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1 Introduction

The purpose of this Forth program is to solve the coupled nonlinear rate equa-
tions describing the complex electric field and the carrier density in a simple
model of the semiconductor laser. The model is sufficient to account for many
of the observed dynamics in a single mode semiconductor laser in response to
a dynamic drive current, such as relazation oscillations and frequency chirp-
ing [1]. With the addition of terms to represent optical feedback or external
optical injection from another laser, the model may be extended to treat more
complex dynamics such as optical feedback induced chaos, and optical injection
locking and chaos in coupled lasers. The model treated in this program does not
include these external coupling terms, nor does it include more mundane, but
important phenomena such as spontaneous emission noise and gain saturation.
Also ignored are phenomena arising explicity from the finite length of the laser
(cavity modes) and the waveguide structure. Examples of such phenomena are
steady state current tuning of the cavity mode frequency, thermal dissipation
and expansion of the laser cavity, and multimode behavior.

_ The basic quantities to be solved are the complex electric field amplitude,
E(t), and carrier density, N(t), inside the semiconductor laser structure, for a
given time-dependent injection current, I(t). The field amplitude E(¢) is defined
by writing the optical electric field of the laser as

E(t -
e(t) = E(t) cos (wol + 6(t)) = # (e“wo”fﬁ@) + c.c.)
where wp is the optical frequency, E(t) is the real time-dependent field am-
plitude, and ¢(¢) is the time-dependent phase. The complex field amplitude

1S, B )
E(t) = E(t) - &*®

For the simple model of the single mode laser used here, the rate equations may
be expressed in terms of the complex field amplitude, without reference to the
optical frequency.

The Forth program is based on a similar program written in C [2], but
provides greater flexibility in allowing the user to tailor I(¢), and the parameters
characterizing the laser, from within the Forth environment.
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‘ Symbol ‘ Parameter Representative Value

Ly Threshold current 20 mA
Nip Carrier density at threshold for lasing 1.5x10%cem =3
Tp Photon lifetime 4.5 ps
Ts Carrier lifetime 700 ps
« Linewidth enhancement factor 5
Gn Differential gain at threshold 2.6x10"%cm? /s

Table 1: Parameters characterizing a semiconductor laser, and typical values of
these parameters.

1.1 Requirements

The code should run under any Forth-94 compatible system providing floating
point support. Forth systems may use either a separated floating point stack,
or an integrated data/fp stack. Modules from the Forth Scientific Library [3]
are required, and assumed to be in the path, fsl/ , relative to the current path.
Required modules include the standard FSL auxiliary files for support of arrays
and dynamic memory, fsl-util.x and dynmem.x, the complex arithmetic module,
complex.x, and the ordinary differential equation solver, runge4 x.

(ext 2a)= (2b)
4th
(include files 2b)= (12)

include fsl/fsl-util.(ext 2a)
include fsl/dynmem. ezt 2a)
include fsl/complex.(ext 2a)
include fsl/runge4. (ext 2a)

2 Laser Parameters

The laser structure itself is characterized by the parameters shown in Table 1.

(laser parameters 2c)= (12)
fvariable I_th 20e I_th f£!
fvariable N_th 1.5e18 N_th f!
fvariable t_p 4.5e-12 t_ p 1!
fvariable t_s 700e-12 t_s  f!
fvariable alpha 5.0e alpha f!
fvariable G_N 2.6e-6 G_N f!



Two parameters defined from the characteristic parameters, above, will also
prove to be convenient in expressing the dynamical equations for the laser.
These are the ratio of the carrier to photon lifetime in the laser,

_Ts

=
and the pumping factor,
_ TGN Ny
o 2
(derived parameters 3)=
fvariable T_ratio \ t_s/t_p
fvariable PumpFactor \ t_p*G_N*N_th/2

(12)

init-params ( - ) \ Initialize the derived parameters
t_s F@ t_p F@ F/ T_ratio F!

t_p F@ G_N F@ Fx N_th F@ F* 2e F/ PumpFactor F!



3 Rate Equations

The rate equations describe the time rate of change of the complex electric field
amplitude, E(t), and the carrier density, N(¢). In the linear gain approxzimation,
these equations may be written as,

dE 1 _ _
dN I N 1 12
R A T,ﬁGN(N‘Nth)} iz M

where e is the electronic charge, and V, is the active volume of the laser. All
other quantities have been defined earlier. A terse derivation of the above equa-
tions is given by [4]'. The above equations are not expressed in SI units. In
particular, they have been derived with units of |E| in m/cm3, where Mph
is the number of photons in the laser cavity. We will not bother to transform
eqns. 1 to SI units, since further scaling will be used to transform the dynamical
variables to dimensionless quantities.
Ezercise: Find the steady state solutions of equations 1, i.e., solutions of,

1 , _
(L +ia)Gy (N = Ny ) ¥ = 0

758 NSS 1 ~ 2

e P + Gy (N —Nth)} ‘ESS‘ =0 (2)

For an arbitrary steady-state current, I8, what must be the value of the steady-
state carrier density, N7 Consider both cases, I%° < I}, and I° > I}y , noting

that in the former case, ESS = 0, since threshold current is defined to be the
current at which lasing starts.

