
Youseful (Version 1.2) Help Contents
A Bill White Software Production

Installing this software into the Delphi VCL

Merging the Youseful help into the Delphi Help System

Registering this software (Unless this is the registered version)

It just won't work

Version Info

TINSTALL DEPENDENT COMPONENTS

TInstall

TInstallFileGroup

TCopyFileDlg

TInstallFileGroupsDlg

TInstallODBC { Work in progress. Does not work. }

TGoodInstallationDlg

TComponentConflictDlg

STAND-ALONE COMPONENTS



TInstallAlias

TInstallINIFile

TProgramItem

TInstallRSConnection

TSelectWindowGroupDlg

TInstallRSConnectionDlg

TColorFade

TModifiedReport

TReportManager

UNINSTALL COMPONENTS

TUnInstall

TUnInstallingFileDlg

NON-VISUAL COMPONENTS

TInstallFile

TECHNICAL SUPPORT

World Wide Web Site:    http://www.destek.net/cybermkt/blwhite.htm



FTP Site: ftp.is.net/pub/csm/youseful.zip

Author Information

STANDARD LEGAL DISCLAIMER
Youseful Components Version 1.0.    
Copyright 1995 
Bill White.

All rights reserved.    I am not liable for any damage this might inflict on your computer, spouse, children, 
dog, or lawn.    If you have the registered version, you may NOT DISTRIBUTE it.    If you have the 
shareware version (un-registered version), please feel free to distribute like hell.



TInstallFileGroup Component

Properties

Methods
Events

Unit
Install

Description
The TInstallFileGroup Component is really not a stand-alone component; its only real use comes if you 
hook it up to a TInstall component through the InstallComponent property.    Basically, this component 
groups files together in your installation that are related--related meaning that you want these files to be 
copied to the same directory on the user's computer.    Note:    it does not matter necessarily which 
directory, the salient point here is that the files should be copied to the same directory, no matter which 
directory it may be.    (e.g. this is a valid point because you can give the users the option to 
include/exclude file groups with the Include property and AlwaysInstall property).    To always install the 
file group on the user's computer, set the AlwaysInstall property to True.    To include a file group in the 
installation and allow the user to include/disclude that group, set the AlwaysInstall property to False and 
the Include property to True.    If you always want the files in this group to be copied to a subdirectory of 
where another file group is copied, set the AllowChangeDir to False, the ParentFileGroup property to 
point to the other file group, and use the %f meta-variable in the DestDir property.

The GroupName property allows you to attach a descriptive name to the file group.    The Description 
property allows you to attach a description of the file group to the component.    The TInstallFileGroupsDlg
component uses the Description property to show the users.    This is also usefull if you decide to make 
your own dialogs.

The DestDir property contains the directory to which the files that are owned by this component, in the 
Files property, will be installed.    The number of files that the file group owns is contained in the run-time 
FileCount property.    The run-time Size property contains the size of the file group in Bytes.    This is 
calculated by summing the sizes of all the files owned by the file group.



Properties

CheckForVCLConflict

CopyIfNewer

Disk

FileGroup

FileName

IncludeFromDir

Size



TInstall Component (Version 3.0)

Properties

Methods
Events

Unit
Install

Component Editor
How to build the installation files

Description
Why TInstall?

Getting Started--BASIC
Getting Started--ADVANCED
Organization Of Setup Files

The TInstall component is a component that provides installation services for applications written in 
Delphi.    Services include:    installing files, aliases, INI Files, ReportSmith connections, Program Items, 
and an Installation Builder program to build the installation disk(s)/files for you.    Because the TInstall 
component is a native Delphi VCL component, if you want to do anything slightly different with your 
installation you can do it and most importantly you can do it using native Delphi code! No Scripts!    The 
TInstall component also supports inheritance, polymorphism, and all the other object-oriented concepts 
that makes Delphi so powerfull.    So you can create your own TInstall subclasses!    You should refer to 
Getting Started--BASIC and Getting Started--ADVANCED for a step-by-step explanation of how to build 
your installation.

The TInstall allows you to combine the other powerfull components in this package to create a dazzling 
installation program (Of course, you can use these various components by themselves).    Simply plop 
down the components that you want to use onto your main installation form, assign values to the 
properties, and then call the Install method somewhere to start the installation rolling.    You may abort the 
installation process at anytime, (programmatically), by raising the EAbortInstallation exception.

