
ABZmonPPC Manual p. 1

ABZmonPPC
a native PowerPC Debugger

by Alain Birtz
version 0.9

Reference manual

Alain Birtz
650 Grand St-Charles,
St-Paul d’Abbotsford,
P.Q., Canada, J0E-1A0

CompuServe: [72467,2770]
Internet: 72467.2770@compuserve.com

ABZmonPPC Manual p. 2

ABZmonPPC Manual p. 1

A typical ABZmonPPC debugger screen

ABZmonPPC Manual p. 2

ABZmonPPC folder

The ABZmonPPC folder holds six items: the English and French
documentation, an important ReadMe text, the ABZmonPPC_ƒ folder holding
the debugger INIT and the ABZmonPPC.help, PPCdebKey_ƒ folder holding a
programmer swtich INIT and it documentation file, and test_deb_f folder
holding a native application to test the debugger and all assembler source
file needed to rebuild the application in MPW.    ABZmonPPC can be
distributed freely, but please, keep the files together.

Installation

To install the monitor put the 'ABZmonPPC', ABZmonPPC .help and
PPCdebKey into the Extension folder or into System folder and restart the
computer. ABZmonPPC and ABZmonPPC.help must be in the same folder. If
the monitor is correctly loaded you will see this icon at the bottom of the
screen:

As soon as you see the monitor icon, the monitor is active, and you can call
the monitor immediately (for example, to check how other INITs are
installed).

Note: the icon symbol is the one found on some Mac interrupt switch...

If the monitor is not correctly loaded you will see this icon:

You can disable the loading process by pressing the 'Option' and = keys    at
the startup.

Warning: Pre-System 7.5 must use PPCTraceEnabler extension, otherwise
trace and step doesn't work correctly in ABZmonPPC. PPCTraceEnabler is not
needed for System 7.5 or higher
Presentation

ABZmonPPC is a low level debugger, a tool to check programming errors.
Like other debuggers, ABZmonPPC has standard features such as a break
point, a step by step mode, a memory dump, a    microprocessor register
dump, etc.

But ABZmonPPC has many other functions usually not found in other
debuggers. For example, ABZmonPPC has a graphical interface using
windows, menus and a mouse. A text can be viewed inside the debugger. You

ABZmonPPC Manual p. 3

can quit a "frozen" application and continue normally with another
application.

Many functions have been added to ABZmonPPC to help the programmer.
Inside a code window, for example, you can see an operand, let's say a
pointer    like $4(r1), directly by option-clicking on the operand. In this
example , you can see the pointer's address but also the pointed value. You
can save the address (inside the CLIP buffer) and with a simple mouse click,
you can open a code or memory dump at this address.

The user can choose the part of the screen where ABZmonPPC will be
displayed. The debugger image can be moved on the screen within the
debugger, and ABZmonPPC now support color. A second video monitor can
be devoted to the debugger. An ABZmonPPC's screen snapshot can be taken
with just a key combination.

You can set more than fifty internal parameters, including exception vectors,
that controls the way    ABZmonPPC works. You can save your menu and
window setups for the next time. You can also save the useful addresses or
values of the CLIP buffer.

ABZmonPPC is the native port of ABZmon    (the low level debugger for 68000
microprocessor family) for PowerPC microprocessor. ABZmonPPC
is entirely written in PowerPC assembler.

ABZmonPPC Manual p. 4

Since the PowerMac run 68020 program, ABZmonPPC can also work has low
level debugger for 68020 processor. ABZmonPPC support standard 68K
debugger feature such break point, single step, n-step, line-A trap intercept,
etc. However, ABZmonPPC is built for PowerPC, so feature for 68K are limited
to the basic one...

How the debugger is invoked

The debugger appear when:

 in your code, you insert one of the Debug instruction. The debugger stops   
the program after the instruction.

 you set a break point. The debugger stops    the program at the instruction
under the break point. The instruction is not executed

 a step/trace command is given.

 a stop condition is meet. A such condition appear in the "Stop" menu:
changes in some memory segment, register taking some value, program   
execiting    a given instruction.

 on a bus error, address error, illegal instruction, etc...

 some Mac have a programmer switch. Hitting this button induce a NMI
exception. ABZmonPPC is enterred when the 68K NMI vector is set (default
setting).

 the programmer key is hit. 'PPCdebKey' is a little extension that set the
programmer key to control-` (or control-~). 'PPCdebKey' is included in the
ABZmonPPC folder. Resume with a GO command.

ABZmonPPC Manual p. 5

ABZmonPPC graphic interface   

The ABZmon's graphic's    interface is similar to the Mac's graphic's interface,
but it is not identical. In fact the debugger doesn't use any QuickDraw
procedures. ABZmonPPC uses its own screen procedure, and then, does not
interfere with the operating system. The interface has menus, windows,
dialogs box and uses the    mouse like a Macintosh .

Sure, the ABZmonPPC's interface is not as sophisticated as the one built by
Apple (the code holds in 50K bytes only), but the user will retrieve almost its
familiar environment. Among other differences, one can note that the cut
and paste function is not as usual. The debugger transfers only hexadecimal
numbers (the most used type of    keyboard entries). There are also
differences in the window scroll bar. Only up and down arrows are available,
and there is no middle thump. However this lack is compensated by a
fabulous scroll speed...

Example of window, menu and dialog box in ABZmonPPC

Note that in the dialog box the default button is boldly outlined. Its effect
occurs if the user presses Enter or Return.

ABZmonPPC Manual p. 6

The active window

This window has a black close box. The first time you click on a window
(menu) it becomes active. You can move the window (active or not)    as
usual, the mouse being in the title window area. Click into the close box to
close the active window. In window with scroll bar, click into the arrow icon to
scroll up and down. Alternatively, use the up and down key on the keyboard.
if the window has a grow box you can shrink or expand the window as usual.

Sometimes the active window is empty. This means that window content
cannot be drawn, probably because ABZmonPPC meets a bus/address error.
For example the monitor probably cannot show a DUMP window at
$AAAAAAAA since the memory for this address does not physically exist.

In the example above, the TRACE menu is active.

The default address

The default address is set when you click one time in a window and this line
become highlighted. By example, a line in a register window is highlighted
when you click in the register    name area (the value area is reserved to
change the register value). The default address is the register value. In the
dump window you must click in the dump address area (the other parts are
reserved to change the memory). The default address is the hexa value at
the beginning of the line. You must click in the address area of a code
window since the operand field is used to show the operand value. The
default address is also the hexa value at the beginning of the line

The default address is the one shown in most dialogs asking you for an
address. For example: to set a break point, highlight an address in any
disassemble window and click on the SIMPLE in the SET BREAK menu. To
execute the code starting at the address in the R3 register, highlight the R3
line in some register window and click the GO TO item in the CONTROL
menu.

In the example above, the fifth line of the DISASSEMBLE window is
highlighted, so the default address is $1CA9518.

Debugger mode: PowerPC or 68K

ABZmonPPC operate has both PowerPC and 68K debugger. ABZmonPPC
signal mode switch by a dialog like the one below. ABZmonPPC has entered
many time to debug PowerPC code. Then a _Debugger instruction in 68K
code has called ABZmonPPC.

ABZmonPPC Manual p. 7

When a such debugger mode switch occur, a 68K code window is made the
front window. If there is no 68K code openned, a new one is created at the
address of the PC. If the mode switch from 68K to PowerPC, a PowerPC code
is made the front window.

Sometime ABZmonPPC have to guess what the user want to do with some
command. By example, the user may wish set a break point in some
PowerPC code while the debugger is in 68K mode. If the break point is set
directly in the PowerPC code window, ABZmonPPC assume that the break
point must be a PowerPC break point. But if the command is issued from the
break menu or from a keyboard shortcut, there is no way to know what kind
of break point the user want install. In this case, ABZmonPPC follow this
simple rule: the command apply to the most recently used code window. So,
to be sure sure that your command apply to the right mode, make a code
window the front window (just click on the window). The command apply to
this kind of code window. The are only few case ABZmonPPC have to made
this guess: command given in OPT DIS menu (option for disassembler),
SIMPLE item in the SET BREAK menu and / and * keyboard shortcut (to
change PC displacement form and rebuild symbol/label in disassembler).

ABZmonPPC Manual p. 8

Dialog

Dialog are used to get parameter and send command to ABZmonPPC. The
dialog below is used to open a 68K code window. The default button, the one
more darker, is the OK button. This button is selected with Enter or Return
key. The check box named small font is crossed, so the window will use
small font character. The edit field start hold the hexadecimal value
252B6t40. The letter t is a mistake. When the user select un button or hit
Enter or Return key, ABZmonPPC do not accept the command and put the
arrow cursor near the offending character. The arrow is empty to signal an
error.

