
A Forth Modules System with Name Reuse

Krishna Myneni and David N. Williams

15 February 2012

1a 〈origin �le 1a〉≡ (24b)

modular-forth.lyx

1b 〈version 1b〉≡ (24)

0.5.2

1c 〈license 1c〉≡ (24b)

LGPL

1d 〈copyright 1d〉≡ (24b)

Copyright (c) 2011�2012 Krishna Myneni and David N. Williams

1

1 Introduction

We provide a library to facilitate modular programming[1] in Forth. The pri-
mary rationale for the modules library is to,

1. Provide a framework for writing reusable code

2. Allow freedom to choose names appropriate to the task

3. Clearly de�ne, and enforce (although not rigidly), an API

4. Enable writing code with inter-module dependencies

These features of the modules library are provided by named modules. Modules
use two separate name spaces (wordlists), one for their public de�nitions and
another for their private de�nitions. The public words of a module constitute its
application programming interface, or API, while the private words are meant
for internal use within the module, and typically are not visible outside of the
module. In addition to named modules, another module type, unnamed mod-

ules, is provided as a simple modules facility for Forth systems which cannot
support a large number of separate wordlists. Unnamed modules place their
public words in the current compilation wordlist, and their private words into
a single private wordlist. Our library uses design features from several sources
[2, 3, 4, 5].

We will examine each of the features provided by the library. First we note
that features 1), 3), and 4) provide a systematic method of organizing code for
drop-in use within applications, similar to the organization of modular code in
traditional structured programming languages used for modular programming,
such as C. Furthermore, feature 2) of our modules system provides capabilities
commonly associated with object-oriented programming (OOP), including

1. full name reuse for public API words by di�erent modules, without name
clash problems

2. ability to write modules for an abstract API speci�cation

3. multiple instantiation of modules (similar to objects in OOP)

Our library provides a practical working solution to the name clash problem, en-
countered in large (or small) source development projects, using either centrally
managed or distributed development models.

Although, by itself, our library does not provide a convenient object-oriented
framework for Forth, it provides a bridge between traditional modular program-
ming and full object-oriented methods. We also demonstrate how our modules
system may be used to provide name space isolation[6] to a simple object-
oriented Forth (OOF) implementation[7], which does not permit name reuse
on its own.

2

1.1 The Case for Name Reuse

Bjarne Stroustrup, the inventor of the C++ language, commented that while the
C language enables the paradigm of modular programming, it does not support
modular programming[8]. Here, the term support means to go beyond just the
theoretical possibility of such programming, but also to make such programming
convenient. Similary, standard Forth and other Forth modular programming
libraries may enable the reuse of API word names, but they do not support
such reuse. What are the programming problems which will be alleviated by
providing support for both modular programming and for reuse of word names
in the APIs of modules? To answer this question, we consider two examples of
well-known Forth libraries which are collections of source modules, the Forth

Scienti�c Library (FSL)[9] and the Forth Foundation Library (FFL)[10].

1.1.1 Forth Scienti�c Library

The FSL is comprised of over 60 individual modules, featuring numeric al-
gorithms for scienti�c and engineering use. It has been developed over more
than a decade by various authors, working independently for the most part.
The FSL provides a simple modules system in its auxiliary �le[4], similar to
the unnamed modules provision of our library. All private words of a module
are compiled into a single wordlist. A notably inconvenient omission in the
FSL modules facility is the ability to declare the beginning of a module. FSL
modules which use the provided modules facility terminate the module with the
word, Reset-Search-Order, which resets the search order to the Forth wordlist.
This brute-force approach leads to problems for any application attempting to
load FSL modules with other vocabularies or wordlists added previously to the
search order. A cardinal rule emerges from this lesson learned from the FSL:

Loading of a module into the Forth environment should preserve the

existing search order.

All public words of an FSL module are compiled into the current compilation
wordlist. Therefore, it is possible for public word names of one module to mask
the public words of another module. An author of a new module could either de-
vote extensive e�ort to studying the existing library contents and then attempt
to avoid name clashes, or, more likely, leave it to the user of the library to
resolve any such con�icts. Either way, the manual management of names is par-
ticularly problematic when the authors are independent, and the development
is distributed.

Support for name reuse allows independent development of reusable code,
without concern for name clashes. Consider the case where two module devel-
opers, Alice and Bob, are working independently on their respective modules,
A and B. Neither developer is constrained in their choices for API word names,
by the choices made by the other, nor do the two need to be directed by any
central authority to use a particular naming convention. Alice and Bob use the
names most appropriate for their particular module's API. A third developer,

3

Deepa, may write her module, D, which depends on both A and B, and refer
to the names in A, B, and D, without ambiguity even if there are overlapping
names. Furthermore, Deepa can even write her module in such a manner that
if either Alice or Bob revises her/his module to provide additional API names,
the code in D will not break due to name clashes.

