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Abstract

We discuss two non-standard features of the kForth interpreter, a program based largely on ANS
Forth. First we demonstrate how a limited form of data typing and type checking can catch a significant
set of Forth programming errors, with almost no modification to standard Forth code. Second, we discuss
the benefits and restrictions imposed by using a dynamically growable dictionary. The two new features
of our Forth system require the addition of two new words: A@ and ?ALLOT.

1 Introduction

kForth [1] is a compact interpreter, largely based on ANS Forth [2]. However, several new features, which
are not a part of the ANS standard, have been introduced in kForth. In this paper we discuss two of
these non-standard features:

1. Data typing and type checking

2. Dynamic dictionary

A third non-standard feature, called deferred execution, will not be discussed here since it does not affect
the structure of Forth code. We give the motivation for including these features in kForth, particularly as
it relates to our original goal of writing an interpreter to be embedded into other applications. A parallel
goal was to allow code written for kForth to be easily ported to other ANS Forth systems — kForth
may be viewed as a subset of ANS Forth. The two new words, A@ and ?ALLOT, introduced in kForth for
supporting the new features described in this paper, have simple ANS Forth compatible definitions. We
describe how the two new features are implemented and illustrate their use with examples.

2 Brief History of kForth

kForth has its origin as an embedded interpreter for the application XYPLOT, a plotting and data
manipulation utility [1]. One useful feature of XYPLOT is its expression evaluator, which parses simple
algebraic expressions and applies the operations to an entire data set. For example, the expression
y*2 multiplies all of the y values of an (x,y) data set by two. In its early stages of development, the
expression evaluator consisted of a parser which broke down the expression into a vector of “op-codes”,
and an execution loop which performed the sequence of operations. A data stack held the intermediate
values of the calculation. Thus, the beginnings of a stack based interpreter was written and incorporated
into XYPLOT. Subsequently the expression evaluator was developed into a full-featured interpreter that
allowed the main application to be extended with modules written in Forth source code. Forth was
chosen as the language for the interpreter rather than developing a custom application language for
several reasons:

1. It is relatively easy to interpret stack based code.

2. One of the authors had several years of past experience with Forth programming.

3. Forth provides a wide range of functionality, from low level bitwise operations to high level floating
point operations.

4. Forth provides a foundation for constructing an application specific language.

5. The use of an established language such as Forth reduces the need to write extensive documentation,
which would be required for any custom language.
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In addition to its use as an embedded interpreter, kForth also functions as a standalone Forth computing
environment. At present, kForth features a vocabulary of over 240 words, with 116 core words, 26 core
extension words, and more than 60 words from the option sets for ANS Forth.

3 Data Typing and Type Checking

The rationale for data typing in kForth is to provide error checking. Unlike the statically typed Forth
system, strongForth [3], which defines a heirarchy of data types, the implementation of kForth is limited
to just two data types: ADDR for addresses and IVAL for all other data. Words listed in Table 1 verify
that the address operand on the data stack (or return stack) has the proper type, i.e. type ADDR, to
avoid processor exceptions caused by invalid memory access. Although a signal handler might be used
to catch such exceptions [4], if the interpreter is to be embedded into another application, this method
would preclude the main application from having its own handler for such exceptions. It is important to
note that type checking in kForth is performed at run-time by associating data types with elements on
the stack. This form of type checking is known as dynamic type checking [5]. Compilers for traditional
languages such as C perform type checking at compile-time, a method known as static type checking [5].
Although implementation of static type checking in Forth has been discussed previously [6], it requires
augmentation of the language itself to provide a means of specifying argument types to a word — the
strongForth language provides a clever way to do this using the common stack diagram comment. In
kForth, however, our motivation is not to implement strict data typing, but to use data typing to catch
typical run-time errors, with virtually no modifications to the Forth language.

C@ C! W@ W! @ !
A@ 2@ 2! SF@ SF! DF@

DF! +! FILL ERASE COUNT TYPE
CMOVE CMOVE> LOOP +LOOP FIND ’

ACCEPT OPEN READ WRITE NUMBER? SYSTEM
CHDIR

Table 1: Words which perform address type checking in kForth

Two kinds of errors are likely to be caught by our limited method of type checking:

1. The number of parameters on the data stack or the return stack is incorrect and one of the param-
eters is an address.

2. Parameters on the data stack or the return stack are in the wrong order and one of the parameters
is an address.

These are typical conditions created by problem code in Forth. Take the following simple example of
code with incorrect ordering:

variable v

v 3 !