3.1 Normalized Form of the Rate Equations

For numerical solutions of the rate equations, it is convenient to scale the dy-
namical variables, F and N, and the time, ¢, to dimensionless form. The di-
mensionless time, s, is defined by,

L2
Tp

S

(s to ns 4)= (8d)
\ Convert dimensionless time s to nanoseconds
:>ns (F: s -t ) t_p fe £* 1le-9 £/ ;

1'We need a reference with accompanying exposition.
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The variables E(t) and N (t) are scaled to the dimensionless quantities, Y (s),
the normalized complex field amplitude, and Z(s), the normalized carrier den-
sity above threshold:

Y = TSSNE (3)
TG
7 =75 (N = Ny,) (4)

The coupled rate equations, expressed in normalized form, are[5],

‘C%/ = (1+ia)Z(s)Y(s)

Egercise: Derive the normalized form of the rate equations, eqns. 5, from the
rate equations for E(t) and N(t) (equs. 1). Hint: Use the results from the
previous exercise to eliminate the product, eV,, from the equations.

The two normalized rate equations, expressed in code, are

(dY over ds 5a)= (7a)
( F: Yre Yim Z - 4Y/ds ) z*f le alpha f@ =zx

(dZ over ds 5b)= (7a)
( F: s Z Yre Yim - dZ/ds )
|z|~2 fover 2e f*x 1le f+ fx \ F: s Z r
f+ fswap P(s) fswap f-
T_ratio f@ f/

3.2 Normalized Pump Rate

In the normalized rate equations 5, the normalized pump rate, P(s), is given

by,
I
P=p ((S) = 1) (6)
Iip
where [ is the injection current as a function of time, to be defined by the user,
(I(t) 5c)= (8d)
\ For t in ns, return the injection current
Defer I(t)
(P(s) 5d)= (7a)

\ Compute the pump rate at time s
: P(s) (F: s -P ) >ns I(t) I_th f@ f/ le f- PumpFactor f@ f* ;
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3.3 The State Vector

The normalized rate equations given in 5 describe the rate of change of a set of
three real time-dependent physical quantities, Re{Y'}, Im{Y}, Z. Tt is conve-
nient to define a state vector to track these three real quantities:

(state vector 6a)= (12)
3 constant SVSIZE
SVSIZE float array sv{

It is easier to interpret the complex field amplitude, Y, in terms of laser
intensity, W, and laser phase, ¢, so a transformation of the state vector to
intensity and phase will be useful,

12
W ’Y‘
¢ = arg(Y)
sv to 1 pht 6b)= 10
to i phi
\ Compute intensity and phase from the state vector
intensity ( ’v - ) (F: -I) 0} z@ |z|"2 ;
: phase ( ’v - ) ( F: - phase ) 0 } 2@ arg ; \ phase in radians

The transformed components of the state vector, {W, ¢, Z} may be computed
and printed, using,

(print sv 6c)= (10)
: print-sv ( ’v - )
dup intensity fs. 2 spaces
dup phase pi f/ fs. 2 spaces \ normalized phase, 1.0 = pi
2 } fe fs. cr \ normalized carrier density

Note that the printed phase is ¢’ = ¢/, i.e. normalized to 7 radians.

3.4 Frequency Chirp of the Laser

The time derivative of ¢(t) gives the instantaneous frequency change (chirp) of
the laser, Aw(t), with respect to the steady state frequency,

Aw = w(N) — w(Ny) (7)

The program does not calculate the frequency chirp of the laser; however, it
may be calculated from the output phase. No attempt is made by the present
calculation to unwrap the phase, i.e. at ¢ = £, the phase undergoes a discon-
tinuity since the arg() function is restricted to this range (or to the range, 0-2,
depending on the setting of PRINCIPAL-ARG in complex.x). A calculation of
Aw requires the output phase be unwrapped prior to computing the derivative.
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3.5 Derivative of the State Vector

The set of rate equations are given by the time derivative of the state vector,

dRY dSY dZ
ds ’ ds ’ds
These derivatives are computed and stored in an array, at each step in time, for
use by the ODE solver,

(rate equations Ta)= (12)
(P(s) 5d)
\ ’u is the state vector array, and ’dudt is the array
\ of computed derivatives
: derivs-sl ( ’u ’du/ds - ) ( F: s - )
\ or ( s ’u ’du/ds - )

>r >r
@ 0} z0 r@ 2 } f@ (dY over ds 5a) 2r@ drop 0 } z!
@ 2 } f@ r@ O } z@ (dZ over ds 5b) 2r> drop 2 } f!