Everything written in the edit field can be copied into the ABZmonPPC
clipboard by the usual Command-C. The selected string in the Clipboard
window is pasted by the usual Command-V. The default address is written
into the edit filed when the dialog is openned. The default address come
from an highlighted line in some window.

ABZmonPPC Manual p. 9

MAIN menu

This is the root menu. It open all other menus. Unlike Mac menu, menus in
ABZmonPPC, can be moved and closed. If the MAIN menu is closed, you can
re-open it like this: close any menu or window, then press any key or click
the mouse anywhere. The MAIN will reappear, and you will be able to open
all other menus and window.

The items in this menu open the following menus:

CONTROL: this menu allows to return to the application, to terminate it or to
continue at a given address, etc.

OPEN: this menu opens memory dump windows, code windows, message
windows, file selector boxes, file text windows...

SEARCH:    searches a sequence of letters or hexadecimal values in memory.

MON SPY: each time the debugger is entered, a condition a is ckeck. This
menus set or clear such condition (see JB Condition section for more on it).

STEPSPY: Like MON SPY menu, but condition is check each time a trace
exception occur (initiated by some step command).

ABZmonPPC Manual p. 10

STOP: the items of this menu force a break when some conditions on the
registers or/and memory occur (for example when the stack pointer
increases) or when the program executes some instructions (TW, for
example).

BREAK:    sets or removes break points.

TRACE:    induces the step by step mode. Single step, "n" step, etc.

OPT DIS: each item determines the look of the code window. For example,
the type of labels used (locals or the ones from the compiler) or the type of
microprocessor (16 or 32 bits)... Two option menus are opened
simultaneously.

MISC: to save/reload the current menus and window settings, paste an
address to the CLIP buffer and set the look of the text windows.

CONTROL menu

This    menu allows to return to the current application or terminates it.

ABZmonPPC Manual p. 11

GO:    quits ABZmonPPC and continues the execution of the program. If the
program is stopped by one of the Debug instructions, the execution
continues after the Debug instruction. If the program is stopped by a break
point, the execution continues at the instruction    under the break point. For
other king of exception (illegal instruction, unmapped memory) you need to
continue at the next instruction: change the PC value in the GPR window or
use the GO TO item).
Keyboard shortcut: g, q, G, Q

GO TO ...:    quits ABZmonPPC and continues the execution of the program at
the address given in the dialog box below. The address $1416538 is the
default address (a line of code, at this address, has been selected). When   
no line is selected, the PC address is used instead.

GOTO NEXT:    quits ABZmonPPC and continues the execution of the program
at the next instruction. Useful when the debugger is entered because a bus
error or an illegal instruction. The faulty instruction is skipped and execution
resume at the next instruction.

REFRESH: quits ABZmonPPC and    rebuilds the desktop screen. Useful to
debug codes using    QuickDraw.

FINDER: quits ABZmonPPC and go to the Finder.

RTS: exit the current subroutine. See The RTS command    below before
using this command. Keyboard shortcut: r

AE QUIT: send an Apple quit event to the current application. If the
application support this Apple event, this can force the application to save
the current document before quit.

TO SHELL: quit the current application and return to the command shell:
usualy the Finder. Keyboard shortcut: e (ExitToShell procedure...)

RESTART: restarts the computer (warm start).

The item holding only dash character is used only to separate the other
items: the last one is dangerous!

Open menu

This    menu    opens all non-menu windows in ABZmonPPC.

ABZmonPPC Manual p. 12

DISASSEM: opens a PowerPC code window. You must enter the address of the
first instruction in the dialog box below. This address can be given indirectly
through registers and relative displacements (see The JB address). The
small font check box must be checked to display the text in the window
using small fonts. as JB record check box must be checked if you want
expression in the start edit field must be keeping as JB record instead of a
straight address. By example, if the expression is PC+8, and PC value is
$10000, the window open at $10008. If a step command is given, the PC will
probably change to $10004. Then, if as JB record check box is checked, the
code window show now the first instruction at address $1000C. If as JB
record check box is not checked, the code window first instruction address
still to be $10008.

If the address is not valid, the cursor changes to an empty arrow and the text
cursor appears near the first faulty character. Click the OK button
(alternatively, hit Return or Enter key) to open the window and    the Cancel
button to cancel.

The combination Command-D is a shortcut to this item.

There is a more quick shortcut to open a code window: in any code, dump or
register simply option-click in any line. The window open at the address of
this line.

MEM DUMP:    opens a memory dump window (in both hexadecimal value and
ascII code). A dialog box similar to the one above, asks for the start address.

The combination Command-M is a shortcut to this item.

There is a more quick shortcut to open a dump window: in any code, dump or
register simply shift-click in any line. The window open at the address of
this line.

ABZmonPPC Manual p. 13

GPR reg: opens a window to show the value of the general purpose register
R0 to R31. The small font check box, in the dialog below, must be checked
to display the text in the window using small fonts.

Shortcut: Command-R

CR reg: opens a window to show the bit status of CRO to CR7

FCS reg: opens a window to show the value of the SP, TOC, CTR, LR, PC, CR,
XER, RTCU, RTCL, MQ and    FPSCR register.

FPR reg: opens a window to show the value of the floating point register F0
to F31.

SPR reg: opens a window to show the value of the special purpose register.
Actualy, the Mac OS don’t give access to these register. This item do not
open any window.

BRK PNT: opens a window showing info on all break point.

MESSAGE: opens a message window. Only one message window can be
opened at the same time. If the message window is already opened, then
ABZmonPPC only make it frontmost window (active).

CLIP: opens a window showing the expression in the CLIP buffer.

PROCESS: opens a window showing all applications, including the
background one.

FILE SEL: opens a file selector window. This is the counterpart, in
ABZmonPPC, of the Mac dialog you see when choosing "Open" or "Save" as
in the File menu. You can hierarchically see and select file and folder.

TEXTVIEW:    sees a    text of the file selected by the previous item.

CONTEXT:    give context information as defined by Code Fragment Manager.

68K DIS:    open a 68K code window. The window can be openned such that
the first line window is address of the PC (automaticaly updated when the PC
change), or at any given address (not updated, but with scroll bar). In the
dialog below, the default address is the address got from some highlighted
line or the PC address if there is no such highlighted line. If the botton AT PC
is selected, the address in the start edit filed is ignored.

ABZmonPPC Manual p. 14

68K REG:    opens a window to show the value of the 68K register D0 to D7,
A0 to A7, PC, CCR and SR

SEARCH menu

To search a sequence of characters or hexadecimal values in memory.

ABZmonPPC Manual p. 15

ASCII STR: finds a sequence of letters in memory. In the dialog box below, the
first edit field is an expression given the address of the first byte of the
memory segment to be scanned. The second field is the address of the last
byte in the segment. The third edit field holds the sequence of letters to be
found. The symbol * is the wildcard symbol, standing for any character. So,
ABZmonPPC searches every word Apple test or part of a word like in   
attention.

In this example ABZmonPPC has found the word text at the address $2164E.
The dialog box below is then shown:

The DUMP button opens a memory dump at this address while the DISAS
button opens a code window. The OK button exit without openning any
window.

Shortcut: Command-F

ABZmonPPC Manual p. 16

HEXA STR: finds a sequence of    hexadecimal numbers in memory. In the
dialog box below, the first edit field is an expression given the address of the
first byte of the memory segment to be scanned. The second field is the
address of the last byte in the segment. The third edit field holds the
sequence of hexadecimal numbers to be found. Note that the wildcard
symbol    *    can be also used in a sequence of hexadecimal numbers.

Here the search fail in the segment [PC, PB+$2000]. The dialog below warn
you for it:

OPTION: sets some search options. In the dialog box below, the wildcard
symbol is set in the edit field wildcard symbol. The check box case
sensitive must be checked if the search is done case sensitive. The check
box use wildcard must be checked if the search uses    the wildcard symbol
as a replacement for any character.

FIND NEXT: continues the search previously initiated.

Shortcut: Command-G

MON SPY menu

Sometime you may wish to know if a byte or a word in memory has changed
since last time you have see the debugger screen. You may also wish to
know if a register is becoming negative or zero. Or if a segment has been
corrupted. MON SPY menu let you make a command that spy fot such thing.

CONDITION: prompt a dialog to set a condition to check each time the
debugger in enterred. Warn you when the condition is true. See JB
Condition section for more on condtion syntax.

The condition in dialog ask the debugger to warn when the word at the
address in the register R3 is greater than $FFFF. The next time the debugger
will be enterred and the condition will be true, ABZmonPPC will show you the
dialog:

ABZmonPPC Manual p. 17

ARRAY COMP: warn you if an array of byte in memory has changed. In the
dialog below the first field is the address of the first byte to check. The
second field is the number of byte to check. When the OK button is selected,
the array image is copied into a internal buffer in ABZmonPPC.