Next, we consider the bene�ts of name reuse for module libraries devel-
oped through a centralized development model, which typically do not have the
problem of name clashes since strict naming conventions are often de�ned and
enforced. An example of this is the Forth Foundation Library, discussed below.

1.1.2 Forth Foundation Library

The FFL is another example of a library comprised of many individual modules.
In this case, the library was written by a single author. In the FFL, no modules
system is used, and there are no public or private wordlists. All de�nitions are
compiled into the current compilation wordlist. Word names are pre�xed to
indicate the operand type, e.g. words for working with singly-linked lists are
prefaced by �snl-�, e.g. snl-new, snl-init, etc., while words for accessing
or manipulating generic binary trees are pre�xed with �bnt-�, e.g. bnt-new,
bnt-init, and so on.

Consider the following word de�nition from the FFL module, snl.fs.

: snl-remove-first (snl -- snn | nil)

dup snl-first@

dup nil<> IF \ If first <> nil Then

2dup snn-next@

dup nil= IF \ If first.next = nil Then

over snl>last nil! \ last.nil

THEN

swap snl>first ! \ first = first.next

swap snl>length 1-! \ length--

ELSE

nip

THEN ;

The above word removes the �rst node of a singly-linked list. Using our modules
system, this word would be a member of the named module, ffl-snl, and
written as,

: remove-first (snl -- snn | nil)

dup first@

dup nil<> IF \ If first <> nil Then

2dup next@

dup nil= IF \ If first.next = nil Then

over >last nil! \ last.nil

THEN

swap >first ! \ first = first.next

4

swap >length 1-! \ length--

ELSE

nip

THEN ;

All name pre�xes, snl- in the above example, may be eliminated, leading to
greater readability of the code, and without concern for name clashes! Further-
more, the non-pre�xed words such as NEW, INIT, INSERT, DELETE, GET, CLEAR,
LENGTH@, and EMPTY?, are common API words for both binary trees and singly-
linked lists in the FFL. Thus, a generic interface may be provided for a set of
modules requiring similar application interfaces.

In summary,

Support for name reuse allows independent development of reusable

code, and permits writing more comprehensible code using generic

interfaces.

1.2 Search Order Utilities

We begin the development of our modules library by noting that public and pri-
vate words of a module are grouped into di�erent wordlists, and the switching
among these wordlists in the search order requires convenient utilities: push-
ing and popping wordlists to/from the search order, obtaining and setting the
search order depth, and saving and restoring the search order state. Addition-
ally, saving and restoring the compilation wordlist is a necessary utility, and is
included as part of the utilities.

5 〈search order utilities 5〉≡ (24b)

[UNDEFINED] drops [IF]

: drops (+n �) 0 ?DO drop LOOP ;

[THEN]

[UNDEFINED] order-drops [IF]

: order-drops (+n �) (o: wid_n ... wid_1 �)

0 ?DO previous LOOP ;

[THEN]

[UNDEFINED] order-depth [IF]

: order-depth (� n) get-order dup >r drops r> ;

[THEN]

[UNDEFINED] >order [IF]

: >order (wid � order: wid)

>r get-order r> swap 1+ set-order ;

[THEN]

[UNDEFINED] order> [IF]

5

: order> (o: wid �) (� wid)

get-order swap >r 1- set-order r> ;

[THEN]

[UNDEFINED] order@ [IF] \ not used here

: order@ (o: wid �) (� wid)

get-order over >r drops r> ;

[THEN]

6 〈search order state utils 6〉≡ (24b)

VARIABLE initial-defs

VARIABLE initial-order-depth

: save-SO-state (�)

get-current initial-defs !

order-depth initial-order-depth !

;

: restore-SO-state (�)

initial-defs @ set-current

order-depth initial-order-depth @ - order-drops

;

6

2 Modules

The modules library provides the following elements for writing and working
with Forth modules:

2.1 Types and Layout

The layout of a module is speci�ed by the following words,

MODULE: BEGIN-MODULE PUBLIC: PRIVATE: END-MODULE

The word MODULE: declares the name of a module, and is usually the �rst state-
ment in a Forth module source �le. The MODULE: declaration is not used when
an unnamed module is desired. BEGIN-MODULE is where the module begins,
and END-MODULE is where it ends. The code area between the two is the body

of the module. Within the body, the words PUBLIC: and PRIVATE: control the
visibility of the module code to the module's user, the application programmer.

2.1.1 Unnamed Modules

The simplest type of module is an unnamed module. For this type of module,
no module name is declared, i.e. the word MODULE: is absent.

BEGIN-MODULE

\ ...

Public:

\ ...

END-MODULE

The module's public words (API) are compiled into the current compilation
wordlist, while the module's private words (internals) are placed into a separate
Private-Words wordlist. Both the current compilation and Private-Words

wordlists are pushed onto the search order by BEGIN-MODULE.

