CygnuskEd_Manual

Bruce Dawson

CygnusEd_Manual

Copyright © CopyrightA©1987-1999 CygnusSoft Software

CygnusEd_Manual

] COLLABORATORS
TITLE :
CygnusEd_Manual
ACTION NAME DATE SIGNATURE
WRITTEN BY Bruce Dawson January 2, 2023

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

CygnusEd_Manual iv

Contents

1 CygnusEd_Manual 1
1.1 CygnusEd_Manual.guide 1
1.2 Defaulticon o e e e 2
1.3 Setting the tabulator Size L e e e 2
1.4 Keyboard operations e e e e e 3
1.5 MOUSE OPErations o v v v v v e e e e e e e e e e e e e e e e 4
1.6 Workbench support e e e e 4
1.7 Teons . . . oo o o e e 5
1.8 Workbench "Tools’ menu L e e 5
1.9 CygnusEd window L e 5
110 Project menu i e e e e e e e e e 6
[.11 Environment MeNUottt t e e e e e e e e e e e e e e e e 7
1.12 Global Settings L. e 7
1.13 File Settings o o e e e e e 8
114 View Settings o o i e e e e e e e e e 9
1.15 Special menu e e 9
1.16 Cut/Paste MENU o vttt et e e e e e e e e e 10
1.17 Search/Replace menu L e e e e e e e 11
118 MOve menu o e e e e e e 12
1.19 About... . . . o e 12
120 Clear. o o e e 13
1.21 Open new - Keyboard shortcut [Amigal+? e 13
1.22 Open... - Keyboard shortcut [AmigalJ+o L e 13
1.23 Include file... - Keyboard shortcut [Amigal]+O e 13
1.24 Save clip as... - Keyboard shortcut [Amigal+n 14
1.25 Save - Keyboard shortcut [Amigal+w L e e e e e 14
1.26 Save as... - Keyboard shortcut [Amiga]+W o 14
1.27 Saveallchanges e e 14
1.28 Change current dir€Ctory... o v v v i e 14
1.29 Spawnnew CED [Ctrl][4+Esc o e 15

CygnusEd_Manual v

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68

Activate next CED [Ctrl]+N o e 15
Print clip... - Keyboard shortcut [Amigal+p o e e 15
Print file... - Keyboard shortcut [Amigal+P 15
Quit - Keyboard shortcut [Amigal+q o . e e e 15
Save & quit - Keyboard shortcut [Amigal+Q L 16
Quit & die e e 16
Open on publiC SCTEEN... i ittt e e e e e 16
Setscreen type and SIZ€... L e e e e e e e e e e e e e e 16
Duplicate Workbench size L 17
Macro definitions L. L e e 17
Begin short invocation macro - Keyboard shortcut [Amigal+m 18
Begin long invocation macro - Keyboard shortcut [Amiga]+M Lo oL, 19
Define startup macro e e e 19
QuUote Key e e e 20
Clear definitions e e e e 20
Load definitions... - Keyboard shortcut [Amigal+; e e 20
Save definitions... - Keyboard shortcut [Amigal+’ 20
Priority e e e e e 21
AULOSAVE .« . . vt e e e e e e e e e e e e 21
Seticontool name...l e e e e e e 22
ColoUrS . . . o e e e e 22
Filesave method e 23
Icon creation? L. e e e 23
Hot-Start enabled? L L 23
Auto-expand views? - Keyboard shortcut [Amigal+[. Lo 24
Keypad = movement? - Keyboard shortcut [Amigal+8 24
Selectfont L 24
Rendering choices L e e e e e e 25
Load environment L e e e e e e e 25
Save environment... - Keyboard shortcut [Amigal+E 26
Tab SiZe e e e 26
Customize tabs... - Keyboard shortcut [Amigal+t e 26
Set right border... - Keyboard shortcut [Amigal+™ L 26
Setscroll Jump o e e e e e e e e e e e e e 27
Max scroll XX... o L e e e e e e e 27
Layout? - Keyboard shortcut [Amigal+5 oL 27
Word wrap? - Keyboard shortcut [Amigal+6 L 28
Insert mode? - Keyboard shortcut [Amigal+7 28

Tabs = spaces? - Keyboard shortcut [Amiga]+0 L o 28

CygnusEd_Manual vi

1.69 Editable file? e 29
170 Status line L. e e e e e e 29
1.71 White spaces o o o e 30
1.72 Scrollbar e e e 31
1.73 Setscroll borders... L e e e e 31
174 View OPerations o v v v v it e e i e e e e e e e e e e e e e e e e e e 31
1.75 Previous view - Keyboard shortcut [Amigal+, 32
1.76 Next view - Keyboard shortcut [Amigal+. e e e 32
1.77 Split view - Keyboard shortcut [Amigal+d 33
1.78 Expand view - Keyboard shortcut [Amigal+] e 33
179 Grow VIEW L o e e 33
1.80 Shrink view L e e e 33
1.81 Format o e e e 33
1.82 PoSt period SPacCeS... v v i i e 34
1.83 Send DOS/ARexx command... oL e e e e 34
1.84 Install DOS/ARexx command... e e e 34
1.85 Load DOS/ARexx commands... o i e e e e e 35
1.86 Save DOS/ARexx commands... o ottt e e e e e e e e e 35
1.87 Send DOS/AREXX OULPUL t0... o v v v o it e e e e e e e e e e e e e e e 35
1.88 Enter ASCIL... - Keyboard shortcut [Amigal+- e 36
1.89 Center cursor - Keyboard shortcut [Amigal+= L 36
1.90 Center line - Keyboard shortcut [Amigal+\\ e 36
1.91 Repeat key/menu... - Keyboard shortcut [Amigal+” 36
1.92 Find matching bracket - Keyboard shortcut [Amigal]+h, 37
1.93 Mark/Jump Location e 37
1.94 Mark - Keyboard shortcut [Amigal+b L e 37
1.95 Mark columnar - Keyboard shortcut [Amigal]+B L o Lo 38
1.96 Mark word e e 38
1.97 Cut - Keyboard shortcut [AmigaJ+Xx e 38
108 rase o o e 39
1.99 Copy - Keyboard shortcut [Amigal+c L e 39
1.100Paste - Keyboard shortcut [Amigal+v L e e e e e e 39
1.101Set clipboard unit... L e e 39
1.102Rotmarked e e 40
1.103Strip CRmarked e 40
1.104Change case marked e e 41
1.105Change marked to lowercase e 41
1.106Change marked to UPPer Case L L e e e e e e 41

1.107Shiftinmarked L e 41

CygnusEd_Manual vii

1.108Shiftout marked L 41
1.109Change marked spaces totabs e e e e e e 41
1.110Change marked tabs to SPACes e e e e e e 42
1.111Delete word [Ctrl]+Del e e e e e 42
1.112Undelete word [Ctrl]+[Alt]+Del o e e 42
1.113Bck Spc word [Ctrl]+BckSpe o o e e e e 42
1.114UnBck Spc word [Ctrl[+[Alt]+BckSpe o o o e 42
1.115Delete line - Keyboard shortcut [Amigal+k e 42
1.116Delete to EOL - Keyboard shortcut [Amigal+y e 43
1.117Undelete line - Keyboard shortcut [Amigal+l e 43
1.118Repeat search backwards - Keyboard shortcut [Amigal+a, 43
1.119Repeat search forwards - Keyboard shortcut [Amigal+s e 43
1.120Search for... - Keyboard shortcut [Amigal+S L. 43
1.121Repeat replace - Keyboard shortcut [Amigal+r e 45
1.122Replace... - Keyboard shortcut [Amiga]+R 45
1.123Clipto search buffer L e e e 46
1.124Cliptoreplace buffer e 46
1.125Set ASCII zero alias for search... e 47
1.126Change case letter - Keyboard shortcut [Amigal+g 47
1.127Change case word - Keyboard shortcut [Amigal+G e 47
1.128Upper case Word L e e e e e e e e e 47
1.129Lower case WOrd L L. e e e e e e 48
1.130Undo 48
1.131Jump to line... - Keyboard shortcut [Amigal+j e 49
1.132Jump to auto-mark - Keyboard shortcut [Amiga]+4 L 50
1.133Jump to lastchange e e e e e 50
1.134Jump to byte... - Keyboard shortcut [Amiga]+J Lo 50
1.135Cursor key movement oL e e e e e e e e e e e e e e e e e e 51
L136MetaMac L e e e 52
LA3TNEW . . o e 53
1.1380pen... - Keyboard shortcut [Amigal+o e 53
1.139Save - Keyboard shortcut [Amigal+w L e e e 53
1.140Save as... - Keyboard shortcut [Amiga]+Wo 54
1.141Undo - Keyboard shortcut [Amigal+u oL 54
1.142Print macro list... - Keyboard shortcut [Amigal+p L 54
L143ADbOUL... . . . o e 54
1.144Quit - Keyboard shortcut [Amigal+q e 55
1.145Delete Macro e e e e 55

1.146Delete Entry L e 55

CygnusEd_Manual viii

1.147Insert Special L e 55
1.148Find/Add short invocation macro - Keyboard shortcut [Amigal+m 56
1.149Find/Add long invocation macro - Keyboard shortcut [Amigal+M 56
L.1SOFIind/Add Startup Macro o v v i e e e e e e e e e e e e e e e e e e e 56
1.151RecoverCEDFiles e 57
LIS2VIBWS OVEIVIEW L L i ittt ittt e e e e e e e e 57
LIS3Ed . . . o e 58
1.154Command lin€ OPtions o L e e e e e e e e e e e e e e e 61
LISSAREXX « « v o vttt e e e e e 62
1.156Detailed ARexx reference e 65
LISTACTIVATE NEXT CED o e e e e e e e e e e s 73
L1.1S8ADJUST COLOURS e e e e e 73
1.I59AUTO-EXPAND VIEWS o e 73
L.160AUTO-INDENT o e e e 74
LI6IBACKSPACE o 74
L162BACKTAB 74
L.LI63BACKUP TO *BAK o e e e 74
L1I64BCK SPCWORD e e 75
LIGSBEG OFFILE o e e e e e e 75
1.166BEG OF LINE e e e 75
1.I67TBEG OF SCREEN e e 75
1.168BEG/END DEFINITION e e e e e e e s 75
1.169BLOCK TO SEARCH BUFFER e 75
L.I70CEDTOBACK 76
LI7ICEDTOFRONT e e e e e e e e e e 76
L.1I72CENTER CURSOR o e e e 76
1.I73CENTER LINE e e e e 76
1.174CHANGE CASE BLOCK e e s 77
1.175CHANGE CASE LETTER o e e 77
1.176CHANGE CASEMARKED e 77
1.177CHANGE CASE WORD e 77
1.178CHANGE CURRENT DIRECTORY e e 77
L.IT9CHANGES . . . 78
LISOCHECK FILE o e e e e e e e e 78
LIBICLEAR . . . o e e 78
1.182CLEAR DEFINITIONS e e e s 79
1.183CLIP TO SEARCH BUFFER e 79
LISBACOPY . . . 79

1.185COPY BLOCK e 79

CygnusEd_Manual ix

1.I86CUSTOMIZE TABS . . .« o e e e e 79
LISTCUT . . . e 80
1.188CUT BLOCK e 80
LISICYCLE COLOURS o 80
1.190DEFAULT e 81
LI9IDELETE 81
1.192DELETE LINE o o e 81
LI93DELETE WORD 81
1.194DELETE TO EOL e e e e 81
LIOSDM . . o 82
L.1I96DOWN . . o e 82
LIO7TDOWN 12 LINES o 82
1.198EDITABLE FILE e 82
LI99END OF FILE 83
1.200END OF LINE e 83
1.201END OF SCREEN 83
1.202EOLS VISIBLE e 83
L.203ENTER ASCIL o e 84
1.204ESC CODES VISIBLE e 84
L.205SEVERY NMIN 84
1.206EXPAND VIEW e 84
1.207FIND MATCHING BRACKET e 84
1.208FORCE CUSTOM SCREEN e e e e e 85
1.209FORWARDTAB 85
1.210GETDIRNAME e 85
1.211GETFILENAME 86
1.212GETNUMBER e 86
L213GETSTRING 86
1214GETWORD e 87
L215GETLINE 87
1.216GETCHAR e 87
1217GROW VIEW 88
1.218HOT-START ENABLED e e e e 88
1.219ICON CREATION 88
1.220INCLUDE FILE e e e e 88
1221INHERIT o 89
1.222INSERT BLOCK e e 89
1.223INSERT MODE 89

1.224INSTALL DOS/AREXX COMMAND e e 89

CygnusEd_Manual X

1.225JUMP TO AUTO-MARK e 90
1.226JUMP TO BYTE 90
1.227JUMP TOFILE e 90
L228JUMP TO LINE 91
1.229JUMP TOMARK e 91
L230JUMPTO 92
1.231KEYPAD = MOVEMENT e 92
L.232LASTKEY . . . o 92
1.233LAYOUT . . . e 92
L234LEFT 93
1.235LEFT 12 CHARS e 93
L236LL 93
1.237LOAD DEFINITIONS e e 93
1.238LOAD DOS/AREXX COMMANDS 94
1.239LOWER CASE WORD e 94
L240MARK . . . 94
1.24IMARK BLOCK e 94
1.242MARK COLUMNAR o 94
1.243MARK COLUMNAR BLOCK e e e 95
1.244MARK LOCATION o 95
1.245MAX SCROLL e 95
1.246MAX UNDO LEVELS 96
1.24TMAX UNDO MEMORY e 96
L248MENU 96
1.249NEXT VIEW . . . L . e 96
1.250NEXT WORD 97
1.25INO SCROLL BAR o e 97
L2520KAY T . . . 97
1.2530KAY2 . o o e 97
L.2540N/OFF o 98
1.2550PEN . . o e 98
1.2560PEN NEW 99
L25TOW o e 99
1.258PAGES 99
1.259PASTE . . . e e 100
1.260POST PERIOD SPACES 100
1.261PREV WORD e 100
1.262PREVIOUS VIEW 100

1.263PRINT BLOCK e e e e 101

CygnusEd_Manual Xi

1.264PRINT CLIP e e e e 101
L265PRINT FILE 101
1.266PRIORITY 102
1.267TPUBSCREEN 102
1.268QUIT . . . o e 102
L269QUIT & DIE o 103
1.270RAWKEY . . . e 103
L271IREDO 105
1.272REPEAT KEY/MENU e 106
1.273REPEAT REPLACE 106
1.274REPEAT SEARCH BACKWARDS e 107
1.275REPEAT SEARCH FORWARDS e 107
1.276REPLACE e 107
L27TRESET ALIAS o 108
L278RIGHT e 109
L.279RIGHT 12 CHARS 109
1.280ROT BLOCK e 109
1.281ROT MARKED 109
L282RX . . o e 109
1.283SAFE SAVES . . . o . 110
1.2B4SAVE . . . e 110
1.285SAVE ALL CHANGES 110
1.286SAVE AS . . . e 111
1.287SAVEBLOCK TOFILE 111
1.288SAVE CLIP AS e 111
1.280SAVE DEFINITIONS 112
1.290SAVE DOS/AREXX COMMANDS e e 112
1.291SAVE ENVIRONMENT 112
1.292SCREEN HEIGHT e e e 113
1.293SCREEN WIDTH 113
1.294SCROLL BARON LEFT e e e e 113
1.295SCROLL BARONRIGHT e 113
1.296SEARCH FOR e 113
1.297SELECT DISK FONT 114
1.298SEND DOS/AREXX COMMAND e e e 115
1.299SEND DOS/AREXX OUTPUT TO o e e e 115
1.300SET CLIPBOARD UNIT e e e e 115
1.30ISETICON TOOL NAME 116

1.302SET PRIORITY e e e 116

CygnusEd_Manual Xii

1.303SET RIGHT BORDER e e 116
1.304SET SCREEN SIZEAND TYPE s 117
1.305SET SCROLL BORDERS o 117
1.306SET SCROLL JUMP e 117
1.307SET TIMER o 117
LI.308SETSCREEN 118
1.309SHOW ASCII VALUES e e e e 118
L310SHRINK VIEW 118
1.311SIMPLE SAVES . . . 118
1.312SPACES VISIBLE 118
1.313SPAWN NEW CED e e e e 119
L314SPECIFY 119
1.31SSPLIT VIEW . . . e e e e e e e e 119
L316STATUS . . . o 119
1.317STRIPCR BLOCK e e e 123
I.318STRIPCR MARKED e 123
1.319TAB SIZE o e 123
1.320TABS =SPACES e 124
1.321TABS VISIBLE e e 124
L322TEXT . . . o 124
1.323TOPAZ 60 COLUMN e e e e e e e e e e 125
1.324TOPAZ 80 COLUMN e e e e 125
1.325UNBCK SPCWORD e 125
1.326UNDELETE LINE 125
1.327UNDELETE WORD 126
1.328UNDO 126
1.320VERSION . . . e 126
L330UP . . 126
1.3311ockgui L e 127
1.332unlock@Ui e e e 127
1.333UP 12 LINES . . . 127
1.334UPPER CASE WORD 127
1.335USE WBENCH COLOURS o e 128
I336WITH FILL e e e e e e e 128
1.337WITHOUT FILL e e e e e e e e e e e 128
1.338WORD WRAP . . . 128
1.339actualsize e e 128
1.340AUTOEXPAND 128

1.341automarkX L e e e 129

CygnusEd_Manual Xiii

1.342automarky oL e e e e e 129
1.343aut0savetimero e e e e e e e e e e e e e e e e e e 129
1.344backspacecharbuffer 129
1.345backspacewordbuffer L e e e 129
1.346blockbuffer e 129
L1.347DI0CKSCIENX ot e e e e e e e e e 129
1.348blocky o 130
1.340clipunit L e e e e e 130
1.350currentdir e e 130
I.351cursorcolumn e e e e e 130
1.352cursorline e 130
1.353CUISOIMEMOTYX © .« v v v v v v e 130
1.354cursoroffsetX e e 130
1.355cursoroffsety e e e e e e e e 131
1.356customheight L e e 131
1.357customroutineSo e e e e e e e e e e e e e e 131
1.358customwidth 131
1.359deletecharbuffer e 131
1.360deletelinebuffer L 131
1.361deletewordbuffer e 131
1.362desiredcolumn e e 132
1.363dirname e e e e 132
1.364displaycolumns L e e 132
1.365displaylines L e e e e 132
1.366editable L e 132
1.367filememo e e 132
1.368filename e e 133
1.369fontinfo e e 133
1.370forcecustom e e e 133
1.371ICONCREATION e e e e e s e 133
1.372icontoolname L. e e e e e e e 133
1.373insertmode e e e e 133
1.374interlace oL e e e 133
1.375keepresident L e e e e e e e e e 134
1.376KEYPADMOVEMENT e 134
1.377layoutmode e e e e e e e 134
1.378leftline L 134
1.379eftpropgadg e e 134

1.380linebuffer L e 134

CygnusEd_Manual Xiv

1.381linebufferoffset L 134
1.382linememorylength L. e e e e e e e e 134
1.383linenumber L e e 135
1.384linescreenlength L e e e 135
1.385markxl . . . L e 135
1.386markyl . . . e e 135
1.387markX2 . . . L e e e e 135
1.388marky2 e e 135
1.389markx3 . . . e 135
1.390marky3o e e e 135
1.39Imaxscrolly L e e 135
1.392modeido e e 136
1.393numchanges L e 136
1394numlines oL e e e e e e e 136
1.305NUMVIEWS o L L e e 136
1.396pixelleftedge L e e e e 136
1.397pixeltopedge e e 136
1.398portnumber e e e e e e e e e e e e e 136
1.399pubscreenname L L e e 137
L400PRIORITY . . . o e 137
1.401restname e e e e e e e e e e e 137
1.402rightborder e e e e e e 137
1.403rightpropgadg e e e 137
1404safesaves L. e e e 137
LAOSSCriptbit o e e e e e e 137
1.406scrollborderbottom L e 137
1.407scrollborderleft L e e 138
1.408scrollborderright e e e e e e 138
1.409scrollbordertop L e e 138
1.410scrolljump o o e e e e e e e e 138
14llsearchinfo o L e 138
1412serialnumber e e e 138
1.413showasCii o . o e e e 138
LAT4STATUSLINE o e e e e e 138
L415statuslinetype L e e 139
LAL6tabs o e 139
1A17tabsarespaces o o i e e e e e e e e e e e e e e e e e 139
LAISTABSIZE . . . o 139

1.419taskaddress e e e 139

CygnusEd_Manual Xv

1420topline 139
L421totalnumfileso e e e 139
LA22t0talnumVIEWS L L e e e e e e e e e e e e e e 139
1.423verticalblock L e e 140
1.424visibleeol L. L e 140
1425visibleesc e e e 140
L.426visibletab L L e 140
1.427windowheight L 140
1.428windownumber Lo e e e e 140
1420windowwidth L L e 140
L430WORDWRAP 140

1431zeromapchar L e 141

CygnusEd_Manual

1/141

Chapter 1

CygnuskEd Manual

1.1 CygnusEd_Manual.guide

CygnusEd Professional Online Manual
Copyright © 1987-1999 CygnusSoft Software
Written by Bruce Dawson, updated by Olaf Barthel

Welcome to the CygnusEd Professional online documentation. CygnusEd
Professional is a powerful and fast text editor, designed to be easy to
learn just by looking through the menus. However, even the best designed
program has some hidden or non-obvious features, and CygnusEd’s menus are
large enough that it’s easy to miss some important features.

This documentation is setup so that it can easily be used as an
introduction to CygnusEd, or as a reference. All of the buttons in the block
below contain important information about how CygnusEd works, what the
important features are, and what the philosophy behind these features is.
When learning CygnusEd it is recommended that you at least glance at all of
these sections, to see what CygnusEd has to offer, and then read in detail
those that interest you.

Metamac
- the macro editor

Ed
- the CygnusEd invoker

RecoverCEDFiles
- recovering data after a crash

Views overview
- multiple files, multiple views

Macro Definitions
— automate repetitive tasks easily with macros

Command line options
- public screens, etc.

ARexx commands

CygnusEd_Manual 2/141

— expand CygnusEd through ARexx

ARexx reference
— A detailed reference of all ARexx command

The menu buttons are best used as a reference when you have a question
on how a specific menu item works. All of CygnusEd’s menu commands are
documented here.

Project menu

Environment menu

Special menu

Cut/Paste menu

Search/Replace menu

Move menu

The following sections describe features that are not covered by <«
the

menu documentation:

Keyboard operations

Mouse operations

Workbench support

Default icon

Setting the tab size

1.2 Default icon

Default icon
When saving icons with files, CygnusEd will use its built-in default

project icon. You can supply your own icon, just create a drawer "ENVARC:CED"
and copy the project icon file under the name "def_ CEDFile.info" into it.

1.3 Setting the tabulator size

Setting the tabulator size

The "File" environment menu is for setting the size of tabulator
stops, but this can take place only after a file has been loaded or just
before you load a new file. There is an alternative way to specify the

CygnusEd_Manual 3/141

tabulator size to use when editing a file. CygnusEd will scan the first

ten lines of a file just loaded for a special keyword. For example, to set

the tabulator size to four spaces, add the following line to a text file:
tts=4

Now open this text file; CygnuskEd will automatically adjust the tabulator

size after loading the file. ":ts=" is actually an abbreviation for
":tabsize=".

1.4 Keyboard operations

Keyboard operations

Depending on what qualifier keys ([Shift], [Alt], [Ctrl], [Caps
Lock]) are being held, a number of keys trigger different actions.

[Return] key:
No [Shift]/[Ctrl] key held

Breaks the line at the cursor position and puts the cursor
at the beginning of the next line.

With [Shift] key held

Adds a new, auto-indented line below the current line and
puts the cursor there. This *DOES NOT* break the current line. The
auto-indentation is accomplished by duplicating all the leading blank
space characters in the current line.

With [Alt] key held

Breaks the line at the cursor position and adds a new,
auto-indented line below the current line.

With [Ctrl] key held
Breaks the line at the cursor position and inserts a
carriage return character.
Function keys with the [Caps Lock] key held insert printer control codes and

the current time of day and date:

Set attribute Clear attribute Set foreground

Qualifier F1 F2 F3

[Ctrl] Underline Underline Colour 3
[Shift] Italic Italic Colour 2
[Alt] Bold Bold Colour 1

None Clear all Clear all Colour O

Set background Set pitch Clear pitch
Qualifier F4 F5 Fo6
[Ctrl] Colour 3 Enlarged Enlarged

CygnusEd_Manual

4/141

[Shift] Colour 2 Condensed Condensed
[Alt] Colour 1 Elite Elite
None Colour 0 Normal Normal

Set pitch Clear pitch Miscellaneous

Qualifier F7 F8 F9

[Ctrl] Super Super 1/6 lines

[Shift] NLO NLQ 1/8 lines

[Alt] Doublestrike Doublestrike Proportional off
None Shadow Shadow Proportional on

Time and date
Qualifier F10

[Ctrl] -

[Shift] Date

[Alt] Time

None Time and date

Any combination of qualifier keys is allowed.

1.5 Mouse operations

Mouse operations
CygnusEd allows you to use the mouse for moving the text cursor,
text scrolling and for marking text blocks. Movement is accomplished by
holding down the left mouse button and dragging the mouse. To mark text,

can use two different techniques:

1) Double-click the left mouse button; this will toggle block
marker mode.

2) Hold down either [Shift] key and drag the mouse; this will

start marking a text block unless you are already in block
marker mode.

1.6 Workbench support

Workbench support
This support comes in two forms: through icons CygnusEd can store
along with the files you save, through the Workbench ’'Tools’ menu and
CygnusEd’s window.
Icons

Workbench ’"Tools’ menu

CygnusEd window

you

CygnusEd_Manual 5/141

1.7 lcons

Icons

CygnusEd can store icons with every single file it saves to disk
(see
Icon Creation?
) . Other than making these files ’'visible’ from
Workbench, CygnusEd stores state information in these icons as follows:

TABSTOPS
These are the tabulator settings, as available through the

Customize tabs...
command.

MARK

This is a list of line/column pairs the text marks are
placed at (see
Mark/Jump Location

) .
CURSOR
This sets the file’s cursor position. CygnusEd will

place the text cursor there after loading the file (instead of
placing the cursor at the beginning of the document).

1.8 Workbench 'Tools’ menu

Workbench ’"Tools’ menu

If the Workbench is active when CygnusEd is started (note that this
is not the case if you launch CygnusEd from your ’S:User-Startup’ script) a
menu item ’"Open with CygnusEd’ will be added to the Workbench ’Tools’ menu.
To open files with CygnusEd, select their icons, then pick this menu item.
Note that for each new file a new view will have to be created. The number
of views is limited, so CygnusEd may not open all the files you selected.

1.9 CygnusEd window

The CygnusEd window
If opened on the Workbench screen, the CygnusEd window acts as a
so-called ’'AppWindow’, i.e. you can drag icons into it. Depending on whether

you hold down any [Shift] or [Ctrl] key different actions will follow:

No [Shift] or [Ctrl] key held:

CygnusEd_Manual 6/141

CygnusEd will try to load the file into a new view.
Any [Shift] key held:

The file will be included at the position you let
go of the left mouse button.

[Ctrl] key held:
The name(s) of the file(s) will be inserted at the current

cursor position. If more than a single file is given, their names
will be separated by line feeds.

1.10 Project menu

Project menu
The commands in this menu are, as you would expect, mostly to do with
files, projects, printing and other similar operations.
About. ..
Clear

Open new - Keyboard shortcut [Amigal+?

Open... - Keyboard shortcut [Amigal]+o
Include file... - Keyboard shortcut [Amiga]+O
Save clip as... - Keyboard shortcut [Amiga]+n

Save - Keyboard shortcut [Amigal]+w

Save as... — Keyboard shortcut [Amiga]+W
Save all changes

Change current directory...

Spawn new CED [Ctrl]+Esc

Activate next CED [Ctrl]+N

Print clip... - Keyboard shortcut [Amigal]+p
Print file... - Keyboard shortcut [Amiga]+P
Quit - Keyboard shortcut [Amiga]+g

Save & quit - Keyboard shortcut [Amiga]+Q

Quit & die

CygnusEd_Manual 7/141

1.11 Environment menu

Environment menu
The Environment menu is a uniquely CygnuskEd three part menu that
contains all of the settings for how CygnuskEd operates.
Global Settings
File Settings

View Settings

1.12 Global Settings

Global Settings

The ’"Global Settings’ menu is the first part of the peculiar three part
"Environment’ menu. The ’'Global Settings’ menu contains all of those
settings which affect all of the files and views in CygnusEd. This includes
such things as screen resolution, macro definitions, fonts, etc. These
settings are stored in your ceddefaults file if you select ’Save
Environment’, at the bottom of this menu. When you first run CygnusEd the
"ceddefaults’ file is loaded in with global, file and view settings.
Whenever a new file is loaded in, new extension specific settings from the
"File Settings’ menu will be loaded in if a ceddefaults file with the same
extension (for example, ceddefaults.c, or ceddefaults.txt) is found. However
the global defaults are only loaded once, or if you explicitly load them.
Therefore it is important that when you change any of the global settings
that you save those settings in the ceddefaults file (no extension) using
the ’Save Environment’ command.

Open on public screen...

Set screen type and size...

Duplicate Workbench size

Macro definitions

Begin short invocation macro - Keyboard shortcut [Amiga]+m
Begin long invocation macro - Keyboard shortcut [Amigal]+M

Define startup macro

Quote key

CygnusEd_Manual

8/141

Clear definitions

Load definitions... — Keyboard shortcut [Amigal+;
Save definitions... - Keyboard shortcut [Amiga]l+’
Priority
Autosave

Set icon tool name...