Each time the debugger is entered, the array is in memory is compared to
the array copied in the internal buffer. If one or more byte does not match,
the debugger warn you:

The size of the internal buffer is set in the S_UP resource of ABZmonPPC INIT
(see Internals variables).

CHECKSUM: this item is very similar to the previous one. Instead of keeping
an image of the segment to check, a checksum is done. The next time the
debugger is entered a new checsum is done. If the two checksum does not
match, the debugger warn you. Otherwise, the debugger keep silent.

Use CHECKSUM for segment larger than internal buffer used in ARRAY COMP.

CLEAR: to cancel one or more spy process.

Note: all three MON SPY process can run concurrently.

STEPSPY menu

This menu is identical to the MON SPY menu. Dialog presented are same as
above. But, while in MON SPY check is done each time the debugger is
enterred, in STEP SPY check is done every time a PowerPC instruction is
executed.

ABZmonPPC internaly set a trace mode and check condition or segment
change after instruction is executed. If condition is not true or no change is
done in segment, ABZmonPPC continue program execution (in trace mode)
at the next instruction. Otherwise, the debugger is enterred and a dialog
warn the user.To see how many instruction has been executed, look in the
message window. The number of instruction is show in hexadecimal.

ABZmonPPC Manual p. 18

Use STEP SPY with caution. If the condition never come true or if the
segment is never changed, ABZmonPPC will continue to execute the program
in trace mode, and this is very, very slow!

Note: all three STEP SPY process can run concurrently. In fact MON SPY and
STEP SPY run    concurrently.

STOP menu

This menu forces a program to break on various conditions. Also, reset
DebugNum parameters.

Use item in this menu with caution. If the condition never come true,
ABZmonPPC will continue to execute the program in trace mode, and this is
extremely slow! When the break is done, ABZmonPPC is entered and a dialog
tell you why the break is done. To see how many instruction has been
executed, look in the message window. The number of instruction is show in
hexadecimal.

TWO CONDITION: set condition to a break when the condition become true.

The first edit field in the dialog above is the    number of time the condition
become true before breaking. The two next edit field hold the condition. If
you you leave a field empty the condition is not used. The AND button must
be used to force a break when both condition are true. The OR button force a
break when at least one condition is true. Use the OK button when one or
both are not used. If both condition are used the OK button is same as AND
button. See JB Condition section for more on condition syntax.

SP CHANGE: ABZmonPPC watches the stack pointer SP at every instruction. If
the value of SP changed, a break is forced.

SP INCREASE: ABZmonPPC watches the stack pointer SP at every instruction.
If the value of SP increases, a break is forced. This feature is useful to get the
exit from a subroutine.

SP DECREASE: ABZmonPPC watches the stack pointer SP at every

ABZmonPPC Manual p. 19

instruction. If the value of SP decreases, a break is forced.

TOC CHANGE: ABZmonPPC watches the table of content register (R2) at
every instruction. If the value of TOC changed, a break is forced.

LR CHANGE: ABZmonPPC watches the link register LR at every instruction. If
the value of SP changed, a break is forced.

NEXT BRANCH: ABZmonPPC check every instruction until a branch instruction
(b, bc, bcctr or bclr) is to be executed. Then, a break is forced.

ABZmonPPC Manual p. 20

NEXT TRAP: if the debugger is in PowerPC mode then ABZmonPPC check
every instruction until a trap instruction (tw or twi) is to be executed. When
this happen, a break is forced. If the debugger is in 68K then ABZmonPPC
check every instruction until a lineA trap instruction (OS or ToolBox call) is to
be executed. When this happen, a break is forced. You set the range of the
lineA trap to be intercepted in the following dialog.

Note: the trap intercept process is cleared each time the debugger is
enterred in 68K mode.

CLEAR DEBUGNUM: to reset parameters in one or all DebugNum.

See DebugNum section for more on it.

TAP PROCEDURE: a very usefull feature. It is like tapping a phone line. When
the target procedure is to be executed, the program is stopped and the
debugger is entered. In the dialog below you enter the procedure name (case
sensitive) and the number of time to meet the procedure before the
debugger was entered (0, the debugger enter the first time, 1, the debugger
is enterred only the second time, ect.).

Unlike other STOP command, TAP PROCEDURE do not slowdown    the
current process at all.

When the debugger is enterred after a procedure intercept, a dialog show for
what procedure the stop is done.

There is room for up to 32 procedure interception. When the 32 are filled, the
last one is erased and replaced by the new one.

CLEAR TAP: to erase all entry in the TAP buffer.

TRACE menu

To initiate step command and set trace option

ABZmonPPC Manual p. 21

STEP: executes the instruction pointed by the PC and returns to the
debugger. (For both 68K and PowerPC mode)

Shortcut: s.

STEP AT: executes one instruction at a given address. You enter the address
in the next dialog box.    (For both 68K and PowerPC mode)

 The address can be any valid expression. Here the address is the value of
the link register plus 8.

N STEP AT: execute N instruction at the given address.    (For both 68K and
PowerPC mode). The address and the number of instruction to execute in
trace mode are set in the following dialog:

The default address is the PC unless a line is highlighted. In this case the
address in this line is used. The number of instruction executed is show in
the message window when the debugger is re-entered.

OPTION: no yet implented

ABZmonPPC Manual p. 22

BREAK menu

To set or clear break point.

ABZmonPPC let you know when a break point is set by a message in the
MESSAGE window. A message is also written when later the program is
stopped by the break point:

In code window a break point is signaled by a small black box character at
the start of the disassembled line. When the break point is not valid the
black box hold a white dot. Below the break point is set at $1B26D3C:

SIMPLE: set a break point that break each time. (For both 68K and PowerPC
mode)

Shortcut: Command B.

An easy way to set a break point is to highlight, in a code window, the line
where the break must be done, before selecting the item. The address of this
line appear in the edit filed as default address. Then, to set the break point,
you just need hit Return kew or click the OK button.

A more quick way is to to hit the Command key while clicking a line in code
window.

ONE TIME: very similar to a simple break point. But the break point is
automatically removed when the break is done.

To quickly set a ONE TIME break point, hit the Command key while clicking a
line in code window.

CONDITIONNAL: set a break point that break when condition become true.

The first edit field in the dialog above is the    number of time the condition
become true before breaking. The two next edit field hold the condition. If
you you leave a field empty the condition is not used. The AND button must
be used to force a break when both condition are true. The OR button force a

ABZmonPPC Manual p. 23

break when at least one condition is true. Use the OK button when one or
both are not used. If both condition are used the OK button is same as AND
button. See JB Condition section for more on condition syntax.

ABZmonPPC Manual p. 24

CLEAR ALL: to remove all break point. (For both 68K and PowerPC mode)

CLEAR ONE: to remove a single break point. (For both 68K and PowerPC
mode)

An easy way to remove a break point is to highlight, in a code window, the
break code line (the one with the black box character), before selecting the
item. The address of this line appear in the edit filed as default address.
Then, to remvoe the break point, you just need hit Return kew or click the OK
button.

A more quick way is to to hit the Command key while clicking the break line
in code window.

OPT DISAS menu

To set the form of disassembled line in code window (68K and PowerPC)

REDO SYMBOL: for PowerPC: with the new Code Fragment manager, a
procedure in shared library is called by name instead of by address. By
example all Mac toolbox procedure in InterfaceLib.xcoff is called by name.
ABZmonPPC keep track of all such name (symbol) at startup. A program may
build is own set of procedure as shared library. To get the new symbol you
need to rebuild the ABZmonPPC symbol buffer. These symbol are used in
disassembled line in code window. Unless you suspect an application to
create shared library you probably don’t need to rebuild the symbol buffer. To
rebuild the symbol just click in the REDO SYMBOL item, a wait until the dialog
“Now working, please wait...” diappear.

For 68K: compiler put the name of a routine at the end the routine. The
debugger keep track of these names, and show these name in the code
window. To get the new names you need to rebuild the ABZmonPPC symbol
buffer. You need to rebuild the symbol buffer each time the application to
debug is loaded. To rebuild the symbol just click in the REDO SYMBOL item.

Shortcut: * (when the PC displacement mode Symbol is selected).

REDO LABEL: (for both 68K and PowerPC mode) label in disassembly are

ABZmonPPC Manual p. 25

more readable than just plain hexadecimal address. The debugger use local
label for all PC reference that sometime need to be rebuild. Suppose by
example that you debug an application. The label you are using in this
application will probably not be good the next time you debug the
application since the application will probably not be loaded at the same
address in memory (or some instruction are added or deleted, and PC
reference no longer exactly match the label used previously). To rebuild the
labell buffer just click in the REDO LABEL item, a wait until the dialog “Now
working, please wait...” diappear.

Shortcut: * (when the PC displacement mode Label is selected).