7 〈unnamed private words 7〉≡ (24b)

wordlist CONSTANT Private-Words

7

Since all unnamed modules place their private words into Private-Words,
it is possible for private words from one module to rede�ne the names of private
words from a previously loaded module. Name rede�nitions pose no problem
for proper execution of the API words. Indeed, it is common Forth practice to
reuse names of words which are required only locally, e.g. temporary variables.
However, rede�nitions of words hide earlier de�nitions from inspection or calling
by the user, and this may cause di�culty in debugging hidden words from within
the Forth environment.

In practice, an issue of greater concern with unnamed modules is that the
API words are placed in the current compilation wordlist. Thus,

Name reuse for API words in di�erent modules is not guaranteed to

be possible with unnamed modules.

The latter problem leads to poor programming practices such as name pre�x-
ing, and the consequent drawbacks for applications programming. In general,
unnamed modules are only recommended for use when the target Forth systems
are severely constrained in the number of wordlists they can provide to the user.
Named modules should be used where no such practical restrictions exist.

2.1.2 Named Modules

Named modules simply have the module name declaration prior to BEGIN-MODULE,
e.g.

MODULE: Foo

BEGIN-MODULE

\ ...

Public:

\ ...

END-MODULE

Since each named module has its own distinct pair of wordlists for its API words
and internal words, it is possible to

1. reuse API word names

2. inspect and call module-speci�c private words from the Forth environment.

The �rst possibility allows application programming with generic interfaces,
thereby decoupling the interface to the module from its speci�c implementation.
Several OOP-like features arise from this possibility, and these features will be
discussed elsewhere. The second possibility is accomplished by retrieving the
private wordlist id of the module and placing it on top of the search order, e.g.

' Foo >private >order

where the de�nition of >PRIVATE is given in section 2.3.

8

2.2 Named Module Declaration

Named modules are declared with,

MODULE: <module_name>

MODULE: also saves the search order depth and current compilation wordlist, for
automatic restoration at the end of the module.

9 〈module declaration 9〉≡ (24b)

VARIABLE named-module 0 named-module !

: make-module ("name" �)

CREATE here 0 , 0 , 0 , named-module !

DOES> (o: wid' � wid) @ >r get-order nip r> swap set-order ;

: MODULE: ("name" �)

save-SO-state

MODULES-WORDLIST set-current

make-module

initial-defs @ set-current

;

9

The word MODULE: creates the module name as a word in the reserved
wordlist, MODULES-WORDLIST, and reserves space to store the public and private
wordlist ids. Space is also reserved to store the address of a list of dependent
modules, for future implementation.

An important feature of the execution behavior of the module name

is that it has the same behavior as a Forth-83 vocabulary name.

Executing the module name will replace the top wordlist in the search order
with the wordlist containing the API words of the module. Hence, to append
a module's API (public wordlist) to the current search order, one may simply
write,

ALSO <module_name>

This isomorphism allows us to treat the Forth-94 standard words, FORTH and
ASSEMBLER , in nearly the same way as a module name, a feature which will
prove bene�cial for word name reuse and resolving word references within named
modules.

2.2.1 The Modules Wordlist

All module names are compiled into a separate wordlist, referenced by the con-
stant, MODULES-WORDLIST, and added to the search order at the time that the
modules library is loaded. Henceforth, MODULES-WORDLIST must remain in the
search order for named modules to be found. MODULES-WORDLIST is reserved

for use by the modules library, and should not be used as a compilation wordlist

for any other purpose. In general, this wordlist should be transparent to the
application programmer or user, and direct use of MODULES-WORDLIST is dis-
couraged. However, in an interactive Forth environment, it may be necessary
at times to manually push MODULES-WORDLIST onto the search order, e.g. after
a search order reset such as the statement, ONLY FORTH. A Forth-83 vocabulary
style word, MODULES, is provided for use with ALSO to accomplish this.

10 〈modules wordlist 10〉≡ (24b)

wordlist constant MODULES-WORDLIST

MODULES-WORDLIST >order

: MODULES (�) get-order nip MODULES-WORDLIST swap set-order ;

10

The following two statements are, therefore, equivalent.

MODULES-WORDLIST >order

ALSO MODULES \ equivalent to above

Either syntax may be used � the latter is already familiar to Forth programmers.
Organization of the named modules into a separate wordlist makes it pos-

sible to provide a simple and convenient way for the programmer to view the
modules which have been loaded into the Forth environment. This is done with
SHOW-MODULES.

11a 〈show modules 11a〉≡ (23)

: show-modules (�) \ Display all loaded modules

MODULES-WORDLIST >order words PREVIOUS ;

2.3 Public and Private Wordlists

For named modules, the module name word has a body which stores both the
public and private wordlist ids (wids). These two wordlists are newly created
when BEGIN-MODULE is encountered. The corresponding wids are also stored
within the body of the module name word.

11b 〈new wordlists 11b〉≡ (12b)

wordlist \ new private wordlist

wordlist \ new public wordlist

2dup named-module @ 2!

