWindow(gWindowPtr);

gCurrentNumberOfWindows ++;

return(noErr);
}

// ### doOpenFile

OSErr doOpenFile(FSSpec fileSpec,OSType documentType)
{

OSErr osError;
SInt16 fileRefNum;
docStructureHandle docStrucHdl;

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-35

if(osError = doNewDocWindow(false,documentType))
return(osError);

SetWTitle(gWindowPtr,fileSpec.name);

if(osError = FSpOpenDF(&fileSpec,fsRdWrPerm,&fileRefNum))
{

DisposeWindow(gWindowPtr);
gCurrentNumberOfWindows --;
return(osError);

}

docStrucHdl = (docStructureHandle) GetWRefCon(gWindowPtr);
(*docStrucHdl)->fileRefNum = fileRefNum;
(*docStrucHdl)->fileFSSpec = fileSpec;

if(documentType == 'TEXT')
{

if(osError = doReadTextFile(gWindowPtr))
return(osError);

}
else if(documentType == 'PICT')
{

if(osError = doReadPictFile(gWindowPtr))
return(osError);

}

#if TARGET_CPU_PPC /////
if(gMacOS85Present) /////
{ /////

SetWindowProxyFSSpec(gWindowPtr,&fileSpec); /////
GetWindowProxyAlias(gWindowPtr,&((*docStrucHdl)->aliasHdl)); /////
SetWindowModified(gWindowPtr,false); /////

} /////
#endif /////

ShowWindow(gWindowPtr);

return(noErr);
}

// ## doCloseFile

OSErr doCloseFile(WindowPtr windowPtr,docStructureHandle docStrucHdl,
 NavAskSaveChangesAction action)

{
NavAskSaveChangesResult reply = 0;
NavEventUPP navEventFunctionUPP;
NavDialogOptions dialogOptions;
Str255 fileName;
OSErr osError;

if((*docStrucHdl)->windowTouched)
{

GetWTitle(windowPtr,fileName);
BlockMoveData(fileName,dialogOptions.savedFileName,fileName[0]+1);

navEventFunctionUPP = NewNavEventProc((ProcPtr) navEventFunction);

osError = NavAskSaveChanges(&dialogOptions,action,&reply,navEventFunctionUPP,0);

DisposeRoutineDescriptor(navEventFunctionUPP);

if(reply == kNavAskSaveChangesCancel)
return((OSErr) reply);

else if(reply == kNavAskSaveChangesSave)
{

if(osError = doSaveCommand())
return(osError);

}
}

if((*docStrucHdl)->fileRefNum != 0)
{

if(!(osError = FSClose((*docStrucHdl)->fileRefNum)))
{

16B-36 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

osError = FlushVol(NULL,(*docStrucHdl)->fileFSSpec.vRefNum);
(*docStrucHdl)->fileRefNum = 0;

}
}

if((*docStrucHdl)->editStrucHdl)
TEDispose((*docStrucHdl)->editStrucHdl);

if((*docStrucHdl)->pictureHdl)
KillPicture((*docStrucHdl)->pictureHdl);

DisposeHandle((Handle) docStrucHdl);

return(osError);
}

// ## doWriteFile

OSErr doWriteFile(WindowPtr windowPtr,Boolean newFile)
{

docStructureHandle docStrucHdl;
OSErr osError;
SInt32 fileRefNum;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
fileRefNum = (*docStrucHdl)->fileRefNum;

if((*docStrucHdl)->editStrucHdl)
osError = doWriteTextData(windowPtr,fileRefNum);

else if((*docStrucHdl)->pictureHdl)
osError = doWritePictData(windowPtr,fileRefNum);

if(osError == noErr)
if(newFile)

osError = doCopyResources(windowPtr);

return(osError);
}

// ### doReadTextFile

OSErr doReadTextFile(WindowPtr windowPtr)
{

docStructureHandle docStrucHdl;
SInt16 fileRefNum;
TEHandle textEditHdl;
SInt32 numberOfBytes;
Handle textBuffer;
OSErr osError;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
fileRefNum = (*docStrucHdl)->fileRefNum;

textEditHdl = (*docStrucHdl)->editStrucHdl;
(*textEditHdl)->txSize = 10;
(*textEditHdl)->lineHeight = 15;

SetFPos(fileRefNum,fsFromStart,0);
GetEOF(fileRefNum,&numberOfBytes);

if(numberOfBytes > 32767)
numberOfBytes = 32767;

if(!(textBuffer = NewHandle((Size) numberOfBytes)))
return(MemError());

osError = FSRead(fileRefNum,&numberOfBytes,*textBuffer);
if(osError == noErr || osError == eofErr)
{

MoveHHi(textBuffer);
HLockHi(textBuffer);
TESetText(*textBuffer,numberOfBytes,(*docStrucHdl)->editStrucHdl);
HUnlock(textBuffer);
DisposeHandle(textBuffer);

}
else

return(osError);

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-37

return(noErr);
}

// ### doReadPictFile

OSErr doReadPictFile(WindowPtr windowPtr)
{

docStructureHandle docStrucHdl;
SInt16 fileRefNum;
SInt32 numberOfBytes;
OSErr osError;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
fileRefNum = (*docStrucHdl)->fileRefNum;