The following error message is displayed:

VM Error(1): Not data type ADDR

An operand of type ADDR was expected on top of the stack by ! and not found. The kForth virtual
machine (VM) QUIT execution and returned an error code (the error message is actually displayed by the
outer interpreter). The state of the stack at the time of the error may be examined by .S to diagnose
the problem, since the VM performs QUIT rather than ABORT.

Corruption of the return stack can also be detected by run-time type checking. For example, a
common problem is to push an item onto the return stack and forget to pop the item before the word
returns. An extreme example is:

: BAD 3 >r ;

Execution of BAD results in

VM Error(5): Return stack corrupt
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The error is detected by checking the data type of the item on top of the return stack upon return from
BAD. Since it does not have type ADDR, for a valid return address, the VM returns an error indicating
corruption of the return stack. The VM executes ABORT when the return stack is found to be corrupt.

Now consider a more subtle coding error involving the return stack:

: bswap ( n1 n2 n3 n4 -- n2 n1 n3 n4 )

2r> swap 2>r ;

1 2 3 4 bswap

Entering the above statements into three untyped Forth systems produced different results. One system
displayed an error while the other two responded with ok. With the latter, examination of the stack
showed that the arguments were unchanged. It should be noted that all of the systems we tried displayed
an error if the word bswap was used inside of another word. A variant of the above example was also
tested:

: test 10 0 do i . 2r> swap 2>r loop ;

1 2 3 4 test

It is interesting to observe the number of loop iterations executed by the various untyped Forth systems.
At least one went into an infinite loop. Worse, the other systems executed this code without complaint,
returning with ok — the only indication of a problem given by our diagnostic print of the loop index.
kForth detects problems with both of these code examples using type checking of the return stack. Upon
every iteration, the words LOOP and +LOOP test for the presence of a branch address on the return stack
via type checking. The price of detecting these kinds of problems is the added overhead for maintaining
type information and performing type checking. We measured the impact of type checking in kForth
on execution efficiency and found that it caused about a 15% increase in the time to execute standard
benchmarks [7].

By design, kForth implements data typing so that it is almost entirely transparent to the user or
programmer. Every cell in the data stack has associated with it one of two types: IVAL or ADDR. Data
types are stored in a separate type stack, shown in Figure 1, which is manipulated in parallel with the
data stack. kForth does not provide words for direct manipulation of the type stack. Instead, intrinsic
words which operate on the data stack perform corresponding operations on the type stack. Consider
the behavior of ROT:

( n1 n2 n3 -- n2 n3 n1 )

If n1 is of type ADDR, and n2 and n3 are of type IVAL, as shown in Fig 1, ROT also rotates the type stack
so that the top element has type ADDR after the operation. Other words which affect the data stack also
manipulate the type stack in an analogous manner. The behavior of two particular words, with respect
to data typing, should be noted: + and -. Consider the case where an offset must be added to an address
using +:

( a1 n -- a2 ) or ( n a1 -- a2 )

We expect that the result of + should produce an address if either the first operand or the second operand
is an address, and indeed this is the typing rule observed by + in kForth. The behavior of - is different:

( a1 n -- a2 ) and ( n1 a -- n2 )

We may subtract an offset from address a1 to obtain address a2; however, it is not sensible to expect that
by subtracting address a1 from integer n1, we will obtain a valid memory address. Therefore the data
type of the result depends on the ordering of the data types of the operands for -. But the programmer
need not be aware of these typing rules — for these cases, sensible Forth code produces sensible data
typing, enabling subsequent error checking. The typing rules for + and - are implemented in an efficient
manner and require little computing overhead in the virtual machine.

The return stack has an associated type stack, called the return type stack, also shown in Figure 1.
In transfers from the data stack to the return stack and vice-versa the data types are also transferred
between the type stack and the return type stack. As with the type stack, direct manipulation of the
return type stack is not permitted. Intrinsic words that modify the return stack also modify the return
type stack. All of the words which make use of the return type stack in kForth are listed in Table 2. In
addition to the VM itself, words which explicitly perform type checking using the return type stack are
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Data stack Type stack Return stack Return type stack

:

134765028

25

-1

:

ADDR

IVAL

IVAL

134772320

2147483647

ADDR

IVAL

- -

- -

Figure 1: The kForth Stacks: the stack pointers are always aligned for each pair of stacks.

>R R> R@ 2>R 2R> 2R@
DO ?DO LOOP +LOOP UNLOOP I
J QUIT EXECUTE

Table 2: Words which use the return type stack

LOOP and +LOOP. The loop index words, I and J, place an item on the data stack with the same type as
the starting loop index. It is therefore possible to loop over an address range and use an index word to
place an item of type ADDR on the stack. The following example illustrates this point:

create tb1 20 allot

: byte_sum ( -- n | compute the sum of bytes in table tb1 )

0 tb1 20 + tb1 do i c@ + loop ;

Use of C@ on the index value returned by I is valid since the starting index has type ADDR. The above
code is no different from that used in an untyped system, once again demonstrating the transparency of
data typing in kForth.