Direct access to a named module's wids may be needed to support debugging
and testing. For example, we may wish to add a module's private wordlist,
which is not accessible directly, to the search order. It is possible to retrieve
both public and private wids simply from the execution token (xt) of the module
name, e.g., for the module named Foo,

' Foo >public \ obtain Foo's public wid

' Foo >private \ obtain Foo's private wid

The words >PUBLIC and >PRIVATE have simple de�nitions:

11c 〈module wordlist primitives 11c〉≡ (23)

: >public (xtmodule � wid) >body @ ;

: >private (xtmodule � wid) >body cell+ @ ;

All unnamed modules use a single separate wordlist for their private de�-
nitions, referenced by the constant, Private-Words. The public wordlist used
by an unnamed module is simply the current compilation wordlist. Therefore,
retrieval of the pair of existing public and private wordlists for an unnamed
module is accomplished by,

11d 〈existing wordlists 11d〉≡ (12b)

Private-Words

get-current

11

2.4 Start of the Module

The start of the body of a module is declared by BEGIN-MODULE. Subsequently
de�ned words are compiled into either the module's private or public wordlists.
Prior to modifying the search order and compilation wordlist, BEGIN-MODULE
also saves information which allows END-MODULE to restore the initial search
order depth and initial compilation wordlist.

12a 〈set public private 12a〉≡ (12b)

(wid_private wid_public �) public-defs ! private-defs !

12b 〈begin module 12b〉≡ (24b)

VARIABLE private-defs 0 private-defs !

VARIABLE public-defs 0 public-defs !

: BEGIN-MODULE (�) (o: � public private)

named-module @ if

〈new wordlists 11b〉
else

save-SO-state

〈existing wordlists 11d〉
then

2dup 〈set public private 12a〉
2dup >order >order

drop set-current \ default section is private

;

12

The public and private wordlists are pushed onto the search order, and the
private wordlist is set to be the current compilation wordlist.

2.5 Body of the Module

The body of the module is the code section between BEGIN-MODULE and END-MODULE.
De�ned words in the body of a module are compiled into either the module's
public or private wordlists. The word PUBLIC: declares that subsequent de�-
nitions will be placed in the public wordlist, while the word PRIVATE: declares
subsequent de�nitions will be placed into the private wordlist.

The public words of a module constitute its API to the user or ap-

plication programmer. Private words are for internal use within the

module, and are not intended to be used by external code.

Private words may be internal data manipulated by the module code, along
with helper words which are useful factors of the public words. Following
BEGIN-MODULE, the compilation wordlist is set to the private wordlist.

The declarations, PRIVATE: and PUBLIC:, should occur only within the body
of a module, and may be invoked any number of times there, and in any order.

13a 〈body declarations 13a〉≡ (24b)

: not-in-module (�) ." Not in Module Body!" cr ABORT ;

: safe-set-current (wid �)

?dup IF set-current ELSE not-in-module THEN ;

: PRIVATE: (�) private-defs @ safe-set-current ;

: PUBLIC: (�) public-defs @ safe-set-current ;

2.6 End of the Module

The task of END-MODULE is relatively simple: restore the initial search order
depth and the initial compilation wordlist, and reset the public and private
wordlist variables to a known state. It also resets the variable, named-module,
the contents of which are used to determine which type of module is being used
for the next use of BEGIN-MODULE.

13b 〈end module 13b〉≡ (24b)

: END-MODULE (o: <extras> �)

restore-SO-state

0 named-module !

0 private-defs !

0 public-defs ! ;

If search order manipulations performed after the module name declaration,
MODULE: , or between BEGIN-MODULE and END-MODULE, only have the e�ect of
adding additional wordlists to the search order, the initial search order will be
restored by END-MODULE. An ambiguous search order state exists if the initial
search order has been modi�ed, instead of just added to.

13

2.7 Restrictions

A few restrictions of the present modules library are important to note:

1. The module layout is not nestable.

2. The part of the search order present immediately before the module dec-
laration may not be changed inside the module.

While restriction 1) is not inherent to the modules system, but rather a re-
striction based on our current implementation, there is presently no compelling
reason to allow modules to be nested. Restriction 2) is intended to avoid any
side e�ects on the state of the system due to the module code. Since the
search order depth and compilation wordlist just before MODULE: (or just before
BEGIN-MODULE for unnamed modules) are restored by END-MODULE, this restric-
tion allows for the initial search order to be extended within the module body,
and restored to the initial state after END-MODULE. The integrity of the system
search order state could be made safer by actually saving and restoring the
initial search order. However, our implementation does not do that.

3 Programming with Modules

An important feature of our modules system, and one which distinguishes our
system from prior systems, is support for name reuse of API words. As a general
rule,

We advise against using the names of standard Forth words as mod-

ule member word names.