IMPORTANT
To make your setup program smaller and load faster, go to the Options|Project.    You should see a screen
with the caption "Project Options".    Click on the "Linker" tab at the bottom.    Make sure the "Optimize for 
size and load time" check box is checked.



TInstallAlias Component

Properties

Methods
Events

Unit
Install

Description
The InstallAlias component installs an alias into the Borland Database Engine(BDE) when you call the 
Install method.    The name of the alias is determined by the AliasName property and the driver for the 
alias is determined by the Driver property.

For Standard aliases (e.g. ASCII, DBase, Paradox), the Path property will contain the path of the data 
files to which the alias points.    The SQLParams property contains parameters for InterBase-type aliases 
(Driver property of INTRBASE).    Refer to the Borland Database Engine Documentation for more 
information on aliases.

The TInstallAlias component is actually a stand-alone component.    However, you can make the 
TInstallAlias component part of an installation by setting the InstallComponent property to any TInstall 
component on the form.    If this component is linked to a TInstall component, then the TInstall component 
will automatically install the alias, when the TInstall's Install method is called.    If you specify a file group in
the FileGroup property and you have also specified a value for the InstallComponent property, then the 
alias will only be installed if the file group's Included property is true.

Any meta-variables that are located in the Path property or SQLParams property will automatically be 
expanded at run-time.    Note:    the %f meta-variable will only be expanded if the FileGroup property is 
linked to a TInstallFileGroup component on the form.



Meta-Variables

Meta variables are sequences of characters that are used to represent an internal value.    Typically, meta-
variables are expanded to their internal representation at run-time.    I.e. if the user's window directory is 
c:\windows, then %w\temp will be expanded to c:\windows\temp.

%f Represents the path that the 
filegroup will be copied to on 
the user's computer.

%s Represents the system 
directory for windows on the 
user's computer.

%w Represents the windows 
directory on the user's 
computer.

Meta variables are case-sensitive.    I.e. they must be lowercase.



TInstallINIFile Component

Properties

Methods
Events

Unit
Install

Description
You should be somewhat familiar with INI files if you want to use this component.    Please refer to the 
appropriate Window's documentation for further information on INI files.    Basically, the FileName property
specifies both a directory and file name into which the text in the Lines property will copied with the Install 
method.

The TInstallINIFile component is actually a stand-alone component.    However, you can make the 
TInstallINIFile component part of an installation by setting the InstallComponent property to any TInstall 
component on the form.    If this component is linked to a TInstall component, then the TInstall component 
will automatically install the INI file, when it's Install method is called.    If you specify a file group in the 
FileGroup property and you have specified a value for the InstallComponent property, then the INI file will 
only be installed if the file group's Included property is true.

Any meta-variables that are located in the FileName property or Lines property will automatically be 
expanded at run-time.    Note:    the %f meta-variable will only be expanded if the FileGroup property is 
linked to a TInstallFileGroup component on the form.

WARNING:    

In its current form, the file specified in the FileName property will be overwritten!    This will be fixed.. 
However, for now, be careful!

 



TProgramItem Component

Properties

Methods
Events

Unit
Install

Description
You should be partly familiar with adding Program Manager Items and Groups if you are going to use this 
component.    Please refer to the appropriate Window's documentation if you are unfamiliar with adding 
Program Manager Items and Groups.    The TProgramItem component has 7 properties that are 
essentially "fill in the blank" for the following dialog.    (Don't worry, you and your user will never see this 
dialog--it is here purely for pedagogical purposes to explain the relations of the properties to how the 
Program Item will be set-up).

The Description property specifies the Description of the Program Item.    The CommandLine property 
specifies the Command Line for the Program Item.    The Directory property specifies the Working 
Directory of the Program Item.    The IconFile property specifies a file that will hold any necessary icons 
for the Program Item.    The IconIndex property specifies which icon in the file will be used as the icon for 
the Program Item.    If you do not specify a value for the IconFile, Window's will display the first icon in the 
Executable.    Any meta-variables    in the CommandLine, Directory, and IconFile properties will will be 
expanded at run-time by the Install method.    You specify into which Window's group the Program Item 
will go with the WindowGroup property. 

The TProgramItem component is actually a stand-alone component.    However, you can make the 
TProgramItem component part of an installation by setting the InstallComponent property to any TInstall 
component on the form.    If this component is linked to a TInstall component, then the TInstall component 
will automatically install the Program Item, when it's Install method is called.    If you specify a file group in 
the FileGroup property and you have specified a value for the InstallComponent property, then the 
Program Item will only be installed if the file group's Included property is true.    If the component is not 
linked to a TInstall component, execute the Install method to install the Program Item.