Colours

File save method

Icon creation?

Hot-Start enabled?

Auto-expand views? - Keyboard shortcut [Amigal]+|[
Keypad = movement? - Keyboard shortcut [Amiga]+8
Select font

Rendering choices

Load environment

Save environment... — Keyboard shortcut [Amiga]+E

1.13 File Settings

File Settings

The ’"File Settings’ menu contains settings that are kept separately for
each file loaded into CygnusEd. These settings are stored on disk in
separate ceddefault files with each default file having a different
extension. If you load a file with a ’.c’ extension then CygnusEd looks for
a file called ’ceddefaults.c’, in the current directory and then in S:. If
it finds such a file then it automatically loads in all of your file and
view settings from that settings file and applies them to the current view.
This allows you to easily have different tab sizes and other settings for
text files versus C source files.

Tab size
Customize tabs... — Keyboard shortcut [Amiga]+t

Set right border... - Keyboard shortcut [Amiga]+”

CygnusEd_Manual 9/141

Set scroll jump

Max scroll XX. ..

Layout? - Keyboard shortcut [Amigal]l+5

Word wrap? - Keyboard shortcut [Amigal]+6
Insert mode? - Keyboard shortcut [Amigal]l+7
Tabs = spaces? - Keyboard shortcut [Amiga]+0

Editable file?

1.14 View Settings

View Settings
CygnusEd allows you to have multiple cooperating views on a single file.

All of these views are windows into the same data. Changes in one view are
reflected in the others. In fact, if several views are displaying the same
area of a particular file, you can see changes happening in all of the views
simultaneously. The settings in this menu are stored separately for
different views of a particular file. This is occasionally useful.

Status line

White spaces

Scroll bar

Set scroll borders...

Views overview

1.15 Special menu

Special menu
The Special menu is, as the name suggests, a grab bag of miscellaneous
functions that don’t fit into any of the other neat categories.
View operations
Previous view - Keyboard shortcut [Amigal+,

Next view - Keyboard shortcut [Amiga]+.

CygnusEd_Manual 10/ 141

Split view - Keyboard shortcut [Amiga]+d

Expand view - Keyboard shortcut [Amiga]+]

Grow view [Ctrl]+[Alt]+Up

Shrink view [Ctrl]+[Alt]+Down

Format

Post period spaces...

Send DOS/ARexx command. . .

Install DOS/ARexx command...

Load DOS/ARexx commands. ..

Save DOS/ARexx commands...

Send DOS/ARexx output to...

Enter ASCII... - Keyboard shortcut [Amigal]-+-
Center cursor - Keyboard shortcut [Amiga]+=
Center line - Keyboard shortcut [Amigal]+\

Repeat key/menu... — Keyboard shortcut [Amigal+’’
Find matching bracket - Keyboard shortcut [Amiga]+h

Mark/Jump Location

1.16 Cut/Paste menu

Cut/Paste menu
The Cut/Paste menu is primarily concerned with various ways of cutting
out part of file and, optionally, pasting it in somewhere else. CygnusEd has
the fairly unique feature of having many different cut and paste buffers.
The standard cut/copy/paste commands can use any of the Amiga clipboards 255
different units, and the word and line specific cut and paste commands each
have their own clip buffers also.
Mark - Keyboard shortcut [Amigal]+b
Mark columnar - Keyboard shortcut [Amiga]+B

Cut - Keyboard shortcut [Amiga]+x

Copy - Keyboard shortcut [Amiga]+c

CygnusEd_Manual 11/141

Paste - Keyboard shortcut [Amigal+tv

Erase

Mark word

Set clipboard unit...

Rot marked

Strip CR marked

Shift in marked

Shift out marked

Change marked spaces to tabs

Change marked tabs to spaces

Change marked to lower case

Change case marked

Change marked to upper case

Delete word [Ctrl]+Del

Undelete word [Ctrl]+[Alt]+Del

Bck Spc word [Ctrl]+BckSpc

UnBck Spc word [Ctrl]+[Alt]+BckSpc

Delete line - Keyboard shortcut [Amiga]+k
Delete to EOL - Keyboard shortcut [Amiga]+ty

Undelete line - Keyboard shortcut [Amiga]l+1l

1.17 Search/Replace menu

Search/Replace menu
The Search/Replace menu primarily contains commands to invoke and
control CygnusEd’s high-speed searching and replacing. In addition this menu
contains commands for changing the case of words and letters, and
controlling CygnusEd’s undo ability.

Repeat search backwards - Keyboard shortcut [Amiga]+a

Repeat search forwards - Keyboard shortcut [Amigal+s

CygnusEd_Manual 12/141

Search for... - Keyboard shortcut [Amiga]+S
Repeat replace - Keyboard shortcut [Amigal+r
Replace... - Keyboard shortcut [Amiga]+R

Clip to search buffer

Clip to replace buffer

Set ASCII zero alias for search...

Change case letter - Keyboard shortcut [Amigal]-+g
Change case word - Keyboard shortcut [Amiga]+G
Upper case word

Lower case word

Undo

1.18 Move menu

Move menu
CygnusEd’s move menu contains all of the cursor movement commands. Most
of the menu items, the bottom fifteen, are there purely as a place to put
the keyboard shortcuts for the cursor movement commands, as the ultimate in

online documentation. You can select these commands from the menu with the
mouse, but few people actually do.

Jump to line... - Keyboard shortcut [Amiga]+]
Jump to auto-mark - Keyboard shortcut [Amiga]+4
Jump to byte... - Keyboard shortcut [Amiga]l+J
Jump to last change

Cursor key movement

1.19 About...

About. ..

The ’About’ menu command brings up an informative requester telling you
what version of CygnusEd you are running.

CygnusEd_Manual

13 /141

1.20 Clear

Clear

The ’Clear’ command clears out the current file, including it’s name.
All views of the current file will be cleared. If you have made any changes
then you will be asked to confirm the clear before proceeding. You can undo
this operation, but the file name is permanently lost.

1.21 Open new - Keyboard shortcut [Amiga]+?

Open new - Keyboard shortcut [Amiga]+?

The ’'Open New’ command creates a new, empty file buffer. If the current
file has multiple views on it then the current view will be used for the new
file buffer. If the current file has just one view on it, then a new view
will be created for it.

1.22 Open... - Keyboard shortcut [Amiga]+o

Open... - Keyboard shortcut [Amigal]+o

The ’Open’ command is used to load a new file from disk into CygnusEd.
The file is always loaded into the current view - a new view is not created
for the new file. If the current file has multiple views on it then the
current view will be used for the new file. If the current file has just one
view on it, then the new file will replace the current one. If the current
file has been changed then you will be aksed to confirm the overwrite. The
standard ASL file requester is used to select the file, or files, to open.
If multiple files are chosen then additional views are opened for the
additional files.

1.23 Include file... - Keyboard shortcut [Amiga]+O

Include file... - Keyboard shortcut [Amiga]+O

The ’'Include file’ command is used to insert a file into the current
file. Including a file in this way is similar to pasting from the clipboard,
except that you are pasting from a file instead of from a clipboard. Note

that the keyboard shortcut for this command is [Amigal]l+[Shift]+o, which is very

similar to the open command’s keyboard shortcut of [Amigal]+o. This similarity
reflects the fact that the two commands are similar, in that they both load
in files. The standard ASL file requester is used to select the file to
include.

CygnusEd_Manual 14 /141

1.24 Save clip as... - Keyboard shortcut [Amiga]+n

Save clip as... - Keyboard shortcut [Amiga]+n

The ’Save clip as’ command saves the current contents of the clipboard
as a file on disk. This is very convenient if you want to save part of a
file as a new file on disk, or if you want to break a file into two parts.
Alternately you can use the ’'Open new’ command, paste into the new buffer,
and save the new buffer with the ’Save’ or ’Save as’ commands.

1.25 Save - Keyboard shortcut [Amiga]+w

Save — Keyboard shortcut [Amigal]-+w

The ’Save’ command saves the current file under its current name. If the
current file is unnamed, then the standard ASL file requester appears to
allow you to select a file name. The save will occur even if no changes have
been made to the file.

1.26 Save as... - Keyboard shortcut [Amiga]+W

Save as... — Keyboard shortcut [Amiga]l+W

The ’Save as’ command brings up the ASL file requester to allow you to
save the current file under a new name. The save will occur even if no
changes have been made to the file.

1.27 Save all changes

Save all changes

The ’Save all changes’ command will save all loaded files that have been
changed. Changed files are indicated with an asterisk (’x’) in the title
bar. The number of changes made since the last save can also be displayed
(see the ’'Status Line’ command in the ’'View Settings’ menu).

1.28 Change current directory...

Change current directory...

If you make use of CygnusEd’s ability to execute DOS commands and ARexx
scripts from within CygnusEd then you sometimes need the ability to change
CygnusEd’s directory, because these commands inherit CygnusEd’s current
directory. The standard ASL directory requester is used to select a new
current directory.

CygnusEd_Manual

15/141

1.29 Spawn new CED [Ctrl]+Esc

Spawn new CED [Ctrl]+Esc

Although CygnusEd can edit multiple files, and have multiple views on
each of those files, it sometimes makes sense to make use of the
multitasking abilities of the Amiga by running multiple copies of CygnusEd.
This can give you extra flexilibity in the arranging of your document
windows, even allowing you to have different copies of CygnusEd running on
different screens. Additional copies can be run from the CLI, from the
workbench, or by selecting ’Spawn new CED’.

1.30 Activate next CED [Ctri]+N

Activate next CED [Ctrl]+N

If you run multiple copies of CygnusEd you will frequently need to
switch between them. This command makes it easy to do this.

1.31 Print clip... - Keyboard shortcut [Amiga]+p

Print clip... - Keyboard shortcut [Amiga]+p

The ’"Print clip’ command starts up a background process to print the
contents of the clipboard to your printer. Because the printing runs in the
background you can resume work immediately. However, you cannot exit
CygnusEd until printing has completed.

1.32 Print file... - Keyboard shortcut [Amiga]+P

Print file... - Keyboard shortcut [Amiga]+P

The ’"Print file’ command starts up a background process to print the
contents of the current file to your printer. Because the printing runs in
the background you can resume work immediately, even editing the document
that is being printed, without affecting the results. However, you cannot
exit CygnusEd until printing has been completed.

1.33 Quit - Keyboard shortcut [Amiga]+q

Quit - Keyboard shortcut [Amiga]+g

The ’"Quit’ command does not necessarily tell CygnusEd to completely
quit. It would be more accurate to describe it as a ’"Close view’ command.
The current view on the current file is closed. If that is the last view on
that file then the file is cleared from memory (after confirmation from the
user if there were any changes to the file). If there is only one view open

CygnusEd_Manual 16/ 141

when this command is chosen then then CygnusEd’s main window closes also.
However, even then CygnusEd may not completely terminate. If you are using
the ’Hot Start’ feature of CygnusEd, then CygnusEd remains dormant, ready to
be invoked by the hot key ([Alt]+[Shift]+Return) or the CygnusEd invoker
program, ed.

1.34 Save & quit - Keyboard shortcut [Amiga]+Q

Save & quit - Keyboard shortcut [Amiga]+Q

The ’Save & quit’ command is just like the ’'Quit’ command except that
the current file is first saved. Again, this command is best thought of as
"Save & close view’ rather than ’Save & quit’.

1.35 Quit & die

Quit & die

If you are using the ’'Hot Start’ feature of CygnusEd then closing down
the last view does not actually terminate the program - unless you use the
"Quite & die’ command. This removes CygnusEd from memory after closing the
last view.

1.36 Open on public screen...

Open on public screen...

One of the wonderful new features of the AmigaOS 2.0 operating system
is public screens. Many programs, such as Mand2000, Art Department
Professional, Directory Opus and many others open what are known as ’public
screens’ . If one of these programs is running when you select this menu item
then a requester will appear listing all the currently available public
screens that are at least 640 by 200 pixels in size. You can select any of
these screens, and suddenly CygnusEd is running on Mand2000’s screen, so
that you can write letters while you explore fractals! The workbench screen
is the one public screen that is always available, so that this command is
how you get CygnusEd to open on the workbench screen. If there is only one
public screen available, typically the workbench screen, then no requester
appears and CygnusEd moves directly to that screen. If you have multiple
copies of CygnusEd running and if CygnusEd is setup to declare its own
screen to be public then you can open a second copy of CygnusEd on another
CygnusEd’s screen.

1.37 Set screen type and size...

CygnusEd_Manual

17 /141

Set screen type and size...

This command invokes the standard ASL screen mode requester. This
requester allows you to select any standard Amiga screen mode, including the
new AGA screen modes. It also allows you to pick a wide wvariety of screen
modes that become available if you install one of many third party graphics
boards that supply intuition compatible screen modes. Such boards include
the Picasso, Retina, EGS Spectrum and many others. CygnusEd is highly
compatible with all of these graphics boards.

1.38 Duplicate Workbench size

Duplicate Workbench size

The ’'Duplicate Workbench size’ command is provided based on the
assumption that as monitors and graphics boards change, people frequently
need to change the screen modes that they work with, and that it’s a
nuisance to have to change the screen modes for potentially dozens of
different programs. This problem can be particularly annoying if the program
you are trying to change comes up in a no longer visible screen mode,
forcing you to reconfigure it blind. If you set CygnuskEd to ’'Duplicate
Workbench size’ then CygnusEd will always open up in exactly the same screen
mode and resolution as you workbench screen, meaning that you will never
have to reconfigure it again. CygnusEd will open up on a different screen
from the workbench, but this screen will be identical.

1.39 Macro definitions

Macro definitions

CygnusEd features a very powerful macro definition ability that makes it
possible to assign any sequence of commands to any key on the keyboard, with
no programming required. Creating macros in CygnusEd and remapping the
keyboard is so easy that CygnusEd users frequently create ’'throwaway’ macros
for key sequences that they will only be repeating a couple of times. The
basic way of defining macros in CygnusEd is to type [Amigal]l+m, the key you
want to assign the macro to, do the actions you want recorded (all the
commands are processed while you do this) and then stop defining by typing
[Amiga]l+m again. That’s it.

Begin short invocation macro - Keyboard shortcut [Amigal]+m
Begin long invocation macro - Keyboard shortcut [Amiga]+M
Define startup macro

Quote key

Clear definitions

CygnusEd_Manual 18 /141

Load definitions... - Keyboard shortcut [Amigal+;

Save definitions... — Keyboard shortcut [Amigal+’

1.40 Begin short invocation macro - Keyboard shortcut [Amiga]+m

Begin short invocation macro - Keyboard shortcut [Amigal]+m

This is the most commonly used command for defining macros. Select this
command (or, more commonly, type [Amiga]+m) and then follow the prompts. The
first thing you will be prompted for is a key to assign the macro to. This

can be a single key, such as F1, ’'B’, or ’"Enter’, or it can be a modified
key, such as [Ctrl]+U, [Alt]+[Shift]+8, or [Ctrl]+[Alt]+[Shift]+[Amiga]+Tab. Every <
key on

the keyboard, with the exception of the control, alt, shift and Amiga keys,
can have a macro assigned to it. Because the Amiga key is a valid qualifier
key, you can override the supplied command key shortcuts. Because control,
alt and shift are also valid qualifier keys, you can have as many as sixteen
commands attached to one key. In order to end the definition of a macro,
select this command again. In other words, this command is simultaneously
stop and start definition.

Macros can contain any keystroke, including [Amiga]+key menu shortcuts,
indeed they can contain any menu command at all. If a menu command in a
macro brings up a requester, such as the search requester, then CygnusEd
will query you as to whether you would like the contents of the requester
stored in the macro. If you answer yes then the search string and flags will
be inserted at playback time, and the requester will not be displayed - the
same string will be searched for each time. If you answer no then the
requester will come up each time you playback the macro. If you want your
macro to search for whatever string is in the search buffer at the time the
macro is invoked, then you would need to use a search command that doesn’t
bring up a requester at all - such as ’'Repeat search forwards’. The same
principles apply to the ’'Open’ and ’Save as’ requesters, the ’Send DOS/ARexx
command’’ and other requesters.

If in the course of defining a new macro you invoke a previously defined
macro then the contents of the previously defined macro are played back into
the new macro. The new macro receives a copy of the previous macros
contents. If at a later date you change the original macro, the new macro
with its copy is unaffected.

The only menu commands that can not be included inside a CygnusEd macro
are the macro menu commands.

To delete an existing macro, either use metamac, or assign an empty
macro to that key. That is, select ’'Begin short invocation macro’, then
enter the keystroke, then select ’'Begin short invocation macro’ again.

The commands in the macro menu cannot be added to macros.

In practice we suggest using the function keys and control-key sequences
for creating commands.

CygnusEd_Manual 19/141

Some of my favourite macros are listed here, along with the keyboard
shortcuts I use for them:

I attach the following macro to [Ctrl]+Return. It has the convenient
(for C programmers) effect of creating a new brace block and leaving the
cursor on an indented line.

shift-Return (auto-indent)

I{I

shift-Return (auto-indent)

I}l

up arrow

shift-Return (auto-indent)

TAB

I attach the following macro to [Ctrl]+S. It has the useful affect
(for dyslexics) of swapping the next two characters.

Delete

right-arrow

Alt-Delete (undelete last deleted character)

left-arrow

If vyou wish to edit macros that you have created, see the separate
utility program ’'MetaMac’.

1.41 Begin long invocation macro - Keyboard shortcut [Amiga]+M

Begin long invocation macro - Keyboard shortcut [Amiga]+M

To increase potential compatibility with other text-editors such as
Micro-Emacs, that have rather long and convoluted multi-character keyboard
commands, CygnusEd allows you to assign macros to key sequences. The
keyboard shortcut for this command is [Amigal+[Shift]+m, as opposed to [Amiga]+m,
to reflect the similarity with the ’"Begin short invocation macro’ command.

With this command, after you type the first character to use in invoking the

command, you will be prompted as to whether you want to use additional

keystrokes to invoke this command. You can define as long an invocation

sequence as you want, but realistically, anything more than two characters

is unmanageable. You could, for instance, assign the ’'Paste’ command to the

rather non-standard sequence [Ctrl]+P, [Ctrl]+A, [Ctrl]+S, [Ctrl]+T, [Ctrl]+te. Some <=
might

even argue that this is an intuitive and wonderful way to set up your text

editor. Others, more sensible, might argue that the punishment for mistyping

a single character is too annoying.

In order to end the definition of a macro, select this command again. In
other words, this command is simultaneously stop and start definition.

As with the single character invocation macros, long invocation macros
can be edited with the separate utility program ’MetaMac’.

1.42 Define startup macro

CygnusEd_Manual

20 /141

Define startup macro

If you like to have your text editor always great you by typing in a
cheery "Hello jack’, or if, like the majority of us who aren’t named Jack,
you’d rather have your text editor invoke a particular ARexx script on
startup, the startup macro is perfect for you. Simply select this command
and then enter the sequence of commands you wish played back at startup. To
end the macro definition, select ’'Begin short invocation macro’.

1.43 Quote key

Quote key

You may end up assigning a macro to a key, such as [Ctrl]+S, which you
occasionally need to type into a document. If you need to do this, select
the ’"Quote key’ command followed by the key in question. The ’Quote key’
command tells CygnusEd to ignore any macros assigned to the keystroke which
follows.

1.44 Clear definitions

Clear definitions

The ’"Clear definitions’ command clears all currently loaded macro
definitions.

1.45 Load definitions... - Keyboard shortcut [Amiga]+;

Load definitions... — Keyboard shortcut [Amigal+;

The ’"Load definitions’ command loads a CygnusEd macro file in, first
clearing out all existing macro definitions.

1.46 Save definitions... - Keyboard shortcut [Amiga]+’

Save definitions... - Keyboard shortcut [Amiga]+’

The ’Save definitions’ command saves the currently loaded CygnuskEd macro
definitions. The macros can be saved to any filename, but if you save them
to s:cedmacros (the default name) then they will be automatically loaded in
when you run CygnusEd the next time. If you save them to cedmacros in some
directory other than s: then they will only be loaded in if the cedmacros
file is in you current directory when you run CygnusEd.

CygnusEd_Manual 21/141

1.47 Priority

Priority

Inherit?
Priority x?
Set priority...

In order to cooperate well in the Amiga’s multitasking environment it is
important that CygnusEd have its multitasking priority set to the
appropriate level, so that it doesn’t steal more CPU time than is necessary,
but it doesn’t run sluggishly. There are two modes which CygnusEd can
operate in for deciding it’s priority. One is to inherit it’s priority from
its parent. Its parent would either be the workbench, if you run it from
there, or a CLI, if you run it from there. The priority of a CLI can be
changed with the ChangeTaskPri command. If the priority of a CLI is changed
after CygnuskEd is run, that has no effect on CygnusEd’s priority.

The other more common way is to set CygnusEd to a specific priority. The
default is one. This is usually a good choice because if you are compiling
or ray tracking at a priority of zero or lower, CygnuskEd will run at top
speed, unaffected by your ray tracing. This is probably what you want, since
speed and responsiveness are terribly important in a text editor, but not
even possible in a ray tracer. If CygnusEd is sitting idle, when you aren’t
using it, CygnusEd will use zero CPU time, so there is rarely a reason to
lower CygnusEd’s priority. The one operation that should have a higher
priority than CygnusEd is any telecommunication programs you may run, as
downloads may experience errors if CygnusEd steals too many CPU cycles from
them.

The ’Inherit’ and ’'Priority n?’ check boxes (where ’'n’ represents the
currently selected fixed priority) decide whether CygnusEd inherits its
priority or sets it absolutely. The ’Set priority...’ command lets you set
the fixed priority, but it has no affect if 'Inherit?’ is set.

4

1.48 Autosave

Autosave

Xx min?
Set timer...

The autosave command is an extremely handy feature for making sure that
you don’t lose work in case of an unexpected crash. Although CygnusEd is an
extremely stable and torture tested program, other programs, especially ones
in development, may unexpectedly take down your Amiga. Although autosave
can’t completely protect you, it can minimize the damage.

If you enable autosave (select the 'n min?’ command to make a check box
appear) then all changed files will be saved to temporary files every n
minutes (you set the interval with ’Set timer...’). If you are editing
"letter.txt’ then an autosave copy will be saved to ’letter.txt.auts’. If
you later manage to successfully save your changes, or if you close the file
without saving, then the autosave file will be automatically deleted.

CygnusEd_Manual

22 /141

However if your system crashes unexpectedly, then the autosave files will be
left behind. The next time you go to edit ’letter.txt.auts’, CygnusEd will
tell you that there is an autosave version, and will give you the option to
load it in instead of the older version. It will then load the autosave
version in under the proper file name, without ’.auts’. So even if you don’t
realize that you’ve lost changes, CygnuskEd will remind you. If you do
realize that you’ve lost some changes, you can also look for them by
searching for ’'#?.auts’ files.

If you are editing a new file that you have not yet saved (an unnamed
file) then CygnusEd will autosave the file as ’'CygnusEdUnNamedN.auts’, where
the ’'N’ represents a number, necessary to ensure that the filename is
unique. Because the file was never saved by you, CygnusEd can’t warn you of
the unsaved version the next time you load the real version. Therefore after
a crash, if you think you may have been working on new files it is important
that you look for any #?.auts files.

1.49 Seticon tool name...

Set icon tool name...

When files are saved from CygnusEd they can, optionally, be saved with
an icon, for easy access from the workbench. The ’Set icon tool name’ allows
you to specify what the default tool should be for the icons. The ’'default
tool’ is the program that will be run when you double click on the icon. The
default ’'default tool’ is ’'ed’, the CygnusEd invoker. An alternate, more
flexible way of controlling the icon used for files saved from CygnusEd is
to create the icon you want used, complete with imagery, tool types and save
it to ’"env:ced/def_cedfile.info’. You’ll have to create the ’env:ced’
directory, and you’ll probably want to save the icon to
"envarc:ced/def_cedfile.info’ as well, to make your preferred icon a
permanent setting.

1.50 Colours

Colours
Cycle colours — Keyboard shortcut [Amiga]+$

Adjust colours...
Use WBench colours

CygnusEd allows limited control over the colours it uses, and then only
when it is using its own screen (ie; CygnuskEd will not allow you to change
the colours of the workbench screen or some other screen that CygnusEd is
"visiting’). The cycle-colours command, a rarely used command that is
granted a keyboard shortcut for anachronistic reasons, merely shuffles the
four available colours through all of the twenty-four mathematical
permutations and possibilities. ’"Adjust colours’ brings up a colour
selection requester, which allows you to customize the colours any way that
you want. ’"Use WBench colours’ tells CygnusEd to grab the colours from the
workbench screen. It also tells CygnusEd to grab the workbench colours every

CygnusEd_Manual 23/141

time CygnusEd is run, meaning that any changes in workbench colours will
soon be reflected in CygnusEd’s colour scheme.

1.51 File save method

File save method

CygnusEd offers you a number of different ways of saving your files,
depending on how strongly you value safety versus speed. The simplest method
is ’Simple saves’. With this method the file is simply saved out directly.
This is slightly faster than the other methods, it avoids ever having
multiple copies of file on disk (handy if you are running very low on space)
and, because it doesn’t create a brand new file, it can avoid some
permission problems when saving to a file server. The main problem with
"Simple saves’ is that if your Amiga crashes while CygnusEd is in the
process of writing out the file, not only are the new changes lost, it’s
quite likely that the old file is lost as well, leaving you with a zero
length file. If this does happen to you, stop your Amiga’s reboot with a
well placed [Ctrl]+D and look at the disaster recovery section of this manual.

Next up on the safety scale is ’Safe saves’. With this method the file
is saved to a temporary filename, and when all of the data has been safely
written to disk, the old file is deleted and the new one is renamed into its
place. With this method, if your Amiga crashes, it is quite likely that
either the old file, the new file, or both, will survive unscathed. The old
file will typically be found unaltered, and the new file may be found listed
under a name such as ’'CygnusEdTemp.0ONa’, where ’'N’ represents some number.

Finally, the safest method, my favourite, my recommended choice, 1is
"Backup to x.bak’. This method is very similar to safe saves, and has all of
its benefits. However instead of deleting the old file, the old file is
rename to ’'x.bak’. If you are editing ’file.txt’ then the old version will
get renamed to ’'file.txt.bak’ (deleting any older versions of file.txt.bak
if necessary). Not only does this make the saving process easier, but it
allows you to revert to a previous version, long after you finish saving.

1.52 Icon creation?

Icon creation?

The ’Icon creation?’ toggle governs whether CygnusEd saves an icon
with each file it saves. See ’'Set icon tool name’ for more information.

1.53 Hot-Start enabled?

Hot-Start enabled?

In order to sate the power hungry desires of impatient programmers,
CygnusEd has an optional mode, used by almost all CygnusEd users, called
"Hot-Start’. If you enable this mode it means that when you exit CygnusEd it

CygnusEd_Manual 24 /141

doesn’t really exit. It sits waiting for your next command, invisible to the
untrained eye. To awaken CygnusEd you can simply type ' [Alt]+[Shift]+Return’ -
easily drummed out with the right hand, and CygnusEd instantly pops into

view. If you are at the command line then you can type ’'ed’ or ’"ed filename’
or "ed *x.c’ and CygnusEd will pop up into view and load the requested files.
For more information, see ’'Quit & Die’ and 'Ed: the CygnusEd invoker’

1.54 Auto-expand views? - Keyboard shortcut [Amiga]+[

Auto-expand views? - Keyboard shortcut [Amigal+|[

CygnusEd can have many different files open and many different views on
these files, Some people, like myself, like most of these views to be open
so that I can see the contents of many files simultaneously. Others feel
that only the currently active file is of interest, and they want all others
to shrink away to nothing. ’"Auto-expand views?’ turns on a mode in which
whenever a new view becomes active, either through being selected with the
mouse or through the next/previous view commands, that view is expanded to
maximum size, while the surrounding views are shrunk down to the minimum one
line height.

1.55 Keypad = movement? - Keyboard shortcut [Amiga]+8

Keypad = movement? - Keyboard shortcut [Amiga]+8

For those who work on IBM compatible computers all day, and yearn for
the thrill of a numeric keypad that doesn’t type numbers, this command is
for you. Enabling this command turns the numeric keypad into a directional
pad, with 2, 4, 6, and 8 being arrow keys, 1 and 7 being end of line and
beginning of line (end and home), 3 and 9 being bottom of screen and top of
screen (page down and page up), 0 toggling insert mode, and ’.’ being the
same as delete.

1.56 Select font

Select font

Select disk font...
Topaz 80 column
Topaz 60 column

CygnusEd was never intended to be a word processor, so don’t expect
fancy font capabilities. CygnusEd does not allow multiple fonts in one file,
it simply allows you to select alternate fonts for all of your files, to
allow you to choose the appropriate font for your particular graphics card,
monitor, and visual acuteness. You can either select Topaz 80 or Topaz 60,
or use the standard ASL font requester to choose any mono-spaced font from
disk.

CygnusEd_Manual

25/141

1.57 Rendering choices

Rendering choices

Use custom scrolling routines?
Use system scrolling routines?
Make screen public?

CygnusEd’s lightning fast screen update and scrolling have always been
two of the features that have ensured its success. However being the fastest
on the block doesn’t help if everybody is moving to a graphics board that
you’ re not compatible with. Therefore CygnuskEd 3.5 offers a number of
options to allow you to choose the balance between system compatibility and
speed that is right for you.