For example, it is not advisable to use the words CREATE and FREE as API
names. In contrast, generic words such as those shown in Table 1 often provide
the clearest API names in various contexts, and may be considered for reuse
in di�erent modules, where such names are sensible choices. When a class
of modules requires the same high-level API, a generic module may provide
an abstract interface layer, consisting of such generic words, for use by the
application. An example is an application which communicates with devices
across di�erent hardware interfaces, but using a common software interface,
e.g. a graphics program for generating output on various graphics devices.

When a word name appears in multiple wordlists, there exists a dependency
on the current search order for references to the word. Manipulation of the
search order is necessary to ensure that the desired word is compiled. Such ma-
nipulation can be accomplished with standard Forth, but it may be cumbersome
to do so. A similar issue also arises for conditional de�nitions of words. Our
modules system provides operators to directly reference a word within a named
module, and to test for membership of a word within a module. Use of these
reference operators e�ectively bypasses the problem of search order dependency
and improves the readability of the code.

14

Get New Open Commit Setup Show Solve
Insert Empty Close Verify Home Display Calc
Delete Equals Read Lock Track Draw Step
Copy Set Write Unlock Start Refresh Integrate
Append Index Clear Enable Stop Rotate Reduce
Put Position Init Disable Acquire Flush Interpolate
Length Print Reset Assign Sample Sync Fit
First Sort Send Detach Accumulate Query Tolerance
Last Remove Receive Select Store Clip Iterate
Push Modify Connect Listen Retrieve O�set Use
Pop Exchange Status Talk Con�gure Mask Zero

Table 1: Generic API word name examples.

Modular programming must also take into account dependencies between
modules. The dependencies among modules may be depicted using a dependency
graph, as shown in Figure 1. Module dependencies a�ect both the load sequence

of modules, and search order setup required for the successful loading of a
module. We discuss the implication of word name reuse for e�ective search
order setup needed by a module.

3.1 Module Dependencies and the Search Order

Modules, vocabularies, or ordinary wordlists required by a named module should
be brought into the search order after the name declaration and before the start
of the module, i.e. between MODULE: and BEGIN-MODULE. Our cardinal rule,
that loading of a module should preserve the search order, is provided for by
END-MODULE, which automatically removes the wordlists added to the search
order after the name declaration. For the dependency graph shown in �g. 1,
the recommended placement of the declaration of dependencies for module E is
illustrated below.

Module: E

Also D Also B Also C \ Dependencies for Module E

Begin-Module

(...)

End-Module

Note that BEGIN-MODULE will push the module's own public and private
wordlists onto the search order, so that a module's words are always found �rst
within the body of the module.

It is not recommended that wordlists be added to the search order within the
module body, i.e. after BEGIN-MODULE. Since BEGIN-MODULE pushes the current
module's public and private wordlists on top of the search order, adding to the
search order after BEGIN-MODULE can potentially mask the module's own word
names within its body. Such a practice can cause problems for the module's

15

A B C

D

E

?

HH
HHHHj

���
����

?

�

Figure 1: Dependency Graph for a Set of Modules. All modules also have a
dependency on the Forth wordlist (not shown).

author, since he/she has to be aware of any potential name clashes from the
dependencies. Also, future versions of the dependent modules could cause the
module code to break due to new name clashes being introduced.

Adding to the search order within the body of the module is strongly

discouraged, with the exception that local modi�cation and restora-

tion of the search order is permissible.

In the presence of name reuse, it appears that one must also be careful with
the ordering of the dependencies. However, as mentioned earlier, our modules
library provides reference operators, the proper use of which can make irrelevant
the ordering of dependencies. These operators are discussed in the next section.

3.2 Referencing Module Member Words

Support for name reuse in modules requires convenient methods for referencing
the desired word from a speci�c module. It is not always convenient to ma-
nipulate the search order manually to place a particular module's word(s) on
top of the search order. This is particularly true when de�ning a new word.
As an illustration, consider the following case. An existing module named Bar

provides a public word named Get. While coding a new module, Foo, we wish
to write a word, Insert, which references Get from the module Bar. The code
is sketched below.

Module: Foo

Also Bar

16

Begin-Module

Public:

: Get (...) ; \ member of Foo

: Insert (...)

[ALSO Bar] Get [PREVIOUS]

(...)

The de�nition of Foo's member named Get masks the de�nition of Bar's Get,
because Bar's API words are lower in the search order than those of the current
module. To avoid this masking, the search order is locally modi�ed to reference
Get from the module Bar and then restored. Manipulation of the search order
inside the de�nition of a word is messy, and results in code which is hard to
read.

Two operators are introduced to simplify referencing of a word in a speci�c
module, independent of the current search order. These are the module member

reference operator, 3, and the module self-reference operator, ∃. We use the
Unicode math symbols, 3, meaning �contains as member� (U+0x220b) and ∃,
meaning �there exists� (U+0x2203); however, corresponding plain text versions
of these operators are also provided: [m] and [this], respectively. Both 3 and
∃ are state smart.