Rebuilding the address of the label takes only a fraction of seconds (unless
you use a very large label buffer), so don't take any chance: use the key '*'
as soon as you suspect your code to be modified or moved...

hexa add : set PC displacement mode as hexadecimal address. PC reference
are given with plain hexadecimal address. (For both 68K and PowerPC mode)

Shortcut: / (select the next PC displacement mode).

pc+$24 : set PC displacement mode as PC offset. PC reference are given
with PC symbol ‘*’ plus an offset to PC. (For both 68K and PowerPC mode)

Shortcut: / (select the next PC displacement mode).

local label : set PC displacement mode as local label. PC reference are given
with local label. (For both 68K and PowerPC mode)

Shortcut: / (select the next PC displacement mode).

CFM symbol : for PowerPC: set PC displacement mode as CFM symbol. PC
reference are given with shared libarary name plus offset. For 68K: set PC
displacement mode as compiler symbol. PC reference are given with
compiler routine name plus offset.

Shortcut: / (select the next PC displacement mode).

ABZmonPPC Manual p. 26

MISC menu

SAVE MON: To save the current menu and window setups for the next time.

Shortcut: Command S.

LOAD MON: To restore menu and window default setups or the setup
previouly saved.

Shortcut: Command L.

CLIP ADR: put the address of the highlighted line into the clip buffer. If the
clip buffer is full, the new address replace the last entry in the clip buffer.

Shortcut: Command S.

ABZmonPPC Manual p. 27

TRASH CLIP: erase all entries in the clip buffer. The dialog below make sure
that you don’t make a mistake.

TEXT WRAP: a text window is viewed in two mode. In the first one, a long text
line is broken (the text continues at the next row). With the second mode,
only the part of the line that fit in the window is show (the remaining    is still
invisible, but you can scroll this line horizontally with the    left and right
arrow keys). This item switches from one mode to the other.

TEXT SCROLL: the up/down arrow icons scroll the text in a text window.
Scrolling can be done one line at a time or more quickly, one page at a time.
This item switches from one mode to the other.

ABZmonPPC Manual p. 28

The windows

If the content of a window cannot be displayed, because of a address error   
in some code window by example, ABZmonPPC leaves the window open and
puts a warning in the message window. You must then close this window.
Such windows are empty or filled with error message.

Usually, you can select a line by clicking at the start of this line. The line is
then video inverted and the address involved by this line becomes the
default address (this address appears in the edit file of most dialog boxes). To
de-select the line you click another time the selected line.

An active window is identified by its black close box. A window becomes
active when you click inside. The keyboard key "." also make the window
active. Repeatedly hit the "." key to do a tour of all windows.

To move a window, just put the cursor in the title bar and drag as usual.

Most of the windows can shrink or grow. Put the cursor in the size box (the
two rectangle icons in the right bottom corner) and drag as usual. The size of
the window is computed to not broke a character in the middle. Some
windows, like the register window, can shrink or grow in only one way.

Click on the arrow icons to scroll the    text. If the scrolling is too fast use the
keyboard arrows up and down.

When hit the '%' key the active window is continuoulsy refreshed. This is
useful to check if some memory location is changed frequently. The cursor
changes to a short arrow. By example open a dump window at the address
$16A and hit the '%' key. The cursor changes to a short arrow and you can
see the word at $16A (the timer Ticks) change very quickly. To stop it, press
the '%' key another time.

ABZmonPPC Manual p. 29

Disassembler window

Show PowerPC mnemonic instructions.

The left column is the address of the instruction disassembled, unless a local
label or CFM symbol is used instead (here the symbol is: ResError). See OPT
DISAS menu for more on it. Click on this column to select the line: the
default is then the address of this line.

The next column column is the keyword instruction name. If you click in this
column you get a dialog also showing the meaning of the keyword. In the
dialog below, the third line keyword. The meaning of this keyword is also
show in the last column of the window when first comment mode is selected.

The third column hold the instruction operand. If the mouse is hit on an
operand, the operand info dialog is displayed. For integer register or
immediat value the value is show in hexadecimal, in ascII and in decimal.   
For displacement the value is show in hexadecimal and in decimal. For
foating point register, the value is show as both hexadecimal and decimal
floating point. For register indirect with immediate index, the effective
address is show between bracket, and the pointed value is show in
hexadecimal, in ascII and in decimal.

The last column is the comment field. Two kind of comment are presented.
The first one give the meaning of the instruction keyword, as in the code
window above. The second one, as in the code window below, give the
instruction opcode between brace, the ascii value of the immediat value
operand between double quotes, and PC displacement between < >. Hit the
c key to toggle beetwen the two mode.

The fourth line begins by a black box char to indicate a break point at this
address.    When the black box has a white, the break point is invalid. This
happen when new code has erased the instruction under the break point
(you must then clear the break point as soon as possible, see BREAK
menu). If the line begins with the character *, the address of the line is the
value of the program counter PC.

The window title reflect the address of the first line in the window. Above, the

ABZmonPPC Manual p. 30

address of the first line is $409DEC20. Since the PC is $409DEC24, the first
line address is PC-4 = PC+$FFFFFFC. When the text scroll (click on the arrow
icons or hit on the keyboard arrows up and down), the title change
according to the address of the first line.

If the code is not word aligned in memory, hit the left or right arrow. The
address of the first line decrease or increase by one.

To quickly open a dump window at the address of some line in code window:
Shift click the line.

To quickly open a code window at the address of some line in code window:
Option click the line.

To quickly set a simple break point (see BREAK menu) at the address of
some line in code window: Command click the line.

To quickly set a break point that remove itself (see BREAK menu) at the
address of some line in code window: Control click the line.

When you click in the address area, at the beginning of the line, you select
the line. The line is then video inverted and the address at the beginning of
the line become the default address. In the first code window above the fifth
line is selected and the default address si $409DE30.

Dump window

Show memory content as ascII and hexadecimal number.

The left column is the address of the first byte of line. The middle area is the
hexadecimal value of each byte and the right area are the ascII character of
each byte or a dot if the a such character doesn’t exist. By example, the first
byte of the second line is the content of memory at address $8A288. The
byte value is $55 and the ascII character $55 is the upper case letter U.

The tiltle reflect the address of the first line in the window. The JB address
[r6+$20].w+$40 mean this: form an address by adding $20 to the value of
the register r6, take the word at this address and add $40. The result is the
address of the first line.    When the text scroll (click on the arrow icons or hit
on the keyboard arrows up and down), the title change according to the
address of the first line.

To scroll horizontally, hit the left or right arrow. The address of the first line

ABZmonPPC Manual p. 31

decrease or increase by one.

ABZmonPPC Manual p. 32

You can change the content of the memory (RAM only) directly from within a
dump window. To change the value of the memory you click inside the line,
either in the hexadecimal area or ascII area. The area is then converted to an
edit field and you would be able to change hexadecimal value or ascII
character. Above, the hexadecimal area in the second line
is converted to an edit field. When an error occur, because an invalid
hexadecimal digit or bad number of character in edit field, the mouse cursor
change to an empty arrow and the text cursor goes near a faulty character.
You must hit Return or Enter to validate the modification. The memory is
changed only after the input keyboard of one of these two keys. If you
change your mind and wish do not change the memory, simply click outside
the window.

To quickly open a dump window at the address of some line in dump window:
Shift click the line.

To quickly open a code window at the address of some line in dump window:
Option click the line.

When you click in the address area, at the beginning of the line, you select
the line. The line is then video inverted and the address at the beginning of
the line become the default address. In the window above the fourth line is
selected and the default address si $8A298.

Register window

Show the GPR registers values and other user level registers values

The first column hold the registers names, the second hold the registers
values in hexadecimal. To point out the    change in register, ABZmonPPC
saves a copy of all registers. When the debugger is entered, a comparison is
made between the old and new register values and the difference is
underlined in the window. For example, the last two digit of the RTCU register
in the FCS window above are changed since last time the debugger was
enterred.

To select a line, click into the register name. The register value become the
default address. In the FCS window above, the LR line is selected. The
default address is then the value of the Link Register: $85894.

To change a register value, click into the the register hexadecimal value. The
hexadecimal area is then converted to an edit field and you can change the
register value. In the GPR window above the R20 register hexadecimal value

ABZmonPPC Manual p. 33

is then converted to an edit field. When an error occur, because an invalid
hexadecimal digit, the mouse cursor change to an empty arrow and the text
cursor goes near a faulty character. You must hit Return or Enter to validate
the modification. The register value is changed only after the input keyboard
of one of these two keys. If you change your mind and wish do not change
the register, simply click outside the window.

To quickly open a dump window for a register in window: Shift click the line
of this register.

To quickly open a code window for a register in window: Option click the line
of this register.

ABZmonPPC Manual p. 34

Condition register window

Show the Condition Register bits status of CRO to CR7.