The fastest routines are chosen by selecting ’'Use custom scrolling
routines’. With this choice CygnusEd writes characters directly to display
memory (when on its own screen) and programs the blitter directly, for
scrolling and redraws that happen faster than the eye can see.

Direct blitter programming can cause CygnusEd to sop up every single bus
cycle available and, for reasons never quite explained, can cause some
terminal programs to experience data errors while downloading files. All
sorts of explanations as to why this can’t happen have been given, but it
continues happening. So, the simple solution is to select ’'Use system
scrolling routines?’. In this mode the scrolling is slightly slower (but
still very fast) and the characters are written directly to the screen at a
minimum speed of 30,000 characters per second.

The most system compatible mode, compatible with most third party
graphics boards, is to make CygnusEd’s screen public. In this mode CygnusEd
strictly follows the rules and allows other programs to share its screen.
This allows you to, for instance, open Mand2000 on CygnusEd’s screen, and do
some four colour fractal exploration while writing the great Canadian novel.
Or you open Art Department Professional on your CygnusEd screen so that you
can watch your ARexx scripts process images while you write e-mail.

1.58 Load environment

Load environment

Default - Keyboard shortcut [Amigal]-+te
Specify...

All of the settings above can be saved to CygnusEd’s environment files.
Typically those settings are automatically loaded in, but if you wish you
can force those settings to be reloaded. ’'Default’ loads in the default
settings file, based on the current file extension. If the current file is
called ’"fred.txt’” then the file ’'ceddefaults.txt’ will be looked for, in the
current directory and then in ’S:’. If that file isn’t found, then
"ceddefaults’ (no extension) will be looked for, also in the current
directory and then in ’S:’. All settings, global, file and view will be
loaded.

CygnusEd_Manual 26 /141

"Specify’ lets you select any settings file and load it in.

1.59 Save environment... - Keyboard shortcut [Amiga]+E

Save environment... - Keyboard shortcut [Amigal]+E

This command allows you to save all of the current environment settings.
All of the global, file and view settings are saved. The default file name
supplied is ’S:ceddefaults.ext’ where ’.ext’ is the extension of the current
file you’re editing. If you have made changes to the global settings, you
should probably save the environment to ’S:ceddefaults’ as well as the
global defaults are by default loaded from there initially, and are never
loaded again, unless specifically requested by the user.

1.60 Tab size

Tab size

CygnusEd supports true tabs, of any size ranging from 1 to ten spaces
long. Typical sizes are five or eight for writing letters, two, three or
four for writing programs. Files that are displayed with a tab size other
than the one they were created with can lose their formatting and look quite
terrible.

Interesting animations can be made by swiftly changing the tab size of
an excessively indented C file. Try holding down the shift key and drag
selecting all ten tab sizes, then watch as CygnusEd changes tab sizes ten
times. Or make a macro with even more tab size changes.

1.61 Customize tabs... - Keyboard shortcut [Amiga]+t

Customize tabs... - Keyboard shortcut [Amigal]+t

Some people, particularly assembly language programmers, aren’t
satisfied with evenly spaced tabs. They want a tab for opcodes, another for
operands, and a third, way out there, for comments. Selecting ’Customize
tabs’ lets you specify any arbitrary arrangement of tab stops that you would
like. Note that you are limited to setting tab stops in 160 columns; beginning
with the 161th column, the tab stop settings will "wrap" around. Due to
implementation constraints, CygnusEd will always assume that there is a tab
stop in column #160.

1.62 Set right border... - Keyboard shortcut [Amiga]+"

Set right border... - Keyboard shortcut [Amiga]+”

The ’Set right border’ command allows you specify a right border for

CygnusEd_Manual 27 /141

your documents. This right border affects word wrap, paragraph reformatting,
and centering of lines.

1.63 Set scroll jump

Set scroll Jjump

CygnusEd can scroll your files faster than the eye can follow, but
sometimes an unreadable blur of text isn’t actually what you want. ’Set
scroll jump’ controls how quickly text scrolls. Larger numbers mean faster
scrolling.

1.64 Max scroll xx...

Max scroll XX .o

One of the important design goals of CygnusEd was to ensure that,
whenever possible, cursor moves from one part of a file to another were done
by scrolling, rather than jumping to the new location and redrawing. The
advantage of scrolling is that it means that you intuitively keep track of
how far you’ve gone and where you are. If the screen redraws, you lose all
visual clues as to where you are. It can be hard to differentiate between a
move of several thousand lines and a move to the next line in the file.

"Max scroll’ lets you control this. It sets the maximum distance that
CygnusEd will scroll. If you ask CygnusEd to move the cursor any further
than this maximum number of lines, either by using the ’"Jump to line’
command, the search command, or even the page down command, then CygnusEd
will redraw the screen rather than scrolling. I strongly feel that "Max
scroll’ should be set to at least several lines more than the number of
lines visible on the screen, and to at least thirty or so. However, some
misguided people think that speed is more important than knowledge, so they
like to set it down to ten, or less. These small maximum scroll jumps can
speed things up, but the price you pay is an increased difficulty in
following your travels through the file.

1.65 Layout? - Keyboard shortcut [Amiga]+5

Layout? - Keyboard shortcut [Amigal]l+5

Normally CygnusEd does not allow the cursor to go beyond the end of
lines. The cursor is normally only allowed to go where there are characters.
Sometimes, particularly when using the vertical block command, or creating
tables, it can be useful to allow the cursor to go out beyond the end of
lines. Layout mode does this. Turn this on if you want the cursor to move
beyond the end of lines.

If you are out beyond the end of a line and you type a character,
CygnusEd will automatically fill in the necessary spaces to allow the
character to be typed at that location. If you then delete that character,

CygnusEd_Manual

28 /141

CygnusEd will then remove those spaces. Additionally, CygnusEd will remove
any end of line spaces and tabs as you scroll around the file, if you are in
layout mode.

1.66 Word wrap? - Keyboard shortcut [Amiga]+6

Word wrap? - Keyboard shortcut [Amigal]+6

Although CygnusEd is certainly not a word processor, it is frequently
used for writing of letters and other non-programming documents, especially
for e-mail. It has the advantage over word processors of being extremely
quick, keeping up with even the swiftest typist. To support those who write
paragraphs as well as functions, CygnusEd has a ’'Word wrap’ function. If you
enable this mode then whenever the cursor reaches the right border (see ’Set
right border’) the current word and the cursor are wrapped around onto the
next line.

However, because CygnusEd does not store text as paragraphs (it stores
text as individual lines which is the standard ASCII file way to store
files) and because CygnusEd does not store any hidden formatting codes,
that’s about all the the word wrap can do. If you delete words from the
middle of a paragraph, the paragraph will not be reformatted. If you add
words in the middle of a paragraph, no reformatting will happen until you
reach the end of the line, at which point the entire end of the line will be
wrapped.

If you edit a paragraph and destroy the formatting, CygnusEd can still
help you out with its paragraph formatting command. See ’'Format’ for more
information.

1.67 Insert mode? - Keyboard shortcut [Amiga]+7

Insert mode? - Keyboard shortcut [Amigal+7

When entering new characters CygnusEd normally pushes all previous
characters out of the way. If you put CygnusEd into ’'Insert mode’ then each
new character typed replaces the one previously under the cursor. Insert
mode does not effect deleting.

1.68 Tabs = spaces? - Keyboard shortcut [Amiga]+0

Tabs = spaces? - Keyboard shortcut [Amiga]+0

When you press the Tab key, CygnusEd normally enters a real tab
character (ascii value nine). This is the most space efficient way of
storing tabs, and it allows you to then delete the tab with a single press
of the delete or backspace key. However if you move your document to another
text editor that does not support the tab size that you have chosen, your
document’s formatting will change. Therefore CygnusEd gives you the option
to have all new tabs entered as spaces. If you enable 'Tabs = spaces?’ then

CygnusEd_Manual 29/141

pressing the Tab key enters the number of spaces required to move the cursor
to the next tab stop.

1.69 Editable file?

Editable file?

The ’"Editable file?’ command allows you to tell CygnusEd that a
particular file should not be changed. Any attempts to do so will cause an
error message. The editable file flag will also get set if you load in a
file that you do not have write permission for. If this happens you can
enable editing in the file by selecting ’'Editable file?’, but you may not be
able to write your changes out to the file because of insufficient
permissions.

1.70 Status line

Status line

CygnusEd’s status line is broken up into two parts. The left hand part
normally displays as much of the path name of the loaded file as possible,
but can be made to display other information through the controls below. The
left half also normally displays a view number at the left edge if there is
more than one view on a particular file.

The right half of the status line always displays the same information,
in the following format:

KLWIT = line 1000 col 234
These symbols mean:

"K'’ - if this is present, CygnusEd is in Keypad=Movement mode, and the
numeric keypad is setup for cursor movement instead of typing numbers. Type
[Amiga]+8 to toggle this.

"L’ - if this 1is present, that file is in Layout mode and the cursor can
go beyond the end of lines. Type [Amigal+5 to toggle this.

"W’ - if this is present, that file is in Word wrap mode, and words will
wrap around when typed beyond the right border. Type [Amiga]l+6 to toggle this.

"I’” - if this is present, that file is in Insert mode, and characters
typed will push other characters out of the way. Type [Amigal]+7 to toggle
this.

"T' - i1if this is present, that file is in tabs=spaces mode and any tabs
that you enter will be replaced with the appropriate number of spaces. Type
[Amiga]+0 to toggle this.

"« — 1if this is present it means that the file has been changed, that
the change count (see below) is non-zero.

The remainder of the right half of the status line displays the current
line number and column number for the current view.

CygnusEd_Manual 30/ 141

The ’Status line’ sub menu allows control over what information is
displayed in the left half of a particular view’s status line. The ’'On/Off?’
command turns the entire status line on or off. If the status line is off
then the files name is showed instead.

If ’'changes’ is selected then the number of changes made to the current
file since it was last saved are shown. Each character that you type into
CygnusEd counts as a change. Each character that you delete counts as a
change. Pasting 50,000 characters into a document counts as one change.
Replacing all one thousand occurences of ’"the’ with the identical text ’the’
counts as one thousand changes. So, the number of changes can give you an
idea as to how much has been done to your file since you last saved it, but
it does not give you an accurate measurement of how different your file is
from the saved version. Note that the number of changes can be negative, if
you saved the file and then undid some of the changes - undoing a change
reduces the change count by the number that it originally went up by. If you
type 'R’ and then type ’'Backspace’ the change count will be two. If you type
"R’ and then select ’'Undo’ then the change count will be zero. In both cases
the file will be unchanged.

If "pages’ 1is selected then the number of pages in the document will be
displayed. The number of pages is obtained simply by dividing the number of
lines by 66, a common printer page length.

If ’'Show ASCII values’ is enabled then the status line displays the
numerical ASCII value of the character under the cursor. This can be very
useful when editing binary files (yes, CygnusEd gives you a limited ability
to edit binary files). The ascii value replaces the KLWIT display.

1.71 White spaces

White spaces

If you are very concerned about precisely what is in your files, tabs
and spaces can give you some problems, because they look identical.
Ordinarily the only way that you can differentiate between them is to try
deleting them. The commands in the ’'White spaces’ menu allow you to make
tabs, spaces and end of line (EOL) characters visible. This can make your
screen incredibly cluttered, but if you want to make sure that tabs or
spaces are used consistently in your files, these options are very useful.
Please note that this feature requires that you have selected ’'Topaz 80 column’
as the text font.

The ’"Esc codes visible?’ toggle is a peculiar beast which demonstrates
CygnusEd’s small time word processing replacement aspirations. You can enter
printer or console escape codes directly into your documents to alter the
appearance of text when printed. However entering these codes destroys the
formatting of the document in CygnusEd so badly that it’s very hard to get
the desired appearance. If you disable ’'Esc codes visible?’ then all
recognized escape codes are hidden - the only sign of their existence is
that the following character is printed in inverse. This feature is a bit
anachronistic, and I don’t recommend that you use it.

CygnusEd_Manual 31/141

1.72 Scroll bar

Scroll bar

Scroll bars, especially proportional scroll bars, can be incredibly
useful gadgets, both for giving you smooth analog control over your location
in a file, but also for giving you instant intuitive feedback about the size
of your file and your location in it. However, some people feel that scroll
bars waste too many columns of valuable screen real estate. And some people
running earlier versions of AmigaOS occasionally run into a bug whereby
they can’t move their mouse to the right edge of the screen. Therefore
CygnusEd allows you to decide whether or not you want scroll bars, and which
side you want them. You can even have each view having scroll bars on a
different size. I'm not sure why you’d want to though...

1.73 Set scroll borders...

Set scroll borders...

The ’Set scroll borders’ command is a very important one for giving
CygnusEd its distinctive smooth scrolling and its uncanny ability to always
ensure that you have enough context. Far too many text editors happily let
you move your cursor right to the bottom of the window, seemingly never
realizing that if your cursor is at line 199, you’re probably also
interested in what’s on line 200. The scroll borders define a box inside the
window which CygnusEd tries to keep the cursor inside of. Whenever the
cursor goes outside of this box, by getting too close to any of the edges,
CygnusEd smooth scrolls the necessary number of lines of text onto the
screen. The only time CygnusEd will allow the cursor outside of the scroll
borders is if there is no additional data to scroll on - ie; if the cursor
is at either end of the file, or the left edge, or the extreme right edge of
the longest visible line.

1.74 View operations

View operations

Although the Amiga’s wonderful multitasking abilities mean that there is
technically no need for a program to handle multiple files simultaneously
(after all, you can always just run another copy of the program) it turns
out that is frequently very useful to have many files loaded into a simple
program at one time. It simplifies window management, cutting and pasting,
and keeping everything together on one screen. CygnuskEd allows you to load
multiple files, and it also allows you to have multiple views on one file.
So, for instance, you can easily be looking at the opening paragraph of your
doctoral thesis in one view while looking at a supporting paragraph on page
97 in another view. Because the two views are actually looking at the same
document, changes made to one view are also made to the other one - you
never need to worry about them getting out of sync.

To create a new view select the ’'Split view’ command. This takes the
current view and splits into two roughly equal sized views. If necessary it

CygnusEd_Manual

32/141

will shove other adjacent views out of the way. At this point you have
created two cooperating views on the same file. A common use for this would
be that when you are writing code that calls a function, you may want to
look at the functions definition earlier on in the file, or you may want to
look at some variable declarations earlier on in the same function, but
currently off screen. If you scroll back to look at these other areas then
you have to return to your original location before you can use the
information - by which time you may have forgotten. Even using marked
locations to make the jumping back and forth easy won’t allow you to examine
both areas simultaneously. CygnusEd’s multiple views and simple window
management commands solve this problem. Simply type ' [Amiga]l+d’ to split the
current view in half. Your cursor will be in the bottom view, and both views
will be displaying roughly the same area of the same file. Jump, search and
scroll to the area of interest and cut or paste the relevant code. Now type
" [Amigal]+,’ (Amiga—-comma) to jump to the previous view - the original one.
Type or paste in your code, while still looking at the sample code in the
view below. When your finished, type ’[Amigal+.’ (Amiga-period) to move to the
next view (the recently created one) and then type ' [Amigal+gq’ to close that
view down and resume your work. It’s simple, fast and powerful. You never
have to take your hands off the keyboard. New views can be created on a whim
and destroyed seconds later, having served their purpose.

If you want to look at a different file, perhaps an include file, a
slight variation on the above process applies. After doing the split view,
use the ' [Amigal]+o’ shortcut to open up a new file. This new file will be
placed into the newly created view. From that point on the instructions are
identical. In this case ’ [Amigal+qg’ not only closes the new view, it also
removes the new file from memory.

Of course you don’t have to close the new view seconds after you created
it. You can have up to twenty different views on a range of different files
open all the time, and you can cut and paste between them, use the
next/previous view commands to move among them, or use the mouse to select a
new view or size them, or size them from the keyboard with macros attached

to the ’"Grow view’ and ’Shrink view’ commands.

Now, onto the individual function descriptions.

1.75 Previous view - Keyboard shortcut [Amiga]+,

Previous view - Keyboard shortcut [Amiga]+,
This command moves the cursor to the previous view, the one above the

current one. If the top view is active, the bottom one will be selected. If
only one view is open this command has no effect.

1.76 Next view - Keyboard shortcut [Amiga]+.

Next view - Keyboard shortcut [Amiga]+.

This command moves the cursor to the next view, the one below the
current one. If the bottom view is active, the top one will be selected. If

CygnusEd_Manual 33/ 141

only one view is open this command has no effect.

1.77 Split view - Keyboard shortcut [Amiga]+d

Split view - Keyboard shortcut [Amiga]+d

The ’Split view’ command takes the current view and splits it into two
roughly equal sized views on the same file. If the current view is less than
three lines high then the surrounding views will be pushed out of the way to
make room. If there is no room to expand the other wviews, or if the number
of views has already reached twenty then this command will fail.

1.78 Expand view - Keyboard shortcut [Amiga]+]

Expand view - Keyboard shortcut [Amigal]+]

This command expands the current view out to the maximum possible size.

1.79 Grow view

Grow view

This command moves the title bar of the current view up one line. If
there is no room to move the title bar up, the title bar of the view below
is moved down one line. This command is rather useless as a menu command
with no keyboard shortcut, so I always use a macro to bind this command to a
key. My usual choice is F8.

1.80 Shrink view

Shrink view

This command moves the title bar of the current view down one line. If
there is no room to move the title bar down, the title bar of the view below
is moved up one line. This command is rather useless as a menu command with
no keyboard shortcut, so I always use a macro to bind this command to a key.
My usual choice is F9.

1.81 Format

Format

The format commands continue CygnusEd’s imitation of a simple word
processor. Selecting one of these two commands tells CygnusEd to treat all
the text from the current line down to the first blank line or line starting

CygnusEd_Manual 34 /141

with a space or a tab, as a single paragraph. It then reformats this
paragraph to fit neatly within the right border (see ’'Set right border’).
The left border is always assumed to be the first column. If you use the
"With fill’ option then spaces are added as necessary to fill exactly to the
right border. If you select ’"Without fill’ then no extra spaces are added.
Normally one space is added after each word, with additional spaces added
after punctuation such as periods, exclamation marks, etc. See ’'Post period
spaces’ .

1.82 Post period spaces...

Post period spaces...

This command, added exclusively for my demanding European customers,
controls how many spaces should be placed after punctuation such as periods
and exclamation marks when formatting paragraphs. The default is two.

1.83 Send DOS/ARexx command...

Send DOS/ARexx command...

This command allows you execute any DOS or ARexx command from within
CygnusEd. Simply type the name of the command, and any parameters which it
takes and the command will be run. The output will by default be sent to a
standard console window which will only open up if the program or script
being run produces some output. The real power of this program shows up when
you embed it within a macro. If you say yes when the macro creation process
asks if you would like the contents of the requester stored in the macro
then when you play back the macro it will automatically execute the desired
script or command. This allows you to attach an unlimited number of ARexx
commands to arbitrary keys on your keyboard.

1.84 Install DOS/ARexx command...

Install DOS/ARexx command...

CygnusEd allows you to make a limited number of ARexx commands (ten)
show up in the ARexx menu. The ’Install DOS/ARexx command...’ command lets
you select these. Select the number, from one to ten, of the slot that you
would like to use. Then enter the command that you would like executed.
After installing a new command you should probably use the ’Save DOS/ARexx
commands’ command to save your new configuration. The command is not
actually run at this point. It can be run either by pressing the appropriate
function key, or by selecting the command from the menus. Don’t forget to
save your ARexx command definitions afterwards.

CygnusEd_Manual

35/141

1.85 Load DOS/ARexx commands...

Load DOS/ARexx commands...

This command loads a set of ten DOS and ARexx command names from a file
(default name s:RexxCommands) and places them in the user configurable ARexx
commands menu.

1.86 Save DOS/ARexx commands...

Save DOS/ARexx commands...

This command saves the current set of ten DOS and ARexx command names
into a file (default name S:RexxCommands). If you use the default name then
the command names will be automatically loaded in again when you next run
CygnusEd.

1.87 Send DOS/ARexx output to...

Send DOS/ARexx output to...

Executing Dos and ARexx commands frequently produces output. If you
don’t ever want to see this, use this command to set the output file name to
"nil:’.
use the public domain ’'null:’ device, which has the same effect.

Alternately, you can send the output to a file on disk, or to a console
window. The default output file is:

"con:0/0/640/90/Ced<->Dos & Rexx/Inactive/Auto/Close/Wait"

Roughly translated this means a console window, opening up in the upper
left hand corner of the workbench screen (0,0), 640 by 90 pixels in size,
with a title bar saying ’'Ced<->Dos & Rexx’. The console window will open
inactive, it won’t open until the commands actually print something, it will
have a close gadget and it will allow you close it even though CygnusEd
still has it open.

CygnusEd opens the output file, whatever it may be, once only (unless
you change it). That means, in the case of the default console file, that if
you execute a number of commands, each producing output, all of their output
will remain for you to view at your leisure, and it will all be in one
console window. The downside is that it means that the window doesn’t
automatically go away when the commands finish executing. However, since it
doesn’t come up active, and since you can make it as small as desired, or
use the ’'null:’ device, that shouldn’t really matter. Finally, if you want,
you can use the standard ’publicscreen’ keyword to cause the output console
window to open up on any public screen, including CygnusEd’s. This can allow
you, for instance, to look at the results of a testrun of your program on
the same screen as your source code. Other conole windows, including regular
CLI shells can also be made to appear on CygnusEd’s screen, allowing you to
do directory listings and other DOS commands from within CygnusEd.

CygnusEd_Manual 36/ 141

1.88 Enter ASCIL... - Keyboard shortcut [Amiga]+-

Enter ASCII... - Keyboard shortcut [Amiga]+-

The ’'Enter ASCII...’ command is used to enter a character into the
current file by typing in its ascii value. For instance, the ASCII value of
the space character is 32, the ASCII value of the number one is 49. The
ASCII values range from zero to 255, and can be entered in decimal,
hexadecimal (base 16 - precede the numbers with either a dollar sign ’'$’ or
"0x’), or even base 2 (precede the numbers with a percent sign ’%’). The
Enter Ascii requester keeps on returning until you select ’Cancel’ or hit
return when it is empty. This allows you to easily enter sequences of ASCII
values. Any character can be entered into CygnusEd.

1.89 Center cursor - Keyboard shortcut [Amiga]+=

Center cursor - Keyboard shortcut [Amiga]+=

The ’Center cursor’ command attempts to place the cursor, and the line
of text that it 1is on, in the center of the current window. It scrolls the
current file up or down in order to do this. The only thing that will stop
CygnusEd from vertically centering the cursor is if the cursor is too close
to the either end of the current file, in which case the scrolling will stop
when the top or bottom of the file meets the top or bottom of the window.
The cursor is not horizontally centered. The text is not altered.

1.90 Center line - Keyboard shortcut [Amiga]+\\

Center line - Keyboard shortcut [Amigal]+\

The ’Center line’ command takes the current line of text, strips all
white space (space characters and tabs) from each end, and then centers the
result in the area between column zero and the user defined right edge. The
centering is done by padding the beginning of the file with spaces. If the
line is too long to fit then it is not changed at all.

1.91 Repeat key/menu... - Keyboard shortcut [Amiga]+”

Repeat key/menu... — Keyboard shortcut [Amiga]+"

The ’'Repeat key/menu’ command is a powerful command for mechanizing
repetitive work. When you select this command g requester appears asking for
the desired repeat count. After you enter it, CygnuskEd waits for you to type
any key or select any menu item, at which point it repeats it the desired
number of times. If you need to type in exactly eighty '’ characters, or if
you need to move the character down exactly 93 lines, this command is
perfect. If you need to do one of these operations frequently you can define
a macro which contains a repeat command - the repeated keystrokes will be
recorded in the macro just as if you typed them yourself. Additionally, if

CygnusEd_Manual 37 /141

you have a macro which you would like repeated dozens of times, this command
will do that. And don’t forget that you can repeat any keystroke and any
menu — there doesn’t even have to be a keyboard shortcut for the menu, Jjust
select it with the mouse if you want.

1.92 Find matching bracket - Keyboard shortcut [Amiga]+h

Find matching bracket - Keyboard shortcut [Amiga]+h

The ’'Find matching bracket’ command is extremely useful for
programmers. If you place the cursor over any of the parenthetical
characters (" (', ")', "[", "1", ’'<', ’'>", '"{’" or "}') then CygnuskEd will
search for its mate. In doing so CygnusEd will respect any other
parenthetical pairs inside of the same type. For instance, if your cursor is
on the first line of this text ’ ((Testing)EndTest)’ then find matching
bracket will move the cursor to the end of the text. In this example,

" (1TestingEndTest)’, the cursor will also move from the beginning of the
text to the end, because ']’ doesn’t pair up with ' (’. Using the ’'Find
matching bracket’ command twice in a row will always return you to your
starting location.

1.93 Mark/Jump Location

Mark/Jump Location

Mark location 1, 2, 3 - Keyboard shortcuts - [Amiga]+[Shift]+1, 2, 3
Jump to mark 1, 2, 3 - Keyboard shortcut [Amigal+l, 2, 3

The ’"Mark location’ commands record the cursors current position in the
file so that you can easily return to a particular place in a file. The
shortcuts were chosen so that, for instance, [Amiga]+[Shift]+2 will mark a spot
and [Amiga]+2 will jump to that spot. If you mark a particular line and then
add additional lines before that, the mark location will automatically be
updated so that the same line of text will be jumped to.

1.94 Mark - Keyboard shortcut [Amiga]+b

Mark - Keyboard shortcut [Amigal]+b

The ’'Mark’ command is used for starting to mark a block for cutting or
copying. The cursor location when this command is selected is used as one
end of the block and the cursors position is used as the other end of the
block. Therefore, immediately after selecting this command, the area
selected contains no characters. Moving the cursor forwards or backwards
adds one character to the selected area. When you move the cursor forwards
through the file, the character under the cursor when you selected ’'Mark’ is
included in the block, if you move backwards through the file it is not.

Note that unlike most text editors and word processors, when CygnusEd
highlights a block, it only highlights out as far as there is actually text.

CygnusEd_Manual 38 /141

This makes the block marking very useful for tracking down over length lines
or problems with extra or missing text.

The contents of the clipboard are not affected unless you select ’Cut’
or ’'Copy’.

Marking a block can be cancelled by selecting ’'Mark’ again.

1.95 Mark columnar - Keyboard shortcut [Amiga]+B

Mark columnar - Keyboard shortcut [Amiga]+B

The ’'Mark columnar’ command is similar to the ’'Mark’ command except that
the marked out area is always a rectangle. This is very useful for removing
columns from tables, adjusting indenting, creating script files and much
more. If you paste in a columnar block then all of the lines of the block
are pasted in at the same column number in adjacent lines of the file,
padding the lines with spaces if necessary. The other important difference
when pasting a vertical block is that the cursor position is adjusted
differently. Pasting a normal block leaves the cursor one column to the
right of the last character inserted. Pasting a columnar, or vertical block,
leaves the cursor one row below the first character of the last line
inserted. This is very handy if you want to insert the same columnar block
multiple times because you can just keep on pasting and the blocks all stack
downwards. The most common use for this is to do a columnar cut on a tab
character and then hold down [Amiga]+V to repetitively paste this tab
character in, thus indenting a section of text or code. Doing this with a
regular block would require extra cursor movements after each paste, or a
macro.

Marking a columnar block can be cancelled by selecting ’"Mark columnar’
again. Selecting ’'Mark’ after ’'Mark columnar’ merely changes the type of
block being marked from a columnar block to a normal block, and vice versa.

Columnar blocks frequently enclose areas with lines of varying lengths.
In this situation it is sometimes necessary, when cutting or when pasting,
to move the cursor beyond the end of the current line to allow cutting out

text on a longer line earlier on. For this reason, columnar blocks are
frequently used in ’Layout mode’ (see layout mode)

1.96 Mark word

Mark word

This command marks the word under the cursor, taking care not to
mark any blank spaces next to it.

1.97 Cut - Keyboard shortcut [Amiga]+x

CygnusEd_Manual 39/141

Cut - Keyboard shortcut [Amiga]+x

The ’Cut’ command cuts the currently marked area to the Amiga clipboard.
If CygnusEd is not in mark or mark columnar modef, the warning ’'No area
selected’ appears. If no characters are selected, either because the cursor
is on top of the block start or because the cursor is right below the block
start in columnar mode, a requester warning ’'No area marked’ or ’"No area
selected’ appears. Text cut to the clipboard can be pasted into the same
file, other files, other copies of CygnusEd or other Amiga applications,
including the standard console. The selected text is removed from the file
and 'mark’ mode is exited and the highlighting cleared. If in columnar block
mode, all of the lines in the block range are shortened by the number of
characters removed. If the block is a columnar block then an extra IFF chunk
is placed in the clipboard to tell CygnusEd this. This chunk will be ignored
by all other applications, so other programs will paste CygnusEd’s columnar
blocks as 1f they were regular blocks of text.

1.98 erase

Erase
The ’'Erase’ command works just like the ’'Cut’ command in that it

removes the marked text. However, the marked text does not get transferred
into the clipboard.

1.99 Copy - Keyboard shortcut [Amiga]+c

Copy - Keyboard shortcut [Amiga]+c

The ’Copy’ command is just like the ’Cut’ command except that the file
is not altered.

1.100 Paste - Keyboard shortcut [Amiga]+Vv

Paste - Keyboard shortcut [Amigal+v

The ’'Paste’ command pastes the current contents of the Amiga clipboard
into the current file at the cursor location. Normally the clipboard will
contain text cut or copied out of CygnuskEd but it may also contain blocks of
data from other programs. The contents of the clipboard are unaffected by
the paste command.