Next, we discuss the only known instance in which the programmer must be aware of data typing in
kForth: fetching address values from memory onto the stack. An address is fetched from memory using
A@ instead of @. The word A@ retrieves the same value as @, but it also sets the data type of the stack
cell containing the value to type ADDR. In contrast, @ sets the data type to IVAL. The following example
illustrates the use of A@:

variable current_table

create tb1 20 cells allot

tb1 current_table !

: @n ( n -- m | fetch the n^th element of the current table )

cells current_table a@ + @ ;

The variable current table holds the address of a table, set to tb1 in the example. The address of the
table is fetched onto the stack by current table a@ rather than by current table @, as in an untyped
Forth system. Notice that ! is used to store an address value to a memory location. Data has associated
type information only while it resides on one of the two stacks (the data stack or the return stack). Type
information is not retained for data stored at other memory locations. The need to provide a new word,
A@, in the basic Forth dictionary may seem undesirable; however, it is a relatively small price to pay for
the benefits of address type checking, which have been illustrated above. Use of A@ also makes clear to
the reader of the code that an address is being fetched rather than an other kind of data value. This
section concludes with the following point:

Porting kForth code to an untyped Forth system requires that A@ be defined to be synonymous with @.
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4 Dynamic Dictionary

Traditional Forth implementations use a fixed size dictionary to hold word definitions and user created
data such as small tables of numbers or counted strings [8]. The motivation to implement a dictionary
which can grow as needed may be expressed in a simple code statement:

create array 1024 1024 * allot

We wish to allot 1 MB of space in the dictionary to hold an array of values. With a static dictionary,
the above code is successful only if the dictionary happens to have been allocated with sufficient space.
Otherwise, the Forth system may issue a dictionary overflow error or simply crash with a segmentation
fault error. Some Forth systems allow the user to resize the dictionary from within the environment. A
fixed size dictionary is not desirable for the use of kForth as an interpreter embedded into an application,
since the useful dictionary size will depend on the application.

The ANS standard provides extension words for allocating dynamic memory, ALLOCATE and FREE, so
one may argue that it is not necessary to be able to allot memory in the dictionary space for large
blocks of user data. Also, having limited dictionary space to hold Forth code is usually not of practical
concern. What are the benefits of a growable dictionary? A dynamically allocated dictionary provides
the following conveniences to the programmer:

1. ALLOT may be used without size restriction. The programmer is not burdened by determining
whether or not there is sufficient space to locate a block of data in the dictionary.

2. Addresses of data blocks made with the sequence, CREATE name size ALLOT, do not have to be
managed by the programmer. With ALLOCATE, the returned address must be assigned to a constant
or held in a variable until the memory block is freed.

3. Memory is freed automatically upon exit from the Forth system. In contrast, memory obtained
using ALLOCATE should be released using FREE when it is no longer needed. Forgetting to do so
reduces available system memory.

These features are of little value in programming embedded processors, which have stringent limits
on available memory. However, for a desktop system using a modern operating system (e.g. Linux,
Windows), programming may be made less cumbersome with these features. However, the benefits to
the Forth programmer from using a dynamic dictionary come with some restrictions. The implications
of using a dynamic dictionary are discussed below.

In kForth memory for both code and data is dynamically allocated as required. The dictionary itself
is a vector of data structures, each containing the name of a word, the word’s precedence, the code field
address (CFA), and the parameter field address (PFA). In kForth, CFA is synonymous with code pointer or
the ANS term, execution token. PFA is synonymous with the ANS term data field. During “compilation”
of a word definition, a temporary code vector is built up. The size of this vector is unbounded. After
a word definition has been compiled into code, which in kForth consists of pseudo op-codes, memory is
dynamically allocated to hold the code sequence and then copied from the vector into the newly allocated
block. The PFA of the new word is set to the address of the dynamically allocated block. The CFA is
also set. If the word RECURSE was encountered during compilation, address placeholders inside the code
are then replaced with the CFA. With this allocation scheme for the dictionary, the task of providing
dictionary space and assigning addresses is passed on to the operating system (OS) rather than being
handled by the Forth system, and growth of the dictionary is limited only by the OS.