When the letter is upper case the bit is set, else the bit is clear. Above the G
bit of CR0 is set and the other bit are clear. The meaning of the letter are:

for CR1:

S: Floating-point exception (FX)
E: Floating-point enable exception (FEX)
V: Floating-point invalid exception (VX)
O: Floating-point overflow exception (OX)

other:

L: Less than [negative] (LT)
G: Greatest than [positive] (GT)
E: Equal [zero] (EQ)
O: Summary overflow (SO)

To point out the    change in CRn, ABZmonPPC saves a copy of CR. When the
debugger is entered, a comparison is made between the old and new CR
value and the difference is underlined in the window. For example, the G and
e bit in the CR window above are changed since last time the debugger was
enterred.

ABZmonPPC Manual p. 35

Floating-point register window

Show the value of floating point register as hexadecimal number and decimal
floating-point (scientific notation).

The first column hold the register name, the second hold the register value in
hexadecimal and the third the decimal floating-point form of the register
value. To point out the    change in register, ABZmonPPC saves a copy of all
floating-point registers. When the debugger is entered, a comparison is
made between the old and new floating-point register values and the
difference is underlined in the window. For example, the first and fourth digit
of the FP6 register in the FPR window above are changed since last time the
debugger was enterred.

To change a floating-point register value, click in the hexadecimal area. A
dialog appear (below) with the register hexadecimal value of the clicked line.
When the change is done, click on the OK button to change the register
value. When an error occur, because an invalid hexadecimal digit, the mouse
cursor change to an empty arrow and the text cursor goes near a faulty
character.

ABZmonPPC Manual p. 36

If the mouse button is hit while the cursor is on the floating-point register
name or in the decimal floating-point area, a dialog similar to the previous
one, but with decimal number instead of hexadecimal number, is show. Use
the OK button to change the register when the modification is done. When
an error occur, because an invalid character, the mouse cursor change to an
empty arrow and the text cursor goes near a faulty character.

Here the value of the FP5 register is partially shown. The exponent (+38) is
not visible because the dialog is not large enough. When this happen use the
left or right arrow key to scroll horizontaly the text and uncover the
invisble part.

Break point window

Show the when and how the break point are set.

The first column in window is the break point number. The second is the
address in memory where thebreak point is set. The third column hold a
single character: A when the break point automatically remove by itself, I
when the break point is invalid, and a blank space otherwise. The fifth
column is the number of time the program must meet the break point before
really stopping. Each time the program cross the break point, the number in
the fourth column is decremented by one. When the count is 0, the program
is stopped and the debugger is entered. The last column show which and
how conditions are used. In the window above the break point no. 0 is an
invalid simple break point. The break point no. 1 is a valid simple break point
that remove itself. The break point no. 2 use two condition and the count is
decremented when both condition are true. The count must be decremented
only one time before stopping. So, the stop is done the first time the two
condtions become true.

When a break point is not used the line is empty. See BREAK menu for more
on condition and how to set break point.

To select a line, click into the break point number. The break point address
become the default address. In the BREAK POINT window above, the break
point no. 1 line is selected. The default address is then $1DA39E0.

To modify a break point click in the line of the break point after the column of
break point number. To create a new break point, click in an empty line. A
first dialog is used to set the break point address.

ABZmonPPC Manual p. 37

If the OK button is selected, a second dialog is used to modify or set the
other parameter.

To set a simple break, by example, set the address in the first dialog and in
the second dialog, set X to 1 and leave other field blank.

Message window

Display the ABZmonPPC warning/error/info messages.

The messages are numbered from 1, in hexadecimal. The first message in
window is always the most recent and then, has the highest no. The window
can grow to uncover the older messages. There is no arrow icon in window,
so you cannot scroll the message. When the maximum size of window is
reached, the older messages are lost (the message are stored in a cycle
buffer that hold a maximum of 20 messages).

ABZmonPPC Manual p. 38

Only one message window can be opened at the same time. If the message
window is already opened, then ABZmonPPC only make it frontmost window
(active). If the message window is close and there is an incomming message,
the debugger re-open the window, make it front and display the new
message.

Clipboard window

Show the strings in the ABZmonPPC clipboard buffer.

When a line is highlighted in some, the command CLIP ADR of the MISC
menu (or the keystroke Command C) store the default address of this line
into the ABZmonPPC clipboard. The button CLIP in the Calculator dialog
store the edit string into the CLIP buffer. Every string in any edit field is
stored into the clipboard by the keystroke Command C.

When a string is highlighted in the clipboard window, the keystroke
Command V replace the edited string by the highlighted string .A dialog is
open with either the highlighted string in the clipboard window or the default
address.

When the clipboard buffer is full (40 entries), the new string replace the last
stored string. The TRASH CLIP item the MISC menu erase all entries in the
CLIP buffer.

ABZmonPPC Manual p. 39

Process window

Show the current active process (application).

The first line in window hold the column title. The first column, Name, is the
name of the application. The second column, PSN, is the process serial
number. The third, Type, is the application type. The fourth, Sign, is the
creator signature. The column Mode    gives some information from the
application "SIZE" resource. The starting address of the application code
holds in Location column while the Size column gives the application size.
FreeMem shows the amount of memory available for the application and
Laucher PSN, the number of the parent application (generally the Finder).
The current running application (here applPPC) is marked by a carret symbol
just before the application name.

To leave the current application, and swich to an other application, click one
time in the application line. Below, the fifth was selected, so the application
ResEdit will be activate.

ABZmonPPC Manual p. 40

File selector window

These windows    select a file (this is like the standard file selector box, in the
Mac, you can see when you open a document).

   

The first time you open a file selector window you see the list of all
connected disks, including the one shared. Look at the first window above.
The caret symbol tells the line is a disk name or a folder name. If you click on
the disk DEV_disk name, the window show the root level of this disk. A folder
in this disk is named MPW. A mouse click on the MPW name show the content
of this folder, as in the middle window. This window displays, after the
dashed line, the content of the second hierarchical file level of the disk
DEV_disk. Scrolling up the window content let you see other file and folder at
this level, like in the third window. A text document is identified by the the
letter t, before the file name. To select a document, click anywhere in the
document line.

Briefly, the lines before the dashed lines give the folders' hierarchy while the
lines after the dashed lines give the content of the last folder in the
hierarchy. You click on the lines after the dashed lines to select a document
or to open the folder (this folder moves before the dashed line and becomes
the last folder in the hierarchy). You click on a line before the dashed lines,
in the folders' hierarchy, to open (after the dashed line) the folder or the disk
of this line. For example, to return to the root level, as in the first window,
click on the first line of the second window, named Disk.

When a document line is selected, like MPW.Help in the third window, you
can read this document. Go on the OPEN menu and select TEXTVIEW.

Text viewer window

Show the content of the selected document in a FILE SELECTOR window.

In the window above you cannot see the fifth line entirely becouse the
window is not large enough. Go to the MISC menu and select the TEXT WRAP
item. The text look now like the window above.

You can also scroll horizontally the first line of the window with the    left and

ABZmonPPC Manual p. 41

right arrow keys.

Note: all documents can be viewed, not only text window. But non-text hold
many garbage characters show as empty rectangle, and so are meaningless
outside text section.

ABZmonPPC Manual p. 42

Context window

Give context information as defined by Code Fragment Manager.

The first line is the content ID of the code to be executed. The second line
show the connection ID and connection name. The third line give the section
number and where this section is located in memory. The last line is the
name of the procedure and the address of start of the procedure code.

68K DIS window

Show 68K mnemonic instructions.

The left column is the address of the instruction disassembled, unless a local
label or compiler symbol is used instead (here the lavel are c_3 and c_4). See
OPT DISAS menu for more on it. Click on this column to select the line: the
default is then the address of this line.

The next column column is the keyword instruction name. The third column
hold the instruction operand. If the mouse is hit on an operand, the operand
info dialog is displayed. By example, the dialog below is prompted when the
mouse hit the operand in the line pea -4(a5). $236539C is the value of a5
minus 4 and $A5328 is the value at the address $236539C

The last column is the comment field. The second one, as in the code window
below, give the instruction opcode between brace, the ascii value of the
immediat value operand between double quotes, and PC displacement
between < >.

The third line begins by a black box char to indicate a break point at this
address.    When the black box has a white, the break point is invalid. This
happen when new code has erased the instruction under the break point
(you must then clear the break point as soon as possible, see BREAK
menu). If the line begins with the character *, the address of the line is the
value of the program counter PC.

If the window is openned at PC (see 68K DIS in the Open menu) the first
line of the window is always the instruction code at the PC address. This line

ABZmonPPC Manual p. 43

is updated each time the PC value change. There is not scroll bar for this
window. The other kind of 68K code window is not updated when the PC
change, but have a scroll bar. If the code is not word aligned in memory, hit
the left or right arrow. The address of the first line decrease or increase by
one.

To quickly open a dump window at the address of some line in code window:
Shift click the line.

To quickly open a code window at the address of some line in code window:
Option click the line.

