
DDigest (version 0.06)

Copyright (c) 1994 Robert P. Rush

Permission to copy and distribute this material for any purpose and without fee
is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies. THE AUTHOR MAKES NO
REPRESENTATIONS ABOUT THE ACCURACY OR SUITABILITY OF THIS MATERIAL
FOR ANY PURPOSE. IT IS PROVIDED "AS IS," WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES. THE AUTHOR WILL ASSUME NO LIABILITY FOR
DAMAGES EITHER FROM THE DIRECT USE OF THIS PRODUCT OR AS A
CONSEQUENCE OF THE USE OF THIS PRODUCT.

DDigest (De-Digest) is a program designed to extract individual articles from a digest
format mailing list. It will then place these articles into a rnews packet to be imported
into an off-line news reader. DDigest will find these digests in either a mail packet (in
soup format), or a Yarn folder.

Requirements:

MSDOS or other compatible operating system.

Installation:

Copy ddigest.exe to a directory contained in the path.

Edit a configuration file for each mailing list.

Configuration files:
This contains settings telling DDigest how to find and process a digest. Comments may
be placed in the configuration file by placing a "#" into the first column.

Ddigest uses regular expressions in searching for the ‘FindDigest’,
‘FirstAricleBreak’, and ‘ArticleBreak’ strings. See the section on regular
expressions for additional information.

Finding a digest:
DDigest will look in the "FindHeader" of each mail message for the "FindDigest" search
string. If found, the mail message will be processed as a digest. Otherwise, DDigest will
continue looking in the next message. For example, if the configuration file contains the
settings:

FindHeader=Sender:
FindDigest=yarn-list

Any mail message containing the string "yarn-list" in the "Sender:" header will be

considered a digest.

Finding Articles in a digest:
Once a digest has been found, DDigest will look in the message body for the beginning
of the first article using the "FirstArticleBreak" setting. The end of each article and
the beginning of the next article is found with the "ArticleBreak" setting. The
extracted article will contain everything from the end of one article break to the
beginning of the next article break. The article breaks are not included in any articles.

For example, the digestifier places an introduction followed by a line containing seventy-
six dashes at the beginning of the digest. Each article in the digest is separated by
three lines, the first one being blank, the second line containing thirty dashes, and the
third line blank. The configuration file should contain the settings:

FirstArticleBreak=^-{60,100}$
ArticleBreak=^$-{30}$$

This will find a line containing between sixty and one hundred dashes, and nothing but
dashes, and use it as the break between the introduction and the first article. It will also
use any group of three lines where the first and third lines in the group are blank and
the middle line contains exactly thirty dashes as a break between articles.

Placing extracted articles into a newsgroup:
If necessary, create the newsgroup in the off-line reader. Yarn will also allow you to set
up a posting address so that posted articles will automatically be posted to the list and
not to a phantom newsgroup.

DDigest will add a "Newsgroup:" line to each extracted article using the "NewsGroup"
setting in the configuration file. For example, if the configuration file contains the
setting:

 NewsGroup=Yarn-List

All extracted articles will be placed into the newsgroup "Yarn-List".

Regular Expressions:
Using a regular expression in place of a simple search string will allow searching for a
string that will change from one digest to the next. For example, you want to look for
the line:

 This is digest #123 in a series on weather

The following regular expression will compare the entire line including the digest
number:

 This is digest #[[:digit:]]+ in a series on weather

The ‘[[:digit:]]+’ part of the expression will match any sequence of one or more
digits. It is composed of an operator ‘[[:digit:]]’, and a modifier ‘+’. The operator will
match one digit. The modifier tells DDigest to apply the operator one or more times. A
modifier may follow an operator, ordinary character, or parenthesized expression to
match multiple occurrences of what the operator, character, or parenthesized
expression would match.

An anchor indicates that the character preceding or following it should start or end a
word or line.