1.101 Set clipboard unit...

CygnusEd_Manual 40/141

Set clipboard unit...

The Amiga clipboard actually consists of 256 different clipboards. Most
applications only use clipboard zero, but occasionally having extra places
to store temporary text can be very useful. You can temporarily set the
clipboard unit to a different number, cut or copy some text, to back to
clipboard unit zero, do some more editing, including using the clipboard,
and then switch back to the different clipboard number to retrieve the text
you cut out much earlier, unaffected by intermediate clipboard operations.
The only thing to be careful of is that, since most applications support
clipboard unit zero only, you will not be able to cut and paste to most
other applications with the other clipboards. The main way that people use
this command is to setup three macros that switch to a different clipboard
unit, cut, paste or copy, and then switch back. This lets you select the
appropriate clipboard without having to adjust your settings manually.
CygnusEd allows you to store the clipboard numbers in the macro just by
saying ’'yes’ when asked when you are defining the macro.

1.102 Rot marked

Rot marked

Occasionally text files on the internet are ’'encrypted’ using a method
known as ’‘rotl3’. The purpose of this ’encryption’ is not to stop people
from reading the text but to stop them from accidentally reading the text.
This allows people to post rotl3 rude jokes with a non-encrypted warning so
that people can read the warning and then decide whether or not to read the
encrypted text. The main advantage to the rotl3 method is that if you do it
twice, you end up back where you started from - therefore encrypting text is
done the same way as unencrypting it.

The method, for those of you interested, 1is very simple. Just move all
alphabetic characters forwards thirteen positions, wrapping around from ’Z’
back to "A’. If you do that twice then every character has been moved
forward twenty six positions, putting it back where it started.

The ’"Rot marked’ command rotates the currently selected text, and
deselects it. Non alphabetic characters are unaffected.

1.103 Strip CR marked

Strip CR marked

MS-DOS based machines terminate the lines of their text files with a
carriage return (ascii 13) and a line feed (ascii 10), whereas Amiga text
files are terminated with just a line feed. This command quickly strips out
all of the annoying carriage returns in the selected text, then deselects
the text.

CygnusEd_Manual

41 /141

1.104 Change case marked

Change case marked
The ’Change case marked’ command changes all of the selected alphabetic

characters to upper case if they are lower case and to lower case if they
are upper case.

1.105 Change marked to lower case

Change marked to lower case

This command changes all of the selected alphabetic characters to
lower case.

1.106 Change marked to upper case

Change marked to upper case

This command changes all of the selected alphabetic characters to
upper case.

1.107 Shift in marked

Shift in marked
This command is for indenting program source code and ordinary text

by adding a ’'tab’ character at the beginning of each line in the marked
area. Blank lines will remain blank.

1.108 Shift out marked

Shift out marked

This command is for removing indentations in program source code and
ordinary text by stripping a leading ’tab’ character from the beginning of
each line in the marked area. No change will take place if there are no
"tab’ characters at the beginning of the lines in the marked area.

1.109 Change marked spaces to tabs

Change marked spaces to tabs

This command will replace all blank spaces in the marked block by
the correct amount of tabulator characters. The text layout will stay the
same.

CygnusEd_Manual 42 /141

1.110 Change marked tabs to spaces

Change marked tabs to spaces
This command will replace all tabulator characters in the marked

block by the correct amount of blank spaces. The text layout will stay the
same.

1.111 Delete word [Ctrl]+Del

Delete word [Ctrl]+Del

The ’'Delete word’ command deletes the next word in the file and puts it
in a special ’'delete word buffer’.

1.112 Undelete word [CtriI]+[Alt]+Del

Undelete word [Ctrl]+[Alt]+Del

The ’Undelete word’ command pastes the last deleted word into the file
at the current cursor position.

1.113 Bck Spc word [Ctrl]+BckSpc

Bck Spc word [Ctrl]+BckSpc
The ’Backspace word’ command deletes the next word in the file and puts
it in a special ’'Backspace word buffer’. This is separate from the ’delete

word buffer’. Backspace word deletes words to the left of the cursor instead
of the right.

1.114 UnBck Spc word [Ctri]+[Alt]+BckSpc

UnBck Spc word [Ctrl]+[Alt]+BckSpc

The ’Unbackspace word’ command pastes the last backspaced word into the
file at the current cursor position.

1.115 Delete line - Keyboard shortcut [Amiga]+k

Delete line - Keyboard shortcut [Amiga]-+k

The ’'Delete line’ command deletes the entire current line and puts it in
a special "deleted line buffer’.

CygnusEd_Manual 43 /141

1.116 Delete to EOL - Keyboard shortcut [Amiga]+y

Delete to EOL - Keyboard shortcut [Amiga]+y

The ’'Delete to EOL’ command deletes the current line from the cursor
position to the end of the line, not including the end of line character. It
shares the ’'deleted line buffer’ with the ’'Delete line’ command.

1.117 Undelete line - Keyboard shortcut [Amiga]+I

Undelete line - Keyboard shortcut [Amigal]+l

The ’'Undelete line’ command pastes the contents of the deleted line
buffer (filled either by the ’'Delete line’ or ’'Delete to EOL’ commands into
the file at the current cursor position.

1.118 Repeat search backwards - Keyboard shortcut [Amiga]+a

Repeat search backwards - Keyboard shortcut [Amiga]+a

The ’Repeat search backwards’ command is used to search again for the
last sequence of characters searched for, going backwards. The keyboard
shortcut was chosen so that its position, to the left of the ’'repeat search
forwards’ shortcut would suggest searching to the left, or backwards. If no
search string has been specified yet, the search requester is brought up.

1.119 Repeat search forwards - Keyboard shortcut [Amiga]+s

Repeat search forwards - Keyboard shortcut [Amigal]+s

The ’'Repeat search forwards’ command is used to search again for the
last sequence of characters searched for, going forwards. The keyboard
shortcut was chosen so that its position, to the right of the ’'repeat search
backwards’ shortcut would suggest searching to the right, or backwards. It
was decided to use the same shortcut as for ’Search for’, except for the
lack of the shift key, to suggest the close ties between these commands. As
with the mark/jump to mark commands, the setup command uses the shift key,
the reuse command does not, on the assumption that the setup command
(marking a location or doing an initial search) will be done less frequently
than the reuse command (jump to mark or repeat search). If no search string
has been specified yet, the search requester is brought up.

1.120 Search for... - Keyboard shortcut [Amiga]+S

CygnusEd_Manual

44 /141

Search for... - Keyboard shortcut [Amiga]+S

The ’Search for’ command is used to start searching for a sequence of
characters. A requester appears with a string gadget for typing in the
characters to be searched for. Additionally there are eight toggles for
controlling the search.

Ignore case - when this is checked (the default) then the search is case
insensitive - ’"a’ 1is considered equal to ’'A’.

Wildcards - when this is checked the '’ character will match any single
character. Obviously this is a fairly weak wild card capability, but it can
be very useful.

Forwards — this controls the direction of the search. By default it is
selected, meaning that the search proceeds forwards through the file.
Unchecking it means that the search goes backwards.

Only whole words - this check box is very useful when searching for
small words, such as ’"the’, or a variable name such as ’"i’. Normally these
sequences of characters would be found inside other words, such as ’then’,
"there’ and ’'whether’ or ’'while’, ’'int’ and 'main’. When ’only whole words’
is checked, it is only considered a match if the characters before and after
the character sequence are neither alphanumeric nor an underscore. In other
words, it only counts as a match if the sequence of characters are found as
an entire word, rather than the beginning, end or middle of a word.

Wrap around - If no matching text is found in the given direction,
the search process will wrap around at the end/beginning of the file. This
allows you to find/replace all occurences of a string without having to
invoke this function twice.

Begin at top - Regardless of where the cursor is positioned at the
time you open this requester, the search/replace process will always begin
at the beginning/end of the file.

Expand escape codes — This will turn embedded escape sequences like
\n, \r etc. in the search/replace strings into the appropriate characters.
Supported are:

\x<hex> with <hex> being a hexadecimal number, two digits max.
\<oct> with <oct> being an octal number, three digits max.
\a

\b

\f

\n

\r

\t

\v

\I

\"

\7?

AR

Show summary - When the search/replace process has completed,
CygnusEd will show a summary of how many patterns have been replaced or

CygnusEd_Manual

45/141

whether the search pattern could be found. This switch allows you to turn
this message off, which can be handy for macros.

There are two features of the search requester which are frequently not
noticed. The first is that there are menus, which give [Amiga] key access to
all of the gadgets, and also allow cutting and pasting from the Amiga
clipboard into the search or replace gadgets. This can make searching much
easier and less error prone, as you frequently don’t need to type in the
text to search for. There is also an ’'erase’ menu command to clear out the
search buffer.

The other hidden feature is the search history. The up and down arrow
keys can be used to look through the last twenty commands searched for. If
you hold down the shift key while using the arrow keys then a search is done
for the next or previous search entry that starts with the characters to the
left of the cursor.

As search can be started either with the [Amigal+S, or by hitting return
or enter. To replace text, type [Amiga]+E or press the "Replace" button. For
more information, see

Replace...

CygnusEd’s search routine is written in carefully optimized assembly
language which allows CygnusEd to do a full, case sensitive or insensitive
search with simple wildcards at the rate of 100,000 characters per second on
a 7Mhz 68000. Obviously on faster processors the search speed is much
faster.

1.121 Repeat replace - Keyboard shortcut [Amiga]+r

Repeat replace - Keyboard shortcut [Amiga]+r

The ’'Repeat replace’ command repeats the last replace command, in the
direction that the previous replace went. Note the similar keyboard
shortcuts for these two commands, evoking there similarities, and showing
the same consistent relationship used in the search commands the mark/jump
to mark commands.

1.122 Replace... - Keyboard shortcut [Amiga]+R

Replace... - Keyboard shortcut [Amiga]+R

The ’"Replace’ command uses the same requester as the ’Search for’
command. To start replacing text, just press the "Replace" or the
"Replace all" button.

After a replace command is started, either by typing [Amiga]+E, selecting
the ’'replace’ button or hitting return, CygnusEd searches for the desired
text. If the text is found the title bar for that file changes to the
message:

CygnusEd_Manual

46 /141

"(Y)es/ (N)o/ (L)ast (G) lobal/ (T)urbo/ (Q)uit?’

Cygnused then waits for you to type one of the capital letters to state
your preference. If you type ’'Q’, or any unrecognized character then the
replace is cancelled, and CygnusEd returns to normal.

If you type 'Y’ then the text under the cursor is replaced and the
search/replace continues after the replaced text.

If you type 'L’ then the text under the cursor is replaced and the
search/replace stops.

If you type 'G’ then the text is replaced and CygnusEd continues
searching and replacing without prompting you. Once you start this mode you
can stop it at any time by pressing any key. When CygnusEd does a global
replace it still updates the screen, scrolling as needed, so that you can
see exactly what is going on. If this is too slow for your tastes...

If you type ’'T’ then CygnusEd does a ’'Turbo’ replace. This is similar to
the ’Global’ replace in that no further promting is done and that you can
cancel the replacing by hitting any key. However the screen is not updated
(except for a running count of the number of replacements done in the title
bar). This alone speeds up the replacing considerably, but additional
internal optimizations are done to ensure that as little data movement as
possible is done. This tends to make the Turbo replace run dozens to
thousands of times faster than global replace. This makes global operations
on multi-megabyte files a matter of just a few seconds.

The other difference with ’Turbo’ mode is that, for purposes of undo,
all of the separate replacements are treated as one operation. The undo
command will undo 100,000 replacements at once, whereas with the other
replacement options each replacement is undone separately.

If you type [Amiga]+P or press the "Replace all" button,
CygnusEd will go into ’Turbo’ replace mode without displaying the
"(Y)es/ (N)o/ (L)ast (G)lobal/ (T)urbo/ (Q)uit?’ message.

1.123 Clip to search buffer

Clip to search buffer

To avoid the tedious and error prone typing in of search strings
CygnusEd allows you to cut or copy text out or your files and then paste
them into the search buffer. This can either be done with the paste command
in the search/replace requester (see the menus) or with the ‘Clip to search
buffer’ command. The main reason for having the ’"Clip to search buffer’
command is because it can more easily be put into macros and ARexx scripts.

1.124 Clip to replace buffer

Clip to replace buffer

CygnusEd_Manual

47 /141

To avoid the tedious and error prone typing in of replace strings
CygnusEd allows you to cut or copy text out or your files and then paste
them into the replace buffer. This can either be done with the paste command
in the search/replace requester (see the menus) or with the 'Clip to replace
buffer’ command. The main reason for having the ’'Clip to replace buffer’
command is because it can more easily be put into macros and ARexx scripts.

1.125 Set ASCII zero alias for search...

Set ASCII zero alias for search...

CygnusEd will allow you to load virtually any file in, anything from
source code to binaries. All of the characters of the file are displayed and
can be deleted, copied, pasted and searched for - except for the character
represented by the ascii value zero. The character ’0’, ascii 48, is no
problem, but ascii zero is a problem, because this special value is used to
terminate strings in the C language. ’Set ASCII zero alias for search’
allows you to specify a character, which when typed into the search
requester, will be understood to represent ASCII zero. You should choose
some character which you don’t frequently need to search for, because when
using this option you won’t be able to search for this character, as it will
always get translated to ascii zero when searching starts.

1.126 Change case letter - Keyboard shortcut [Amiga]+g

Change case letter - Keyboard shortcut [Amigal+g
The ’Change case letter’ command simply changes the case (upper to
lower, lower to upper) of the character under the cursor if it is an
alphabetic character. Whether it is or not, the cursor is moved to the next

character, allowing you to toggle the case of a large sequence of characters
just by repeating the command.O

1.127 Change case word - Keyboard shortcut [Amiga]+G

Change case word - Keyboard shortcut [Amigal]+G
The ’Change case word’ command changes the case of the character under
the cursor and all subsequent characters until it comes to the end of the

current word. See next/prev word for the definition of a word. The cursor is
moved to the end of the word, to allow easy repetition of the command.

1.128 Upper case word

Upper case word

The ’Upper case word’ command upper cases the character under the cursor

CygnusEd_Manual 48 /141

and all subsequent characters until it comes to the end of the current word.
See next/prev word for the definition of a word. The cursor is moved to the
end of the word, to allow easy repetition of the command.

1.129 Lower case word

Lower case word

The ’'Lower case word’ command lower cases the character under the cursor
and all subsequent characters until it comes to the end of the current word.
See next/prev word for the definition of a word. The cursor is moved to the
end of the word, to allow easy repetition of the command.

1.130 Undo

Undo

Undo - Keyboard shortcut [Amiga]+u
Redo - Keyboard shortcut [Amiga]+U
Max undo levels... xxx

Max undo memory... XXXXX

CygnusEd sports a very powerful undo capability, a feature that no text
editor (or other program for that matter) should be without. CygnusEd’s undo
is multi-level, allowing you to change your mind easily.

Undo is useful for:

Undoing accidental deletions of important text.

Returning to previous versions of code or text if a new version doesn’t
work out.

Reminding you what you were just working on (undo, then redo - the
cursor will go to the last change).

Each time you select ’'Undo’ you go further into the past. Each time an
additional change that you made to the file is reversed. Each character

typed is a change, each block cut or pasted is a change - copying a block is
not a change. Only operations which actually change the file buffer count as
undoable changes - anything that updates the change counter in the status
bar.

Changes can only be undone in the strict reverse order that they were
done in, and they can only be undone one at a time (although you could make
a macro, or use the repeat command to undo multiple ones in one operation).
These limitations stem from the fact that trying to undo an operation out of
place frequently doesn’t make sense - it may mean deleting text that hasn’t
been typed in yet, or some other contradictory thing.

When you undo you are moving backwards through time. You can then decide
that you want to move forwards through time again by using the ’Redo’
command. This plays back your changes. However, and this is very important,
if you undo several operations and then make a change to the file, like

CygnusEd_Manual 49/141

typing in a single character, then the redo information is necessarily wiped
out. If you try to undo that new operation, planning to then redo the
previous operations, you will find that redoing will simply redo the typing
of that character. In other words, although CygnusEd supports time travel
through undo and redo, CygnusEd does not support multiple concurrent paths
through time - the contradictions and troublesome philosophical conundrums
are just too weird to ponder.

Note that CygnusEd’s undo allows you to undo past saves. If you do this
then the change count in the status bar actually goes negative! This is
normal and expected behaviour. The only time that this causes a problem is
if you make some changes to a file and then save it, thus zeroing the change
count. If you then undo one of these changes, the change count goes to
negative one. If you then change the file again, the change count increments
to zero, and CygnusEd thinks that no changes have been made, when actually
two changes have been made since the last save.

The number of levels of undo that CygnusEd supports is limited only by
available memory. Since different people have very different amounts of
memory and very different feelings on the importance of having a thousand
levels of undo, CygnusEd allows you to configure how much memory should be
devoted to the undo buffers, per file loaded. As the names suggest, ’'Max
undo levels’ specifies that maximum number of undo events that should be
stored per file. Up to 9999 levels are supported, but 100 is a more typical
number. Usually just a dozen or so levels of undo are used, but occasionally
you may find yourself heavily editing a file, only to realize after an hour
or so that you are completely on the wrong track - at times like that, being
able to reverse all your changes can be invaluable. If you haven’t saved
then you could use your previous version on disk, or your backup version
(automatically created by CygnuskEd if you enable that option), but if you’ve
saved several times, then undo may be your only hope.

Since it is the memory consumed by CygnusEd’s undo which is your real
concern, CygnusEd allows you to set the maximum amount of memory which
CygnusEd will devoted to undo buffers, per file. The number of undo levels
supported is the smallest of the maximum number of levels specified and the
maximum number that will fit in the maximum amount of memory specified.
Since the size of undo events varies wildly (storing the typing of a single
character in the undo buffer is cheap - storing the pasting in of a 100K
block is expensive) the number of events in the buffer may vary
considerably. Obviously setting both numbers high gives you many levels at
the cost of much memory, and setting the both low gives you few levels at
the cost of little memory. Setting the number of levels high but the memory
low means that the number of undo events stored will be high as long as the
undo events are simple - small blocks or simple typing, and the amount of
memory used will be very consistently around the maximum. Setting the number
of levels low but the memory high means that there will almost always be the
number of levels stored that you requested, and that the amount of memory
will usually be very small, but occasionaly quite big. Unless you are very
short on memory, the defaults, or even larger numbers, work very well.

1.131 Jump to line... - Keyboard shortcut [Amiga]+j

Jump to line... - Keyboard shortcut [Amiga]+]

CygnusEd_Manual 50/ 141

As expected the ’"Jump to line’ command moves the cursor to the requested
line number. This requester allows you to enter negative line numbers; these
will move the cursor relative to the end of the file, e.g. a value of -10 in
a file with 30 lines will move to line 20.

1.132 Jump to auto-mark - Keyboard shortcut [Amiga]+4

Jump to auto-mark - Keyboard shortcut [Amiga]+4

The ’"Jump to auto-mark’ command is a somewhat unique CygnusEd feature.
It derived from the observation that people quite frequently briefly jump to
a very different location in the file they are editing - to the beginning or
end or to a searched for string - and then want to return. Clearly the way
to do this is to mark their current location before doing the initial jump,
but I usually forget, and I suspect that other people do to. So CygnusEd
attempts to recognize when you are doing this and automatically set a mark
for you. CygnusEd’s algorithm for deciding when to set the auto-mark is
simple - if the user moves, by any means, to a location that is too far away
to scroll to, then the auto-mark is set at the old location. Simple enough.
You can then use ’"Jump to auto-mark’ to return to your old location. It
doesn’t always work, because you might, for instance, jump to the beginning
of the file and then search for something that causes another Jjump - now the
auto-mark points to the beginning of the file. However it works enough that
I hate to use an editor that doesn’t have it.

The only other time that the auto-mark gets set is when you use it. If
you do a "Jump to auto-mark’ then, even if the destination is close enough
to scroll to (it can happen, for subtle reasons), the auto-mark is set,
allowing you to toggle back and forth.

Note that ’"close enough to scroll to’ is a user settable thing. See ’"Max
scroll’.

1.133 Jump to last change

Jump to last change

This command will place the cursor at the position of the last
undoable editing operation.

1.134 Jump to byte... - Keyboard shortcut [Amiga]+J

Jump to byte... - Keyboard shortcut [Amiga]+J

The ’Jump to byte’ command moves the cursor to a specific character or
byte location in the file. The bytes in the file are numbered sequentially
starting at zero. Note that the cursor column is not necessarily related to
the byte number because some characters can expand to fill multiple columns
(tab characters) and some characters can take up no space (escape
characters, see 'Esc codes visible?’). This command can be very useful for

CygnusEd_Manual 51 /141

stripping the MacBinary header off of a file, as this is the first 128
bytes. Just do a 'mark’, then jump to byte 128, then cut.
The requester allows you to enter negative offsets. These will move
the cursor relative to the end of the file. For example, with a file 256 bytes
in size, an offset of -10 will move to byte offset 250.

1.135 Cursor key movement

Cursor key movement
Shift+Cursor keys

CygnusEd was carefully designed to make the cursor movement commands
natural and easy to remember. Instead of using [Amiga]+T to go the the top of
the file, the arrow keys, with their clearly implied directions, are used
with various qualifier keys.

The text in the menus gives a brief description of what the different
the cursor keys do, always in the order up-arrow, down-arrow, left-arrow,
right-arrow.

Holding down the shift key moves the cursor to the edge of the current
page, roughly speaking. Shift plus the up or down arrow keys moves the
cursor to the bottom or bottom of the current screen - as far as it can move
without scrolling. If the cursor is already at the top or bottom then it
scrolls up or down one page. Shift plus the right or left arrow moves the
cursor to the left or right edge of the current line, even if this means
moving beyond the edge of the page.

Holding down the alt key moves cursor twelve character positions,
columns or rows, in the appropriate direction. This is one of my favourite
ways of navigating a file, as it is less harsh and easier to follow than
moving by pages, but not as slow and over delicate as moving a line at a
time.

With the control keys the cursor movements are quite different in the
horizontal versus the vertical direction. Holding down the control key when
typing the up or down arrow keys moves to the beginning and the end of the
file respectively. Holding down the control key when typing the left or
right arrow keys moves the cursor to the previous and next words
respectively.

CygnusEd’s word movement algorithm is as follows. It was defined to make
deleting words as useful as possible, by trying to ensure that CygnusEd
doesn’t delete too much excess text. If the cursor is on and end of line
character, the cursor is moved one character in the appropriate direction
and the move is over. If the cursor is over an alphanumeric character, it
skips over that character and over any subsequent alphanumeric characters,
and then skips over any tabs or spaces at the end, if moving forwards. If
the cursor starts on a non-alphanumeric character that isn’t a tab or a
space then it skips that single character and any following spaces or tabs,
if moving forwards. If the cursor started out on a tab or a space then it
moves over all consecutive tabs and spaces. If it’s moving forwards then it
stops then. If moving backwards it continues on to deal appropriately with
any alphanumeric or non-alphanumeric characters that follow.

CygnusEd_Manual 52 /141

The one remaining way of navigating around files in CygnusEd is with
"turbo mode’. This is a variable speed smooth scroll way of swiftly getting
to where you want to be, while allowing you to slow down at any time to make
sure you know where you are. You can smoothly adjust the scroll speed from
being slow enough to glimpse words in the file, to fast enough that only the
shape of the written areas can be discerned. To start turbo mode use the alt
key together with the up or down arrow keys. Initially this moves twelve
lines at a time, but as soon as the arrow key starts auto-repeating you’re
in turbo mode. At this point you can lift off the alt key to slow yourself
down, or press the shift key to speed up. You can smoothly move between
these three speeds (holding down the shift key only is the same as holding
down the alt key only) as you look for the text you want to find.

1.136 MetaMac

MetaMac

MetaMac is CygnusEd’s macro editor. CygnusEd macros are usually created
from within CygnusEd, by simply doing the actions you want turned into a
macro while having CygnusEd record them. However if you make a mistake while
defining a macro, if you want to adjust what a macro does, or if you Jjust
want to see what macros you have defined, MetaMac is the program for you.

When you first run MetaMac two windows appear. The left window contains
a list of all of the macros that you have defined. The right window displays
the contents of the currently selected macro, if any.

Using the left window is quite easy and intuitive. You can change which
macro is selected by using the arrow keys or the mouse. Macros can be
deleted with the delete key or with the delete macro button. The project
menu work as you would expect. The trickiest part is the ’Add Macros’ menu.
The three menu entries here let you find or create the three basic types of
CygnusEd macros - one key invocation macros, multi-key invocation macros,
and a startup macro. If you choose ’'Find/Add short invocation macro’ then
MetaMac asks you what key you would like to assign the macro to. If that key
is already in use it selects that macro for you. If it isn’t in use, it
creates an empty macro assigned to that key. If you never define actions for
that macro key then you have effectively disabled that key.

Using the right window is somewhat more confusing. First of all note
that the complete CygnusEd menus are attached to this window. Any keystrokes
or menu selections that you make in this window are added to the currently
selected macro, if any. This is necessary in order to allow you to add any
keystrokes and macros to a CygnusEd macro. However it means, for instance,
that you can’t use the arrow keys to move through a macro definition, and
you can’t use the delete key to delete one line of a macro entry. Instead
these keystrokes will get added to the macro definition. Moving around this
window must be done with the mouse, by selecting a line or by moving the
scroll bar. Deleting lines must be done with the ’Delete entry’ button. The
one other operation you can do in the right window is to double click on an
entry that contains some requester data, such as a numeric value or a
filename. This will allow you to edit it in the appropriate requester. See
"Insert Special’ for more details.

CygnusEd_Manual

53 /141

New

Open... — Keyboard shortcut [Amigal]+o

Save - Keyboard shortcut [Amigal]+w

Save as... — Keyboard shortcut [Amiga]+W

Undo - Keyboard shortcut [Amiga]+u

Print macro list... - Keyboard shortcut [Amiga]+p
About...

Quit - Keyboard shortcut [Amiga]+g

Find/Add short invocation macro - Keyboard shortcut [Amiga]+m

Find/Add long invocation macro - Keyboard shortcut [Amiga]+M

Find/Add startup macro
Delete Macro
Delete Entry

Insert Special

1.137 New

New

The ’'New’ command clears out the currently loaded macro file. If any
changes have made you are asked to confirm before MetaMac proceeds.

1.138 Open... - Keyboard shortcut [Amiga]+o

Open

The ’Open’ command is used to load another macro file into MetaMac.
Since MetaMac can only have one macro file loaded at a time, the currently
loaded macro file is first cleared. If the file has been changed at you are
asked to confirm before MetaMac proceeds.

1.139 Save - Keyboard shortcut [Amiga]+w

CygnusEd_Manual

54 /141

Save

The ’Save’ command is used to save the macro file that you are currently
working on to the file name associated with it. If there is no file name
associated with it then the standard ASL file requester is brought up to
allow you to select a file name. If you want CygnusEd to automatically load
the macro file in when it is run then you should save the macro file as
s:cedmacros or as cedmacros in the current directory that you will be
running CygnusEd from.

1.140 Save as... - Keyboard shortcut [Amiga]+W

Save as...

The ’Save as’ command is used to the macro file that you are currently
working on to a new file. You can save the macros to any file name but
CygnusEd will only automatically load the macro file at startup if it is
saved as s:cedmacros or as cedmacros in the current directory that you will
be running CygnusEd from.

1.141 Undo - Keyboard shortcut [Amiga]+u

Undo

MetaMac has a very limited undo facility. If you make some changes to a
macro then you can undo those changes if you have not selected another macro
since. All of the changes are undone at once - there is no way to
selectively undo some changes to a macro but not others. If you accidentally
delete a macro this can not be undone, because you necessarily select
another macro and thus clear the undo buffer. If you accidentally delete a
valuable macro, your best course of action would probably be to reload the
macro file without saving the changes.

1.142 Print macro list... - Keyboard shortcut [Amiga]+p

Print macro list...

You may want to keep a list of all macros handy CygnusEd knows. This
command will print the information you see displayed in both MetaMac windows
(first the keystrokes that introduce the macro, then the commands this macro
will invoke). Alternatively, you can send the macro list to a file rather
than to the printer.

1.143 About...

CygnusEd_Manual 55/ 141

About...

The ’About’ command merely brings up a box showing the version number
and other fascinating information.

1.144 Quit - Keyboard shortcut [Amiga]+q
Quit

The ’"Quit’ command tells MetaMac to exit. If you have made changes to
the currently loaded macro file, MetaMac asks you to confirm before
continuing.

1.145 Delete Macro

Delete Macro

The ’Delete Macro’ button tells MetaMac to delete the currently selected
macro. No warnings are given i1if the macro has been changed.

1.146 Delete Entry

Delete Entry

The ’'Delete Entry’ command is the only way to delete entries from a
macro definition, other than deleting the entire macro. The reason that the
usual options, such as using the ’'Del’ key or marking a block and cutting,
don’t work is because these options are instead recorded into the macro.

1.147 Insert Special

Insert Special

The ’'Insert Special’ command is used to add requester information to
CygnusEd macros. This information is only relevant if it follows a command
which brings up a requester. Examples are commands like ’'Open’, ’Send
DOS/ARexx command’, ’Search for’, ’'Jump to line’ and ’Select disk font...’.
These five commands are not the only commands that this applies to, but they
do show off the five different types of requester data that CygnusEd and
MetaMac support within macros. These are:

Filename data - ’'Open’, ’'Save as’, any requester that just asks for a
file or directory name.