3.2.1 Module Reference Primitives

For proper error reporting by the operators, 3 and ∃, the word name to be
searched for as a member of the speci�c module is stored. The word member-find
is a parsing word which checks for the presence of the named module, and
looks up the member word in the public wordlist of the module. The word
module-do-ref performs either compilation or execution of the referenced word
based on the current state and the precedence of the word.

17 〈module reference primitives 17〉≡ (23)

create member_name 128 allot

: !member-name (c-addr1 � c-addr2 u)

dup c@ 127 min 1+ member_name swap move ;

: member-find ("module-name" "word-name" � 0 | xt 1 | xt -1)

bl word find 0= ABORT" Unknown Module!"

also execute order> >r ("word_name")

bl word !member-name

member_name count r> search-wordlist ;

: member-not-found (�)

member_name count type

." : Member Not Found!" cr ABORT ;

17

: module-do-ref (... xt 1 | xt -1 � ...)

-1 = state @ and IF compile, ELSE execute THEN ;

Analogous words to the Forth standard words, �tick� (') and �bracket-tick�
([']), may now be de�ned to return or compile execution tokens referenced by
module name.

18a 〈module tick operators 18a〉≡ (23)

: m' ("module-name" "word-name" � xt)

member-find 0= IF member-not-found THEN ;

: [m'] ("module-name" "word-name" �) m' postpone literal ; immediate

3.2.2 The Member Reference Operator

The member reference operator, 3 , allows direct referencing of a word which is
a public member of a speci�c named module, using the syntax,

3 <module_name> <word_name>

The reference operator 3 may be used either inside or outside of a

module, and in either compilation or interpretation state.

If the speci�ed word is not found in the public wordlist of the speci�ed module,
compilation is aborted with an error message:

<word_name> : Member Not Found!

A plain text representation of the 3 operator is [m].

18b 〈member reference operator 18b〉≡ (23)

: [m] (... "module-name" "word-name" � ?)

member-find

?dup IF module-do-ref ELSE member-not-found THEN

; immediate

true [IF] : 3 postpone [m] ; immediate [THEN]

18

Our previous example in section 3.2 for the de�nition of Foo's member
Insert now may be written as,

Public:

: Get (...) ; \ member of Foo

: Insert (...)

3 Bar Get

(...)

Furthermore, it is possible that an API word of the current module may hide
an intrinsic word in the Forth wordlist. Here, the design feature of having the
execution behavior of a module name be the same as the intrinsic Forth-94
word, FORTH, means that we can apply the member reference operator to the
word FORTH. For example, if the Forth wordlist provides the word SCAN, we may
write,

3 Forth scan

to reference the word SCAN from the Forth wordlist. Such a reference will never
be masked by name reuse in other wordlists, which are higher in the search order
than the Forth wordlist. While we advised against the reuse of standard Forth
names, a typical system's Forth wordlist provides numerous additional words,
beyond just the standard words.

3.2.3 The Self-Reference Operator

The self-reference operator, ∃, is used only within the body of a module, with
the syntax,

∃ <word_name>

This operator denotes that the speci�ed word name refers to a word in the cur-
rent module's private or public wordlist. It may be used in either interpretation
or compilation state. If the speci�ed word is not found in either the private or
public wordlists of the current module, compilation is aborted with the error
message:

<word_name> : Member Not Found!

The plain text representation of the ∃ operator is [this].
19 〈self reference operator 19〉≡ (23)

: [this] ("word-name" �)

bl word !member-name

private-defs @ 0= public-defs @ 0= or IF not-in-module THEN

member_name count private-defs @ search-wordlist

?dup IF

module-do-ref

19

ELSE

member_name count public-defs @ search-wordlist

?dup IF module-do-ref ELSE member-not-found THEN

THEN ; immediate

true [IF] : ∃ postpone [this] ; immediate [THEN]

3.3 Conditional De�nitions of API words

It is common practice in Forth source to avoid duplicate de�nitions of common
usage words through conditional de�nitions, using [UNDEFINED] or [DEFINED].
A module, however, must guarantee the de�nition of its member API words
within the module body. Therefore,

Conditional de�nitions of public words in a module must ensure that

a new de�nition always exists.

For example, consider a strings module which provides the commonly used,
although not standard, word named SCAN. Since some Forth implementations
may provide a built-in SCAN, the following type of conditional de�nition is often
used in Forth source,

[undefined] scan [if] : scan ... ; [then]

Such a conditional de�nition of SCAN, made within the public section of a mod-
ule, poses a problem. If SCAN is found in the current search order, the module
will provide no de�nition of an API word named SCAN. Then, an attempt to use
the module's member SCAN, via the member reference operator, for example,
would fail!