GetEOF(fileRefNum,&numberOfBytes);
SetFPos(fileRefNum,fsFromStart,512);
numberOfBytes -= 512;

if(!((*docStrucHdl)->pictureHdl = (PicHandle) NewHandle(numberOfBytes)))
return(MemError());

osError = FSRead(fileRefNum,&numberOfBytes,*(*docStrucHdl)->pictureHdl);
if(osError == noErr || osError == eofErr)

return(noErr);
else

return(osError);
}

// ## doWriteTextData

OSErr doWriteTextData(WindowPtr windowPtr,SInt16 tempFileRefNum)
{

docStructureHandle docStrucHdl;
TEHandle textEditHdl;
Handle editText;
SInt32 numberOfBytes;
SInt16 volRefNum;
OSErr osError;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
textEditHdl = (*docStrucHdl)->editStrucHdl;
editText = (*textEditHdl)->hText;
numberOfBytes = (*textEditHdl)->teLength;

osError = SetFPos(tempFileRefNum,fsFromStart,0);
if(osError == noErr)

osError = FSWrite(tempFileRefNum,&numberOfBytes,*editText);
if(osError == noErr)

osError = SetEOF(tempFileRefNum,numberOfBytes);
if(osError == noErr)

osError = GetVRefNum(tempFileRefNum,&volRefNum);
if(osError == noErr)

osError = FlushVol(NULL,volRefNum);

if(osError == noErr)
(*docStrucHdl)->windowTouched = false;

return(osError);
}

// ## doWritePictData

OSErr doWritePictData(WindowPtr windowPtr,SInt16 tempFileRefNum)
{

docStructureHandle docStrucHdl;
PicHandle pictureHdl;
SInt32 numberOfBytes, dummyData;
SInt16 volRefNum;
OSErr osError;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
pictureHdl = (*docStrucHdl)->pictureHdl;

numberOfBytes = 512;

16B-38 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

dummyData = 0;

osError = SetFPos(tempFileRefNum,fsFromStart,0);

if(osError == noErr)
osError = FSWrite(tempFileRefNum,&numberOfBytes,&dummyData);

numberOfBytes = GetHandleSize((Handle) (*docStrucHdl)->pictureHdl);

if(osError == noErr)
{

HLock((Handle) (*docStrucHdl)->pictureHdl);
osError = FSWrite(tempFileRefNum,&numberOfBytes,*(*docStrucHdl)->pictureHdl);
HUnlock((Handle) (*docStrucHdl)->pictureHdl);

}

if(osError == noErr)
osError = SetEOF(tempFileRefNum,512 + numberOfBytes);

if(osError == noErr)
osError = GetVRefNum(tempFileRefNum,&volRefNum);

if(osError == noErr)
osError = FlushVol(NULL,volRefNum);

if(osError == noErr)
(*docStrucHdl)->windowTouched = false;

return(osError);
}

// ## doCopyResources

OSErr doCopyResources(WindowPtr windowPtr)
{

docStructureHandle docStrucHdl;
OSType fileType;
OSErr osError;
SInt16 fileRefNum;

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

if((*docStrucHdl)->editStrucHdl)
fileType = 'TEXT';

else if((*docStrucHdl)->pictureHdl)
fileType = 'PICT';

FSpCreateResFile(&(*docStrucHdl)->fileFSSpec,'kBkB',fileType,smSystemScript);

osError = ResError();
if(osError == noErr)

fileRefNum = FSpOpenResFile(&(*docStrucHdl)->fileFSSpec,fsRdWrPerm);

if(fileRefNum > 0)
{

osError = doCopyAResource('STR ',-16396,gAppResFileRefNum,fileRefNum);

if(fileType == 'PICT')
{

doCopyAResource('pnot',128,gAppResFileRefNum,fileRefNum);
doCopyAResource('PICT',128,gAppResFileRefNum,fileRefNum);

}
}
else

osError = ResError();

if(osError == noErr)
CloseResFile(fileRefNum);

osError = ResError();
return(osError);

}

// ## doCopyAResource

OSErr doCopyAResource(ResType resourceType,SInt16 resourceID,SInt16 sourceFileRefNum,
SInt16 destFileRefNum)

{

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-39

Handle sourceResourceHdl;
Str255 sourceResourceName;
ResType ignoredType;
SInt16 ignoredID;

UseResFile(sourceFileRefNum);

sourceResourceHdl = GetResource(resourceType,resourceID);

if(sourceResourceHdl != NULL)
{

GetResInfo(sourceResourceHdl,&ignoredID,&ignoredType,sourceResourceName);
DetachResource(sourceResourceHdl);
UseResFile(destFileRefNum);
AddResource(sourceResourceHdl,resourceType,resourceID,sourceResourceName);
if(ResError() == noErr)

UpdateResFile(destFileRefNum);
}

ReleaseResource(sourceResourceHdl);

return(ResError());
}

// ### navEventFunction

pascal void navEventFunction(NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,NavCallBackUserData callBackUD)

{
WindowPtr windowPtr;

windowPtr = (WindowPtr) callBackParms->eventData.eventDataParms.event->message;

switch(callBackSelector)
{

case kNavCBEvent:
switch(callBackParms->eventData.eventDataParms.event->what)
{

case updateEvt:
if(((WindowPeek) windowPtr)->windowKind != kDialogWindowKind)

doUpdate((EventRecord *) callBackParms->eventData.eventDataParms.event);
break;

}
break;

}
}

// ##
// ChooseAFolderDialog.c
// ##

// ……… includes

#include "Files2.h"

// ## doChooseAFolderDialog

OSErr doChooseAFolderDialog(FSSpec *theFileSpec)
{

NavDialogOptions dialogOptions;
NavEventUPP navEventFunctionUPP;
OSErr osError;
NavReplyRecord navReplyStruc;
FSSpec fileSpec;
AEDesc resultDesc;

osError = NavGetDefaultDialogOptions(&dialogOptions);
GetIndString(dialogOptions.message,rMiscStrings,sChooseAFolder);

navEventFunctionUPP = NewNavEventProc((ProcPtr) navEventFunction);

osError = NavChooseFolder(NULL,&navReplyStruc,&dialogOptions,navEventFunctionUPP,NULL,0);

DisposeRoutineDescriptor(navEventFunctionUPP);

if((navReplyStruc.validRecord) && (osError == noErr))

16B-40 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

{
if((osError = AECoerceDesc(&(navReplyStruc.selection),typeFSS,&resultDesc)) == noErr)
{

BlockMoveData(*resultDesc.dataHandle,&fileSpec,sizeof(FSSpec));

FSMakeFSSpec(fileSpec.vRefNum,fileSpec.parID,fileSpec.name,theFileSpec);
}

AEDisposeDesc(&resultDesc);
NavDisposeReply(&navReplyStruc);

}

return(osError);
}

// ##

Demonstration Program Comments

Note 1: Navigation Services requires Mac OS 7.5 or later and Appearance Manager 1.0.1 or
later. If Mac OS 8.5 or later is not present, the Navigation Services shared library must be
installed in the Extensions folder. On 680x0 systems, OpenTransportLib68K 1.3 or later must be
installed in the Extensions folder.