Text data - ’Send DOS/ARexx command’, any requester that Jjust asks for a
single line of text.

Search and replace data - ’"Search for’, ’"Replace’, or any other command
that makes the search/replace requester appear.

CygnusEd_Manual 56 /141

Numeric data - ’Jump to line’, 'Jump to byte’, any requester that asks
for a number.
Font data - ’Select disk font...’.

When you select this command a requester appears asking you which type
of data you would like to insert. MetaMac will let you insert any type of
requester data, whether it makes sense or not. If it does not make sense in
the context of the previous command, CygnusEd will silently ignore it.

When you select the type of data that you would like, a standard
CygnusEd requester of the appropriate type appears. Dismiss the requester
when you have selected the desired values and the data will be entered into
the macro and displayed in the right hand window.

If you wish to edit existing requester values, double click on the line
containing the requester values and the appropriate requester will appear.

1.148 Find/Add short invocation macro - Keyboard shortcut [Amiga]+m

Find/Add short invocation macro - Keyboard shortcut [Amiga]+m

This command is used to find an existing short invocation macro (macro
that is invoked with just one keystroke) or to create a new one. When you
select this command you are asked to type the keystroke used to invoke this
macro. If that keystroke is in use, then that macro is selected. Otherwise a
new macro is created, attached to that keystroke.

Note that the keyboard shortcut for this is the same as it is in
CygnusEd.

1.149 Find/Add long invocation macro - Keyboard shortcut [Amiga]+M

Find/Add long invocation macro - Keyboard shortcut [Amiga]+M

This command is used to find an existing long invocation macro (macro
that is invoked with a sequence of keystrokes) or to create a new one. When
you select this command you are asked to type the first keystroke used to
invoke this macro. After each keystroke you are asked if there anymore. If
that sequence of keystrokes is in use, then that macro is selected.
Otherwise a new macro is created, attached to that sequence of keystrokes.

Note that the keyboard shortcut for this is the same as it is in
CygnusEd.

1.150 Find/Add startup macro

Find/Add startup macro

This command is used to find an existing startup macro or to create a
new. If there is already a startup macro it is selected, otherwise an empty

CygnusEd_Manual

57 /141

startup macro is created. A macro file can have at most one startup macro.
Having any empty startup macro is functionally the same as having no startup
macro at all.

1.151 RecoverCEDFiles

RecoverCEDFiles

Occasionally while working on your Amiga an errant program may cause
your system to crash. If you are working on valuable files when this happens
then this can be gquite annoying. With most programs you are just out of
luck. CygnusEd, however, gives you a second chance. RecoverCEDFiles is a
program which will scan memory for any files left in memory by a previous
copy of CygnusEd. If RecoverCEDFiles is run immediately after a reboot it
will frequently be able to find all of your files still intact in memory,
and allow you to save them!

This is not a guaranteed thing, so don’t go rebooting with unsaved files
loaded, counting on RecoverCEDFiles to find them. Two things can go wrong.
One is that the magic cookies which RecoverCEDFiles uses to locate files in
memory may get destroyed, in which case the files can not even be located.
This can happen because your startup-sequence uses that area of memory, or
because you have a memory board that doesn’t continue refreshing memory
while rebooting.

The other thing that can go wrong is even worse. Sometimes the magic
cookies survive, but the file data does not. There is no way that CygnuskEd
can distinguish good data from corrupted data. CygnusEd does not maintain
any data integrity checksum for this purpose. Therefore, when recovering
files with RecoverCEDFiles is is VITAL that you save the recovered files to
a different file name, and check to see whether the changes from the
previous version are the changes that you typed in, or random memory errors
or overwrites. If you use RecoverCEDFiles to save over top of the previous
version of the file then RecoverCEDFiles may unwittingly participate in the
destruction of your data.

To increase the change of RecoverCEDFiles succeeding, it is important to
run RecoverCEDFiles as early on in the rebooting process as possible. We
recommend that you use [Ctrl]+D to abort your startup seguence, because the
loading of commodities and the allocation of disk buffers could easily
overwrite the memory that CygnusEd was using, making recovery impossible.

1.152 Views overview

Views overview

CygnusEd allows you to have multiple cooperating views on a single file.
All of these views are windows into the same data. Changes in one view are
reflected in the others. In fact, if several views are displaying the same
area of a particular file, you can see changes happening in all of the views
simultaneously.

CygnusEd_Manual 58 /141

Although the Amiga’s wonderful multitasking abilities mean that there is
technically no need for a program to handle multiple files simultaneously
(after all, you can always just run another copy of the program) it turns
out that is frequently very useful to have many files loaded into a simple
program at one time. It simplifies window management, cutting and pasting,
and keeping everything together on one screen. CygnusEd allows you to load
multiple files, and it also allows you to have multiple views on one file.
So, for instance, you can easily be looking at the opening paragraph of your
doctoral thesis in one view while looking at a supporting paragraph on page
97 in another view. Because the two views are actually looking at the same
document, changes made to one view are also made to the other one - you
never need to worry about them getting out of sync.

CygnusEd’s text output routines are so fast, especially when using an
eight by eight font such as Topaz80, that you can have ten different views
displaying the same lime of text, type as fast as you can, and have all ten
views show the changes, without ever falling behind. And all this works on a
68000 based Amiga 1000!

You can clearly recognize when you have multiple views on a single file
by the #1, #2, etc. text that appears at the left edge of the status bar if

you are displaying file names in the status bar.

These are the commands for setting view specific settings.

Status line
White spaces
Scroll bar
Set scroll borders...
These are the command for doing view operations, such as <
creating and
destroying views and moving between views.
View operations
Previous view - Keyboard shortcut [Amigal+,
Next view - Keyboard shortcut [Amiga]+.
Split view - Keyboard shortcut [Amiga]+d
Expand view - Keyboard shortcut [Amiga]+]

Grow view

Shrink view

1.153 Ed

CygnusEd_Manual

59 /141

Ed

Ed is a command line or workbench program that is used to invoke
CygnusEd. The advantage of using Ed rather than using CygnusEd directly is
that if CygnusEd is already running, Ed will tell it to load the requested
files. If CygnusEd is not running, Ed will run it and tell it to load the
requested files. That way, you never need to worry about whether or not
CygnusEd is running.

The basic syntax for Ed is that you can specify any number of file
names, with optional wildcards, and you can specify a number of command line
arguments, starting with a dash, to modify the treatment of those names. For
example:

ed #7?.c
ed s:user—-startup source:ced/main.c

Unless otherwise specified, you can always specify as many files as
desired, and you always specify file specific options after the file you
want them to affect.

—a Activate previously active file

The ’-a’ command is the only option in this section that does not apply
to a specific file. The ’'-a’ option tells CygnusEd to load in the specified
files, and then move the cursor back to where it was before Ed was invoked.
This is particularly useful if you have a script which will be loading files
into CygnusEd at unpredictable times - this ensures that the cursor won’t be
yanked

-f Force loading

The ’"—-f’ option is a powerful but dangerous option. It tells CygnusEd to
load the specified file, overwriting the file if it is already loaded into
CygnusEd. This option is dangerous because the previously loaded file will
be lost, even if there were unsaved changes made to it, without asking the
user. '—-f’ stands for ’'force’.

-sticky
-s

There are some applications where an application needs to let the user
edit a file, and then needs to do something with the file when they have
finished editing it. Usually these programs let the user specify what editor
they would like to use, and many people choose CygnusEd for this purpose.
However the default behaviour for Ed, the preferred way to invoke CygnusEd,
is to return immediately, without waiting for the user to finish editing the
file. Normally this behaviour is what is desired - but not in this case.
This is precisely what the ’-sticky’ option was made for. If you go 'Ed
—-sticky filename’ then CygnusEd will be run if necessary, the specified file
will be loaded into the new copy of CygnusEd, or an existing copy if there
is one, and Ed will not return until the user finishes editing the specified
file. The user can indicate that they are finished editing the file either

CygnusEd_Manual 60/ 141

by closing all views on the file (with the Quit command) or by loading
another file on top of the file (with the Open command). Only one file name
can be specified on the command line when using the ’-sticky’ command. ’'-s’
is a synonym for ’-sticky’. Unlike most of the file specific options, the
—-sticky command can go either before the file name or after. This means that
you can define the name of your editor to be ’"ed -sticky’ and let the other
application tack the file name on at the end.

Please note that this feature works only if you specify a single file
name on the command line. Multiple ’sticky’ files are not supported.

-1 Ignore

The ’"—-i’ command line option tells CygnusEd to load the specified file
in if it isn’t already loaded. If the file is already loaded it tells
CygnusEd to move the cursor to the view containing that file. This is
particularly useful for when compiler’s need to ensure that a particular
file is loaded so that they can place the cursor on a syntax error. If you
don’t specify this option, or ’'-o’ described below, then CygnuskEd will warn
you that the file is already loaded and will ask you to confirm before
proceeding. The ’"i’ stands for ’ignore’, as in ’'ignore the file on disk if
it’s already loaded’.

-0 Overwrite

The ’"-0o’ command line option tells CygnusEd to load the specified file
in even if is already loaded. If the file is already loaded it tells
CygnusEd to overwrite the previously loaded copy. If any changes have been
made you are asked to confirm before CygnusEd continues. If you don’t want
the requester to appear, see the '-i’ or ’'—-f’ options.

-v View only

The ’-v’ command tells CygnusEd to load the file to mark it as
non-editable. This setting can be changed after the file is loaded with the
"Editable file?’ menu item under the Environment, File settings menu.

Different options can be combined as long as they don’t contradict each
other. If CygnusEd is not yet in memory, the CygnusEd command line options
can be used also. For example:

ed filel -va
This tells CygnusEd to load in filel, make it non editable and then
reactivate the previously active view.

ed file.c -1 ram:err/file.err -fa

This tells CygnusEd to load in file.c, if it isn’t already loaded, then
load in ram:err/file.err, overwriting any previously loaded version, then
put the cursor back to the previously active view. This line ensures that
the needed source file is loaded, without losing any changes, and it ensures
that the most recent error file is loaded, overwriting changes if necessary.

See also:
Command line options

CygnusEd_Manual 61/ 141

1.154 Command line options

Command line options

When running CygnusEd there are a number of command line options that
you can specify to alter its behaviour. All of these can also be used if you
are using Ed, the CygnusEd invoker, to run CygnusEd. Some of the options
don’t make sense if you are using Ed to pass new file names to an already
running copy of CygnusEd, and are therefore ignored. However we recommend
that you always use Ed to run CygnusEd and to load files into CygnusEd,
because that way you never need to worry about whether CygnusEd is already
running or not.

If you use the command line options below with ’'Ed’ then they will only
have an effect if CygnusEd has not yet been loaded into memory. If CygnusEd
has already been loaded into memory they will be ignored. These options can
be specified together with file names, except for -r.

If you use CygnusEd on a regular basis you will probably want to put it
into your user-startup script so that CygnusEd is automatically run for you
each time you reboot your Amiga. Normally when you run CygnusEd its screen
immediately opens up, but that is probably not what you want when running
CygnusEd from the user-startup script. The '-r’ option tells CygnusEd to run
but to go immediately into dormant mode - ’'R’esident mode. This means that
CygnusEd has loaded in and is ready to start editing on a seconds notice,
but has not yet opened its screen. You can make CygnusEd appear either by
typing the [Alt]+[Shift]+Return hot-start sequence, or by using Ed to wake up
CygnusEd, and possibly pass in the names of some files to be loaded. If you

specify some file names on the same command line as the ’'-r’ option then
CygnusEd ignores the ’'—-r’ option, opens the screen and displays the files.
—-keepio

Normally when you run CygnuskEd from a CLI it disconnects itself
completely from the CLI, allowing you to close the CLI at any point.
Normally this is what you want. However it means that if you run any DOS
commands from within CygnusEd, a new CLI window will have to be opened up to
display the output of the commands. If you would prefer that the output of
DOS commands run from CygnusEd go to the CLI that CygnusEd was started from,
specify the ’"-keepio’ option when first running CygnusEd. The ’-keepio’
option can be used with the Ed command, but will only have an effect if
CygnusEd has not yet been run - once CygnusEd has detached itself from the
CLI it can never reattach itself. If you use the ’'-keepio’ command then the
CLI that CygnusEd was run from can not be close until CygnusEd exits
completely.

—pubscreen=

CygnusEd_Manual 62 /141

CygnusEd can be made to open up on a public screen by using the
environment menu and then saving the environment. However if you want to be
able to specify what public screen CygnusEd should open up on when you run
CygnusEd, you can use the ’'-pubscreen=’ command. The name of the public
screen that you want CygnusEd to use should appear directly after the equals
sign, with no intervening spaces. Case may be significant, depending on what
version of AmigaOS you are running.

PORTNAME=

This option allows you to override the name of the ARexx port
CygnusEd should use instead of the default.

SETTINGS=

By default, CygnusEd tries to read three settings files (ceddefaults,
cedmacros and RexxCommands) first from the current directory, then it looks
into "S:’. With this option you can tell the program which defaults file to
read, CygnusEd will then look for the remaining two settings files (cedmacros
and RexxCommands) in the same directory.

See also:
Ed - the CygnusEd invoker

1.155 ARexx

ARexx
DOS/ARexx interface

One of the things that makes the Amiga an extremely powerful and
versatile computer is its support of a common scripting language which is
designed to handle communication between multiple programs. CygnusEd has a
powerful ARexx interface which allows it to control other programs, be
controlled by other programs, or it allows you to control it more precisely,
by writing your own complex macros in ARexx and executing them from within
CygnusEd. By executing these ARexx scripts from within macros that can be
attached to any key, you can completely remap CygnusEd’s keyboard. Some
people have even gone to the extreme of using ARexx and CygnusEd to
implement small databases or data entry programs.

This portion of the documentation assumes some familiarity with ARexx
programming. Although it is possible to figure out how to write ARexx
programs for CygnusEd just by reading this documentation, and by looking at
the sample ARexx scripts, it is much easier if you get a copy of one of the
excellent ARexx programming manuals.

ARexx 1is a powerful scripting language that has been almost universally
adopted on the Amiga. It allows different programs to talk to each other and
it allows the end user to add new features to programs that the original
authors never thought of.

CygnusEd was one of the first applications to contain an ARexx
interface. CygnusEd’s ARexx interface is very powerful and lets you attach

CygnusEd_Manual 63/ 141

ARexx scripts and DOS commands to any key on the keyboard. These scripts, or
other scripts, can then control CygnusEd, or other programs.

CygnusEd’s ARexx commands are, by and large, the very same commands
which you see in the menus. Exactly the same wording as what you see. For
instance, to clear the current file:

CLEAR

To save the current file under a new name:

SAVE AS NewName.txt

As you can see, ARexx programming for CygnusEd needn’t be difficult.

When specifying menu commands from ARexx, case is not important.
Keyboard shortcuts, such as [Amigal+A, or [Ctrl]+Esc, should not be specified.
Neither should the ellipses, which indicate that requesters will appear.

If you wish to send commands to CygnusEd from a script that was run from
CygnusEd then you don’t need to worry about the name of CygnusEd’s ARexx
message port - your commands will automatically be sent to it. However, if
you want to invoke your scripts from outside of CygnusEd, you need to be
able to tell ARexx whom you want to talk to. The default port name for
CygnusEd is ’'CYGNUSED’ . For compatibility with older ARexx scripts, the older
naming scheme ’'rexx_ced’..’rexx_ced9’ 1is still supported, though. If you use
the older naming scheme you must be very careful to enclose the port name in
quotes, or else ARexx will upper case it and communication will fail. If
multiple copies of CygnusEd are run, the additional port names will be of the
form 'CYGNUSED.1’, ’"CYGNUSED.2’, etc. Invoke the About command to see the
current port name.

Results are returned from ARexx programs in the Result variable. However
this is only done if you have enabled returning of results with the "OPTIONS
RESULTS’ ARexx command. Additionally, if an error occurred in a command then
the RC variable will be set, and Results will be undefined.

If you wish to add a new command to CygnusEd, by making an ARexx command
that can be executed from within CygnusEd, one way is by using the ’'Install
DOS/ARexx command’ command. To use this command, select it from the Special,
DOS/ARexx Interface menu, choose a command slot number from one to ten, then
enter the name of the ARexx command. The advantage to this method is that
the ARexx command actually gets added to the menus. Don’t forget to save
your ARexx command definitions afterwards.

The other way allows you to attach an ARexx script to any key on the
keyboard. Begin by defining a macro attached to the desired key. Then use
the ’Send DOS/ARexx command’ command to send the desired command. You will
be asked whether you want the contents of the requester added to the macro -
say yes, and end the macro definition. Don’t forget to save your macros
afterwards.

Many of the commands in CygnusEd’s menus bring up requesters. Obviously
an ARexx script isn’t much use if it can’t fill in the values required by
those requesters without bothering the user. CygnusEd’s ARexx interface
allows you to respond to these requesters in a simple, orthogonal way. All
file requesters are responded to identically. All yes/no requesters are

CygnusEd_Manual

64 /141

responded to identically, and so on. Any time you choose not to supply data
for a requester, the requester will come up. If there is a situation where a
requester may or may not come up it is best to always supply data for the
requester, as it will be ignored if not needed.

Some commands will bring up two requesters, such as the open command
when the current file is changed, is non-zero in length and has no other
views. In this case a yes/no requester will come up asking if it’s okay to
proceed and lose changes. If this is answered yes to then a file requester
will appear, asking for the new file name. If you detect this condition in
ARexx you can invoke the Open command like this:

OPEN 1 'ram:newfile.txt’

Note that if you do this when the above conditions do not apply then the
yes/no requester will not be called and the "1’ will be used for the new
file name - generally not what you want.

Yes/no and ’okay’ requesters:

The response to these requesters can be given by putting either ’'1’ or
"0’ after the command’ ’'1l’ means yes, ‘0’ means no. Either response is legal
for a single gadget ’okay’ requester.

Filename and directory name requesters:

Commands, such as Open, Save as, etc., that require a file name should
simply have the file name, typically enclosed in quotes after the command
name. For instance:

SAVE AS ’'ram:file.txt’

Numeric requesters:

Numeric requesters, brought up by such commands as ’ENTER ASCII’, should
be supplied with a numeric argument in the legal range for that particular
command. For instance:

ENTER ASCII 10

String requesters:

String requesters, brought up by such commands as ’SET ICON TOOL NAME’
should be supplied with the desired string, typically enclosed in quotes.
For instances:

SET ICON TOOL NAME ’'C:ed’

Font requesters:

If you wish to change CygnusEd’s font from an ARexx script you can use
the 'SELECT DISK FONT’ command. Simply follow the command with the name and
size of the desired font. For instance:

SELECT DISK FONT emerald.font 12

Search/replace requesters:

CygnusEd_Manual

65/ 141

Search data needs to be supplied for the ’SEARCH FOR’ command. The
" SEARCH FOR’ command can be specified with no arguments, in which case the
search requester will appear. It can be specified with Jjust a string to
search for, or it can be specified with a string and five boolean
parameters. The five booleans, which must be specified in order as either 1
or 0, control the four check boxes in the search/replace requester. They
are, 1in order - case sensitivity, wild cards, forwards/backwards, only
words. For instance:

SEARCH FOR
SEARCH FOR "Hello"
SEARCH FOR "Hello" 1 0 1 1

The first variation brings up the search requester. The second variation
searches for the string Hello, using the current search flags. Note the
quotes to prevent ARexx from upper casing the string. The third wvariation
searches for Hello after setting the flags to: case insensitivity on, wild
cards off, forwards on and only words on.

The replace command has a similar syntax, with four different
variations:

REPLACE

REPLACE "Hello" "Goodbye"

REPLACE "Hello" "Goodbye™ 1 0 1 1
REPLACE "Hello" "Goodbye" 1 0 1 1 1 t

The first variation brings up the replace requester. The second
variation will search for the first instance of "Hello" and replace it with
"Goodbye", using the current search flags. The third variation is the same
as the second except that it specifies the search flags. The fourth
variation specifies 't’ for ’'turbo’ replace. This allows you to do a global
replace in one command. The other option for where the ’'t’ is is ’'g’ for
"global’ replace. Note: When specifying the "t’ or ‘g’ option you MUST
specify a fifth boolean variable and it MUST be 1.

1.156 Detailed ARexx reference

The general rules

Two general rules apply to all CygnusEd ARexx commands. These are:
1. All commands set RC and RESULT as indicated above.

2. All commands are case-insensitive. However, arguments
may be case sensitive

If a command normally brings up one of the information requesters (like the
"All macro definitions cleared" message after using the "CLEAR DEFINITIONS"
command) or one of the notify or response requesters (like the "n changes
have been made to file. They will be lost. Ok to continue" that shows up if
you try to exit without saving), you can get ARexx to respond to the
requester for you.

CygnusEd_Manual 66 / 141

If you put a 1 (for yes) or a 0 (for no) after the command that will
normally bring up the requester, the 1 or 0 will make the requester not
appear, and CygnusEd will act as if you hit the corresponding button.

Therefore, if you want to CLEAR the current file and you don’t care if you
lose any changes, go like this:

CLEAR 1

Creative quoting

ARexx always strips at least one set of quotation marks from all strings.
Therefore, in order to provide for the proper treatment of strings with
imbedded spaces, some creative quoting may be needed.
For example:

GETFILENAME ’"Default name"’ ’"The Title"’

This sends "Default Name" and "The Title" to CED.

ARexx variables which might have imbedded spaces in their contents must be
handled carefully. For example:

TheName = "The FileName"
TheTitle = "The Title"
GETFILENAME ' "’ TheName’"’ ’"’/TheTitle’"’

This makes sure that ARexx gets to strip off a set of gquotation marks,
causes its variables to be replaced with their contents, and still provides
for a set of quotation marks around the resulting strings.

ARexx command reference

The following list contains those ARexx commands whose functionality has
not already been covered by the menu descriptions. Every single menu command
is also available from ARexx: just enclose its label in quotes as in
"shift in marked’. So if you find something missing in the following list,
look up the menu descriptions.

ACTIVATE NEXT CED

ADJUST COLOURS

AUTO-EXPAND VIEWS

AUTO-INDENT

BACKSPACE

BACKTAB

BACKUP TO =.BAK

CygnusEd_Manual

67 /141

BCK SPC WORD

BEG OF FILE

BEG OF LINE

BEG OF SCREEN

BEG/END DEFINITION

BLOCK TO SEARCH BUFFER

CEDTOBACK

CEDTOFRONT

CENTER CURSOR

CENTER LINE

CHANGE CASE BLOCK

CHANGE CASE LETTER

CHANGE CASE MARKED

CHANGE CASE WORD

CHANGE CURRENT DIRECTORY

CHANGES

CHECK FILE

CLEAR

CLEAR DEFINITIONS

CLIP TO SEARCH BUFFER

COPY

COPY BLOCK

CUSTOMIZE TABS

CUT

CUT BLOCK

CYCLE COLOURS

DEFAULT

DELETE

DELETE LINE

CygnusEd_Manual

68 /141

DELETE TO EOL

DELETE WORD

DM

DOWN

DOWN 12 LINES

EDITABLE FILE

END OF FILE

END OF LINE

END OF SCREEN

ENTER ASCII

EOLS VISIBLE

ESC CODES VISIBLE

EVERY N MIN

EXPAND VIEW

FIND MATCHING BRACKET

FORCE CUSTOM SCREEN

FORWARDTAB

GETCHAR

GETDIRNAME

GETFILENAME

GETLINE

GETNUMBER

GETSTRING

GETWORD

GROW VIEW

HOT-START ENABLED

ICON CREATION

INCLUDE FILE

CygnusEd_Manual 69 /141

INHERIT

INSERT BLOCK

INSERT MODE

INSTALL DOS/AREXX COMMAND

JUMP TO AUTO-MARK

JUMP TO BYTE

JUMP TO FILE

JUMP TO LINE

JUMP TO MARK

JUMPTO

KEYPAD = MOVEMENT

LASTKEY

LAYOUT

LEFT

LEFT 12 CHARS

LL

LOAD DEFINITIONS

LOAD DOS/AREXX COMMANDS

LOCKGUI

LOWER CASE WORD

MARK

MARK BLOCK

MARK COLUMNAR

MARK COLUMNAR BLOCK

MARK LOCATION

MAX SCROLL

MAX UNDO LEVELS

MAX UNDO MEMORY

MENU

CygnusEd_Manual

70/141

NEXT VIEW

NEXT WORD

NO SCROLL BAR

OKAY1

OKAY2

ON/OFF

OPEN

OPEN NEW

oW

PAGES

PASTE

POST PERIOD SPACES

PREV WORD

PREVIOUS VIEW

PRINT BLOCK

PRINT CLIP

PRINT FILE

PRIORITY

PUBSCREEN

QUIT

QUIT & DIE

RAWKEY

REDO

REPEAT KEY/MENU

REPEAT REPLACE

REPEAT SEARCH BACKWARDS

REPEAT SEARCH FORWARDS

REPLACE

CygnusEd_Manual

71/141

RESET ALIAS

RIGHT

RIGHT 12 CHARS

ROT BLOCK

ROT MARKED

RX

SAFE SAVES

SAVE

SAVE ALL CHANGES

SAVE AS

SAVE BLOCK TO FILE
SAVE CLIP AS

SAVE DEFINITIONS

SAVE DOS/AREXX COMMANDS
SAVE ENVIRONMENT
SCREEN HEIGHT

SCREEN WIDTH

SCROLL BAR ON LEFT
SCROLL BAR ON RIGHT
SEARCH FOR

SELECT DISK FONT

SEND DOS/AREXX COMMAND
SEND DOS/AREXX OUTPUT TO
SET CLIPBOARD UNIT

SET ICON TOOL NAME

SET PRIORITY

SET RIGHT BORDER

SET

SET

SCREEN SIZE AND TYPE

SCROLL BORDERS

CygnusEd_Manual

72 /141

SET SCROLL JUMP

SET TIMER

SETSCREEN

SHOW ASCII VALUES

SHRINK VIEW

SIMPLE SAVES

SPACES VISIBLE

SPAWN NEW CED

SPECIFY

SPLIT VIEW

STATUS

STRIP CR BLOCK

STRIP CR MARKED

TAB SIZE

TABS = SPACES

TABS VISIBLE

TEXT

TOPAZ 60 COLUMN

TOPAZ 80 COLUMN

UNBCK SPC WORD

UNDELETE LINE

UNDELETE WORD

UNDO

UNLOCKGUI

UP

UP 12 LINES

UPPER CASE WORD

USE WBENCH COLOURS

CygnusEd_Manual

73 /141

VERSION
WITH FILL
WITHOUT FILL

WORD WRAP

1.157 ACTIVATE NEXT CED

Syntax: ACTIVATE NEXT CED

This command brings the next spawned copy of CED, if one exists, to the
front of all other screens or windows and makes it active.

If there are multiple copies of CED running, issuing the ACTIVATE NEXT CED
via ARexx will return the ARexx port name of this next copy of CED in the

RESULT variable. Otherwise, RESULT will be set to 0.

Result: ARexx port of next copy of CED
0 if no other copy could be found

1.158 ADJUST COLOURS

Syntax: ADJUST COLOURS
This command will display the colour requester for you to change the
screen’s colour scheme. There is currently no way to specify colours from

ARexx.

Result: always 1

1.159 AUTO-EXPAND VIEWS

Syntax: "AUTO-EXPAND VIEWS"

This command will toggle the status of the "Auto-Expand Views?" mode.

Note that the quotes around the command are necessary due to the hyphen in
the command name. Failure to place this command in quotes will result in an

ARexx syntax error.

You can query the current state of the toggle using the "STATUS AUTOEXPAND"
command.

Result: 1 if auto-expand view mode is switched on
0 if auto-expand view mode is switched off

CygnusEd_Manual

74 /141

1.160 AUTO-INDENT

Syntax: "AUTO-INDENT"

This command simulates typing Shift+Return.

Note that the quotes around the command are necessary due to the hyphen in
the command name. Failure to place this command in quotes will result in an

ARexx syntax error.

Result: always 1

1.161 BACKSPACE

Syntax: BACKSPACE

This command is the same as pressing the Backspace key. It will move the
text cursor one character to the left deleting the character that was there.

Result: always 1

1.162 BACKTAB

Syntax: BACKTAB
This command is requivalent to [Ctrl]+[Alt]+Left. It will move the text cursor
left to the next tab stop. The text cursor will not move off the current

line.

Result: always 1

1.163 BACKUP TO *.BAK

Syntax: "BACKUP TO =x.BAK"

This command enables "Backup to x.bak" mode. Note that this command must
always be enclosed in quotation marks because of the embedded asterisk.

You can find out which file save method is currently being employed by using
"STATUS SAFESAVES". This ARexx command will return an integer ranging
between 0 and 2 corresponding to which type of file saving will be
performed.

Result: always 1

CygnusEd_Manual 75/ 141

1.164 BCK SPC WORD

Syntax: BCK SPC WORD

This command will execute the equivalent of [Ctrl]+Backspace and will delete
the word to the left of the cursor.

Result: always 1

1.165 BEG OF FILE

Syntax: BEG OF FILE
This command moves the cursor to the beginning of the current file

Result: always 1

1.166 BEG OF LINE

Syntax: BEG OF LINE
This command moves the cursor to the beginning of the current line.

Result: always 1

1.167 BEG OF SCREEN

Syntax: BEG OF SCREEN
This command moves the cursor to the top of the current scrolling area.