To quickly set a simple break point (see BREAK menu) at the address of
some line in code window: Command click the line.

When you click in the address area, at the beginning of the line, you select
the line. The line is then video inverted and the address at the beginning of
the line become the default address.

68K REG window

Show the value of the 68K register D0 to D7, A0 to A7, PC, CCR and SR

The last two row show the bit value of the SR. The cc' row show the low byte
of the SR (the CCR). The SR row show the high byte of SR. When the bit is
set, the corresponding letter is upper case. When the bit is clear, the letter is
lower case.

The calculator

The calculator is a dialog box that makes calculations and conversions in   
hexadecimal, decimal, octal, binary numbers and in ascII characters. To call
the calculator, simply hit the key "=".

In the Expression edit field you enter the expression to compute. The
calculation is done when you hit the Return or Enter key or the COMPUTE
button. When an input error occurs, the cursor changes to an empty arrow
and goes near an offending character. The CLIP IT button adds the
computed value into the CLIP buffer. The computed value is also kept in
memory, and used as a default value for the calculator when there is no line
selected in a window. Use the CANCEL button to close the calculator.

ABZmonPPC Manual p. 44

The calculator shows the five conversions in the dialog box using a leading
symbol to point out the kind of number. The ascII conversion, between
double quotes, uses empty rectangle for unprintable character.

As an input, the calculator accepts hexadecimal numbers (with leading $),
decimal numbers (without leading #), octal numbers (with leading @) and
binary numbers (with leading %). A number without leading is assumed in
base 16. This default value can be changed in the S_UP variable Default
base number. The calculator also accepts    numbers in ascII forms, like
"abCd" or 'zx' between single or double quotes, of one to four letters. Each
letter counts for a byte in a long integer (four bytes). In the last two
examples the long integer values are $61624364 and $00007A78.

ABZmonPPC Manual p. 45

The calculator uses the following operator, given in ascending priority order,
as defined by the C language:

 ~ minus unitary and biwise not
/ * division and multiplication
+ - addition et substraction
<< >> left and right logical bitwise shift
& bitwise 'and'
^ bitwise 'xor'
| bitwise 'or'
() parenthesis

When the calculator is opened, the default value is the last value used by the
calculator, unless a line is selected in any window. In this case the default
address for this line becomes the default value for the calculator. To make a
conversion of a register, for example, just select the register and press the
key    '='.

The JB addresses

JB addresses are addresses given with    register indirections and
displacements. There are many forms accepted by the debugger. The
general form is:

[Rn+disp1].s+disp2

where Rn is a PowerPC register (R0-R31, SP, PC, LR, CR, TOC, CTR, XER,
MSR), disp1 and disp2, the displacements and .s the size of the element in
memory (.b -> byte, .h -> half word, .w -> word). If .s is not used, the size
word is used by default. Rn, disp1 and disp2 are optional.

ABZmonPPC Manual p. 46

Here are some examples of JB addresses:

[PC+5000E]+20

if PC = 20000 and the value of the word integer at the address 7000E (it was
20000+5000E) is 44444, then the JB address is 44464 (it was 44444+20)

[22222].b-20

if the byte at the address 22222 is 84 then the JB address is 64 (it was 84-20)

[R6]

if R6 = 44444 and if the word integer at this address is 12345 then the JB
address is 12345

SP+20

if the stack pointer holds 66666 then the JB address is 66686 (it was
66666+20)

R4

the JB address is the address of the R4 register

E3678

the JB address is E3678

ABZmonPPC Manual p. 47

The JB conditions

JB conditions are    expressions holding two JB addresses. The comparisons
are done on non-signed integers only. The general form is:

JB1 op JB2

where JB1 and JB2 are JB addresses and op one of the operators:

< > strictly smaller, greater
<= =< smaller or equal
>= => greater or equal
= equal
<> >< not equal

Here are some examples:

R5>6

To respect this condition, the R5 register value must be strictly greater than
6.

[22222].w=[22224].w

To respect this condition, the word (4 bytes) at the address 22222 must be
the same as the one at the address 22224.

[PC].w<=C0000000

To respect this condition, the current instruction must be a TWI instruction
(Trap Word Immediate).

ABZmonPPC Manual p. 48

The RTS command

The RTS stand for ReTurn from Subroutine. RTS is an opcode for MC68000
microprocessor. In 68000 assembly a subroutine is called by BSR and JSR
instructions. The subroutine terminate by an RTS instruction. The RTS
instruction tell the microprocessor to resume at the instruction after the BSR
or JSR.

In PowerPC assembly a subroutine is called by branch instructions BL, BCL,
BCCTRL or BCLRL. The L at the the end of these opcodes tell the
microprocessor to save the return address, that is the address after of the
instruction after the branch instruction, into the link register LR. At the end of
the subroutine, the value store in LR is used to resume at the instruction
after the branch instruction. The RTS command do exactly the same thing.
When you give a RTS command, the debugger execute the remainning of the
current subroutine and stop just after the branch instruction that called the
subroutine.

A program is a routine that call a subroutine that itself call an inner
subroutine, etc. When the debugger is enterred, the PC is probably very deep
in the hierarchy of subroutines. To return to an higher level you cannot just
send many RTS command. The first RTS command work correctly. The
debugger stop after the caller instruction. But the second RTS command re-
execute the same subroutine, and this is surely not what you wish. To
understand what is happenning (and what to do to execute the higher level
subroutine) we must remember how a subroutine is called in PowerPC
assembly. The PowerPC architecture define a standard way to call a
procedure. The code below show how a program call the a subroutine
named SUBROUTINE_A.

ABZmonPPC Manual p. 49

bl SUBROUTINE_A # save address of nop
instructiom into LR and

branch to SUBROUTINE_A

nop # instruction that do
nothing

... # many other instructions

SUBROUTINE_A: ... # instructions for the
subroutine

blr # branch to nop instruction

The last instruction of the subroutine, BLR, the microprocessor to branch at
the instruction pointed by the value of LR. The value of LR is the address of
the NOP, saved at the BL instruction. Now what to do, if inside
SUBROUTINE_A, we need to call an other subroutine? We cannot simply use
an other BL instruction, since the current of LR, the return address of
SUBROUTINE_A, will be loose. The mechanism defined in PowerPC
architecture to call many subroutine hold in two very small piece of code
called prolog and epilog.

At the beginning of the procedure, the prolog save the value of the LR in
stack. At the end of procedure the epilog restore the LR value. The return
address is never loose. The code below show what happen when the
subroutine SUBROUTINE_A call itself an other subroutine SUBROUTINE_B.

ABZmonPPC Manual p. 50

bl SUBROUTINE_A # save address of nop
instructiom into LR and

branch to SUBROUTINE_A

nop # instruction that do
nothing

... # many other instructions

SUBROUTINE_A: mflr r0
stwu r0,-4(sp) # save LR
stwu sp,-56(sp) # stack space needed

for    cross-TOC call
bl .SUBROUTINE_B
nop

lwz r0,56(sp)
mtlr r0 # restore LR
addi sp,sp,4+56 # clean stack

... # instructions for the
subroutine

blr # branch to second nop

SUBROUTINE_B: ... # instructions for the
subroutine

blr # branch to first nop

As you see, before to call SUBROUTINE_B, the subroutine SUBROUTINE_A
save the LR in the stack (with other value like the TOC register for cross-TOC
call). After the execution of SUBROUTINE_B, the saved LR is restored and
SUBROUTINE_A can return correctly.

ABZmonPPC Manual p. 51

Suppose now that inside SUBROUTINE_B you send a RTS command. The
debugger execute the ramainning of the subroutine and resume at the
second NOP (inside SUBROUTINE_A). For a short peroid of time, namely,
before the 3 instruction after the BL .SUBROUTINE_B instruction (NOP, LWZ   
and MTLR), the LR is a scrap register. You cannot send an other RTS
command. But after the MTLR instruction, the LR hold the return address of
SUBROUTINE_A, it is safe to send the second RTS command.

What you have to do to exit SUBROUTINE_A when you are SUBROUTINE_B is
send a first RTS command, then trace the 3 instructions for which the LR is
not a valid return address. As soon as the LR change, it is safe to send an
other RTS command. And you can repeat to jump to return to the procedure
that call SUBROUTINE_A itself. Trace the 3 next instructions (until the LR
change value) then send an other RTS command.

For some procedure, it may have more than 3 instructions to trace. Also
some compiler may use different epilog code. So you can have to trace 4 or r
instructions until the LR was loaded with a new (valid return) address. But as
soon as the LR change, it is safe to send the RTS command.

To send an RTS command, use the RTS item in the Control menu. Or just it
the r key on the keyboard.