Note 2: In addition to demonstrating Navigation Services, this program also demonstrates
window proxy icons and window path pop-up menus. (See Chapter 4B - More on Windows - Mac OS
8.5 Window Managager.) Comments pertaining to these aspects of the demonstration appear on a
light gray background.

When the program is run, the user should:

• Exercise the File menu by opening the supplied TEXT and PICT files, saving those files,
saving those files under new names, closing files, opening the new files, attempting to
open files which are already open, attempting to save files to new files with existing
names, making open windows "touched" by choosing the first item in the Demonstration menu,
reverting to the saved versions of files associated with "touched" windows, choosing Quit
when "touched" and non-" touched" windows are open, and so on.

• Choose, via the Show pop-up menu button, the file types required to be displayed in the
Open dialog.

• Choose the Choose a Folder item from the Demonstration menu to display the Choose a Folder
dialog, and choose a folder using the Choose button at the bottom of the dialog. (The name
of the chosen folder will be drawn in the bottom-left corner of the front window.)

• With either PICT Document or TEXT Document open:

• With the chap16b-demo folder open so that the document's Finder icon is visible, drag
the window proxy icon to the desktop or to another open folder, noting that the Finder
icon moves to the latter. Then choose Touch Window from the Demonstration menu to
simulate unsaved changes to the document. Note that the proxy icon changes to the
disabled state. Then save the file, proving the correct operation of the file
synchronisation function. Note that, after the save, the window proxy icon changes
back to the enabled state.

• Command-click the window's title to display the window path pop-up menu, choose a
folder from the menu, and note that the Finder is brought to the foreground and the
chosen folder opens.

The program may be run from within CodeWarrior to demonstrate responses to the File menu
commands and the Choose a Folder dialog.

The built application, together with the supplied TEXT and PICT files, may be used to
demonstrate the additional aspect of integrating the receipt of required Apple events with the
overall file handling mechanism. To prove the correct handling of the required Apple events,
the user should:

• Open the application by double-clicking the application icon, noting that a new document
window is opened after the application is launched and the Open Application event is
received.

• Double click on a document icon, or select one or more document icons and either drag those
icons to the application icon or choose Open from the Finder's File menu, noting that the

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-41

application is launched and the selected files are opened when the Open Documents event is
received.

• Close all windows and double-click the application icon, noting that the application
responds to the Re-open Application event by opening a new window.

• With several documents open, some with "touched" windows, choose Restart or Shut Down from
the Finder's Special menu (thus invoking a Quit Application event), noting that, for
"touched" windows, the Save Changes alert box is presented asking the user whether the file
should be saved before the shutdown process proceeds.

Files2.h

#typedef

Each window created by the program will have an associated document structure, accessed via the
window structure's refCon field. The docStructure structure will be used for document
structures.

The editStrucHdl field will be assigned a handle to a TextEdit edit structure ('TEXT' files).
The pictureHdl field will be assigned a handle to a Picture structure ('PICT' files). The
fileRefNum and fileFSSpec fields will be assigned the file reference number and the file system
specification structure of the file associated with the window. The windowTouched field will
be set to true when a window has been made "touched", that is, when the associated document in
memory has been modified by the user.

When a file is opened, the aliasHdl field will be assigned a handle to a structure of type
AliasRecord, which contains the alias data for the file.

#define

After the usual constants relating to menus, windows, and alert boxes are established,
additional constants are established a 'STR#' resource containing error strings, four specific
error conditions, a 'STR#' resource containing the application's name and the message string
for the Choose a Folder dialog box, and the 'open' resource containing the file types list.
kMaxWindows is used to limit the number of windows the user can open.

Files2.c

Files.c is simply the basic "engine" which supports the demonstration. There is little in this
file which has not featured in previous demonstration programs.

Global Variables

gMacOS85Present will be assigned true if Mac OS 8.5 or later is present. (Because window proxy
icons and window path pop-up menus are supported only under Mac OS 8.5 or later, the associated
source code will be bypassed if Mac OS 8.5 or later is not present.)

gAppResFileRefNum will be assigned the file reference number of the application's resource
fork.

main

The call to Gestalt determines whether Mac OS 8.5 or later is present.

The call to NavServicesAvailable determines whether the Navigation Services shared library is
installed and running on the user's system. If it is, NavLoad is called to load the library,
otherwise, an error alert is presented and the program terminates. (The call to NavLoad is
optional. If the call is not made, the Navigation Services shared library will not load until
your application calls a Navigation Services function, and will unload after the call
completes. If the NavLoad call is made, you must call the NavUnload function before quitting
so as to release the reserved memory.)

Routine descriptors for the required Apple events (less the Print Documents event) are created
and a call is made to the application-defined function which installs the handlers. Also, the
file reference number of the application's resource fork (which is opened automatically at
application launch) is assigned to the global variable gAppResFileRefNum.

16B-42 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

EventLoop

If the compilation is for PowerPC (Mac OS 8.5 does not run on 680x0 Macintoshes) and if Mac OS
8.5 or later is present, the application-defined function doSynchroniseFiles is called. (See
File Synchronisation Function at Chapter 4B - More on Windows - Mac OS 8.5 Window Manager.)

doInstallAEHandlers

doInstallAEHandlers installs handlers for the Open Application, Re-Open Application, Open
Documents, and Quit Application events. (Note that, so as to avoid the necessity to include
application-defined printing functions in this program, a handler for the Print Documents event
is not included in this demonstration.)

doMouseDown

Note that, in the inGoAway case, the constant kNavSaveChangesClosingDocument is passed in the
call to doCloseCommand. This affects the text in the Save Changes alert box.

The inProxyIcon and inDrag cases recognise that a mouse-down in the proxy icon region can mean
that the user wishes to drag the proxy icon (icon enabled), drag the window (icon disabled) or
display the window path pop-up menu (Command key down, icon enabled or disabled).