Result: always 1

1.168 BEG/END DEFINITION

Syntax: None

Due to changes in the way macros are defined, this command is not supported
anymore through ARexx. There is no other equivalent ARexx command.

1.169 BLOCK TO SEARCH BUFFER

CygnusEd_Manual

76 /141

Syntax: BLOCK TO SEARCH BUFFER

This command is simimlar in function to the newer "CLIP TO SEARCH BUFFER"
command, but has been preserved for compatibility with scripts created with
previous versions of CED. Please consult the "CLIP TO SEARCH BUFFER" command

for specific information.

Result: always 1

1.170 CEDTOBACK

Syntax: CEDTOBACK
If CED is running as a window on the Workbench, its window will be pushed
behind all other windows on the screen. If CED is running on its own screen,

its screen will be pushed behind all other screens.

Result: always 1

1.171 CEDTOFRONT

Syntax: CEDTOFRONT
If CED is running as a window on the Workbench, its window will be brought
to the front and activated. If CED is running on its own screen, its screen

will be brought to the front and activated.

Result: always 1

1.172 CENTER CURSOR

Syntax: CENTER CURSOR
This command scrolls the current line to the center of the view.

Result: always 1

1.173 CENTER LINE

Syntax: CENTER LINE

This command horizontally centers the current line within the current left
and right borders

Result: always 1

CygnusEd_Manual 77 / 141

1.174 CHANGE CASE BLOCK

Syntax: CHANGE CASE BLOCK

This command is similar in fucntion to the newer "CHANGE CASE MARKED"
command, but has been preserved for compatiblity with scripts created with
previous versions of CED. Please consult the "CHANGE CASE MARKED" command

for specific information.

Result: always 1

1.175 CHANGE CASE LETTER

Syntax: CHANGE CASE LETTER
This command inverts the case of the character underneath the text cursor.

Result: always 1

1.176 CHANGE CASE MARKED

Syntax: CHANGE CASE MARKED

This command inverts the case of each letter in the currently
defined block.

Result: 0 if block is defined
1 if no block is defined

1.177 CHANGE CASE WORD

Syntax: CHANGE CASE WORD

This command invertes the case of each letter in the word underneath and to
the right of the text cursor.

Result: always 1

1.178 CHANGE CURRENT DIRECTORY

Syntax: CHANGE CURRENT DIRECTORY
CHANGE CURRENT DIRECTORY directoryname

The first form will cause a directory requester to appear for you to select
a new current director.

The second form will cause CED to change its current directory to the named

CygnusEd_Manual

78 /141

directory without putting up any requester.

You can use the "STATUS CURRENTDIR" command to query the value of the
current directory.

Result: 1 if current directory was changed
0 if current directory was not changed

1.179 CHANGES

Syntax: CHANGES

This command will cause the alternate status line to be displayed and set to
the "changes" style.

Result: always 1

1.180 CHECK FILE

Syntax: CHECK FILE filename

This command will determine if a given file (you should specify the full
path to the file, in addition to the actual name of the file, in filename)
is loaded into one of CED’s views.

This command goes well with the "OW" command. Pass "CHECK FILE" a filename
and if the file is in the editor, it will activate its view; if it isn’t,
then it will try to load the file.

Result: 1 if file is loaded
0 if file is not loaded

1.181 CLEAR

Syntax: CLEAR
CLEAR O
CLEAR 1

The first form will cause the "CLEAR" command to be executed on the current
view. If the execution of the command generates a requester, the user will
have to answer the requester manually.

The second form will cause the "CLEAR" command to be executed on the current
view. If the execution of the command would have generated a requester, the
requester 1is automatically anwered with a negative response and the clear
operation is cancelled. No requester will actually be shown.

The third form will cause the same effect as the second form, except that a
positive response will be given.

CygnusEd_Manual

79 /141

Result: 1 if view was cleared
0 if view was not cleared

1.182 CLEAR DEFINITIONS

Syntax: CLEAR DEFINITIONS
This command erases all macro definitions currently defined.

Result: always 1

1.183 CLIP TO SEARCH BUFFER

Syntax: CLIP TO SEARCH BUFFER

This command copies the contents of the current clipboard unit to the search
buffer.

Result: 1 if search buffer was updated
0 if the clipboard was empty.

1.184 COPY

Syntax: COPY

This causes the paste buffer to assume the contents of the block currently
being defined. The block in the text is not disturbed. If no block is
currently being defined when this command is executed, then the contents of

the paste buffer is undisturbed.

Result: 1 if the block was copied to the clipboard
0 if no block was defined

1.185 COPY BLOCK

Syntax: COPY BLOCK
This command is similar in function to the newer "COPY" command, but has

been preserved for compatibility with scripts created with previous versions
of CED. Please consult the "COPY" command for specific information.

1.186 CUSTOMIZE TABS

CygnusEd_Manual

80/ 141

Syntax: CUSTOMIZE TABS
CUSTOMIZE TABS tab_settings

The first form causes the "customize tabs" requester to appear soliciting a
new set of tab stops.

The second form causes the new tab stops to be taken from the supplied
string which is composed of either dashes (where no tab stop is desired) or

with "T"s (where tab stops are desired).

You can receive a string composed of dashes and "T"s by executing "STATUS
TABS".

Result: always 1

1.187 CUT

Syntax: CUT

This causes the paste bufer to assume the contents of the block currently
being defined. The block itself is deleted from the text. If no block is
currently being defined when this command is executed then the contents of
the pase buffer are undisturbed.

Result: 1 if the block as cut to the clipboard
0 if no block was defined

1.188 CUT BLOCK

Syntax: CUT BLOCK

This command is similar in function to the newer "CUT" command, but has been
preserved for compatibility with scripts created with previous versions of
CED. Please consult the "CUT" command for specific information.

1.189 CYCLE COLOURS

Syntax: CYCLE COLOURS

This command will cause the values of the four colour registers used by CED
to interchange amongst themselves in a way which only author of CED
understands. Suffice to say, however, that if you do this command 24 times
you get back to the original combination of four colours.

Result: 1 if colours were cycled
0 if colours cannot be cycled

CygnusEd_Manual 81/141

1.190 DEFAULT

Syntax: DEFAULT
This command will cause the default name (with a base name of
"S:CEDDefaults") based on the current view’s filename extension to be

loaded.

Result: always 1

1.191 DELETE

Syntax: DELETE

This command is the same as pressing the Del key. It will erase the
character to the right of the text cursor.

Result: always 1

1.192 DELETE LINE

Syntax: DELETE LINE
This command will remove the current line and place it in the line buffer.

The contents of the global line buffer can be read from ARexx using the
command "STATUS DELETELINEBUFFER".

Result: always 1

1.193 DELETE WORD

Syntax: DELETE WORD

This will execute the equivalent of [Ctrl]+Del and will delete the word to the
right of the cursor.

Result: always 1

1.194 DELETE TO EOL

Syntax: DELETE TO EOL

This command will delete the text from the cursor position to the end of the
current line and place it in the line buffer.

The contents of the global line buffer can be read from ARexx using the

CygnusEd_Manual

82/141

command "STATUS DELETELINEBUFFER".

Result: always 1

1.195 DM

Syntax: DM
DM message

The first from resets CED’s title bar to the default message (i.e. the
program’s name, version number and copyright notice).

The second form displays the specified message in CED’s title bar.

This command is directly compatible with the commands used in SAS/C’s scmsg
program.

Result: 1 if message was displayed/reset
0 if message was not displayed/reset

1.196 DOWN

Syntax: DOWN

This command is the same as pressing the cursor down key. It will move the
text cursor down within the same column if possible.

Result: always 1

1.197 DOWN 12 LINES

Syntax: DOWN 12 LINES
This command will move the text cursor down 12 lines, or as far as possible
if less than 12 lines exist between the current line and last line in the

file.

Result: always 1

1.198 EDITABLE FILE

Syntax: EDITABLE FILE

This command will set the RESULT variable to a boolean value indicating the
new state of the toggle.

You can query the state of the "Editable file?" flag by using the Arexx

CygnusEd_Manual

83 /141

command "STATUS EDITABLE".

Result: 1 if file is made editable
0 if file is made uneditable

1.199 END OF FILE

Syntax: "END OF FILE"
This command will move the cursor to the last cursor position in the file.
Note that the quotation marks are required because "END" is a keyword in

ARexx.

Result: always 1

1.200 END OF LINE

Syntax: "END OF LINE"
This command will move the cursor to the rightmost position of the current
line. Note that the quotation marks are required because "END" is a keyword

in ARexxXx.

Result: always 1

1.201 END OF SCREEN

Syntax: "END OF SCREEN"
This command moves the cursor to the ottom of the current scrolling area.
Note that the quotation marks are required because "END" is a keyword in

ARexx.

Result: always 1

1.202 EOLS VISIBLE

Syntax: EOLS VISIBLE

This command toggles the state of the "EOLs visible?" menu subitem.

From ARexx the state of the toggle can be queried using "STATUS VISIBLEEOL".

Result: 1 if eols vislble mode is switched on
0 if eols vislble mode is switched off

CygnusEd_Manual

84 /141

1.203 ENTER ASCII

Syntax: ENTER ASCII
ENTER ASCII n

The first form will cause the CED numeric requester to appear to solicit the
decimal value of the character you wish so insert.

The second form will enter the ASCII equivalent of the decimal value n. No
requester will appear.

Result: 1 if value was entered
0 if value was not entered

1.204 ESC CODES VISIBLE

Syntax: ESC CODES VISIBLE
This command toggles the state of the "ESC codes visible?" menu subitem.
From ARexx the state of the toggle can be queried using "STATUS VISIBLEESC".

Result: 1 if esc codes visible mode is switched on
0 if esc codes visible mode is switched off

1.205 EVERY N MIN

Syntax: EVERY N MIN

This command toggles on and off whether or not you will be reminded to save
your work every n minutes.

Result: 1 if auto-save timer is switched on
0 if auto-save timer is switched off

1.206 EXPAND VIEW

Syntax: EXPAND VIEW

This command attempts to enlarge the current view’s visible size to its
maximum size.

Result: always 1

1.207 FIND MATCHING BRACKET

CygnusEd_Manual 85/ 141

Syntax: FIND MATCHING BRACKET

This command will attempts to find a corresponding token for the token
underneath the cursor.

Result: 1 if a matching token exists

0 if no matching token exists
-1 if no token is under the text cursor

1.208 FORCE CUSTOM SCREEN

Syntax: None

Due to changes in the way screens are invoked, this command is not supported
anymore through ARexx. Please use either the "SET SCREEEN SIZE AND TYPE" or
"SETSCREEN" command instead.

1.209 FORWARDTAB

Syntax: FORWARDTAB

This command is the same as pressing [Ctrl]+[Alt]+Right. It will move the text
cursor forward to the next tab position. It will not move the text cursor
beyond the current end of line nor will it move the text cursor to the next
line.

Result: always 1

1.210 GETDIRNAME

Syntax: GETDIRNAME
GETDIRNAME defaultdir
GETDIRNAME defaultdir title

The first form displays a directory requester from which a directory can be
selected. No default directory is given.

The second form displays a directory requester with the contents of the
given ‘defaultdir’ directory shown.

The third form displays a directory requester with the contents of the given
‘defaultdir’ directory shown and the text ‘title’ in the requester’s title
bar.

Result: name of selected directory, if one was selected
blank or RESULT if no directory was selected

CygnusEd_Manual

86 /141

1.211 GETFILENAME

Syntax: GETFILENAME
GETFILENAME defaultname
GETFILENAME defaultname title

This command allows you to use the CED file requester to solicit file names
for your own purposes.

The first form displays a file requester from which a file can be selected.
No default filename is given.

The second form displays a file requester with the specified file
defaultname) as the default filename. The default directory will be CED’s
idea of the current directory (see "CHANGE CURRENT DIRECTORY") if the
specified filename does not contain any contrary path information.

The third form displays a file requester with the specified file
(defaultname) as the default filename. The file requester has text, as
defined by title, on its title bar. The default directory will be CED’s idea
of the current directory (see "CHANGE CURRENT DIRECTORY") if the specified

filename does not contain any contrary path information.

Result: selected filename, including path if file was selected
blank or RESULT if file was not selected

1.212 GETNUMBER

Syntax: GETNUMBER [default [[title] [[min] [max]]]]

This command gives access to CED’s numeric requester. Depending on how many
parameters you provide, input will be collected differently:

default - Default value displayed in the requester

title - The requester title to display, this must be the
second parameter if any.

min - Minimum acceptable value to be entered, this must be
the third parameter if any.

max — Maximum acceptable value to be entered, this must be
the fourth parameter if any.

Result: entered number
blank, if requester was cancelled

1.213 GETSTRING

Syntax: GETSTRING [[default value] [default title]]

This command gives access to CED’s text requester. Depending on how many

CygnusEd_Manual 87 /141

parameters you provide, input will be collected differently:

No parameter - Displays the text requester with a default
title and no default value.

default value - Displays the text requester with the given
value and a default title.

default title - Displays the text requester with the given
value and the given title; this must be the

second parameter if any.

Result: entered text
blank or RESULT if requester was cancelled.

1.214 GETWORD

Syntax: GETWORD
This command retrieves the word under the cursor. If the cursor is above a
whitespace character (space, tab, carriage return) a NULL string is

returned.

Result: word under the cursor
0 if there is no word under the cursor

1.215 GETLINE

Syntax: GETLINE

This command retrieves the contents of the entire line under the cursor.
If the line is empty, an empty string will be returned. Please note that
the line does not include the terminating ’"end of line’ character (e.g.

line feed, carriage return).

Result: contents of line under the cursor

1.216 GETCHAR

Syntax: GETCHAR
This command retrieves the character under the cursor. If the cursor is
above the end of the file or a NULL character, a blank string will

be returned.

Result: word under the cursor

CygnusEd_Manual 88/ 141

1.217 GROW VIEW

Syntax: GROW VIEW
This command attempts to enlarge the current view by one line.

Result: 1 if view was changed in size
0 if view did not change in size

1.218 HOT-START ENABLED

Syntax: "HOT-START ENABLED"

This command toggles the state of the "Hot-start enabled?" menu item.

Note that the quotes around the command are necessary due to the hyphen in
the command name. Failure to place this command in quotes will result in an

ARexx syntax error.

You can query the current state of the toggle using the "STATUS
KEEPRESIDENT" command.

Result: 1 if Hot-start enabled mode is switched on
0 if Hot-start enabled mode is switched off

1.219 ICON CREATION

Syntax: ICON CREATION

This command toggles the state of the "Icon creation?" menu item.

You can query the current state of the toggle using the "STATUS
ICONCREATION" command, which will return a value of 1 if icon creation is

enabled.

Result: 1 if icon creation mode is switched on
0 if icon creation mode is switched off

1.220 INCLUDE FILE

Syntax: INCLUDE FILE
INCLUDE FILE filename

The first form causes the file requester to appear to solicit the file to be
inserted.

The second form causes CED to attempt to insert the named file.

Result: 1 if the file was included
0 if the file was not included

CygnusEd_Manual 89/ 141

1.221 INHERIT

Syntax: INHERIT

This command cuases CED to be set to the state where it will take its
process priority from the task that invoked it.

Result: always 1

1.222 INSERT BLOCK

Syntax: INSERT BLOCK
This command is similar in function to the newer "PASTE" command, but has
been preserved for compatibility with scripts created with previous versions

of CED. Please consult the "PASTE" command for specific information.

Result: always 1

1.223 INSERT MODE

Syntax: INSERT MODE
This command toggles the state of the "Insert Mode?" menu item.

Result: 1 if insert mode is switched on
0 if insert mode is switched off

1.224 INSTALL DOS/AREXX COMMAND

Syntax: "INSTALL DOS/AREXX COMMAND"
"INSTALL DOS/AREXX COMMAND" n
"INSTALL DOS/AREXX COMMAND" n command

The first form causes a requester to appear for your manual dispatching.
Note that the quotation marks around the command are significant due to the
presence of the "/" in the command.

The second form displays a requester allowing you to enter a command for
function key n.

The third form binds the command string specified by command to the function
key n.

Result: 1 if the command was installed
0 if the command was not installed

CygnusEd_Manual 90/ 141

1.225 JUMP TO AUTO-MARK

Syntax: "JUMP TO AUTO-MARK"
This command moves the cursor to the current auto-mark.

Note that the quotation marks are necessary due to the embedded hyphen in
the command string.

The current location of the current view’s auto-mark can be found with the
following commands:

STATUS AUTOMARKY

this will return the line number pointed to by
the "auto-mark".

STATUS AUTOMARKX

this will return the column number pointed to
by the "auto-mark".

Result: always 1

1.226 JUMP TO BYTE

Syntax: JUMP TO BYTE
JUMP TO BYTE n

The first form causes the numeric requester to appear to solicit the desired
destination byte number.

The second form automatically moves the cursor to the specified byte n
without opening a requester.

Result: always 1

1.227 JUMP TO FILE

Syntax: JUMP TO FILE filename

This command moves the cursor to a specific on-screen view. This can be
quite handy in a large number of ways.

If a view is present which corresponds to the file given infilename, that
view will be made the current view.

Result: 1 if the named view was found
0 if the named view was not found

CygnusEd_Manual

91 /141

1.228 JUMP TO LINE

Syntax: JUMP TO LINE
JUMP TO LINE n

The first form causes the numeric rquester to appear to solicit the desired
destination line number.

The second form automatically moves the cursor to the specified line n
without opening a requester.

Note that if you give a larger or smaller number, it will display a numeric
requester showing the current minimum and maximum line numbers.

Result: 1 if text cursor moved to the new location
0 if text cursor did not move

1.229 JUMP TO MARK

Syntax: JUMP TO MARK n

This command will cause the current text cursor position to be moved to the
location remembered in mark n.

The current values of the marks can be queried by the following ARexx status
commands .

Mark Line Column

1 status markyl status markxl
2 status marky2 status markx2
3 status marky3 status markx3

If a mark has not yet been set, it will contain an undefined value. Keep
this in mind when querying the values of the marks.

In addition to the three standard bookmarks, CED maintains a transient mark
called the auto-mark. The auto-mark is defined as the last position the
cursor was in before CED had to redraw an entire screen. If you were in the
middle of a large file and jumped far away due to an executed command such
as "SEARCH FOR" or "BEG OF FILE", then auto-mark would be defined as the
character position you were in before making the long distance Jjump.

Since the auto-mark is defined automatically, no command exists for setting
its value. You can instantly travel to the location of the auto-mark using
its built-in keyboard binding Amiga+4.

Result: 1 if command was successful
0 if command was not successful
1 or RESULT if given an invalid mark number

CygnusEd_Manual

92 /141

1.230 JUMPTO

Syntax: JUMPTO LINE column

This command is an extension to the "JUMP TO LINE" command found in the
"Move" menu that allows for the specification of a column number.

Result: always 1

1.231 KEYPAD = MOVEMENT

Syntax: "KEYPAD = MOVEMENT"

This command toggles the state of the "Keypad = Movement?" menu item.

Note that the quotes around the command are necessary to the the "=" in the
command name. Failure to place this command in quotes will result in an

ARexx variable named "KEYPAD" being assigned a NULL string.

You can query the state of "Keypad = Movement?" from ARexx using the command
"STATUS KEYPADMOVEMENT".

Result: 1 if keypad = movement mode is switched on
0 if keypad movement mode is switched off

1.232 LASTKEY

Syntax: LASTKEY

This command provides a rudimentary method of obtaining asynchronous user
input from an ARexx program. It will return the rawkey code of the last key
pressed by the user as well as its qualifier. Note that the qualifier value
must be adjusted before it can be used (by subtracting the number 32768).

Result: -1 if key was not pressed
Raw key code and qualifier as two numbers separated by a space
character

1.233 LAYOUT

Syntax: LAYOUT
This command toggles the state of the "Layout?" menu item.

Result: 1 if layout mode is switched on
0 if layout mode is switched off

CygnusEd_Manual 93/ 141

1.234 LEFT

Syntax: LEFT
This command is the same as pressing the cursor left key. It will move the
text cursor one position to the left. The text cursor will wrap to the

preceding line if necessary.

Result: always 1

1.235 LEFT 12 CHARS

Syntax: LEFT 12 CHARS

This command moves the text cursor 12 characters to the left of its current
position or to the beginning of the line, whichever ocurs first.

Result: always 1

1.236 LL

Syntax: LL line
LL line column

The first form moves the cursor to the specified line number.

The second form moves the cursor to the specified line and column number.
Line and column numbers start at 1.

This command is directly compatible with the commands used in SAS/C’s scmsg
program. Note that the rather strange syntax which scmsg defaults to,
whereby DM 1is specified at the end of the LL command line works with LL and

DM only.

Result: always 1

1.237 LOAD DEFINITIONS

Syntax: LOAD DEFINITIONS
LOAD DEFINITIONS filename

The first form causes the file requester to appear, soliciting the name of
the file from which to load a new set of macro definitions.

The second form causes CED to attempt to load a new set of macro definitions
from the file named filename. The file requester will not appear.

Result: 1 if macros were loaded
0 if macros were not loaded

CygnusEd_Manual

94 /141

1.238 LOAD DOS/AREXX COMMANDS

Syntax: "LOAD DOS/AREXX COMMANDS"
"LOAD DOS/AREXX COMMANDS" filename

The first form causes the CED file requester to appear for manual operation.
Note that quotation marks must surround the command since it contains an

embedded "/".

The second form will attempt to make CED load the named file. No requester
will appear.

Result: 1 if commands were loaded
0 if commands were not loaded

1.239 LOWER CASE WORD

Syntax: LOWER CASE WORD

This command switches the case of each letter in the word currently
underneath and to the right of the text cursor.

Result: always 1

1.240 MARK

Syntax: MARK

This command will cause a horizontal block definition to commence at the
current text cursor location.

Note that if a block was already in the process of being defined, the block
definition will be cancelled. In this respect, the command can be considered

to be a toggle.

Result: 1 if block operation was started
0 if block operation was stopped

1.241 MARK BLOCK

This command is similar in function to the newer "MARK" command, but has
been preserved for compatibility with scripts created with previous versions
of CED. Please consult the "MARK" command for specific information.

1.242 MARK COLUMNAR

CygnusEd_Manual

95 /141

Syntax: MARK COLUMNAR

This command will cause a vertical block definition to commence at the
current text cursor location.

Note that if a block was already in the process of being defined, the block
definition will be cancelled. In this respect, the command can be considered

to be a toggle.

Result: 1 if columnar block operation was started
0 if columnar block operation was stopped

1.243 MARK COLUMNAR BLOCK

This command is similar in function to the newer "MARK COLUMNAR" command,
but has been preserved for compatibility with scripts created with previous
versions of CED. Please consult the "MARK COLUMNAR" command for specific
information.

1.244 MARK LOCATION

Syntax: MARK LOCATION n

This command will cause the current text cursor position to be remembered as
mark n.

Result: 1 if position was marked
0 if location number was invalid

1.245 MAX SCROLL

Syntax: MAX SCROLL
MAX SCROLL n

The first form will cause the numeric requester appear for you to specify a
max scroll value.

The second form sets the max scroll value to be n. No requester will appear.

You can query the value of the max scroll distance using "STATUS
MAXSCROLLY".

Note that setting max scroll 1 to 1 effectively eliminates scrolling for all
screen updates, except single line scrolls. This tends to produce a great
deal of screen flashing since CED has to constantly redraw the entire
screen.

Setting max scroll to a huge number can also produce some very undesirable
results. For example, if it were set to 10000 and you wnted to move 5000

CygnusEd_Manual 96/ 141

lines away from the current position, you would scroll all the way there,
which could take a long time.

Result: 1 if scroll value was in range
0 if scroll value was not entered or out of range

1.246 MAX UNDO LEVELS

Syntax: MAX UNDO LEVELS
MAX UNDO LEVELS n

The first form will cause the numeric requester to appear soliciting the new
value for max undo levels.

The second for will cause max undo levels to be set to n. No requester will
appear.

Result: 1 if new undo level was set
0 if new undo level was not set

1.247 MAX UNDO MEMORY

Syntax: MAX UNDO MEMORY
MAX UNDO MEMORY n

The first form will cause the numeric requester to appear soliciting the new
value for max undo memory.

The second form will cause max undo memory to be set to n. No requester will
appear.

Result: 1 if new undo memory value was set
0 if new undo memory value was not set

1.248 MENU

This command exists solely for backwards compatibility with older CED
releases. It purpose was to invoke a menu item by specifying the menu, item
and subitem numbers. Since the contents of the menus and their arrangement
can change from one CED release to another, this command has been frozen to
use the menu ordering as used by CygnusEd Professional release 3.5.

1.249 NEXT VIEW

Syntax: NEXT VIEW

This command moves the cursor to the view below the current one.

CygnusEd_Manual

97 /141

Result: always 1

1.250 NEXT WORD

Syntax: NEXT WORD

This command moves the cursor to the beginning of the first word to the
right of the current cursor position.

Result: always 1

1.251 NO SCROLL BAR

Syntax: NO SCROLL BAR
This command removes the scroll bar from the current view.

The state of this command can be queried indirectly using the "STATUS
LEFTPROPGADG" and "STATUS RIGHTPROPGADG" ARexx commands.

Result: always 1

1.252 OKAY1

Syntax: OKAY1l text

This command provides access to CED’s notify requester. The notify requester
will present the supplied text along with a single button marked "Continue".

Note that the notify requester will generally appear near the present mouse
pointer position.

Multiple lines of text can be separated by line feed characters (denoted in
ARexx as '0A’'X).

Result: always 1

1.253 OKAY2

Syntax: OKAY2 text

This command provides access to CED’s response requester. This command will
present the supplied text along with two buttons marked "Ok" and "Cancel".

Note that the response requester will generally appear near the present
mouse pointer position.

CygnusEd_Manual 98 /141

Multiple lines of text can be separated by line feed characters (denoted in
ARexx as '0A'X).

Result: 1 if Ok was selected
0 if Cancel was selected

1.254 ON/OFF

Syntax: "ON/OFF"

This command toggles the status line between its standard and alternate
values. The quotation marks are necessary since the command contains an
embedded "/".

Result: 1 if status line is switched on
0 if status line is switched off

1.255 OPEN

Syntax: OPEN

OPEN O

OPEN 1

OPEN 0 filename
OPEN 1 filename
OPEN 1 filename 1

The first form will display a file requester to solicit a file to load. If
there are any outstanding changes made to the current view and there are no
other cooperating views open at the time, a response requester will appear
asking you if you are sure about opening up a new file without first saving
the changes in the current view. Then, the file requester will appear
soliciting a file to open.

The second form is similar to the first, but if there are any outstanding
changes made to this view nd there are no other cooperating views open at
the time, this command will abort and return a 0 result. No requesters will
appear. If there were no outstanding changes to the current view or there
wre cooprerating views open, then the file requester will appear soliciting
a file to open.

The third form is similar to the ones above, but the current view will be
cleared even if there are outstanding changes and there are no other
cooperating views. No response requester will be presented. Then, the file
requester will appear to solicit a file to open.

The fourth form is similar to the second form, but if there were no
outstanding changes to the current view or there were cooperating views
open, CED will attempt to open the named file (filename).

Note that this form or if the command has very little utility because if
there were no outstanding changes or there was at least one other

CygnusEd_Manual

99 /141

cooperating view, the file which would be opened would be named "O", not
"filename". This is because the 0 would be the first utilized argument since
there was no reason to bring up the response requester.

The fifth form is similar to the fourth form, except that the current view
will be cleared even if there are outstanding changes and tehre are no other
cooperating views. No response requester will be presented. Then, CED will
attempt to open the named file (filename).

Note that you should use this construction only if you are sure that calling
the open command would result in the response requester asking if you are
sure you want to sacrifice the unsaved changes in the current view.

The sixth form is similar to the fifth form, except that no response
requester will be presented. Then, CED will attempt to open the named file
(filename) .

Note that you should use this construction only if you are sure that calling
the open command would result in the response requester asking if you are
sure you want to sacrifice the unsaved changes in the current view and you
are sure that the supplied filename does not exist. Otherwise you are likely

to have a file called "1" opened.

Result: 1 if file was loaded
0 if file was not loaded

1.256 OPEN NEW

Syntax: OPEN NEW
This command causes a new empty view to be opened.

Result: 1 if new view was opened
0 if new view could not be opened

1.257 OW

Syntax: OW filename

This command puts the cursor into a view displaying the specified file. If
the file does not exist in a view, it will be loaded.

This command is directly compatible with the default commands used in
SAS/C’s scmsg program.

Result: 1 if the file was either loaded or its view made active
0 if the file was not loaded

1.258 PAGES

CygnusEd_Manual

100/ 141

Syntax: PAGES

This command will cause the alternate status line to be displayed and set to
the "pages" style.

Result: always 1

1.259 PASTE

Syntax: PASTE
This command will cause the contents of the clipboard to be inserted into
the current view at thte current text cursor position. The contents of the

paste buffer is not disturbed.

Result: 1 if text was pasted
0 if clipboard was empty

1.260 POST PERIOD SPACES

Syntax: POST PERIOD SPACES
POST PERIOD SPACES s

The first form will display the numeric requester, from which you may enter
a new number of spaces.

The second form will set the number of spaces to the given value (s).

Result: 1 if a valid number is given

0 if an invalid number is given or if the user cancels the requester.

1.261 PREV WORD

Syntax: PREV WORD

This command moves the text cursor to the beginning of the first word to the
left of the current cursor position.

Result: always 1

1.262 PREVIOUS VIEW

Syntax: PREVIOUS VIEW
This command moves the text cursor to the view above the current one.