ABZmonPPC Manual p. 52

The peril of Trace in MixedMode

The MixedMode manager is invoked when a procedure in 68K is to be
executed by the PowerPC processor. Two Mac OS procedure are called to
translate the 68K code into PowerPC code: CallUniversalProc and
CallOSTrapUniversalProc. These two procedures soon call the twi
instruction to emulate 68K code. The MacOS exception handler seem have
trouble to trace correctly the twi instruction or at least, tracing in
MixedMode. A way to circonvent the problem is to never let the user enter in
the MixedMode code (the MacsBug way!). ABZmonPPC let you enter in
MixedMode, but warn you before. When you are tracing CallUniversalProc
and CallOSTrapUniversalProc, the debugger show you the following
dialog.

The EXEC SUB execute the subroutine (sending a RTS command to the
debugger) and resume into ABZmonPPC at the end of the procedure.
With the STEP you continue to stepping as usual. Be warn that some
procedure into the MixedMode enter then in infinite loop and never exit. The
Next time skip this dialog check box must be turned on if you wish not to
see this dialog again. In this case the count in N STEP AT (in the TRACE
menu), TWO CONDITION in (STOP menu), or in Conditionnal Break point
are not updated. If the check box is off and the debugger is in trace mode
(when the ABZmonPPC is not shown), the current program is stopped and the
debugger is entered:

ABZmonPPC Manual p. 53

Any further trace command will then redisplay the WARNING dialog above.

DebugNum

This procedure works like Debugger or DebugStr, but instead of stopping
the program and call the debugger just after this instruction, DebugNum
stops the program only after a number of time. DebugNum needs three
parameters. The first, called 'count', is a word integer. If count=0, the stop
occurs the first DebugNum is meet. If count=1, the first time DebugNum is
meet, nothing happen. The stop occurs only the next time. Each time the PC
is at a DebugNum instruction, the count parameter is decrement by one.
When count is 0, the debugger is called. The second parameter, called
'Number', is a word, between 0 and 31, identifying the DebugNum call. You
can then use up to 32 different DebugNums. The third parameter, 'pString'
is a pointer to a Pascal style string. This string is prompted by debugger
when count is 0.

The assembly code to call this procedure is

###########

li r3,7 # count
stwu r3,-4(sp)
li r3,6 # DebugNum no. -> 'Number'
stwu r3,-4(sp)
lwz r3,test_str[TC](rtoc) # the string to show -> 'pString'
stwu r3,-4(sp)
_DebugNum

###########

tc test_str[TC],test_str_[RO]
csect test_str_[RO]

stringPstring

dc.b 'A Pascal style string example'

align 3

###########

Re-initialisation of DebugNum

ABZmonPPC Manual p. 54

ABZmonPPC holds in memory 32 word integers, associated to the 32   
DebugNums. These 32 integers hold the number of time the DebugNums
are meet.When a word integer match the 'count' parameter (previouly we
have say that 'count' is 0) ABZmonPPC stops the program, else the word
integer is increased by 1.

Suppose that your program ends before the word integer match the 'count'
parameter. The next time you will use DebugNum (for the same 'number',
after having rebuilt your program, by example) ABZmonPPC will continue to
use the previous value of the 32 word integers. If you test a new version of
your program you may wish use a fresh copy of one or all of these 32 word
integers. In this case go to the STOP menu and click into the CLEAR
DEBUGNUM item. The dialog prompted allow you to reset one ar all
DebugNums.

ABZmonPPC Manual p. 55

ABZmonPPC special keys

command 'd' key -> open disassemble window
command 'm' key -> open memory dump window
command 'r' key -> open GPR register winfow
command 'b' key -> set a simple break point
command 's' key -> save current window setup and ABZmonPPC variable
command 'l' key -> reload    current window setup and ABZmonPPC variable
command 'f' key -> search ascII partern
command 'g' key -> search next occurrence
command ' ' key -> open stat window
command '6' key -> open 68K register window
command 'c' key -> copy highlighted address to (ABZmonPPC) clipboard
command '0' key (zero) -> Enter to the other debugger (MacsBug ?)
option ESC key -> re-initialise mouse

'up arrow' key -> scroll down
'down arrow' key -> scroll up
'left arrow' key -> scroll left
'right arrow' key -> scroll right
ESC key -> show user screen

The following key are are upper/lower case unsensitive

'g' key -> return to user program (go)
'q' key -> return to user program (quit)
's' key -> step one instruction
'e' key -> ExitToShell (cancel current process)
'=' key -> calculator dialog
'*' key -> reset the lable/symbol
'/' key -> change disassembled displacement form: hexa address, *+$24,
local label, CFM symbol
'c' key -> toggle comment form in disassemble window
'?' key -> help window
'.' key -> use repeatedly to do a tour of all windows
'%' key -> for the current window to redraw continiously
'r' key -> do a PowerPC RTS

ABZmonPPC Manual p. 56

To simulate the mouse moves and clicks use theses keys

option 'left arrow' simulate mouse left move
option 'right arrow' simulate mouse right move
option 'up arrow' simulate mouse up move
option 'down arrow' simulate mouse down move
command-option 'left arrow' mouse left move and button down
command-option 'right arrow' mouse right move and button down
command-option 'up arrow' mouse up move and button down
command-option 'down arrow' mouse down move and button down
command-shift '3' key -> take screen snapshot

Special key used in edit field only (dialog and dump/register window)

'Tab' key -> go to next edit field
'Return' key -> simulate default button
'Enter' key -> simulate default button
'Esc' key ed_exit -> simulate default button
'left arrow' key -> move left one char the text cursor
'right arrow' key ->    move right one char the text cursor
'backspace key' -> backward delete
'delete' key -> forward delete
command 'c' key -> copy to (ABZmonPPC) clipboard
command 'v' key -> paste to (ABZmonPPC) clipboard

Internal variables (PowerPC)

These variables are used to change some ABZmonPPC features like the video
monitor where the debugger appears, the ABZmonPPC screen size, the look
of the code window, the size of the font used in the menus, etc. Some
variables must be manipulated with caution, like the one in the exception
table.

You change these variables with ResEdit. Open the    S_UP number 1. The
window show the name of the variables and their default values:

               

Here is the list of the variables and their meanings:

The first 16 are the exception handle by the Mac OS. When a bit is set (the
value 1 is selected) the exception is signaled by the debugger. Otherwise the
ABZmonPPC ignore the exception and let Mac OS deal with it (generate a
System error message).

ABZmonPPC Manual p. 57

Unknown: This exception code is defined for completeness only

Illegal: The processor attempted to decode an instruction that is either
illegal or unimplemented (ABZmonPPC use it, leave it to 1)

Trap: The processor decoded a trap type instruction that is not used by the
system software (ABZmonPPC use it, leave it to 1)

Access: A memory reference resulted in a page fault because the physical
address is not accessible

Unmapped: A memory reference was made to an address that is unmapped

Excluded: A memory reference was made to an excluded address'

Read-only: A memory reference was made to an address that cannot be
written to

Page: A memory reference resulted in a page fault that could not be
resolved

Privilege: The processor decoded a privileged instruction but was not
executing in the privileged mode

Trace: This exception is used by debuggers to support single-step operations
(ABZmonPPC use it, leave it to 1)

Brk. instr: This exception is used by debuggers to support breakpoint
operations

Brk. data: This exception is used by debuggers to support breakpoint
operations

Integer: This exception is not used by PowerPC processors

Floating: The floating-point processor has exceptions enabled and an
exception has occurred'

Stack overf: The stack limits have been exceeded and the stack cannot be
expanded

Termination: The task is being terminated

ABZmonPPC Manual p. 58

Stack: the internal ABZmonPPC stack size. Not already implented. Leave it
to 0

Max step: the maxmum number of step to do in trace mode before the
debugger appear. A value 0 mean that ABZmonPPC never stop the trace until
the number of step specified by n-step command is reached or the
condstions come true in conditional step command. Since trace mode is
very slow, this is a good protection againt waiting for nothing

Key Delay:    delay to repeat the key when the key is still down.

Mouse Delay: delay to accept a second click of the mouse.

Display width: the width of the ABZmonPPC screen. Never let this value
smaller than 432. Some dialog boxes have this width.

Display height: the height of the ABZmonPPC screen. Never let this value
smaller than 240. Some dialog boxes have this height.

Display X: the X coordinate of the left upper of ABZmonPPC screen. A value
of 32 puts the left upper of ABZmonPPC screen at 32 pixels of the left side of
the video monitor.

Display Y: the Y coordinate of the left upper of ABZmonPPC screen. A value
of 40 puts the left upper of ABZmonPPC screen at 40 pixels of the upper side
of the video monitor.

Maximum number of window: the maximum number of windows that can
be opened at the same time in the debugger.

Use big font in Menu window: if 0, the text in menus appear with small
font and if -1, a bigger font is used instead.

Use big font in Message window: if 0,the text in message window   
appear with small font and if -1, a bigger font is used instead.