If the proxy icon is enabled and the mouse-down is in the proxy icon, TrackWindowProxyDrag
handles all aspects of the proxy icon drag process while the user drags the icon and returns
noErr, in which case the local variable handled is assigned true and execution drops through to
the break at the bottom of the inDrag case.

If TrackWindowProxyDrag returns errUserWantsToDragWindow, the user is either dragging the
window (proxy icon is disabled) or displaying the window path pop-up menu. In this case, the
local variable handled is assigned false and execution falls through to the
IsWindowPathSelectClick call inside the inDrag case.

IsWindowPathSelectClick reports whether the mouse-down should activate the window path pop-up
menu. If this call returns true, WindowPathSelect displays the pop-up menu, returning the item
selected in the third parameter. If the menu item chosen is not the title of the window
itself, the application-defined function doBringFinderToFront is called to make the Finder the
frontmost process, thus ensuring that the window being opened will be visible. The local
variable handled is then set to true so that DragWindow will not be called.

If IsWindowPathSelectClick returns false, DragWindow is called to take control of the dragging
operation.

doBringFinderToFront

doBringFinderToFront is called from the inDrag case in doMouseDown. It makes the Finder the
frontmost process.

The call to the application-defined function doFindProcess gets the process serial number of
the Finder, which is then passed in a call to SetFrontProcess.

doFindProcess

doFindProcess is called by doBringFinderToFront to get the process serial number of the Finder.

The first two lines initialise the fields of a process serial number structure so that the
search starts from kNoProcess. The next block initialises the fields of a process information
structure which, amongst other things, contains fields for the signature (creator) and file
type of the application file. (The search is for the signature (creator) 'MACS' and the type
'FNDR'.)

Within the while loop, GetNextProcess is called to get the process serial number of the next
process. The call to GetProcessInformation gets information about this process into the
process information structure. The processSignature and processType fields of process
information structure are then examined. If they equal 'MACS' and 'FNDR' respectively, the
while loop exits and the process serial number is assigned to the formal parameter
outProcSerNo.

doUpdate

doUpdate performs such window updating as is necessary for the satisfactory execution of the
demonstration aspects of the program.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-43

doMenuChoice

If the Choose a Folder item in the Demonstration menu is chosen, the application-defined
function which presents the Choose a Folder dialog box is called. This function returns
userCanceledErr if the user clicked the Cancel push button in the dialog box. If an error
other than userCanceledErr is returned, an error alert box is presented and the else block is
bypassed.

The doChooseAFolderDialog function fills in the file system specification structure whose
address is passed in its parameter. If a window is open, a rectangle in the bottom corner of
the front window is erased and, if the user did not click the Cancel push button, the chosen
folder's name, volume reference number, and parent directory ID are extracted from the file
system specification structure and drawn in the bottom of the window.

doFileMenu

At the iClose case, kNavSaveChangesClosingDocument is passed in the call to doCloseCommand.
This affects the wording in the Save Changes alert box. If doCloseCommand returns an error,
and if that error is not kNavAskSaveChangesCancel (the user clicked the Cancel push button in
the Save Changes alert box), an error alert box is presented.

At the iQuit case, kNavSaveChangesQuittingApplication is passed in the call to doQuitCommand.
This affects the wording in the Save Changes alert box. If doQuitCommand returns an error, and
if that error is not kNavAskSaveChangesCancel (the user clicked the Cancel push button in the
Save Changes alert box), an error alert box is presented. If kNavAskSaveChangesCancel was not
returned, NavUnload is called to release the memory reserved for the Navigation Services shared
library, and gDone is set to true to cause program termination.

doErrorAlert

doErrorAlert handles errors, invoking an appropriate alert box (caution or stop) advising of
the nature of the problem by error code number or straight text. Note that the program will
only be terminated if the Navigation Services library is not installed and running, or in the
case of the memFullErr error (no more space in the application heap).

doTouchWindow

doTouchWindow is called when the user chooses the Touch Window item in the Demonstration menu.
Changing the content of the in-memory version of a file is only simulated in this program. The
text "WINDOW TOUCHED" is drawn in window and the windowTouched field of the document structure
is set to true.

If Mac OS 8.5 is present (meaning that window proxy icons are implemented), SetWindowModified
is called with true passed in the modified parameter. This causes the proxy icon to appear in
the disabled state, indicating that the window has unsaved changes.

doSynchroniseFiles

doSynchroniseFiles is called from the main event loop whenever a null event is received. It
synchronises the file data for the application's document windows. (See File Synchronisation
Function at Chapter 4B - More on Windows - Mac OS 8.5 Window Manager.)

currentTicks is assigned the number of ticks since system startup. As will be seen,
currentTicks will be used to ensure that synchronisations only occur every quarter second (15
ticks). WindowPtr is assigned a pointer to the front non-floating window.

If 15 ticks have elapsed since the last synchronisation, the outer if block executes. The
while loop walks the window list (see the call to GetNextWindow at the bottom of the loop)
looking for associated files whose locations have changed. When the last window in the list
has been examined, the loop exits.

Within the while loop, GetWRefCon is called to retrieve the handle to the window's document
structure.

If the aliasHdl field of the window's document structure contains NULL, the window does not yet
have a file associated with it, in which case execution falls through to the next iteration of
the while loop and the next window is examined.

If the window has an associated file, the handle to the associated alias structure, which
contains the alias data for the file, is retrieved. ResolveAlias is then called to perform a
search for the target of the alias, returning the file system specification for the target file
in the third parameter. After identifying the target, ResolveAlias compares some key
information about the target with the information in the alias structure. If the information

16B-44 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

differs, ResolveAlias updates the alias structure to match the target and sets the aliasChanged
parameter to true.

If the aliasChanged parameter is set to true, meaning that the location of the file has
changed, the fileFSSpec field of the window's document structure is assigned the file system
specification structure returned by ResolveAlias. Since it is also possible that the user has
renamed the file, SetWTitle is called to set the window's title to the filename contained in
the name field of the file system specification structure returned by ResolveAlias.