Result: always 1

CygnusEd_Manual 101 /141

1.263 PRINT BLOCK

Syntax: PRINT BLOCK
PRINT BLOCK file_or_device_name
PRINT BLOCK file_or_device_name t2s s2t indent

This command is similar to the newer "PRINT CLIP" command, but has been
preserved for compatibility with scripts created with previous versions of
CED. Please consult the "PRINT CLIP" command for specific information.

1.264 PRINT CLIP

Syntax: PRINT CLIP
PRINT CLIP file_or_device_name
PRINT CLIP file_ or_ device_name t2s s2t indent

The first form will cause the CED file requester to appear to solicit a
destination for the output of the print function. The print requester will
then appear to solicit any further modifiers to the function.

The second form will direct the output of the print function to the
specified file or device. The CED file requester will not appear. The print
requester will be brought up to allow the user to specify any additional
modifiers to the print function.

Tab processing t2s s2t
tabs to spaces 0 0
leave tabs alone 1 0
spaces to tabs 0 1

The third form will direct the output of th function to the specified file
or device. The file requester will not appear. The two flags will be used to
set the state of the tab processing. The indent parameter sets the number of
spaces to indent the output of the print function.

Result: 1 if text was printed
0 if text was not printed.

1.265 PRINT FILE

Syntax: PRINT FILE
PRINT FILE file_or_device_name
PRINT FILE file_or_device_name t2s s2t indent

The first form will cause the CED file requester to appear to solicit a
destination for the output of the print function. The print requester will
then appear to solicit any further modifiers to the function.

The second form will direct the output of the print function to the
specified file or device. The CED file requester will not appear. The print
requester will be brought up to allow the user to specify any additional

CygnusEd_Manual 102/ 141

modifiers to the print function.

Tab processing t2s s2t
tabs to spaces 0 0
leave tabs alone 1 0
spaces to tabs 0 1

The third form will direct the output of the function to the specified file

or device. The file requester will not appear. The two flags will be used to
set the state of the tab processing. The indent parameter sets the number of
spaces to indent the output of the print function.

Result: 1 if text was printed
0 if text was not printed.

1.266 PRIORITY

Syntax: PRIORITY

This command makes CygnusEd use the preset Task priority, as controlled
via the "Global/Priority" menu.

Result: always 1

1.267 PUBSCREEN

Syntax: PUBSCREEN name
This command will move the current CED screen or window as a visitor window
on the specified public screen. Remember that screen names are case

sensitive.

If the screen does not exist, then the screen or window will open on the
Workbench screen.

Result: always 1

1.268 QUIT

Syntax: QUIT
QUIT O
QUIT 1

The first form will cause the current view to be exited. If there are any
outstanding changes to this view and there are no other views cooperating
with this one, then CED will ask you for confirmation before quitting.

The second form will cause the current view to be exited only if no
requesters would be generated. That is, the current view will be exited only

CygnusEd_Manual 103/ 141

if there are no outstanding changes made for it or there are other
cooperating views present.

The third form will cause the current view to be exited. No requester will
be presented and any changes made to this view will be lost if there are no

other views cooperating with this one.

At this time we do not recommend the user of this command from ARexx or from
CED macros.

Result: 1 if view was closed (or quit)
0 if view was not closed (or quit)

1.269 QUIT & DIE

Syntax: "QUIT & DIE"

