
A Simple Circuit Implementation
of a Van der Pol Oscillator

Ned J. Corron

In the study of nonlinear dynamics and applied mathematics, the Van der Pol oscillator is 
commonly  used  to  illustrate  various  phenomena  including  stability,  Hopf  bifurcation,  limit 
cycles, and relaxation oscillations.  This mathematical  model was originally developed for an 
electronic oscillator built using vacuum tubes; however, it is difficult today to realize this circuit 
in its original form due to the replacement of tubes with semiconductor technology.  Thus, it is 
particularly  instructive  to  have  a  modern  circuit  implementation  for  demonstrating  these 
mathematical concepts in a physical device.

Mathematically, a general form of a Van der Pol oscillator is

( ) 02 =+−− uuuu  αε (1)

where ε and α are constants, u(t) is the dependent state that depends on time t, and a dot denotes 
differentiation with respect to time.  Equivalently, the oscillator (1) can be written in system form 
as
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where ux =  and uy = .  This latter form is convenient for directly interpreting the response of 
the system in x-y phase space.

The oscillator (1) is widely used to demonstrate nonlinear dynamics since it is amenable 
to analysis.  Specifically, asymptotic techniques can be applied for the cases of both small and 
large  ε to predict  the amplitude response and waveform shape.   For small  ε,  it  is a standard 
exercise to show that  u = 0 is stable for  α < 0; a Hopf bifurcation occurs at α = 0; and a stable 
limit cycle exists for α > 0, for which

)sin(2~ φα +tu (3)

where φ is an arbitrary phase.  For large ε, the oscillator produces relaxation oscillations, which 
approach a square wave.   Numerical  simulations can be used to examine the continuum that 
bridges these limits.

The electronic circuit shown in Figure 1 is a Van der Pol oscillator; that is, the circuit is 
appropriately modeled by equation (1), or equivalently by the system (2).  The voltages Vx and Vy 

correspond to the states x and y, respectively.  In the circuit, the amplifiers U1, U2, and U3 are 
any  standard  operational  amplifiers,  such  as  TL082.   The  devices  U4  and  U5  are  AD633 
integrated circuits, which are low cost analog multipliers with differential inputs and divide-by-
ten output.  Specific component values are suggested in Table 1.
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Figure 1.  Circuit for a Van der Pol oscillator.

Component Value or Device

R1, R2, R3, R4 10 kΩ
R5, R6 470 κΩ
R7 100 kΩ potentiometer

R8 1 kΩ (see text)

C1, C2 0.01 µF

U1, U2, U3 TL082, ½ Dual BiFET Op Amp

U4, U5 AD633, Low Cost Analog Multiplier

Table 1.  Suggested component values and devices.

For the component values suggested in Table 1, the parameter  ε is set to 0.1; however, 
other values for ε can be selected by changing R8, where

8100

k10

R
Ω

=ε . (4)

The parameter α is set by adjusting the voltage divider at R7, where

αα V10= . (5)

Including  R5 and R6 in the  voltage divider roughly compensates  for  the factor  of  10 in (5), 
thereby providing the useful range -15 < α < 15 using a ±15-volt power source.  The frequency at 
the Hopf bifurcation is

( ) ( ) Hz600,1
Fμ0.01kΩ102

1 ==
π

f (6)

which can be adjusted by changing both  C1 and  C2 together.   In operation,  the voltage  Vα is 
monitored using a digital voltmeter, and the voltages Vx and Vy are observed with an oscilloscope.
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The interesting nonlinear dynamics of  the Van der Pol oscillator  can be observed by 
scanning  Vα from negative to positive values.  In Figure 2, the system phase space trajectory 
observed for various  Vα are shown.  These figures are screen snapshots taken from an analog 
oscilloscope  configured  in  an  x-y mode,  with  Vx and  Vy connected  to  the  x and  y channels, 
respectively.  In a phase plane picture, a closed path represents a periodic waveform, and the 
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Figure 2.  Observed response viewed in the x-y phase plane for the Van der Pol circuit with 
various values of the control parameter α. 
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special case of a sinusoidal waveform displays as a circular or elliptical path.  Deviation from an 
elliptical  orbit  indicates  the  presence  of  harmonics,  and  the  waveform  is  no  longer  a  pure 
sinusoid.     With a negative  Vα,  it  is  seen that  the steady state  Vx = Vy = 0 is  observed,  thus 
indicating it is stable.  As Vα increases toward zero, it is seen that this steady state becomes more 
noisy.  This is a precursor for the impending loss of stability of the steady state that will occur at 
the Hopf bifurcation.  As Vα is increased just past zero, a Hopf bifurcation is observed, in which a 
small amplitude limit cycle emerges from the steady state.  These initial oscillations are almost 
perfect  sine waves in both  x and  y,  seen as a circle in the phase space and the oscilloscope 
display.  As Vα increases from zero, the amplitude of the sinusoidal oscillations quickly grows, 
confirming the quadratic amplitude response in (3).  However, this rapid growth abates as Vα gets 
larger.   Eventually,  the  waveform  begins  to  distort  from  sinusoidal  as  the  nonlinear 
characteristics of the circuit begin to dominate.  At this point, the circuit begins to function as a 
relaxation  oscillator,  generating  a  waveform  characterized  by  rapid  switching  between  two 
metastable states.  In Figure 3, actual time traces of the waveforms for both Vx and Vy are shown 
for two positive values of Vα.  By comparing the traces in Figure 3, it is seen how the waveform 
deviates from sinusoidal for larger Vα. 

The response described by (3) can be confirmed experimentally using the circuit.   In 
Figure  4,  the theoretical  and observed amplitude responses  for  the oscillator  are plotted as a 
function of the control parameter  α.  In this figure, two observed responses are shown.  These 
responses are derived from the peak-to-peak voltage observed for the voltages  Vx and  Vy.  For 
small α > 0, the responses for both voltages are virtually identical and agree with that predicted 
in  (3).   However,  for  larger  α,  the  two  observed  responses  differ  significantly  due  to  the 
waveform deviation from sinusoidal.  It is interesting to note that the response observed for  Vx 

continues to track the prediction (3) even though the assumption of weak dissipation is no longer 
valid.
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Figure 3.  Observed x (top) and y (bottom) time traces for the Van der Pol circuit with two values 
of the control parameter α. 
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Figure 4.  Observed amplitude response for the Van der Pol circuit as a function of the control 
parameter α.

In conclusion, this brief tutorial presents a modern Van der Pol circuit that is capable of 
showing various  nonlinear  phenomena including  stability,  Hopf bifurcation,  limit  cycles,  and 
relaxation oscillations.  As a result, this simple experimental system provides a useful tool for 
exploring important concepts in nonlinear dynamics and serves as a starting point for further 
investigations in nonlinear and chaotic systems.

5


	A Simple Circuit Implementation
of a Van der Pol Oscillator