The next task is to determine whether the user has moved the file to the trash or to a folder
in the trash, in which case the document must be closed.

FindFolder is called to get the volume reference number and parent directory ID of the trash
folder.

The do/while loop walks up the parent folder hierarchy to the root folder. At the first line
in the do/while loop, if the root folder has been reached (fsRtParID is the parent ID of the
root directory), the file is not in the trash, in which case the loop exits at that point. At
the next if statement, the volume reference number and parent directory ID of the file are
compared with the volume reference number and directory ID of the trash. If they match, the
file is closed, its associated memory is disposed of, and the window is disposed of.

The bottom line of the do/while loop effects the walk up the parent directory hierarchy,
FSMakeFSSpec creates a file system specification structure from the current contents of the
vRefNum and parID fields of newFSSPec. Since newFSSpec is also the target, the parID field is
"filled in" again, at every iteration of the loop, with the parent ID of the directory passed
in the second parameter of the FSMakeFSSpec call.

doOpenAppEvent, doOpenDocsEvent, and
doQuitAppEvent

The handlers for the required Apple events are essentially identical to those in the
demonstration program at Chapter 10 - Required Apple Events.

Most programs should simply open a new untitled window on receipt of an Open Application event.
Accordingly, doOpenAppEvent simply calls the same function (doNewCommand) as is called when the
user chooses New from the File menu.

On receipt of a Re-Open Application event, if no windows are currently open, doNewCommand is
called to open a window.

The demonstration program supports both 'TEXT' and 'PICT' files. On receipt of an Open
Application event, it is thus necessary to determine the type of each file specified in the
event. Accordingly, within doOpenDocsEvent, the call to FSpGetFInfo returns the Finder
information from the volume catalog entry for the file relating to the specified FSSpec
structure. The fdType field of the FInfo structure "filled-in" by FSpGetFInfo contains the
file type. This, together with the FSSpec structure, is then passed in the call to doOpenFile.
(doOpenFile is also called when the user chooses Open from the File menu.)

Within the function doQuitAppEvent, the while loop entered at repeats for each open window.
Within the loop, doCloseCommand is called, passing kNavSaveChangesQuittingApplication (which
affects the wording in the Save Changes alert box). doCloseCommand, in turn, calls
doCloseFile. doCloseFile presents the Save Changes alert box . If an error is returned by
this sequence, and if the user did not click the Cancel push button in the alert box, the error
handler is called. If the user clicked the Cancel button, it is necessary to interrupt the
sequence of closing all open windows and re-enter the main event loop.

When the while loop eventually exits, NavUnload is called to release the memory reserved for
the Navigation Services shared library, and gDone is set to true, causing the program to
terminate.

NewOpenCloseSave.c

Global Variables

gWindowPtr is assigned the pointer to the graphics port of each new window as it is opened.
gCurrentNumberOfWindows keeps a count of the number of windows opened. gDestRect and gViewRect
are used to set the destination and view rectangles for the edit structures associated with
'TEXT' files.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-45

doNewCommand

doNewCommand is the first of the file-handling functions. It is called when the user chooses
New from the File menu and when an Open Application or Re-Open Application event is received.

Since this demonstration does not support the actual entry of text or the drawing of graphics,
the document type passed to doNewDocWindow is immaterial. The document type 'TEXT' is passed
in this instance simply to keep doNewDocWindow happy.

If the compilation is for PowerPC, if Mac OS 8.5 or later is present, and if doNewDocWindow
returned no error, SetWindowProxyCreatorAndType is called to set the proxy icon for the window.
(A new, untitled window, even though it has no associated file, needs a proxy icon to maintain
visual consistency with other windows which have associated files.) The proxy icon will
display in the disabled state, indicating, in this particular case, that the window has no
associated file rather than unsaved changes.

The creator code and file type passed in the second and third parameters of
SetWindowProxyCreatorAndType determine the icon to be displayed.)

doOpenCommand

doOpenCommand is called when the user chooses Open from the File menu.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the
defaults.

GetIndString assigns the application's name to the clientName field of the NavDialogOptions
structure. This will then appear in the dialog box's title bar. The next line reads in the
'open' resource containing the file type list and assigns the handle to a variable of type
NavTypeListHandle.

NewNavEventUPP creates a routine descriptor for an application-defined event-handling function,
which is included so as to make the Open dialog box movable and resizable.

The call to NavGetFile displays the Open dialog box. NULL in the first parameter means that
the dialog box will open at the last location visited during the last call to NavGetFile. The
second parameter will receive the information required by the application. Since the default
options are being used, multiple file selection is allowed. The universal procedure pointer to
the event-handling function is passed in the fourth parameter. No preview function is used.
No filter function is used. The handle to the file type list is passed in the second last
parameter.

When the Open dialog is dismissed by the user and NavGetFile returns, the first action is to
dispose of the routine descriptor.

The following if block executes only if the user clicked the Open push button (or pressed the
Return or Enter keys) and no error was returned. The first action is to call AECountItems to
count the number of descriptor structures in the descriptor list returned in the selection
field of the NavReplyRecord structure, and which is created from FSSpec references to items
selected in the Open dialog box.

The for loop repeats for each of the descriptor structures. AEGetNthPtr gets the file system
specification into a local variable of type FSSpec. This file system specification is then
passed in the first parameter of a call to FspGetFInfo, allowing the file type to be
ascertained. The file system specification and file type are then passed in a call to the
application-defined function doOpenFile, which creates a new window and reads in the file.

With all of the selected files read in, NavDisposeReply must be called to release the memory
allotted for the NavReplyReply structure. The call to ReleaseResource frees the memory
occupied by the file type list.

If the user clicks the Cancel push button in a Navigation Services dialog box, the relevant
Navigation Services function returns userCanceledErr. In this event, the variable osError is
set to noErr before doOpenCommand returns.

doCloseCommand

doCloseCommand is called when the user chooses Close from the File menu or clicks in the
window's go-away box. It is also called successively for each open window when a Quit
Application event is received.