Within the module, a de�nition of the module's API word, SCAN, may be
ensured by writing,

[undefined] scan [if] : scan ... ;

[else] : scan scan ; [then]

The above approach is dependent on the current search order. More than one
module or F83 vocabulary in the current search order may provide SCAN. We
provide the word [MEMBER] to perform a targeted membership test, thereby
avoiding the search order dependency. Thus, if the Forth system provides SCAN,
we may write,

[member] Forth scan [if]

: scan 3 Forth scan ;

[else]

: scan ... ; \ new source definition of SCAN

[then]

20 〈member test 20〉≡ (23)

: [member] ("module" "name" � flag)

member-find if drop true else false then ; immediate

20

3.4 Loading Modules

A module may either choose to load its dependent modules, to ensure they are
accessible in the Forth environment, before adding them to the search order, or
may leave the task of loading dependencies to the higher level application code.
The latter approach is generally more easy to correct when loading problems
arise, as may happen when using a later version of a module, for which the
dependencies have changed.

4 Future Directions

The practical application of any framework is essential to closing the feedback
loop necessary to craft a useful and usable library. We have put into practice
the modules system described here, presently with applications each using on
the order of 10 modules. Indeed the exercise of converting existing Forth �les to
Forth modules has led to iterative enhancements, re�nements, and bug �xes with
the modules library. The exercise has also demonstrated to us the bene�ts of
name reuse which we discussed in this literate program. At this early stage, it is
likely that we may have missed an essential feature (or few), needed to support
the conversion of existing code to a modular format. As we, and, hopefully
others in the Forth community, gain experience with our modules library, such
de�ciencies will be made apparent and remedied in future versions of the library.

One area of planned development is to provide additional tools to Forth au-
thors, to aid with development of modules supporting name reuse. Already, the
simple tool SHOW-MODULES is very useful for a programmer to viewthe available
modules loaded in a Forth system. Other envisioned tools will support the de-
velopment and use of generic interfaces by allowing the programmer to query
for a list of name overlaps within modules. Such tools include:

• display the names of all modules which provide a particular name in their
API,

s" <word_name>" MEMBER-OF

• display all API names which overlap between two given modules,

' <mod_A> ' <mod_B> NAMES-OVERLAP

• display a given module's dependencies,

' <mod_name> SHOW-DEPENDENCIES

Some of the above tools, such as SHOW-DEPENDENCIES, simply require additional
bookkeeping by the modules library � we have already reserved a cell in the
body of a module name word to be able to save a list of dependencies associated
with a module. Other tools such as MEMBER-OF and NAMES-OVERLAP currently
cannot be implemented in standard Forth, due to the lack of a standard way

21

of traversing wordlists and obtaining word names. However, we expect such
features may be standardized in the near future since a number of Forth systems
already provide such features. A Request for Discussion (RfD) has already
been posted to the comp.lang.forth newsgroup for the standardization of a word
named TRAVERSE-WORDLIST. We are optimistic that standardized infrastructure
will be adopted in Forth systems to support the development of such tools.

Finally, as Bernd Paysan and others have noted, it is desirable to have a
modules system which is a subset of a fully-implemented object-oriented pro-
gramming framework in Forth (OOF). Since our modules library provides some
of the features of OOF, further experience with the library may lead to the
development of such a framework, usable both as a modules system or for OOF
programming. Whether or not such a fusion will be possible, or desirable, we
believe that our current modules framework will be useful for the development
of robust and comprehensible Forth programs under diverse development envi-
ronments.

5 The Modules Library

5.1 Forth System Requirements

In addition to system requirements listed below, the modules library assumes
that HERE never returns zero, FORTH-WORDLIST does not return zero, and any
newly created wordlist does not have a wid value of zero.

5.1.1 Maximum Number of Wordlists

The Forth 200x requirements that at least eight wordlists be allowed in the
search order and that it must be possible to create at least eight new wordlists,
when the Search-Order wordset is present, may be adequate for many uses of
modules. The �le modules.fs adds MODULES-WORDLIST when loaded. During
the loading of a module, a minimum of two wordlists is temporarily added. A
minimum of one wordlist is needed for each named module on which a module
depends.

Having to consider how many wordlists are allowed is not in the spirit of
the freedom of name reusage a�orded by named modules. Fortunately some
common systems do not have an eight wordlist limitation. For the search order,
gforth and iForth allow 16, and pfe allows 64, while kForth permits an arbitrary
search order depth. An application may use a large number of modules, how-
ever only a few wordlists will need to present in the search order at any given
time. For example, an application using 50 named modules will require 100 new
wordlists to be created, yet it may be reasonable to expect that the search order
depth never exceeds ten. At present we have not yet surveyed a large number of
Forth systems to determine whether or not practical limits exist for the number
of new wordlists which may be created in these systems. We note that some
Forth systems (gforth, bigforth, kforth) do not have an arbitrary limit on the

22

number of new wordlists which may be created, while others (iForth) provide a
large enough capacity (>900) for the issue to not be of practical concern.