To Find Operator Examples
================= ===== =============
Any single character. . "f.t" finds "fat,"

"fet," and "fit."

One of the specified [] "f[ae]t" finds "fat"
characters. and "fet," but not

"fit."

Any single character [^] "f[^ae]t" finds "fit,"
except one of the but not "fat" and
specified characters. "fet."

Any word constituent \w "f\wt" finds "fit,"
character. (A word "fat," and "f_t" but
constituent character is not "f t" or "f,t."
a letter, number or
underline.)

Any non word constituent \W "f\Wt" finds "f t" or
character. "f,t" but not "fit,"

"fat," and "f_t."

Any character that would \ "f\+t" finds "f+t" but
otherwise be an operator, not "fft," while "f+t"
modifier, or anchor. finds "fft" but not
(These are "^.[$()|*+?{\") "f+t."

A line separator. $ "f$t" finds text where
"f" is the last letter
on one line and "t" is
the first letter on
the next line.

Any operator or character could be followed by a modifier to match multiple occurrences
of a character or expression.

To Find modifier Examples
================= ===== =============
Zero or more occurrences * "f.*t" finds "ft,"
of the previous character "fat," "fabt," and "f
or expression. a whole lot more text

t."

One or more occurrences + "f.+t" finds "fat,"
of the previous character "fabt," and "f a whole
or expression. lot more text t," but

not "ft."

Zero or one occurrence ? "f.*t" finds "ft" and
of the previous character "fat," but not "fabt"
or expression. or "f a whole lot more

text t."

Exactly <n> occurrences {n} "fa{3}t" finds "faaat"
of the previous character but not "faat" or
or expression. "faaaat."

At least <n> occurrences {n,} "fa{3,}t" finds
of the previous character "faaat" and "faaaat"
or expression. but not "fat."

Between zero and <n> {,n} "fa{,3}t" finds "ft,"
occurrences of the and "faaat" but not
previous character or "faaaat."
expression.

Between <n1> and <n2> {n1,n2} "fa{2,3}t" finds
occurrences of the "faat" and "faaat" but
previous character or not "fat" or "faaaat."
expression.

To indicate that a Anchor Examples
character or expression
must:
================= ===== =============
start a line. ^ "^hi" will match "hi"
(This must occur at the only if it is at the
beginning of an beginning of a line.
expression.)

end a line. $ "hi$" will match "hi"
only if it is at the
end of a line.

start a word. \< "\<hi" will match "hi"
and "hit," but not
"phi."

end a word. \> "hi\>" will match "hi"
and "phi" but not
"hit."

Brackets may be used to match a range or class of characters. A list of characters
enclosed by ‘[’ and ‘]’ matches any single character in that list; if the first character of
the list is the caret '^' then it matches any character not in the list. For example, the
regular expression “[0123456789]” matches any single digit. A range of ASCII
characters may be specified by giving the first and last characters, separated by a
hyphen. Finally, certain named classes of characters are predefined. Their names are
self explanatory, and they are ‘[:alnum:]‘, ‘[:alpha:]‘, ‘[:cntrl:]‘, ‘[:digit:]‘,

‘[:graph:]‘, ‘[:lower:]‘, ‘[:print:]‘, ‘[:punct:]‘, ‘[:space:]‘, ‘[:upper:]‘,
‘[:word:]‘, ‘[:xdigit:]’. For example, “[[:alnum:]]“ means “[0-9A-Za-z]“ except
the latter form is dependent upon the ASCII character encoding, whereas the former is
portable, “[[:word:]]“ is equivalent to “\w”, “[[:digit:][:alpha:]_]“ or “[0-9A-Za-
z_]“. (Note that the brackets in these class names are part of the symbolic names, and
must be included in addition to the brackets delimiting the bracket list.) Most
metacharacters lose their special meaning inside lists. To include a literal ‘]’ place it first
in the list. Similarly, to include a literal ‘^’ place it anywhere but first. Finally, to include
a literal ‘-’ place it last.