Now we consider the behavior ALLOT may have in a system which implements a dynamic dictionary.
First note that there is no HERE address in the dynamic system, since memory is not available until it is
requested either through word definitions or by execution of ALLOT. In the traditional static dictionary
Forth system, the code:

1024 allot

presumes that the programmer has access to the starting address of the memory region to be alloted,
either because CREATE was invoked previously or because the starting address was obtained with HERE.
Therefore ALLOT does not return an address, unlike its counterpart ALLOCATE.

In the dynamic dictionary system, kForth, the code 1024 allot, must dynamically allocate 1024
bytes of memory, starting at some address which is determined by the OS. This address must somehow
be made available to the programmer to allow use of the memory. We must change the behavior of ALLOT,
but wish to do so in a way that use of ALLOT remains as consistent as possible with traditional Forth code.
kForth imparts the following behavior to ALLOT: the requested memory is dynamically allocated and the
starting address is assigned to the PFA of the last word defined in the dictionary. In kForth ALLOT must
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be used only in a CREATE name size ALLOT sequence. The behavior of CREATE is also modified so that it
sets the PFA to zero for the new dictionary entry. This allows ALLOT to verify that it is modifying the
PFA of a word created with CREATE, instead of modifying a word that is already associated with data or
code. Therefore, the statement:

1024 allot

by itself produces an error in kForth:

VM Error(9): Allot failed --- cannot reassign pfa

Two other core words are not provided in kForth owing to the lack of a HERE address. These are:

the comma operator (,)

C,

For creating initialized cell-size or byte-size tables, alternate, albeit somewhat less elegant, methods can
be used in place of the above words. For instance, instead of the simple statement:

create tb1 100 , 200 , 300 , 400 ,

to make a 4 element table initialized to values, we could write

: t, ( n a1 -- a2 ) 2dup ! 1 cells - nip ;

create tb1 4 cells allot

100 200 300 400 tb1 3 cells + t, t, t, t, drop

Clearly the statement using the comma operator is superior, in terms of sheer simplicity, compared to
the verbose method shown above. The problem with the above method is that an address for storing
initial values into the table is not available until we use ALLOT, in conjunction with CREATE, to allocate
the region for the table. Then the address must be manipulated to move the successive inital values from
the stack into the table in the proper order.

The example given above begs the use of a defining word to mitigate the clumsy procedure for creating
an initialized table in the absence of the comma operator. This points to the problem of how to program
a defining word that requires access to a region that the word itself allocates at run-time, since ALLOT

does not return an address. kForth provides the word ?ALLOT to solve this problem. ?ALLOT functions
like ALLOT but also returns the starting address of the region on the stack. The compatible ANS Forth
definition of ?ALLOT is:

: ?allot here swap allot ;

Using ?ALLOT, we may create a defining word for initialized tables:

: table ( ... n -- )

create dup cells ?allot

over 1- cells + swap

0 ?do dup >r ! r> 1 cells - loop drop ;

Once the defining word table is included, it becomes trivial to create an initialized table:

100 200 300 400 4 table tb1

Note that this method works in ANS Forth as well, provided the compatible definition of ?ALLOT is used.
?ALLOT should not be equated with the ANS word ALLOCATE since, in kForth, ?ALLOT must be used only
with CREATE and it assigns the PFA of the created word.

Two simple examples of defining words having run time code further illustrate the use of ?ALLOT in
kForth:

: const ( n -- ) create 1 cells ?allot ! does> @ ;

: ptr ( a -- ) create 1 cells ?allot ! does> a@ ;

The word const is equivalent to CONSTANT and ptr allows the creation of address constants for our typed
Forth system. We close this section with the following point:

Porting kForth code to a static dictionary Forth system requires the compatible definition of ?ALLOT

given above.
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5 Summary

We have discussed two features of kForth which depart from the current ANS standard. Data typing
and type checking arise from a desire to supplement the Forth environment’s error detection capability,
particularly for its use as an embedded interpreter in other applications. We have demonstrated that
our limited method of type checking can catch common Forth programming mistakes, particularly those
associated with the return stack. Also, type checking in our implementation is largely transparent to
the programmer and requires only one additional word, A@. The use of a dynamic dictionary offers
convenience in making unrestricted use of the available system memory but at the cost of sacrificing the
core words for compiling integer and byte constants into the dictionary: comma (,) and C,. Furthermore,
ALLOT must be used only in conjunction with CREATE, and we must add the new word ?ALLOT to allow the
programming of defining words which require access to the alloted region. Whether or not the benefits of
these features outweigh their costs can only be determined by real-world applications programming using
kForth. It has been our experience, in using kForth both as an embedded interpreter and as a stand-
alone computing environment, and for such diverse tasks as simulating microcontroller assembly code to
demonstrating properties of hydrogen atom wave-functions, that there is an overall positive benefit from
the new features we have discussed here.
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