5.1.2 Required Words From Optional Wordsets

The modules library requires words from the following optional wordsets from
the Forth 200x standard:

Core Extension: ?DO COMPILE, NIP STATE TRUE

Programming-Tools: WORDS [IF] [THEN]

Search-Order: GET-CURRENT GET-ORDER SEARCH-WORDLIST SET-CURRENT SET-ORDER

WORDLIST

Search-Order Extension: ALSO PREVIOUS

5.1.3 Unicode Support

Unicode support is not a system requirement. Optional names for two of the
words in modules.fs use unicode, namely, 3 and ∃. Many modern Forth sys-
tems support the use of UTF-8 unicode characters, even when they do not in-
clude the optional Extended Characters word set, especially when loaded from
a source text �le. To properly display such characters in a terminal window or
enter them from the keyboard, the host terminal application must have them
enabled.

The unicode names may be deselected � the ASCII names [M] and [THIS],
corresponding to 3 and ∃, are always present.

5.2 modules.fs

The chunks of the modules library are now assembled.

23 〈module utilities 23〉≡ (24b)

〈show modules 11a〉
〈module wordlist primitives 11c〉
〈module reference primitives 17〉
〈module tick operators 18a〉
〈member reference operator 18b〉
〈self reference operator 19〉
〈member test 20〉

23

24a 〈version utilities 24a〉≡ (24b)

create ver-buf 16 allot

: ver$ ("version" � ca u)

bl parse 16 min 2dup ver-buf swap move

nip ver-buf swap ;

: make-$ (ca1 u "name" �)

create here over 1+ allot 2dup ! 1+ swap move

does> (a � ca2 u) count ;

ver$ 〈version 1b〉
make-$ MODULES-VERSION

24b 〈modules.fs 24b〉≡
\ Modules library, version 〈version 1b〉
\ License: 〈license 1c〉
\ 〈copyright 1d〉
\ This file is automatically generated using LyX and noweb.

\ Changes should be made to the original file, 〈origin �le 1a〉
〈version utilities 24a〉
〈search order utilities 5〉
〈search order state utils 6〉
〈unnamed private words 7〉
〈modules wordlist 10〉
〈module declaration 9〉
〈begin module 12b〉
〈body declarations 13a〉
〈end module 13b〉
〈module utilities 23〉

24

Acknowledgements

Both public discussions on the usenet newsgroup, comp.lang.forth, and private
discussions by e-mail with several members of the Forth community have been
very in�uential in the design and coding of the modules library presented here.
In particular, we would like to acknowledge Bruce McFarling, with whom we
have had extensive public and private discussions. A signi�cant portion of the
code, including search order utilities, are due to these discussions. Numerous
other members of the Forth community were involved in the comp.lang.forth
discussions of modular programming in Forth during October 2011, and this
discourse has also signi�cantly in�uenced the design and consideration of the
modules system features.

References

[1] http://en.wikipedia.org/wiki/Modular_programming

[2] D. N. Williams, root-module.fs, v 0.8.2 (2011).

[3] B. McFarling, suggested module facility for the Forth Scienti�c
Library, comp.lang.forth (2011).

[4] E. F. Carter, et. al., Forth Scien-
ti�c Library Auxiliary File, fsl-util.x,
http://www.taygeta.com/fsl/library/fsl-util.fs (2008).

[5] N. Bridges, Named and Anonymous Modules for Standard Forth,
http://qualdan.com/forth/modules.fs (2006).

[6] K. Myneni, example use of modules with mini-oof,
ftp://ccreweb.org/software/gforth/experimental/textbox/ (2011).

[7] B. Paysan, Detailed Description of Mini-OOF,
http://bernd-paysan.de/mini-oof.html (2008).

[8] B. Stroustrup, The C++ Programming Language, 2nd ed.,
Addison-Wesley (1993); see section 1.2.

[9] C. G. Montgomery, ed., Forth Scienti�c Library,
http://www.taygeta.com/fsl/sciforth.html(2011).

[10] D. van Oudheusden, Forth Foundation Library,
http://soton.mpeforth.com/�ag/�/index.html(2010).

25

http://en.wikipedia.org/wiki/Modular_programming
http://www.taygeta.com/fsl/library/fsl-util.fs
http://qualdan.com/forth/modules.fs
ftp://ccreweb.org/software/gforth/experimental/textbox/
http://bernd-paysan.de/mini-oof.html
http://www.taygeta.com/fsl/sciforth.html
http://soton.mpeforth.com/flag/ffl/index.html

	Introduction
	The Case for Name Reuse
	Forth Scientific Library
	Forth Foundation Library

	Search Order Utilities

	Modules
	Types and Layout
	Unnamed Modules
	Named Modules

	Named Module Declaration
	The Modules Wordlist

	Public and Private Wordlists
	Start of the Module
	Body of the Module
	End of the Module
	Restrictions

	Programming with Modules
	Module Dependencies and the Search Order
	Referencing Module Member Words
	Module Reference Primitives
	The Member Reference Operator
	The Self-Reference Operator

	Conditional Definitions of API words
	Loading Modules

	Future Directions
	The Modules Library
	Forth System Requirements
	Maximum Number of Wordlists
	Required Words From Optional Wordsets
	Unicode Support

	modules.fs