The first two lines get the WindowPtr for the front window and establish whether the front
window is a document window or a modeless dialog box.

16B-46 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

If the front window is a document window, the handle to the window's document structure is
retrieved from the window structure's refCon field. The WindowPtr and this handle are then
passed to the application-defined function doCloseFile, together with the Navigation Services
constant received in doCloseCommand's action parameter. If the window is "touched",
doCloseFile presents the Save Changes alert box asking the user whether the document should be
saved before it is closed. If the user clicks the Cancel push button of that alert box,
doCloseFile returns kNavAskSaveChangesCancel, in which case doCloseCommand returns
kNavAskSaveChangesCancel. If the user clicks either the OK or Don't Save push buttons in the
alert box, and if doCloseFile returns no error, the window is closed as the final act in
closing the file, and the global variable which keeps track of the number of open windows is
decremented.

No modeless dialog boxes are used by this program. However, if the front window was a modeless
dialog box, the appropriate action would be taken at the second case.

doSaveCommand

doSaveCommand is called when the user chooses Save from the File menu. It may also be called
by doCloseFile if the user is attempting to close a "dirty" window.

The first two lines get the WindowPtr for the front window and retrieve the handle to that
window's document structure. If a file currently exists for the document in this window, the
application-defined function doWriteFile is called, otherwise the application-defined function
doSaveAsCommand is called.

If the compilation is for PowerPC, and if Mac OS 8.5 or later is present, and if
doSaveAsCommand returned no error, SetWindowModified is called with false passed in the
modified parameter. This causes the window proxy icon to appear in the enabled state,
indicating no unsaved changes.

doSaveAsCommand

doSaveAsCommand is called when the user chooses Save As… from the File menu. It is also called
by doSaveCommand if the user chooses Save when the front window contains a document for which
no file currently exists.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the
defaults.

The first two lines in the if block get the handle to the window's document structure, which
will be required later. GetWTitle gets the window's title into the savedFileName field of a
NavDialogOptions structure. This will be the default name for the saved file and will appear
in the Name edit text field in the Save dialog box. The call to GetIndString copies the
application's name to the clientName field of the NavDialogOptions structure. This will then
appear in the dialog box's title bar.

NewNavEventUPP creates a routine descriptor for an application-defined event-handling function,
which is included so as to make the Save dialog box movable and resizable. The next four lines
retrieve the file type from the document structure for the front window.

The call to NavPutFile displays the Open dialog box. NULL in the first parameter means that
the dialog box will open at the last location visited during the last call to NavPutFile. The
second parameter will receive the information required by the application. The file type and
creator are passed in the fifth and sixth parameters. When the user dismisses the dialog box,
NavPutFile returns, at which point the routine descriptor for the event-handling function is
disposed of.

The following if block executes only if the user clicked the Save push button (or pressed the
Return or Enter keys) and no error was returned. A descriptor list is returned in the
selection field of the NavReplyRecord structure. AEGetNthPtr gets the file system
specification into a local variable of type FSSpec.

If the value in the replacing field of the NavReplyRecord structure indicates that the file is
not being replaced, FSpCreate is called to create a new file of the specified type and with the
application's signature as the specified creator. If this call is not successful, the
descriptor structure is disposed of, the NavReplyRecord structure is disposed of, and the
function returns.

The file system specification structure returned by the FSpCreate call is assigned to the
fileFSSpec field of the window's document structure. If a file currently exists for the
document, that file is closed by the call to FSClose. The data fork of the newly created file
is then opened by a call to FSpOpenDF, the fileRefNum field of the document structure is
assigned the file reference number returned by FSpOpenDF, the window's title is set to the new
file's name, and the application-defined function doWriteFile is called to write the document
to the new file.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-47

Just before the call to doWriteFile, if the compilation is for PowerPC, and if Mac OS 8.5 or
later is present, SetWindowProxyFSSpec is called to establish a proxy icon for the window and
associate the file with the window. (The creator code and file type of the file determine the
icon to be displayed.) GetWindowProxyAlias assigns a copy of the alias data for the file to
the aliasHdl field of the window's document structure. (This is used by the file
synchronisation function.) SetWindowModified is called with false passed in the modified
parameter. This causes the window proxy icon to appear in the enabled state, indicating no
unsaved changes.

NavCompleteSave is called to complete the save operation. With the save completed,
NavDisposeReply must be called to release the memory allotted for the NavReplyReply structure.

If the user clicks the Cancel push button in a Navigation Services dialog box, the relevant
Navigation Services function returns userCanceledErr. In this event, the variable osError is
set to noErr before doOpenCommand returns.

doRevertCommand

doRevertCommand is called when the user chooses Revert to Saved from the File menu. This
function uses a Navigation Services function.

The first line creates a routine descriptor for an application-defined event handling function,
which will be used so as to cause the Discard Changes alert box to be movable.

The next two lines get the WindowPtr for the front window and the handle to that window's
document structure. The call to GetWTitle gets the window's title (that is, the filename).
BlockMoveData copies that filename to the savedFileName field of a NavDialogOptions structure.
This will be used in the Discard Changes alert box's text.

The call to NavAskDiscardChanges displays the Discard Changes alert box. The information
required by the application is received in the reply parameter. When the user dismisses the
alert box, the routine descriptor is disposed of.

If the user clicked the OK push button, the window's content area is erased and the appropriate
application-defined function (doReadTextFile or doReadPictFile) is called depending on whether
the file type is 'TEXT' or 'PICT'. In addition, the window's "touched" field in the document
structure is set to false and InvalRect is called to force a redraw of the window's content
region.

Just before the InvalRect call, if the compilation is for PowerPC, and if Mac OS 8.5 or later
is present, SetWindowModified is called with false passed in the modified parameter. This
causes the window proxy icon to appear in the enabled state, indicating no unsaved changes.

doQuitCommand

doQuitCommand is called when the user chooses Quit from the File menu and when a Quit
Application event is received.