Don't report OS event: a source of trouble occurs if the OS update window
or cursor when the ABZmonPPC screen is displayed. One way to circumvent
is to clear the low memory variable SysEvtMask ($144). No event is then
reported. When the bit is 0, the debugger clears SysEvtMask when
ABZmonPPC screen is displayed and restores SysEvtMask when it returns. If
the bit is 1, the debugger doesn't change the low memory variable. Used
only when 'Low level input' bit is set.

Mouse re-center: the Mac OS don't report the mouse move outside the

ABZmonPPC Manual p. 59

rectangle screen. When the bit is set to 1, the debugger reset the mouse to
the center when the mouse is near the rectangle border. The ABZmonPPC
cursor can then move in any direction.    Used only when 'Low level input' bit
is set.

ABZmonPPC Manual p. 60

Mouse not coupled: when the low memory variable CrsrCouple ($8CF) is
set the cursor moves according to the mouse movement. Since ABZmonPPC
uses its own cursor, there is no need for the mouse to be coupled with the
Mac cursor. If the bit is 1 the debugger clears CrsrCouple when ABZmonPPC
screen is displayed and sets CrsrCouple when it returns. In this way the Mac
cursor is not moved. You can clear the bit if the Hide/Show cursor bit is 1.   
Used only when 'Low level input' bit is set.

Hide/Show cursor: the QuickDraw cursor is handle at the interrupt time.
Sometimes, it happens that the cursor is changing when ABZmonPPC takes
control of the screen. Back to the program, there will be a mix-up of the old
and the new cursor image. The result is garbage on the screen where cursor
sits. If the bit is 1, ABZmonPPC corrects it automatically. If you work on
routine modifying the cursor, let this bit to 0. ABZmonPPC will not interfere.

Use wildcard in Search: the searches (issued of the SEARCH menu) are
done using the wildcard symbol if this variable is -1; if the variable is 0,
ABZmonPPC does not use wildcards.

Wildcard symbol in Search: the wildcard symbol used for the search. The
usual symbols are '*' and '?'

Case sensitive in Search: the searches are done by distinguishing upper
and lower case letters when this variable is -1. If the variable is 0,
ABZmonPPC does not make the difference between upper and lower case
letters.

ABZmonPPC Manual p. 61

The following variables determine the look of the code windows.

Tab length: the fields in a line of code are separated by    tabs of length
given by this variable.

Disp. form: sets the form (by default) of the operand displacement:
0 -> $1234,(pc)
1 -> *+32
2 -> local_label+22
3 -> CFM_symbol+22.

Hex prefix is Ox: if 0 the hexadecimal number has a leading symbol $, else
the C style prefix 0x is used

Default number is decimal: if 0 the default base number in disasembly is
hexadecimal, else the base number 10 is used.

Add first comment: if non-zero the the hexadecimal code of the instruction,
the branch address and the immediat value of the instruction are added at
the the end the disassembled line.

Add second comment: if non-zero the the meaning of the instruction
mnemonic is added at the the end the disassembled line.

Use simplified: code instruction are translated to simplified mnemonic
when this variable is non-zero. Otherwise standard mnemonic are used

Add instruction adr: when non-zero the instruction address in memory is
show at the start of the disassembled line.

Add instruction code: when non-zero the instruction code is show in the
first comment (see above).

Two blank before label: two blank carracter are added before the label
name, when this variable is non-zero. This help to locate the lable in the code
window.

Only 601: when non-zero, only PowerPC 601 instruction is disassembled, not
the 620 instruction.

PC (disp) symbol: this symbol replace the address of the instruction for
branch target address.

Comment 1 symbol: to mark the beginning of the first comment

Comment 2 symbol: to mark the beginning of the second comment

ABZmonPPC Manual p. 62

Register name set: 1 -> lower case name, 2-> uppercase name, 3-> upper
case with SP and RTOC standing for r1 and r2

Local label buffer size: the size of buffer to store the local label and their
addresses.

NB instr. between 2 label: estimated number of instruction between two
label.

Percentage after central instruction: label are taken before and after the
central instruction. the value 50 in this variable mean there are as much
label before and after central instruction.

CFM symbols buffer size: the size of buffer to store the CFM symbols info.

Mon comparison segment length: the maximum length of the segment
used in ARRAY COMP of MON SPY menu.

Step comparison segment length: the maximum length of the segment
used in ARRAY COMP of STEP SPY menu.

Default number base: the number base used in edit field, for number
shown without leading (base) symbol ($, #, @, %)

The next 6 variables set the debugger screen color. The foreground value
30000, -1, -1 and the background value 0, 0, 0 show the ABZmon image in
blue with black character.

Foreground Red: the debugger screen foreground red depth.

Foreground Green: the debugger screen foreground green depth.

Foreground Blue: the debugger screen foreground blue depth.

Background Red: the debugger screen background red depth.

Background Green: the debugger screen background green depth.

Background Blue: the debugger screen background blue depth.

Turn to BW to display image: when non-zero, ABZmonPPC switch the
screen resolution to 1 bit mode, and then display the debugger image. This
method completly bypass the Quickdraw. With zero value, ABZmonPPC use
CopyBits procedure to show the color debugger image.

ABZmonPPC Manual p. 63

Save screen image: The screen image under the ABZmonPPC screen is
saved if this variable is set to -1. If you use only one video monitor you must
use this variable value. If you use a second monitor, it is not necessary to
keep this image, you save a bit of memory and more, you see the
ABZmonPPC screen even after the debugger has quit.

Screen monitor no: if you have more than one video monitors connected to
your computer, you can choose the monitor for the ABZmonPPC screen. If
you set the value of this variable to 0, the ABZmonPPC screen appears on
the main video monitor . The first, second, third... video monitors are
selected for the value 1, 2, 3...

RowBytes adjustment: internal use. Leave it to 0

Get BW pixel map from slot: the pixel map is copied directly from the
video slot when this bit is set. Otherwise the pixel map is get from the
GDevice for the selected video monitor. Keep it to 0 unless you get some
problem with not standard video monitor.

Text scroll one page: in a text window, the scrolling is done one page at a
time (window size), if the variable is -1 and one line at a time, if the variable
is 0.

ABZmonPPC Manual p. 64

Text window wrap: in a text window, a line too long to fit in the window is
broken and continues on the next row when this variable is set to -1. If the
variable is 0, the remaining of the line is not shown.

Internal variables (68K)

These variables are used to set the 68K exceptions that ABZmonPPC must
use as 68K debugger. If the exception is set to 1, the exception is handle by
ABAmonPPC, otherwise the exception is handle by the system or by an other
debugger loaded before ABZmonPPC (like MacBug)

You change these variables with ResEdit. Open the    r68K number 1. The
window show the name of the variables and their default values:

The exception listed in this resource are the most frequently involved by
programming error. You can set all of them when the virtual memory is not
not active. When the virtual memory is used, you must clear 'Bus error'
exception, since this vector is used during memory page swap.

ABZmonPPC Manual p. 65

ABZmonPPC need some vector set to work correctly. The TRAP #15 exception
is needed to set 68K break point. The Line A exception is needed to enter to
the debugger by calling _Debugger or _DebugStr. Stepping is done via the
Trace exception, and Line A is also used to step Mac OS toolbox procedure.
NMI exception must be set if you want use the hardware programmer switch
button on some Mac.

Bug Report

ABZmonPPC has been tested on PowerMac 6100, Performa 6200 and Quadra
950 with Apple PowerPC 610 upgrade card. If you cannot correctly install
ABZmonPPC or if you find any bug, please, leave me a message (the kind of
computer you use, when this bug appears,...).

CompuServe: [72467,2770]
Internet: 72467.2770@compuserve.com

Alain Birtz
650 Grand St-Charles,
St-Paul d’Abbotsford
P.Q., Canada, J0E-1A0

ABZmonPPC Manual p. 66

Table of contents

ABZmonPPC folder       2
Installation       2
Presentation       3
How the debugger is invoked       4
ABZmonPPC graphic interface       5
The active window       6
The default address       6
Debugger mode: PowerPC or 68K       7
Dialog       8
MAIN menu       9
CONTROL menu     10
Open menu     12
SEARCH menu     15
MON SPY menu     18
STEPSPY menu     20
STOP menu     21
TRACE menu     24
BREAK menu     26
MISC menu     31
The windows     33
Disassembler window     34
Dump window     36
Register window     37
Condition register window     39
Floating-point register window     40
Break point window     41
Message window     43
Clipboard window     44
Process window     45
File selector window     46
Text viewer window     47
Context window     48
68K DIS window     48
68K REG window     50
The calculator     50
The JB addresses     52
The JB conditions     54
The RTS command     55
The peril of Trace in MixedMode     59
DebugNum     60
Re-initialisation of DebugNum     61
ABZmonPPC special keys     62
Internal variables (PowerPC)     63
Internal variables (68K)     71

ABZmonPPC Manual p. 67

Bug Report     72