4 Injection Current Profile

The time dependent injection current profile, I(t), may be defined by the user.
A few cases which are illustrative of different phenomena exhibited by the semi-
conductor laser may be observed from numerical solutions of the rate equations.

4.1 Constant Current: Below Threshold

The simplest case is to set the injection current to some constant value, /.,
below the laser threshold current, 3. < I;},- The user may verify, either from
analysis of the rate equations, or by numerical solution, that for this case, the
variables decay from their initial values to the long time limit values, revealed
in the exercise from section 3.

(below threshold Tb)= (8d)
: BelowThreshold ( F: t - I ) fdrop I_th f@ 0.9e fx* ;

4.2 Constant Current: Above Threshold

The next more interesting case is to choose I3, > I}, and from the solution
of eqns. 2, the values of YSand Z%%are known. However, as the laser current
is initially switched from I = 0 to I, both Y (s) and Z(s) display a transient
phenomenon known as relaxation oscillations, which eventually damp out to
reach the steady state values.

(above threshold 7¢c)= (8d)
: AboveThreshold ( F: t - I ) fdrop I_th f@ 1.2e f* ;
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4.3 Gaussian Current Pulse

Finally we consider the case of a constant current superimposed with a rapidly
varying current. Consider a Gaussian current pulse, of width T’ (full width at
half maximum), and peak current, Iy, superimposed on the d.c. current, Ig,..
The injection current profile is given by,

I(t) = Iq. + Ip - exp (—4ln(2) T2

(Gaussian Pulse Parameters 8a)= (8d)
fvariable fwhm \ full width at half-max for current pulse
fvariable I_p \ peak pulse current (above d.c. level)
fvariable I_dc \ d.c. current level
fvariable t_offs \ offset time for current peak

(Gaussian Pulse 8b)= (8d)

-4e 2e fln f*x fconstant -41n2

: GaussianPulse ( F: t - I )
t_offs f@ f- fwhm f@ f/
fdup f* -41n2 f* fexp
I_p f@ fx I_dc f@ f+

Default settings for the pulse parameters are,

(Gaussian Pulse Default Values 8c)= (8d)
le fwhm f! \ 1 ns
20e I_p f! \ 20 mA
I_th f@ 10e f+ I_dc £f! \ 10 mA above threshold current
3e t_offs f! \ pulse peak occurs at 3 ns

The default injection current profile will be set to the dc current plus the
Gaussian pulse, using the default pulse parameters,

(imjection current profile 8d)= (12)
(s to ns 4)
(I(1) 5¢)

(Gaussian Pulse Parameters 8a)

(Gaussian Pulse 8b)

(Gaussian Pulse Default Values 8c)

’ GaussianPulse is I(t)

\ Alternate profiles

(below threshold )
{above threshold 7c)
\ ’ BelowThreshold is I(t)
\ ’ AboveThreshold is I(t)
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5 Rate Equation Solver

The rate equation solver for 37(5), Z(s), may now be written. The output of
the solver is the time, injection current, and the transformed components of
the state vector, computed at discrete time steps. The rate equations, 5, are
integrated using the fourth order Runge-Kutta method[6]. While an adaptive
step size is much more efficient for integration, a fixed step size is used here
in anticipation of extending these calculations to other problems in which the
state vector needs to be computed at exact, finely-spaced time intervals?. Since
the shortest time scale for the dynamical problem is set by 7, (see table 1), a
time step of 7,/10 is quite sufficient to accurately track the time dependence of

Y and ~Z.

(time step 9a)= (10)
fvariable ds \ dimensionless time step
0.1e ds f! \ actual time step (s) = t_pxds

Integration of the rate equations over a single time step,
Y(s),Z(s) = Y (s + As), Z(s + As)
is performed by the following code, which updates the values of Y and Z in the

state vector.

(integrate one time step 9b)= (10)
(F: s - s+ds )
ds f@ sv{ 1 runge_kutta4_integrate()
The state vector is always initialized at the beginning of the solver to its

2
t=s =0 value: ‘Y(O)’ =2, 6(0) = 0, N(0) = Ny,
(initialize state vector 9c)= (10)

\ initial values of Re{Y}, Im{Y}, Z
2e fsqrt Oe Oe 3 sv{ }fput

20ne such problem is the Lang-Kobayashi model of a semiconductor laser with optical
feedback.
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Note that if Y (0) = 0, Y(s) = 0 for all s (see eqns. 5), so a non-zero value of
Y (0) is needed to start the dynamics. Consider the source of the non-zero field
in a real laser at the onset of lasing.