The while loop continues to execute until no more windows remain open. On each pass through
the loop, doCloseCommand is called to manage the process of closing (and, where necessary,
saving) all documents and disposing of the associated windows.

doNewDocWindow

doNewDocWindow is called by doNewCommand, doOpenFile and the Open Application event handler.
It creates a new window and associated document structure.

If the current number of open windows is the maximum allowable by this program, the function
immediately exits, passing an error code which will cause an advisory error alert box to be
displayed.

The call to GetNewCWindow opens a new window. SetPort sets that window's graphics port as the
current port for drawing.

The call to NewHandle allocates memory for the window's document structure. If this call is
not successful, the window is disposed of and the function returns with the error code returned
by MemError.

The call to SetWRefCon assigns the handle to the document structure to the window structure's
refCon field. The next five lines initialise fields of the document structure.

If the document type is 'TEXT', the if block executes, creating a TextEdit edit structure and
assigning a handle to that structure to the editRec field of the document structure. (Note

16B-48 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

that the processes here are not explained in detail because TextEdit and edit structures are
not central to the demonstration. For the purposes of the demonstration, it is sufficient to
understand that the text data retrieved from, and saved to, disk is stored in a TextEdit edit
structure. TextEdit is addressed in detail at Chapter 19 — Text and TextEdit.)

If the Boolean value passed to doNewDocWindow was set to true, the call to ShowWindow makes the
window visible, otherwise the window is left invisible. The penultimate line increments the
global variable which keeps track of the number of open windows.

doOpenFile

doOpenFile is called by doOpenCommand and the Open Documents event handler, which pass to it
the file system specification structure and document type. doOpenFile opens a new document
window and calls the application-defined functions which read in the file.

The call to doNewDocWindow opens a new window and creates an associated document structure.
SetWTitle sets the window's title. FSpOpenDF opens the file's data fork. If this call is not
successful, the window is disposed of and the function returns. The next three lines assign
the file reference number and file system specification structure to the relevant fields of the
document structure.

The next block calls the appropriate function for reading in the file, depending on whether the
file type is of type 'TEXT' or 'PICT'. If the file is read in successfully, ShowWindow makes
the window visible.

Just before the call to ShowWindow, if the compilation is for PowerPC, and if Mac OS 8.5 or
later is present, SetWindowProxyFSSpec is called to establish a proxy icon for the window and
associate the file with the window. (The creator code and file type of the file determine the
icon to be displayed.) GetWindowProxyAlias assigns a copy of the alias data for the file to
the aliasHdl field of the window's document structure. (This is used by the file
synchronisation function.) SetWindowModified is called with false passed in the modified
parameter. This causes the window proxy icon to appear in the enabled state, indicating no
unsaved changes.

doCloseFile

doCloseFile is called by doCloseCommand. doCloseFile does not allow a "touched" window to be
closed without offering the user the option of first saving the associated document to file.
This function uses a Navigation Services function.

The first if block executes only if the window has been "touched". First, GetWTitle gets the
window's title, which BlockMoveData copies to the savedFileName field of a NavDialogOptions
structure. This will be used in the alert box's text. A routine descriptor is created for an
event-handling function, which is used so as to cause the Save Changes alert box to be movable.

NavAskSaveChanges is then called to display the Save Changes alert box. The information
required by the application is received in the reply parameter. The routine descriptor is
disposed of when NavAskSaveChanges returns.

If the Cancel push button was clicked, NavAskSaveChanges returns kNavAskSaveChangesCancel, in
which case doCloseFile returns, returning kNavAskSaveChangesCancel to the calling function. If
OK push button was clicked, the application-defined function doSaveCommand is called to save
the file.

If the document has a file, FSClose closes the file, and FlushVol stores to disk all unwritten
data currently in the volume buffer.

If the document is a text document, the text edit structure is disposed of. If it is a picture
document, the Picture structure is disposed of. Finally, the document structure is disposed
of.

doWriteFile

doWriteFile is called by doSaveCommand and doSaveAsCommand. In conjunction with two supporting
application-defined functions, it writes the document to disk. Note that, unlike the function
of the same name in the demonstration program Files1, the "safe-save" methodology is not used.

The first two lines retrieve a handle to the window's document structure and the file reference
number from the document structure.

At the next four lines, the appropriate application-defined function is called to write the
document's data to its file.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-49

If the file is a newly created file, the application-defined function doCopyResources is called
to copy the missing application name string resource from the resource fork of the application
file to the resource fork of the new document file. If the file type is 'PICT', a 'pnot'
resource and associated 'PICT' resource is also copied to the resource fork.

doReadTextFile

doReadTextFile is called by doOpenFile and doRevertCommand to read in data from an open file of
type 'TEXT'.

The first two lines retrieve the file reference number from the document structure.

The next three lines retrieve the handle to the TextEdit edit structure from the document
structure and modify the text size and line height fields of the edit structure.

SetFPos sets the file mark to the beginning of the file. GetEOF gets the number of bytes in
the file. If the number of bytes exceeds that which can be stored in a TextEdit edit structure
(32,767), the number of bytes which will be read from the file is restricted to 32,767.

NewHandle allocates a buffer equal to the size of the file (or 32,767 bytes if the preceding if
statement executed). FSRead reads the data from the file into the buffer. MoveHHi and HLockHi
move the buffer high in the heap and lock it preparatory to the call to TESetText. TESetText
copies the text in the buffer into the existing hText handle of the TextEdit edit structure.
The buffer is then unlocked and disposed of.

(Note: TextEdit is addressed in detail at Chapter 19 - Text and TextEdit.)

doReadPictFile

doReadPictFile is called by doOpenFile and doRevertCommand to read in data from an open file of
type 'PICT'.

The first two lines retrieve the file reference number from the document structure. GetEOF
gets the number of bytes in the file. SetFPos sets the file mark 512 bytes (the size of a
'PICT' file's header) past the beginning of the file, and the next line subtracts the header
size from the total size of the file. NewHandle allocates memory for the Picture structure and
FSRead reads in the file's data.

doWriteTextData

doWriteTextData is called by doWriteFile to write text data to the specified file.

The first two lines retrieve the handle to the TextEdit edit structure from the document
structure. The number of bytes of text is then retrieved from the teLength field of the text
edit structure.