A "^" should be used to match a line separator at the beginning of an expression.
Otherwise, a "$" should be used to match a line separator. Only the "^" and "$"
operators will match a line separator.

Two adjacent (concatenated) regular expressions match a match of the first followed by
a match of the second.

Two regular expressions separated by | match either a match for the first or a match for
the second.

A regular expression enclosed in parentheses matches a match for the regular
expression.

A regular expression enclosed in parentheses followed by a modifier will match an
integer multiple of the enclosed expression. I.e. "(abc)*" will match "abcabc," or
"abcabcabc" but will only match the first 6 characters of "abcabcab."

The order of precedence of operators at the same parenthesis level is "[]" then "*+?{}"
then concatenation then "|".

An expression will match the longest string it can.

Multiple line matches are limited to five lines.

The reported start and end of a match may be specified by embedding a ‘\s‘ or ‘\e‘ in
the regular expression. This will allow using part of the next article in the search
pattern. I.e. The search pattern “^$-{30}$$\eFROM:“, will match an article break
composed of: a blank line, followed by a line containing 30 dashes, followed by a blank
line, followed by a line starting with “FROM:“. Everything following the ‘\e‘ will be
included in the following message.

Regular expressions used by DDigest are the same as those used by Yarn with the
following exceptions:

1) A "\" may only be followed by one of the following "^.[$()|*+?{\", or "sewW". The
sequence "\w" will match any word constituent character, not a "w". A "\" followed
by any other character is illegal.

2) A "$" may also be used to match a newline in the middle of a string.

3) The "{}" operator may be used in place of "*+?".

The command line is:

DDigest <config file> <Email file> <rnews file>

or

DDigest <config file> <Yarn folder> <rnews file> -Y

or

DDigest <config file> <Text file> <rnews file> -T

 Where:

 <config file>
This file contains the search patterns used to find the digest and to separate it into
individual articles.

 <Email file>
This file will be found in the soup packet imported into the off-line news reader.

 <rnews file>
This file will be generated by DDigest. It could then be imported into the off-line
news reader as an rnews file.

 <Yarn Folder>
A file contained in Yarns (USER)\mail directory.

 <Text file>
A file contained a single digest in text format.

If the <Email file>, <Yarn Folder>, or <Text Folder> name is replaced with a ‘-‘, the
input will be taken from the standard input. If the <rnews file> is replaced with a ‘-‘,
the output will be sent to the standard output. This will allow the input to be piped from
another program and the output to be piped to another program.

To De-Digestify a mailing list digest:

1) Unzip the soup packet containing Email into an empty directory.
2) Decide which file contains Email. This is probably named "0000000.MSG" if you are

using UQWK to create your SOUP packets. If this does not work, you could find out
which one it by looking at the AREAS file. Each line contains three fields separated
by tabs. The first field is the file name (Without the ".MSG" extension). The second
field is the file type. Look for the line containing "Email" in the second field. On
my system, the line is "0000000 Email bn". Therefore the file name is
"0000000.MSG".

3) Execute the command (substituting your filenames):

 DDigest list.CFG 0000000.MSG list.MSG

4) Import the resultant file:

 import -r list.MSG

Notes:

* Each article extracted from the digest will have unique Message-Id based on the
Message-id of the digest. Therefore, if a digest is imported twice, the articles will
be recognized as duplicates.

* The program will also insert the following headers into each extracted article based
on the digest headers:

 X-Digest-Subject: <Digest subject>
 X-Digest-Date: <Digest Date>

* The 'X-Digest-Subject:', 'X-Digest-Date:', 'Message-Id:', and 'Newsgroups:'
lines are added to the beginning of each extracted article.

* The closing will be output as an extra article without a subject.

* The search strings must be contained on one line, but may be any length up to 255
characters long.

* A temporary file is created if either the '-T' option is used or if the input is piped
into ddigest.

Bob Rush
bobr@mcs.com