NOTE: This command has no built-in keyboard binding and is not recommended
~~~~~~ for use in macros. In ARexx programs, you should use "QUIT" instead.

Result: 1 if view was closed (or quit)
0 if view was not closed (or quit)

1.270 RAWKEY

Syntax: RAWKEY code qualifier

This command allows you to simulate the typing of any key on the keyboard.
This command takes two parameters, the first is the raw key code of the key
to be pressed, the second is its qualifier.

For your convenience, the table or raw key codes, as available with the

"usa" keyboard layout, is provided.

Raw key value Unshifted key Shifted key

0 \ ~
1 1 !
2 2 @@
3 3 #
4 4 $
5 5 %
6 6 ~
7 7 &
8 38 *
9 9 (
10 0 )
11 - B
12 = +
13 \ |

14 none none




CygnusEd_Manual

104 /141

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

0 (keypad)
q
w
e
r
t
Yy
u
i
o
P
[
]

none
1 (keypad)
2 (keypad)
3 (keypad)

SN R AW D Q Qoo

n

none
none
4 (keypad)
5 (keypad)
6 (keypad)
none

5 8 0 < Q0 X N

/

none
(keypad)

7 (keypad)

8 (keypad)

9 (keypad)

space

backspace

tab

enter

return

esc

del

none

1 (keypad)
2 (keypad)
3 (keypad)

cEHERg T MO n @

none
none

4 (keypad)
5 (keypad)
6 (keypad)

jo]
(©]
jo]
(0]

WV AR Z0<<OXN

9 (keypad
space
backspace
tab

enter
return
esc

del

none




CygnusEd_Manual

105/ 141

Note that raw keycodes 90 through 94 are not found on the A1000 keyboard.

Acceptable values for the qualifier include combinations of the following:

1.271

Syntax:

This command performs the actions that were previously undone using the

"UNDO"

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

Value Meaning

none

none

- (keypad)
none

cursor up
cursor down
cursor right
cursor left
Fl

F2

E3

F4

F5

left-shift
right-shift
caps lock

ctrl
left-alt
right-alt

left-amiga
right-amiga

1 left-shift
2 right-shift
4 caps lock

8 ctrl

16 left-alt

32 right-alt
64 left-amiga

128 right-amiga

REDO

REDO

command.

none

none

- (keypad)
none

cursor up
cursor down
cursor righ
cursor left
Fl

F2

F3

F4

F5

left-shift
right-shift
caps lock
ctrl
left-alt
right-alt
left-amiga
right-amiga




CygnusEd_Manual

106/ 141

Result: 1 if last operation was undo
0 if last operation was not undo

1.272 REPEAT KEY/MENU

Syntax: "REPEAT KEY/MENU" repeat_count
"REPEAT KEY/MENU" repeat_count key_code
"REPEAT KEY/MENU" repeat_count key_code qualifier_code

This command is somewhat cumbersome to execute from ARexx and has some
limitations. The command must be enclosed in quotation marks due to the
presence of the "/" character.

The repeat_count is the count of the number of repetitions to make.

The key_code is the raw keycode for a single key on the Amiga keyboard. A
listing of the raw keycodes can be found under the discussion of the
"RAWKEY" ARexx command. Since you can only supply one keycode, an obvious
limitation of the "REPEAT KEY/MENU" command is that it can execute only

single key commands (plus possibly multiple qualifiers).

The qualifier_code is a keyboard qualifier as defined in the key qualifier
table under the discussion of the "RAWKEY" ARexx command.

The first form requires the user to select the menu item, subitem or key
stroke to be repeated.

The second form assumes a qualifier of O.

The third form allows you to specify the repeat count, raw keycode , and
qualifier all in one statement.

From ARexx, this command only allows repetition of keystrokes, not menu
events. However, if a menu item has a keyboard shortcut, then this can be
used to repeat it. For instance, the following line tells CED to execute
Amiga+l one time:

"REPEAT KEY/MENU 1 1 64"

This is equivalent to the "JUMP TO MARK 1" command.

Note that one drawback of using this command in your ARexx programs is that
it makes your programs quite unintelligible.

Result: 1 if command was successful
0 if command was not successful

1.273 REPEAT REPLACE

Syntax: REPEAT REPLACE

This command will perform a replace operation from the current text cursor




CygnusEd_Manual

107 /141

position.

Note that when called from ARexx, this command will search and replace using
the string which was last entered manually into the Search/Replace
requester. CED will restore the search and replace strings each time "SEARCH
FOR" and "REPLACE" are called from an ARexx program or macro. To be sure of
the strings you will be using (from ARexx), use multiple "REPLACE" commands
rather than the "REPEAT REPLACE" command.

Result: 1 if text was replaced
0 if text was not replaced

1.274 REPEAT SEARCH BACKWARDS

Syntax: REPEAT SEARCH BACKWARDS

This command searches for the previously specified search string beginning
at the current text cursor position and search backward through the file.

Note that when called from ARexx, this command will search for the string
which was last entered manually into the search requester. CED will restore
the search and replace strings each time "SEARCH FOR" and "REPLACE" are
called from an ARexx program or macro. To be sure of the string you will
search for (from ARexx), use multiple "SEARCH FOR" commands rather than the
"REPEAT SEARCH BACKWARDS" command.

Result: 1 if text was found
0 if text was not found

1.275 REPEAT SEARCH FORWARDS

Syntax: REPEAT SEARCH FORWARDS

This command searches for the previously specified search string beginning
at the current text cursor position and searching forward through the file.

Note that when called from ARexx, this command will search for the string
which was last entered manually into the search requester. CED will restore
the search and replace strings each time "SEARCH FOR" and "REPLACE" are
called from an ARexx program or macro. To be sure of the string you will
search for (from ARexx), use multiple "SEARCH FOR" commands rather than the
"REPEAT SEARCH FORWARDS" command.

Result: 1 if text was found
0 if text was not found

1.276 REPLACE




CygnusEd_Manual 108 / 141

Syntax: REPLACE
REPLACE stringl string2
REPLACE stringl string2 uw f o 1
REPLACE stringl string2 u w £ o 1 option

The first form causes the search/replace requester to appear. You must deal
with it manually.

The second form will replace the first occurence of stringl with string2.
The search/replace requester will not appear. The search criteria will be
taken to be whatever they were the last time "REPLACE" was executed. Note
that in order to cause CED to search/replace for more than one word, you
must arrange for a set of quotation marks to surround the search argument.
This can sometimes require creating quoting. The search/replace operation
will be executed exactly once.

The third form is similar to the second, except that the search criteria
will be set by the boolean values supplied in u, w, f and o. These flags
stand for:

= "Upper case = Lower case"
= "Wildcards"

"Forwards"

= "Only words"

O rh g ¢
Il

Please note that an additional 1 must follow these boolean values. The
search/replace operation will be performed exactly once.

The fourth from is similar to the third, but in addition to the option
argument is required. option may be "g" (for global) or "t" (for turbo).
This is how global and turbo replacements may be performed.
Note that if "REPLACE" is exeecuted from ARexx or from a macro, it will
preserve the previous string to be sought after an replaced, unless the
first form indicated above is used. That is, if the user does not physically
type in a string to search for or replace, the old string will be preserved.
So:

REPLACE
will not preserve the previous string to search for or replace, but:

REPLACE "stringl" "string2"
will preserve the previous contents of the strings. This same principal
holds true for the "SEARCH FOR" command. Clearly, this change in behavior

affects how and if the "REPEAT REPLACE" commands should be used.

Result: 1 if text was replaced
0 if text was not replaced

1.277 RESET ALIAS

Syntax: RESET ALIAS




CygnusEd_Manual 109/ 141

This command resets the ASCII zero alias back to ASCII O.

Result: always 1

1.278 RIGHT

Syntax: RIGHT

This command will move the text cursor one character position to the right,
wrapping to the next line if necessary.

Result: always 1

1.279 RIGHT 12 CHARS

Syntax: RIGHT 12 CHARS

This command moves the text cursor to the right 12 character positions or to
the end of the file, whichever occurs first.

Result: always 1

1.280 ROT BLOCK

Syntax: ROT BLOCK
This command is simliar in function to the newer "ROT MARKED" command, but
has been preserved for compatibility with scripts created with previous

versions of CED. Please consult the "ROT MARKED" command for specific
information.

1.281 ROT MARKED

Syntax: ROT MARKED

This command performs Ceasarian encryption on the currently defined block of
text.

Result: 1 if block was rotated
0 if no block was defined

1.282 RX




CygnusEd_Manual 110/ 141

Syntax: RX script_name
Version: Requires CygnusEd V4.9 or higher

This command executes the ARexx script with the name "script_name".

Result: always 1

1.283 SAFE SAVES

Syntax: SAFE SAVES
This command sets the "Safe saves" mode.

Result: always 1

1.284 SAVE

Syntax: SAVE
SAVE filename

The first form causes the current view to be saved. If the current view has
no name then the file requester will appear.

The second form also causes the current view to be saved, the supplied
filename will be ignored unless the current view has no name. In this case,
the supplied filename will be used rather than causing the file requester to
appear.

Result: 1 if view’s contents were saved
0 if view’s contents were not saved

1.285 SAVE ALL CHANGES

Syntax: SAVE ALL CHANGES
SAVE ALL CHANGES filel file2 ... filen

The first form will cause the file requester to appear if any of the changed
views are not already associated with a file.

The second form, although not recommended since it can easily lead to
confusion, does work. This will cause each changed view to be saved. The
first view which does not already have a filename associated with it will
take on the name specified in the first argument. The second view which does
not have a filename associated with it will take on the name specified in
the second argument, and so on.

Result: 1 if all unsaved views were saved
0 if all unsaved views were not saved




CygnusEd_Manual 111 /141

1.286 SAVE AS

Syntax: SAVE AS
SAVE AS filename
SAVE AS filename O
SAVE AS filename 1

The first form causes the current view to be saved in the file solicited
from the user by the file requester.

The second form causes the current view to be saved in the named file. If
the named file already exists, you will be asked to confirm your intentions.

The third form causes the current view to be saved in the named file. If the
named file already exists, the save will be aborted. No requesters will be
generated.

The fourth form causes the current view to be saved in the named file. If
the named file already exists, it will be overwritten. No requesters will be
generated.

Result: 1 if view’s contents were saved
0 if view’s contents were not saved

1.287 SAVE BLOCK TO FILE

Syntax: SAVE BLOCK TO FILE
SAVE BLOCK TO FILE filename
SAVE BLOCK TO FILE filename O
SAVE BLOCK TO FILE filename 1

This command is similar in function the newer "SAVE CLIP AS" command, but
has been preserved for compatibility with scripts created with previous
versions of CED. Please consult the "SAVE CLIP AS" command for specific
information.

1.288 SAVE CLIP AS

Syntax: SAVE CLIP AS
SAVE CLIP AS filename
SAVE CLIP AS filename 0
SAVE CLIP AS filename 1

The first form causes the CED file requester to appear to solicit the name
of the file into which the contents of the current clipboard unit will be
saved.

The second form saves the current clip to the named file (filename). The
file requester will not appear. If the named file already exists, a

requester will be generated.

The third form saves the current clip to the named file (filename) if it




CygnusEd_Manual 112 /141

does not already exist. No requesters will be generated.
The fourth form saves the current clip to the named file (filename). If the
named file already exists, it will be overwritten. No requesters will be

generated.

Result: 1 if the clipboard contents were saved
0 if the clipboard contents were not saved

1.289 SAVE DEFINITIONS

Syntax: SAVE DEFINITIONS
SAVE DEFINITIONS filename

The first form will cause the file requester to appear, soliciting a name
under which the current macro definitions will be stored.

The second form will attempt to store the current macro definitions in the
file named filename. The file requester will not appear.

Result: 1 if macros were saved
0 if macros were not saved

1.290 SAVE DOS/AREXX COMMANDS

Syntax: "SAVE DOS/AREXX COMMANDS"
"SAVE DOS/AREXX COMMANDS" filename

The first form will cause the file requester to appear soliciting the name
of a file under which to save the current DOS and ARexx command bindings
(those bound to the 10 function keys).

The second form will attempt to make CED save the current DOS and ARexx
commands (those bound to the 10 function keys) to the given file. The file

requester will not appear.

Result: 1 if the commands were saved
0 if the commands were not saved

1.291 SAVE ENVIRONMENT

Syntax: SAVE ENVIRONMENT
SAVE ENVIRONMENT filename

The first form displays a file requester from which you can specify a
filename under which which to save the current environment.

The second form stores the current environment under the specified filename.

Result: 1 if the environment was saved




CygnusEd_Manual 113/ 141

0 if the environment was not saved

1.292 SCREEN HEIGHT

Syntax: None
Due to changes in the way screens are invoked, this command is not supported

anymore through ARexx. Please use either the "SET SCREEN SIZE AND TYPE" or
the "SETSCREEN" command instead.

1.293 SCREEN WIDTH

Syntax: None
Due to changes in the way screens are invoked, this command is not supported

anymore through ARexx. Please use either the "SET SCREEN SIZE AND TYPE" or
the "SETSCREEN" command instead.

1.294 SCROLL BAR ON LEFT

Syntax: SCROLL BAR ON LEFT
This command places the scroll bar on the left side of the current view. The
state of this command can be queried using the "STATUS LEFTPROPGADG" ARexx

command.

Result: always 1

1.295 SCROLL BAR ON RIGHT

Syntax: SCROLL BAR ON RIGHT
This command places the scroll bar on the right side of the current view.
The state of this command can be queried using the "STATUS RIGHTPROPGADG"

ARexx command.

Result: always 1

1.296 SEARCH FOR

Syntax: SEARCH FOR
SEARCH FOR string
SEARCH FOR string uw f o 1

The first form causes the search requester to appear. You must deal with it




CygnusEd_Manual

114 /141

manually.

The second form will search for the next occurence of the specified string.
The search requester will not appear. The search criteria will be taken to

be whatever they were the last time "SEARCH FOR" was executed. Note that in
order to cause CED to search for more than one word, you must arrange for a
set of quotation marks to surround the search argument. This can sometimes

require creating quoting.

The third form is similar to the second, except that the search criteria
will be set by the boolean values supplied in u, w, f and o. These flags
stand for:

= "Upper case = Lower case"
= "Wildcards"

"Forwards"

= "Only words"

O rHh = ¢
|

Please note that an additional 1 must follow these boolean values.

Note that executing this command from ARexx or from a macro will preserve
the previous string to be sought after, unless the first form indicated
above is used. That is, if the user does not physically type in a new string
to search for, the old string will be preserved. So:

SEARCH FOR
will not preserve the previous string to search for, but:
SEARCH FOR "string"

will preserve the previous contents of the search string. This same
principal holds true for the "REPLACE" command. Clearly, this change in
behavious affects how and if the "REPEAT SEARCH" commands should be used.

NOTE: Release 3 of CED changes where the search command begins searching.
This change affects ARexx scripts only. In previous releases, the
search command began at the character following the character the
cursor was positioned on. This allows multiple invocations of the
search command to find successive occurences of the string. However,
this prevented a match from being returned if the matched string were
the first characters in the file. As of release 3, the search command
begins searching at the current character. This means successive
calls to the search command (by opening the search requester and not
just performing a repeat search command) will mach exactly the same
string, unless interspersed with a call to "RIGHT" to move the cursor
past the beginning of the matched string. This allows strings which
begin a file to be found with the "SEARCH FOR" command.

Result: 1 if text was found
0 if text was not found

1.297 SELECT DISK FONT




CygnusEd_Manual 115/ 141

Syntax: "SELECT DISK FONT"
"SELECT DISK FONT" fontname.font size

The first form will cause the font requester to appear to solicit a new
font.

Note that the quotation marks around the command are necessary sicne there
is an ARexx keyword "SELECT". Executing this command will cause the font
requester to appear to solicit an alternative font.

The second form will select the given font in the given size. No requester
will be generated. Note that the font name must have the ".font" string

appended to it.

You can query the name of the current font and its size using the ARexx
command "STATUS FONTINFO".

Result: 1 if font was changed
0 if font was not changed

1.298 SEND DOS/AREXX COMMAND

Syntax: None

This command cannot be executed from ARexx. Use ARexx’s "ADDRESS COMMAND"
facility to execute DOS or ARexx commands.

Result: always 1

1.299 SEND DOS/AREXX OUTPUT TO

Syntax: "SEND DOS/AREXX OUTPUT TO"
"SEND DOS/AREXX OUTPUT TO" output

The first form displays the requester with the input field asking for the
destination.

The second form sets the output to the ’"output’ argument.

Result: always 1

1.300 SET CLIPBOARD UNIT

Syntax: SET CLIPBOARD UNIT
SET CLIPBOARD UNIT unit_number

The first form displays a numeric requester from which the clipboard unit
can be specified.

The second form sets the clipboard unit to the specified value




CygnusEd_Manual 116/ 141

(unit_number) .

If this command succeeds, it will set the RESULT variable to one more than
the unit number specified.

Result: unit_number+l if unit was changed
0 if unit was not changed

1.301 SET ICON TOOL NAME

Syntax: SET ICON TOOL NAME
SET ICON TOOL NAME filename

The first form will cause the text requester to appear for user input.

The second form will set the icon tool name to filename without bringing up
the text requester.

Result: 1 if tool name was changed
0 if tool name was not changed

1.302 SET PRIORITY

Syntax: SET PRIORITY
SET PRIORITY value

The first form causes the numeric requester to appear to solicit a new
priority value.

The second form attempts to set the priority to the given value. Note that
the value must be enclosed in quotation marks if it is negative.

Result: 1 if priority was changed
0 if priority was not changed

1.303 SET RIGHT BORDER

Syntax: SET RIGHT BORDER
SET RIGHT BORDER value

The first form will cause the right border to be set manually using the
mouse.

The second form will set the right border to the value specified by value.

You can query the value of the right border from ARexx using the "STATUS
RIGHTBORDER" command.

Result: 1 if right border has changed
0 if right border has not changed




CygnusEd_Manual 117 /141

1.304 SET SCREEN SIZE AND TYPE

Syntax: SET SCREEN SIZE AND TYPE
This command displays the screen mode requester.
To actually specify a screen to open, use the "SETSCREEN" command.

Result: 1 if screen type and size were changed
0 if screen type and size were not changed

1.305 SET SCROLL BORDERS

Syntax: SET SCROLL BORDERS

This command allows the user to change the scroll borders for the current
view.

Result: 1 if scroll borders were modified
0 if scroll borders were not modified

1.306 SET SCROLL JUMP

Syntax: SET SCROLL JUMP n

This command sets the number of pixels each line will move as a result of a
scroll action.

The n value above may range from 0 to 3, corresponding to 1 to 8 pixels per
scroll.

The ARexx command which returns the current view’s scroll Jjump setting,
"STATUS SCROLLJUMP", returns a value starting from 1, not O.

Result: 1 if new scroll Jjump value was accepted
-1 if new scroll jump value was invalid (out of range).

1.307 SET TIMER

Syntax: SET TIMER
SET TIMER n

The first form causes the numeric requester to appear for user input on the
timer value.

The second form sets the timer value to n without causing the numeric
requester to appear.

Result: 1 if timer was changed
0 if timer was not changed




CygnusEd_Manual 118 /141

1.308 SETSCREEN

Syntax: SETSCREEN mode_id width height
This command specifies the type and dimensions of the custom screen upon
which to open the CED window. For legal values of mode_id, see the Amiga

operating system documentation.

Result: 1 if screen type and size were changed
0 if screen type and size were not changed

1.309 SHOW ASCII VALUES

Syntax: SHOW ASCII VALUES

This command causes CED to display (in the title bar of the view) the
decimal value of the character currently underneath the text cursor.

You can query whether the title bar is displaying ASCII codes by using the
"STATUS SHOWASCII" command.

Result: 1 if show ascii values mode is switched on
0 if show ascii values mode is switched off

1.310 SHRINK VIEW

Syntax: SHRINK VIEW
This command attempts to size the current view smaller by one line.

Result: 1 if current view changed in size
0 if current view did not change in size

1.311 SIMPLE SAVES

Syntax: SIMPLE SAVES
This command sets the simple saves mode.

Result: always 1

1.312 SPACES VISIBLE

Syntax: SPACES VISIBLE

This command toggles the state of the "Spaces visible?" menu subitem.




CygnusEd_Manual

119/ 141

Result: 1 if spaces visible mode is switched on
0 if spaces visible mode is switched off

1.313 SPAWN NEW CED

Syntax: SPAWN NEW CED
This command creates another running copy of CED.

Result: always 1

1.314 SPECIFY

Syntax: SPECIFY
SPECIFY filename

The first form will cause the CED file requester to appear to solicit an
environment file to be loaded.

The second form will cause CED to attempt to load the specified file as the

new environment.

Result: 1 if environment was loaded
0 if environment was not loaded

1.315 SPLIT VIEW

Syntax: SPLIT VIEW

This command attempts to break the current view into two cooperating views.

"STATUS NUMVIEWS" is used to count the number of views remaining on the
screen.

Result: 1 if current view was split
0 if current view was not split

1.316 STATUS

Syntax: STATUS status_description
STATUS status_number

The "STATUS" command is the workhorse of CED ARexx programs. This command
allows you to query the values of quite a few internal variables and

settings.

Any command (including the "STATUS" command) which passes results back to




CygnusEd_Manual 120/ 141

the calling ARexx program requires that the following line be executed early
on:

OPTIONS RESULTS

The enables the ARexx program to receive the result codes which are returned
by all CED commands.

Listed in the following table are the "STATUS" commands which are currently
supported. The numbers corresponding to the descriptions follow each entry.

ACTUALSIZE 16
AUTOEXPAND 72
AUTOMARKX 30
AUTOMARKY 26
AUTOSAVETIMER 77

BACKSPACECHARBUFFER 64

BACKSPACEWORDBUFFER 61

BLOCKBUFFER 60
BLOCKSCREENX 70
BLOCKY 69
CLIPUNIT 94
CURRENTDIR 75
CURSORCOLUMN 46
CURSORLINE 47
CURSORMEMORYX 87
CURSOROFFSETX 44
CURSOROFFSETY 45
CUSTOMHEIGHT 5
CUSTOMROUTINES 86
CUSTOMWIDTH 6
DELETECHARBUFFER 65
DELETELINEBUFFER 63

DELETEWORDBUFFER 62




CygnusEd_Manual

121 /141

DESIREDCOLUMN

DIRNAME

DISPLAYCOLUMNS

DISPLAYLINES

EDITABLE

FILEMEM

FILENAME

FONTINFO

FORCECUSTOM

ICONCREATION

ICONTOOLNAME

INSERTMODE

INTERLACE

KEEPRESIDENT

KEYPADMOVEMENT

LAYOUTMODE

LEFTLINE

LEFTPROPGADG

LINEBUFFER

LINEBUFFEROFEFSET

LINEMEMORYLENGTH

LINENUMBER

LINESCREENLENGTH

MARKX1

MARKY1

MARKX?2

MARKY2

MARKX3

51

82

15

19

81

73

12

80

11

42

40

63

56

58

57

59

27

23

28

24

29




CygnusEd_Manual

122 /141

MARKY3

MAXSCROLLY

MODEID

NUMCHANGES

NUMLINES

NUMVIEWS

PIXELLEFTEDGE

PIXELTOPEDGE

PORTNUMBER

PUBSCREENNAME

PRIORITY

RESTNAME

RIGHTBORDER

RIGHTPROPGADG

SAFESAVES

SCRIPTBIT

SCROLLBORDERBOTTOM

SCROLLBORDERLEFT

SCROLLBORDERRIGHT

SCROLLBORDERTOP

SCROLLJUMP

SEARCHINFO

SERTALNUMBER

SHOWASCII

STATUSLINE

STATUSLINETYPE

TABS

TABSARESPACES

TABSIZE

25

78

92

18

17

22

48

49

91

93

76

21

14

68

79

83

39

36

37

38

10

74

88

85

35

41

13




CygnusEd_Manual

123/ 141

TASKADDRESS 90
TOPLINE 43
TOTALNUMFILES 67
TOTALNUMVIEWS 66
VERTICALBLOCK 71
VISIBLEEOL 33
VISIBLEESC 34
VISIBLETAB 31
WINDOWHEIGHT 54
WINDOWNUMBER 84
WINDOWWIDTH 53
WORDWRAP 9
ZEROMAPCHAR 89

Result: specific status information if successful
undefined if status number is invalid or description is unknown

1.317 STRIP CR BLOCK

Syntax: STRIP CR BLOCK
This command is similar in function to the newer "STRIP CR MARKED" command,
but has been preserved for compatibility with scripts created with previous

versions of CED. Please consult the "STRIP CR MARKED" command for specific
information.

1.318 STRIP CR MARKED

Syntax: STRIP CR MARKED

This command will set the ARexx RESULT variable to a value of 1 if the
operation actually took place.

Result: 1 if block was stripped
0 if no block was being defined

1.319 TAB SIZE




CygnusEd_Manual

124 /141

Syntax: TAB SIZE tab_spacing - 1

This command sets the size of tabulator gaps.

Note than when setting regular tab stops from ARexx using this method, that
the value specified in the ARexx command is one less than the desired tab

setting. Therefore, the allowable parameters are 0 to 9.

Also note that the ARexx command which returns the size of the regularly
spaced tabs, "STATUS TABSIZE" returns the actual tab setting.

Result: 1 if new tab setting was accepted
0 if new tab setting was out of range

1.320 TABS = SPACES

Syntax: "TABS = SPACES"
This command toggles the state of the "Tabs = spaces?" menu item.

Note that the quotation marks are necessary to execute this command from
ARexx due to the presence of the "=" sign in the command’s text.

From ARexx, the "STATUS TABSARESPACES" command will return a boolean
indicating whether or not "Tabs = spaces?" mode is enabled.

ARexx users should note that when in "Tabs = spaces?" mode, calls to the
"TEXT" command run much more slowly then when not in "Tabs = spaces?" mode.
So, i1f you are doing lots of text insertions using the "TEXT" command, you
might want to toggle out of "Tabs = spaces?" mode temporarily to

dramatically increase execution speed.

Result: 1 if "Tabs = spaces" mode is switched on
0 if "Tabs = spaces" mode is switched off

1.321 TABS VISIBLE

Syntax: TABS VISIBLE
This command toggles the state of the "Tabs visible?" menu subitem.

Result: 1 if "Tabs visible" mode is switched on
0 if "Tabs visible" mode is switched off

1.322 TEXT

Syntax: TEXT string

This command will insert its arguments into the current view as the current




CygnusEd_Manual 125/ 141

cursor position as if they were letters typed at the keyboard.

This command runs much more slowly if the current view is in "Tabs =
spaces?" mode. If you will be doing a lot of "TEXT" calls, you might want to
check if the curent view is in "Tabs = spaces?" mode and temporarily toggle
out of it, if necessary.

Note that for text strings with embedded spaces, you do not need two levels
of quotes as you do in other commands, such as those than can take

filenames.

Result: 1 if text was entered
0 if text was not entered (i.e. file is uneditable)

1.323 TOPAZ 60 COLUMN

Syntax: TOPAZ 60 COLUMN
This command causes CED to select the Topaz 9 ROM-based font.

Result: always 1

1.324 TOPAZ 80 COLUMN

Syntax: TOPAZ 80 COLUMN
This command causes CED to select the Topaz 8 ROM-based font.

Note that when using Topaz 8 CED is significantly faster in all screen
rendering than when using a different font.

Result: always 1

1.325 UNBCK SPC WORD

Syntax: UNBCK SPC WORD

This will execute the equivalent of [Ctrl]+[Alt]+Backspace and will insert the
contents of the left word buffer.

Result: 1 if word was "un-backspaced"
0 if word buffer was empty

1.326 UNDELETE LINE




CygnusEd_Manual 126 / 141

Syntax: UNDELETE LINE
This command will insert the contents of the line buffer.

The contents of the global line buffer can be read from ARexx using the
command "STATUS DELETELINEBUFFER".

Result: 1 if line was undeleted
0 if line buffer was empty

1.327 UNDELETE WORD

Syntax: UNDELETE WORD

This command will execute the equivalent to [Ctrl]+[Alt]+Del and will insert the
contents of the right word buffer.

Result: 1 if word was undeleted
0 if the word buffer was empty

1.328 UNDO

Syntax: UNDO

The command will cause the ARexx RESULT variable to contain a boolean value
indicating whether or not an "UNDO" operation actually occured.

Result: 1 if last operation was undone
0 if no previous operation existed

1.329 VERSION

Syntax: VERSION

The command will return the version number of CygnusEd. You can and
should use this command to find out which ARexx commands the editor
supports. The command set may be enhanced with subsequent program

revisions.

Result: Program version, e.g. "4.1"

1.330 UP

Syntax: UP

This command is the same as pressing the cursor up key. The text cursor will
move up in the same or similar column.




CygnusEd_Manual

127 /141

Result: always 1

1.331 lockgui

Syntax: LOCKGUI
This command inhibits the use of the graphical user interface. It does not
nest, i.e. a single call to

UNLOCKGUI

will unlock the user interface

regardless of how many times you called LOCKGUI.

Result: always 1

1.332 unlockgui

Syntax: UNLOCKGUI
This command enables the use of the graphical user interface after it has
been disabled via the

LOCKGUI

command.

Result: always 1

1.333 UP 12 LINES

Syntax: UP 12 LINES

This command will move the text cursor up 12 lines, or as far as possible if
less than 12 lines exist between the current line and beginning of the file.

Result: always 1

1.334 UPPER CASE WORD

Syntax: "UPPER CASE WORD"

This command switches the case of each letter in the word currently
underneath and to the right of the text cursor.

Result: always 1




CygnusEd_Manual 128 /141

1.335 USE WBENCH COLOURS

Syntax: USE WBENCH COLOURS

This command causes CED to read the color settings from the currently
defined AmigaOS system preferences structure.

Result: always 1

1.336 WITH FILL

Syntax: WITH FILL

This command will reformat the current paragraph using full (both left and
right) justification.

Result: always 1

1.337 WITHOUT FILL

Syntax: WITHOUT FILL
This command will reformat the current paragraph using left justification.

Result: always 1

1.338 WORD WRAP

Syntax: WORD WRAP
This command toggles the state of the "Word wrap?" menu item.

From ARexx, the "STATUS WORDWRAP" command will return a boolean indicating
whether or not "Word wrap?" mode is enabled.

Result: 1 if word wrap mode is switched on
0 if word wrap mode is switched off

1.339 actualsize

Get the number of characters in the file displayed in the current view.

1.340 AUTOEXPAND

Determine whether auto-expand views mode is on (RESULT=1) or off (RESULT=0).




CygnusEd_Manual

129/ 141

1.341 automarkx

Get the column number corresponding to the auto-mark. See also "STATUS
AUTOMARKY".

1.342 automarky

Get the line number corresponding to the auto-mark. See also "STATUS
AUTOMARKX".

1.343 autosavetimer

Get the number of minutes contained in the autosave timer. It does not mean
autosave is enabled.

1.344 backspacecharbuffer

Get the contents of the left undelete character buffer. In order word, the
last character deleted with the Backspace key.

1.345 backspacewordbuffer

Get the contents of the left undelete word buffer. In order words, the last
word deleted with [Ctrl]+Backspace.

1.346 blockbuffer

Get the contents of the current clipboard unit. Since the clipboard may be
huge, you should be prepared to accomodate a very large block. Note that due
to how ARexx works, the buffer cannot be larger than 65535 characters.

1.347 blockscreenx

If a block is currently being defined, the current text cursor position
defines one end of the block. This command gets the column number containing
the other end of the block. Unlike "STATUS BLOCKY", this command will return
a non-negative answer even if no block is currently being defined.




CygnusEd_Manual 130/ 141

1.348 blocky

If a block is currently being defined, the current text cursor position
defines one end of the block. This command gets the line number containing
the other end of the block. If no block is being defined when this command
is executed, it will return a value of -1. You can use this feature to
determine if a block is currently being defined.

1.349 clipunit

Get the current clipboard unit being used.

1.350 currentdir

Get a string which corresponds to CED’s notion of its current directory. The
current directory can be set by the "Change current directory..." command
(in the "Project" menu).

1.351 cursorcolumn

Get a value one less than the text column that the text cursor is presently
in.

1.352 cursorline

Get a value one less than the line number on which the text cursor is
presently on.

1.353 cursormemoryx

Get the number of characters to the left of an on the same line as the
cursor.

1.354 cursoroffsetx

Get the horizontal position of the text cursor relative to the first
displayed character. This provides a screen absolute position of the text
cursor irrespective of any possible horizontal scrolling.




CygnusEd_Manual

131/ 141

1.355 cursoroffsety

Get the vertical position of the text cursor relative to the first displayed
character. This provides a screen absolute position of the text cursor.

1.356 customheight

Get the height of the CED window (if running on the Workbench screen) or the
screen ifself (if running on a custom screen).

1.357 customroutines

Get the type of screen rendering mode currently being used. This is a number
between 0 and 2, corresponding to the "Rendering choices" submenu items.

1.358 customwidth

Get the width of the CED window (if running on the Workbench screen) or the
screen ifself (if running on a custom screen).

1.359 deletecharbuffer

Get the contents of the right undelete character buffer. In order words, the
last character deleted with the Del key.

1.360 deletelinebuffer

Get the contents of the delete line buffer.

1.361 deletewordbuffer

Get the contents of the right undelete word buffer. In other words, the last
word deleted with [Ctrl]+Del.




CygnusEd_Manual

132/ 141

1.362 desiredcolumn

Get the column that the text cursor would like to be in, but may not
actually be in. For example, if you execute a "DOWN" command from the end of
a very long line to avery short one, the text cursor will not go past the
end of the very short ine (assuming "Layout mode?" is not on). If you were
to then eecute an UP command, the text cursor would return to its previous
position at the end of the long line. This is because the text cursor
"wanted" to be in a different colun than it actually was in when it was on
the very short line.

1.363 dirname

Get the path of the displayed in the current view but not the file’s name.

1.364 displaycolumns

Get the number of text columns displayable in the current CED screen or
window. This command takes into account the presence or absence of a scroll
bar. If CED is running as a window on the Workbench, this command will take
into account the window borders. If the width of CED’s screen or window
changes or a scroll bar is added or removed, the value returned by this
command will change as well.

1.365 displaylines

Get the number of lines which are displayable in the current view. If the
height of the current view changes,the value returned by this command will
also change.

1.366 editable

Determine whether the current view is (RESULT=1) or is not (RESULT=0) an
editable view. That is, 1s the current view a read-only view?

1.367 filemem

Get the actual address of the start of the data in the file displayed in the
current view. CED promises to null-terminate the data in memory but since
binary files may be edited and null butes may be entered by the user there
may be more than one null byte in the file. You are severely cautioned
against abusing this information. Treat the data at the address returned by
this command as read-only. Do not modify the data directly in memory under
any circumstances.




CygnusEd_Manual 133/ 141

1.368 filename

Get the complete path name of the file displayed in the current view. Beware
of views which have not been associated with a filename yet since they will
return an incomplete path. By checking the view’s filename with "STATUS
RESTNAME", you can determine if this view has ever been saved or not (or if
it hasn’t been saved, then "STATUS FILENAME" will return an incomplete
path) .

1.369 fontinfo

Get a string containing the current font, font size, and qualifier if a disk
based font is being used. If Topaz 80 column or Topaz 60 column is being
used, the string will simply be either "Topaz 80 column" or "Topaz 60
column".

1.370 forcecustom

Determine whether CED is running on a custom screen (RESULT=1) or as a
window on the Workbench screen (RESULT=0).

1.371 ICONCREATION

Determine whether icons will (RESULT=1) or will not (RESULT=0) be saved with
files.

1.372 icontoolname

Get a string containing the present icon tool name. The icon tool name can
be set using "Set icon tool name..." (in the "Environment", "Global
settings" menu).

1.373 insertmode

Determine whether "Insert mode" is on (RESULT=1) or off (RESULT=0).

1.374 interlace

Determine whether the CED screen (Workbench or a custom screen) is
interlaced (RESULT=1) or non-—-interlaced (RESULT=0).




CygnusEd_Manual

134 /141

1.375 keepresident
Determine whether "Hot-Start mode" is enabled (RESULT=1) or disabled

(RESULT=0) .

1.376 KEYPADMOVEMENT

Determine whether "Keypad = Movement" mode is on (RESULT=1) or off
(RESULT=0) .
1.377 layoutmode

Determine whether "Layout" mode is on (RESULT=1) or off (RESULT=0).

1.378 leftline

Get the number of columns on the left side which are not currently displayed
in the current view. This is usually zero. However, this may become non-zero
if the current view is horizontally scrolled.

1.379 leftpropgadg

Determine whether the scroll base is (RESULT=1) or is not (RESULT=0) on the
left edge of the current view. Use this in conjunction with "STATUS
RIGHTPROPG" to determine if there is a scroll bar present at all.

1.380 linebuffer

Get a string containing the entire contents of the line the text cursor is
currently on.

1.381 linebufferoffset

Get the number of bytes separating the start of the current line from the
beginning of the file.

1.382 linememorylength

Get the number of bytes in the line the text cursor is currently on.




CygnusEd_Manual

135/ 141

1.383 linenumber

Get a value one less than the current line number.

1.384 linescreenlength

Get the length of the current line in on-screen columns. This may be
different than the value returned by "STATUS LINEMEMORYLENGTH" due to the
presence of tabs or escape codes.

1.385 markx1

Get the column number corresponding to bookmark 1. See also "STATUS MARKY1".

1.386 marky1

Get the line number corresponding to bookmark 1. See also "STATUS MARKX1".

1.387 markx2

Get the column number corresponding to bookmark 2. See also "STATUS MARKY2".

1.388 marky2

Get the line number corresponding to bookmark 2. See also "STATUS MARKX2".

1.389 markx3

Get the column number corresponding to bookmark 3. See also STATUS MARKY3.

1.390 marky3

Get the line number corresponding to bookmark 3. See also "STATUS MARKX3".

1.391 maxscrolly

Get the number of lines past which CED will force a screen redraw, rather
than a scroll (i.e., the "Max scroll..." setting).




CygnusEd_Manual

136/ 141

1.392 modeid

Get the current screen mode identifier, as described in the Amiga operating
system documentation.

1.393 numchanges

Get the number of changes made to the current view.

1.394 numlines

Get the number of lines in the file displayed in the current view.

1.395 numviews

Get the number of cooperating views which are displaying data from the same
file as the current view. This is handy for determining if the current view
represents the last cooperating view editing a given file.

1.396 pixelleftedge

Get the number of pixels from the left edge of CED’s screen or window that
text information will begin to be displayed. For example, if CED is on its
own custom scren and the scroll bar is not on the left, this command will
return a value of 0. If CED is running as a window on the Workbench screen
and there is no scroll bar on the left, then this command will return a
value of 3.

1.397 pixeltopedge

Get the number of pixels from the top edge of CED’s screen or window that
text information for the current view will begin to be displayed. As the
height or position of the current view changes relative to other views, the
result returned by this command will change.

1.398 portnumber

Get the ARexx port number (as specified by the numeric suffix of the ARexx
port name, shown in the "About..." panel) of the current running copy of
CED. The first copy of CED that is run will return a value of 0, since its
port name ("CYGNUSED") contains no numeric suffix.




CygnusEd_Manual

137 /141

1.399 pubscreenname

Get the name of the public scren CED is currently being run on. This command
will return a NULL string if CED is running on a custom, non-public screen.

1.400 PRIORITY

Get the value which can be found in the "Priority" submenu. It may or may
not be the actual priority to which CED is currently set.

1.401 restname

Get the name of the file displayed in the current view. If the current view
corresponds to a file which is new and has never been saved, the string
returned by this command will be empty.

1.402 rightborder

Get the column number of the current view’s right border.

1.403 rightpropgadg

Determine whether the current view does (RESULT=1) or does not (RESULT=0)
have a scroll bar on the right. Use this in conjunction with "STATUS
LEFTPROPGADG" to determine if there is a scroll bar present at all.

1.404 safesaves

Get the current file save method. This returns a number between 0 and 2,
corresponding to the three file saving methods available.

1.405 scriptbit

Determine whether or not the current view does (RESULT=1) or does not
(RESULT=0) have its "script" bit turned on. This is set externally, but
preserved by CED.

1.406 scrollborderbottom

Get the number of lines form the bottom edge of the screen where the bottom
edge of the current view’s scroll border starts.




CygnusEd_Manual

138/ 141

1.407 scrollborderleft

Get the number of columns form the left edge of the scren where the left
edge of the current view’s scroll border starts.

1.408 scrollborderright

Get the number of columns from the right edge of the screen where the right
edge of the current view’s scroll border starts.

1.409 scrollbordertop

Get the number of lines from the top edge of the screen where the top edge
of the current view’s scroll border starts.

1.410 scrolljump

Get the curent scroll jump setting. This will be a number between 1 and 4,
corresponding to the four preset scroll jump settings available.

1.411 searchinfo

Get two strings delimited by quote marks followed by four boolean values.
The first string corresponds to the last string sought for. The second
string represents the last replacement string used in a "Replace..."
command. The four booleans indicate the values of the four qualifiers to the

last "Search for..." or "Replace..." command.

1.412 serialnumber

Get the serial number of the currently running CED.

1.413 showascii

Determine whether "Show ASCII values" mode is on (RESULT=1l) or off
(RESULT=0) .

1.414 STATUSLINE

Determine whether the status line is in on (RESULT=1) or off (RSULT=0)
state.




CygnusEd_Manual 139/ 141

1.415 statuslinetype

Get the tye of status line would be displayed if the status line were turned
on in the current view. If "Changes" is enabled, set RESULT to 0; otherwise
set it to 1. Next, 1if "Show ASCI values" is enabled, add 16 to RESULT;
otherwise do not add anything.

1.416 tabs

Get a string describing the current tab stops, where "-" signifies no tab
stop and "T" means tab stop.

1.417 tabsarespaces

Determine whether tabs will (RESULT=1) or will not (RESULT=0) be converted
to spaces.

1.418 TABSIZE

Get the actual size of the regularly spaced tabs if they were to be enabled.

1.419 taskaddress

Get the current tasks’s memory address.

1.420 topline

Get the number of lines preceding the topmost displayed line in the current
view. This corresponds to one less than the line number of the topmost
displayed line.

1.421 totalnumfiles

Get the nmber of distinct (non-cooperating) files open in CED right now.

1.422 totalnumviews

Get the number of views currently present in the CED window or screen.




CygnusEd_Manual 140/ 141

1.423 verticalblock

Determine whether the block currently being defined is (RESULT=1) or is not
(RESULT=0) a verticalblock. You may use "STATUS BLOCKY" to determine if a
block is being defined, then use this command to determine which type of
block it 1is.

1.424 Vvisibleeol

Determine whether end-of-line (EOL) characters will (RESULT=1) or will not
(RESULT=0) be visible in the current view.

1.425 visibleesc

Determine whether escape codes will (RESULT=1) or will not (RESULT=0) be
visible in the current view.

1.426 visibletab

Determine whether tabs will (RESULT=1) or will not (RESULT=0) be visible in
the curent view.

1.427 windowheight

Get the height in pixels of the entire CED window or screen.

1.428 windownumber

Get an integer corresponding to which view is the current view. Views are
numbered from 0, with 0 corresponding to the topmost view.

1.429 windowwidth

Get the width in pixels of the entire CED window or screen.

1.430 WORDWRAP

Determine whether "Word Wrap" mode is on (RESULT=1) or off (RESULT=0).




CygnusEd_Manual 141 /141

1.431 zeromapchar

Get the current ASCII zero alias for searches, as defined by the "Set ASCII
zero alias for search..." requester.




	CygnusEd_Manual
	CygnusEd_Manual.guide
	Default icon
	Setting the tabulator size
	Keyboard operations
	Mouse operations
	Workbench support
	Icons
	Workbench 'Tools' menu
	CygnusEd window
	Project menu
	Environment menu
	Global Settings
	File Settings
	View Settings
	Special menu
	Cut/Paste menu
	Search/Replace menu
	Move menu
	About...
	Clear
	Open new - Keyboard shortcut [Amiga]+?
	Open... - Keyboard shortcut [Amiga]+o
	Include file... - Keyboard shortcut [Amiga]+O
	Save clip as... - Keyboard shortcut [Amiga]+n
	Save - Keyboard shortcut [Amiga]+w
	Save as... - Keyboard shortcut [Amiga]+W
	Save all changes
	Change current directory...
	Spawn new CED [Ctrl]+Esc
	Activate next CED [Ctrl]+N
	Print clip... - Keyboard shortcut [Amiga]+p
	Print file... - Keyboard shortcut [Amiga]+P
	Quit - Keyboard shortcut [Amiga]+q
	Save & quit - Keyboard shortcut [Amiga]+Q
	Quit & die
	Open on public screen...
	Set screen type and size...
	Duplicate Workbench size
	Macro definitions
	Begin short invocation macro - Keyboard shortcut [Amiga]+m
	Begin long invocation macro - Keyboard shortcut [Amiga]+M
	Define startup macro
	Quote key
	Clear definitions
	Load definitions... - Keyboard shortcut [Amiga]+;
	Save definitions... - Keyboard shortcut [Amiga]+'
	Priority
	Autosave
	Set icon tool name...
	Colours
	File save method
	Icon creation?
	Hot-Start enabled?
	Auto-expand views? - Keyboard shortcut [Amiga]+[
	Keypad = movement? - Keyboard shortcut [Amiga]+8
	Select font
	Rendering choices
	Load environment
	Save environment... - Keyboard shortcut [Amiga]+E
	Tab size
	Customize tabs... - Keyboard shortcut [Amiga]+t
	Set right border... - Keyboard shortcut [Amiga]+^
	Set scroll jump
	Max scroll xx...
	Layout? - Keyboard shortcut [Amiga]+5
	Word wrap? - Keyboard shortcut [Amiga]+6
	Insert mode? - Keyboard shortcut [Amiga]+7
	Tabs = spaces? - Keyboard shortcut [Amiga]+0
	Editable file?
	Status line
	White spaces
	Scroll bar
	Set scroll borders...
	View operations
	Previous view - Keyboard shortcut [Amiga]+,
	Next view - Keyboard shortcut [Amiga]+.
	Split view - Keyboard shortcut [Amiga]+d
	Expand view - Keyboard shortcut [Amiga]+]
	Grow view
	Shrink view
	Format
	Post period spaces...
	Send DOS/ARexx command...
	Install DOS/ARexx command...
	Load DOS/ARexx commands...
	Save DOS/ARexx commands...
	Send DOS/ARexx output to...
	Enter ASCII... - Keyboard shortcut [Amiga]+-
	Center cursor - Keyboard shortcut [Amiga]+=
	Center line - Keyboard shortcut [Amiga]+\\
	Repeat key/menu... - Keyboard shortcut [Amiga]+''
	Find matching bracket - Keyboard shortcut [Amiga]+h
	Mark/Jump Location
	Mark - Keyboard shortcut [Amiga]+b
	Mark columnar - Keyboard shortcut [Amiga]+B
	Mark word
	Cut - Keyboard shortcut [Amiga]+x
	erase
	Copy - Keyboard shortcut [Amiga]+c
	Paste - Keyboard shortcut [Amiga]+v
	Set clipboard unit...
	Rot marked
	Strip CR marked
	Change case marked
	Change marked to lower case
	Change marked to upper case
	Shift in marked
	Shift out marked
	Change marked spaces to tabs
	Change marked tabs to spaces
	Delete word [Ctrl]+Del
	Undelete word [Ctrl]+[Alt]+Del
	Bck Spc word [Ctrl]+BckSpc
	UnBck Spc word [Ctrl]+[Alt]+BckSpc
	Delete line - Keyboard shortcut [Amiga]+k
	Delete to EOL - Keyboard shortcut [Amiga]+y
	Undelete line - Keyboard shortcut [Amiga]+l
	Repeat search backwards - Keyboard shortcut [Amiga]+a
	Repeat search forwards - Keyboard shortcut [Amiga]+s
	Search for... - Keyboard shortcut [Amiga]+S
	Repeat replace - Keyboard shortcut [Amiga]+r
	Replace... - Keyboard shortcut [Amiga]+R
	Clip to search buffer
	Clip to replace buffer
	Set ASCII zero alias for search...
	Change case letter - Keyboard shortcut [Amiga]+g
	Change case word - Keyboard shortcut [Amiga]+G
	Upper case word
	Lower case word
	Undo
	Jump to line... - Keyboard shortcut [Amiga]+j
	Jump to auto-mark - Keyboard shortcut [Amiga]+4
	Jump to last change
	Jump to byte... - Keyboard shortcut [Amiga]+J
	Cursor key movement
	MetaMac
	New
	Open... - Keyboard shortcut [Amiga]+o
	Save - Keyboard shortcut [Amiga]+w
	Save as... - Keyboard shortcut [Amiga]+W
	Undo - Keyboard shortcut [Amiga]+u
	Print macro list... - Keyboard shortcut [Amiga]+p
	About...
	Quit - Keyboard shortcut [Amiga]+q
	Delete Macro
	Delete Entry
	Insert Special
	Find/Add short invocation macro - Keyboard shortcut [Amiga]+m
	Find/Add long invocation macro - Keyboard shortcut [Amiga]+M
	Find/Add startup macro
	RecoverCEDFiles
	Views overview
	Ed
	Command line options
	ARexx
	Detailed ARexx reference
	ACTIVATE NEXT CED
	ADJUST COLOURS
	AUTO-EXPAND VIEWS
	AUTO-INDENT
	BACKSPACE
	BACKTAB
	BACKUP TO *.BAK
	BCK SPC WORD
	BEG OF FILE
	BEG OF LINE
	BEG OF SCREEN
	BEG/END DEFINITION
	BLOCK TO SEARCH BUFFER
	CEDTOBACK
	CEDTOFRONT
	CENTER CURSOR
	CENTER LINE
	CHANGE CASE BLOCK
	CHANGE CASE LETTER
	CHANGE CASE MARKED
	CHANGE CASE WORD
	CHANGE CURRENT DIRECTORY
	CHANGES
	CHECK FILE
	CLEAR
	CLEAR DEFINITIONS
	CLIP TO SEARCH BUFFER
	COPY
	COPY BLOCK
	CUSTOMIZE TABS
	CUT
	CUT BLOCK
	CYCLE COLOURS
	DEFAULT
	DELETE
	DELETE LINE
	DELETE WORD
	DELETE TO EOL
	DM
	DOWN
	DOWN 12 LINES
	EDITABLE FILE
	END OF FILE
	END OF LINE
	END OF SCREEN
	EOLS VISIBLE
	ENTER ASCII
	ESC CODES VISIBLE
	EVERY N MIN
	EXPAND VIEW
	FIND MATCHING BRACKET
	FORCE CUSTOM SCREEN
	FORWARDTAB
	GETDIRNAME
	GETFILENAME
	GETNUMBER
	GETSTRING
	GETWORD
	GETLINE
	GETCHAR
	GROW VIEW
	HOT-START ENABLED
	ICON CREATION
	INCLUDE FILE
	INHERIT
	INSERT BLOCK
	INSERT MODE
	INSTALL DOS/AREXX COMMAND
	JUMP TO AUTO-MARK
	JUMP TO BYTE
	JUMP TO FILE
	JUMP TO LINE
	JUMP TO MARK
	JUMPTO
	KEYPAD = MOVEMENT
	LASTKEY
	LAYOUT
	LEFT
	LEFT 12 CHARS
	LL
	LOAD DEFINITIONS
	LOAD DOS/AREXX COMMANDS
	LOWER CASE WORD
	MARK
	MARK BLOCK
	MARK COLUMNAR
	MARK COLUMNAR BLOCK
	MARK LOCATION
	MAX SCROLL
	MAX UNDO LEVELS
	MAX UNDO MEMORY
	MENU
	NEXT VIEW
	NEXT WORD
	NO SCROLL BAR
	OKAY1
	OKAY2
	ON/OFF
	OPEN
	OPEN NEW
	OW
	PAGES
	PASTE
	POST PERIOD SPACES
	PREV WORD
	PREVIOUS VIEW
	PRINT BLOCK
	PRINT CLIP
	PRINT FILE
	PRIORITY
	PUBSCREEN
	QUIT
	QUIT & DIE
	RAWKEY
	REDO
	REPEAT KEY/MENU
	REPEAT REPLACE
	REPEAT SEARCH BACKWARDS
	REPEAT SEARCH FORWARDS
	REPLACE
	RESET ALIAS
	RIGHT
	RIGHT 12 CHARS
	ROT BLOCK
	ROT MARKED
	RX
	SAFE SAVES
	SAVE
	SAVE ALL CHANGES
	SAVE AS
	SAVE BLOCK TO FILE
	SAVE CLIP AS
	SAVE DEFINITIONS
	SAVE DOS/AREXX COMMANDS
	SAVE ENVIRONMENT
	SCREEN HEIGHT
	SCREEN WIDTH
	SCROLL BAR ON LEFT
	SCROLL BAR ON RIGHT
	SEARCH FOR
	SELECT DISK FONT
	SEND DOS/AREXX COMMAND
	SEND DOS/AREXX OUTPUT TO
	SET CLIPBOARD UNIT
	SET ICON TOOL NAME
	SET PRIORITY
	SET RIGHT BORDER
	SET SCREEN SIZE AND TYPE
	SET SCROLL BORDERS
	SET SCROLL JUMP
	SET TIMER
	SETSCREEN
	SHOW ASCII VALUES
	SHRINK VIEW
	SIMPLE SAVES
	SPACES VISIBLE
	SPAWN NEW CED
	SPECIFY
	SPLIT VIEW
	STATUS
	STRIP CR BLOCK
	STRIP CR MARKED
	TAB SIZE
	TABS = SPACES
	TABS VISIBLE
	TEXT
	TOPAZ 60 COLUMN
	TOPAZ 80 COLUMN
	UNBCK SPC WORD
	UNDELETE LINE
	UNDELETE WORD
	UNDO
	VERSION
	UP
	lockgui
	unlockgui
	UP 12 LINES
	UPPER CASE WORD
	USE WBENCH COLOURS
	WITH FILL
	WITHOUT FILL
	WORD WRAP
	actualsize
	AUTOEXPAND
	automarkx
	automarky
	autosavetimer
	backspacecharbuffer
	backspacewordbuffer
	blockbuffer
	blockscreenx
	blocky
	clipunit
	currentdir
	cursorcolumn
	cursorline
	cursormemoryx
	cursoroffsetx
	cursoroffsety
	customheight
	customroutines
	customwidth
	deletecharbuffer
	deletelinebuffer
	deletewordbuffer
	desiredcolumn
	dirname
	displaycolumns
	displaylines
	editable
	filemem
	filename
	fontinfo
	forcecustom
	ICONCREATION
	icontoolname
	insertmode
	interlace
	keepresident
	KEYPADMOVEMENT
	layoutmode
	leftline
	leftpropgadg
	linebuffer
	linebufferoffset
	linememorylength
	linenumber
	linescreenlength
	markx1
	marky1
	markx2
	marky2
	markx3
	marky3
	maxscrolly
	modeid
	numchanges
	numlines
	numviews
	pixelleftedge
	pixeltopedge
	portnumber
	pubscreenname
	PRIORITY
	restname
	rightborder
	rightpropgadg
	safesaves
	scriptbit
	scrollborderbottom
	scrollborderleft
	scrollborderright
	scrollbordertop
	scrolljump
	searchinfo
	serialnumber
	showascii
	STATUSLINE
	statuslinetype
	tabs
	tabsarespaces
	TABSIZE
	taskaddress
	topline
	totalnumfiles
	totalnumviews
	verticalblock
	visibleeol
	visibleesc
	visibletab
	windowheight
	windownumber
	windowwidth
	WORDWRAP
	zeromapchar