SetFPos sets the file mark to the beginning of the file. FSWrite writes the specified number
of bytes to the file. SetEOF adjusts the file's size. FlushVol stores to disk all unwritten
data currently in the volume buffer.

The penultimate line sets the windowTouched field of the document structure to indicate that
the document data on disk equates to the document data in memory.

doWritePictData

doWritePictData is called by doWriteFile to write picture data to the specified file.

The first two lines retrieve the handle to the relevant Picture structure from the document
structure. SetFPos sets the file mark to the start of the file. FSWrite writes zeros in the
first 512 bytes (the size of a 'PICT' file's header). GetHandleSize gets the size of the
Picture structure and FSWrite writes the bytes in the Picture structure to the file. SetEOF
adjusts the file's size and FlushVol stores to disk all unwritten data currently in the volume
buffer.

The penultimate line sets the windowTouched field of the document structure to indicate that
the document data on disk equates to the document data in memory.

doCopyResources

doCopyResources is called by doWriteFile when a newly created file has been written to for the
first time. It copies the missing application name string resource from the resource fork of

16B-50 CLASSIC EDITION — Version 2.3 More On Files — Navigation Services

the application file to the resource fork of the new file. If the file type is PICT, a 'pnot'
resource and associated 'PICT' resource is also copied.

The first line retrieves a handle to the file's document structure. The next four lines
establish the file type involved. FSpCreateResFile creates the resource fork in the new file
and FSpOpenResFile opens the resource fork. The application-defined function for copying
specified resources between specified files (doCopyAResource) is then called to copy the
missing application name string resource from the resource fork of the application file to the
resource fork of the new file. If the file type is 'PICT', a 'pnot' resource and associated
'PICT' resource is also copied so as to provide a preview for 'PICT' files in the Open dialog
box. (Of course, in a real application, the 'pnot' and 'PICT' resource would be created by the
application for each separate 'PICT' file.)

CloseResFile closes the resource fork of the new file.

doCopyAResource

doCopyAResource copies specified resources between specified files. In this program, it is
called only by doCopyResources.

UseResFile sets the application's resource fork as the current resource file. GetResource
reads the specified resource into memory.

GetResInfo, given a handle, gets the resource type, ID and name. (Note that this line is
included only because of the generic nature of doCopyResource. The calling function has passed
doCopyResource the type and ID in this instance.)

DetachResource removes the resource's handle from the resource map without removing the
resource from memory, and converts the resource handle into a generic handle. UseResFile makes
the new file's resource fork the current resource file. AddResource makes the now arbitrary
data in memory into a resource, assigns a resource ID, type and name to that resource, and
inserts an entry in the resource map for the current resource file. UpdateResFile then writes
the resource map and data to disk.

navEventFunction

navEventFunction is the event-handling function used by the Navigation Services dialog and
alert boxes.

The formal parameter callBackSelector is a constant indicating which type of call Navigation
Services is making to navEventFunction. One such constant is kNavCBEvent, which indicates that
an event has occurred. callBackParms is a pointer to a structure of type NavCBRec. The
event's event structure resides in the eventData field of the NavCBRec structure.

At the first line, the window's WindowPtr is retrieved from the event structure's message
field. At the kNavCBEvent case, the event type is extracted from the event structure's what
field. If it is an update event, and if it is not for a Navigation Services dialog box (the
application does not open any other dialog boxes), the application's window updating function
doUpdate is called.

ChooseAFolderDialog.c

doChooseAFolderDialog

doChooseAFolderDialog is called when the user chooses the Choose a Folder Dialog item in the
demonstration menu. This function uses Navigation Services functions.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the
defaults. GetIndString copies a string to the message field of a NavDialogOptions structure.
This will appear immediately below the browser list in the dialog box.

The next line creates a routine descriptor for the event-handling function.

NavChooseFolder displays the Choose a Folder dialog box. When the user dismisses the dialog
box, NavChooseFolder returns, at which time the routine descriptor is disposed of.

The if block executes if the user clicked the Choose push button. AECoerceDesc coerces the
descriptor structure in the descriptor list returned in the selection field of the
NavReplyRecord structure to a descriptor of type file system specification, the resulting
descriptor being assigned to the AEDesc structure resultDesc. If this call is successful,
BlockMoveData is called to copy the data from the dataHandle field of that structure to a local
variable of type FSSpec.

More on Files — Navigation Sevices CLASSIC EDITION — Version 2.3 16B-51

When Navigation Services passes your application an AEDesc structure of type typeFSS describing
a directory, the name field is empty and the parID field contains the directory ID of that
directory, not the ID of the parent directory. In this demonstration, the volume reference
number and directory ID are passed in a call to FSMakeFSSpec, which fills in the fields of the
FSSpec record pointed to by the fourth parameter. In the function doMenuChoice, the contents
of the fields of this FSSpec structure (the directory name, its parent directory ID, and the
volume reference number) are drawn in the bottom of the front window.

	Introduction
	Navigation Services Dialog and Alert Boxes
	Standard User Interface Elements in Dialog Boxes
	Moving and Resizing Navigation Services Dialog Boxes
	Browser List Expansion

	Sort Keys and Sort Order
	Preview Area
	Persistence
	Default Location and Selection

	Opening Files
	Opening Multiple Files
	The Show Pop-up Menu
	Native File Types Section

	The NavDialogOptions and NavTypeList Structures
	The NavTypeList Structure
	The NavDialogOptions Structure

	The NavReplyRecord Structure

	Saving Files
	Translating Files on Save

	Choosing A Folder
	Choosing Volumes, Files, File Objects, and Creating a New Folder
	Save Changes and Discard Changes Alert Boxes
	Save Changes Alert Box
	Discard Changes Alert Box

	Application-Defined Functions
	Application-Defined Event Handling
	Application-Defined Object Filtering
	Application-Defined Previews

	Adding Controls to a Navigation Services Dialog Box
	Main Navigation Services Constants, Data Types, and Functions
	Demonstration Program
	Demonstration Program Comments