Once the initial values are set, the rate equation solver will compute and
output the laser intensity (arbitrary units), laser phase (units of 7), and nor-
malized carrier density (dimensionless) for 20,000 normalized time steps. The
total elapsed time is t; = 20,0007,As. For example, using 7, = 4.5 ps and
As = 0.1, the final time will be t; =9 ns.

(solver 10)= (12)
(sv to i phi 6b)
(print sv 6c)
(time step 9a)

:s1 (C-)
init-params \ compute all derived parameters
(initialize state vector 9c)
use( derivs-sl 3 )runge_kuttad_init

Oe \ F: - s0
20000 0 DO \ compute 20000 normalized time steps
fdup >ns fdup f. 2 spaces \ output real-time in ns
I(t) £f. 2 spaces \ compute and output injection current

(integrate one time step 9b)
I 1 mod 0= IF sv{ print-sv THEN
LOOP
fdrop runge_kutta4_done

10
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‘ No. ‘ Physical Quantity
Time (ns)
Injection Current (mA)
Output Intensity (arb)
Phase (units of = radians)
Normalized Carrier Density Above Threshold

Gt | W N~

Table 2: Columns Output by sl

6 User Interface

All relevant parameters may be displayed by the word, params. . Individual
laser parameters may be changed by storing new values in the respective vari-
ables. Derived parameters will be re-computed automatically at the start of the
calculation. The main calculation may be executed by simply typing, s1 , at the
Forth prompt. The calculation will output the state of the laser at the discrete
time steps to the console. The output columns are described in table 2. Some
Forth systems provide a command to allow output to be redirected to a file. In
the absence of a redirection command, the script command in Linux may be
used to record console output to a log file.

(display parameters 11)= (12)

: separator ( - ) ."
: tab 9 emit ;
: params. ( - )

cr

separator cr

." Symbol" tab ." Parameter " tab ." Value" cr
separator cr cr

" t_p " tab ." Photon lifetime (s): " tab t_p f@ fs.
Mo t_s " tab ." Carrier lifetime (s): " tab t_s f@ fs.
.M G_N " tab ." Differential gain (cm~3/s): " tab G_N f@ fs.
." N_th " tab ." Thr. carrier demnsity (cm~-3): " tab N_th f@ fs.
" I_th " tab ." Thr. current (mA): " tab I_th f@ f.

separator cr

." Derived Dimensionless Parameters " cr
separator cr cr

" t_s/t_p ratio: " tab T_ratio f@ f. cr
" Pump factor: " tab PumpFactor f@ f. cr
separator cr

11

cr
cr
cr
cr
cr

alpha" tab ." Linewidth enhancement factor: " tab alpha f@ f. cr



7 Main Program

The main program is assembled.

12 (sll.fs 12)=
(include files 2b)
(laser parameters 2c)
(derived parameters 3)
(display parameters 11)
(injection current profile 8d)
(state vector 6a)
(rate equations 7a)
(solver 10)
init-params
params.
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Version History

e 2011-02-24 KM, fixed typos and punctuation; reordered some text.

e 2011-02-22 KM rewritten in the literate programming style using LyX;
corrected a mistake in the value of 41n(2), which was hard-coded as
2.77066e; added constant current injection profiles.

e 2007-10-19 KM modified to use complex library, and FSL ODE solver.
This version is about 20% slower than the original, but the code simplifies
greatly.

e 2002-10-27 KM changed all instances of dfloat to float for ANS Forth
portability. Removed explicit fp number size dependence.

e 2002-10-24 KM fixed problem with the main loop; previously was not
computing Vdot on every loop iteration. Also changed current pulse pos
to 3 ns.

e 2002-10-21 KM fixed time scale problem in sl after problem was pointed
out by Marcel Hendrix.

e 2000-01-26 KM first version, based on [2].

References

1]

2]

3]

[4]

[5]

[6]

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, New York: Van
Nostrand Reinhold (1993).

S. D. Pethel, C program for numerical solution of the semiconductor laser
rate equations, unpublished (2000).

Forth Scientific Library home page at http://www.taygeta.com/fsl/
sciforth.html ; compatible modules are also provided at ftp://ccreweb.
org/software/fsl/

K. Myneni, Phenomenological rate equations for a semiconductor laser,
http://ccreweb.org/documents/physics/amo/sl/rateqns.html (2008).

D. W. Sukow, Ezperimental Control of Instabilities and Chaos in Fast Dy-
namical Systems, PhD Thesis, Duke University (1997).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-
ical Recipes in C, 2nd ed., Cambridge University Press (1994).

13