TInstallRSConnection Component

Properties

Methods
Events

Unit
Install

Description

You should be partly familiar with adding ReportSmith Connections if you are going to use this 
component.    Please refer to the appropriate ReportSmith documentation if you are unfamiliar with this 
procedure.    The TInstallRSConnection component has 6 properties that are essentially "fill in the blanks" 
for the following dialog.    Note: some connection types will prompt you for a User Id and Database.    
(Don't worry, you and your user will never see this dialog--it is here purely for pedagogical purposes to 
explain the relations of the properties to how the ReportSmith connections will be set-up).    To use BDE 
aliases in ReportSmith, refer to the TModifiedReport component.

The ConnectionName property identifies the name of the Connection.    The ConnectType property 
identifies the Type of the Connection.    The DataFilePath property identifies the Data File Path for the 
Connection (e.g. the path to the tables).    The Database property identifies the Database for the 
connection (this is only valid for certain connection types).    The UserId property identifies the User Id for 



the connection (this is also only valid for certain connection types).    Finally, the Password identifies the 
Password.

The TInstallRSConnection component is actually a stand-alone component.    However, you can make the
TInstallRSConnection component part of an installation by setting the InstallComponent property to any 
TInstall component on the form.    If this component is linked to a TInstall component, then the TInstall 
component will automatically install the ReportSmith Connection, when it's Install method is called.    If 
you specify a file group in the FileGroup property and you have specified a value for the InstallComponent
property, then the ReportSmith Connection will only be installed if the file group's Included property is 
true.    If the component is not linked to a TInstall component, execute the Install method to install the 
Program Item.



TInstallFileGroupsDlg Component

Properties

Methods
Events

Unit
IdFg

Description

This component should be used in conjunction with a TInstall component with the InstallComponent 
property.    Its main purpose is to allow the users the ability to change installation settings for the various 
file groups in your installation.    You should call the Execute method in the ChooseFileGroups event of the
TInstall component.    The dialog that will be seen by the user is shown below.    Note:    You do NOT have 
to include this into your installation if you do not want this functionality.

You may change how the dialog looks at run-time by using the DialogForm property.    This property 
references the form that will be seen by the user.    You can reference the various components contained 
by their names, shown in the previous shematic.    To change the text string "Install this file group into the 
following directory", you would execute the following code at run-time:    



DialogForm.lblDestDir.Caption := 'Destination Directory';

You can use the Title property to change the caption of the dialog.    The OnDestinationDirBtnClick event 
is invoked when the user clicks on the file folder.    The OnFileGroupClick event is invoked when the user 
clicks on a file group.    The OnMouseOverFileGroup event is invoked when the user moves the mouse 
over a file group checkbox.    You can get access to the check boxes with the CheckBoxes property.



TSelectWindowGroupDlg Component

Properties

Methods
Events

Unit
IdWg

Description

This component should be used in conjunction with a TInstall component with the InstallComponent 
property.    Its main purpose is to allow the users the ability to change select the Window's group into 
which any Program Items will be installed (TProgramItem).    You should call the Execute method in the 
StartInstallingPMItems event of the TInstall component.    The dialog that will be seen by the user is 
shown below.    Note:    You do NOT have to include this into your installation if you do not want this 
functionality.

You may change how the dialog looks at run-time by using the DialogForm property.    This property 
references the form that will be seen by the user.    You can reference the various components contained 
by their names, shown in the previous shematic.    To change the text string "A set of icons will be added 
to your", you would execute the following code at run-time:    

DialogForm.Label1.Caption := 'Destination Directory';

You can use the Title property to change the caption of the dialog.

You also have the ability to add two custom buttons at design-time with the CustomButton1Caption and 
CustomButton2Caption properties by assigning them a value.    The OnCustomButton1Click event will be 
triggered when the user clicks the first custom button and the OnCustomButton2Click event will be 
triggered when the user clicks the second custom button.    The ProgramManagerError occurs when 
Program Manager was unable to be "linked" with.



TInstallRSConnectionDlg Component

Properties

Methods
Events

Unit
IdRs

Description
This component should be used in conjunction with a TInstall component with the InstallComponent 
property.    Its main purpose is to notify the users that ReportSmith Connections are going to be installed, 
and allow them to skip the installation of the Connections (TInstallRSConnection).    You should call the 
Execute method in the StartInstallingRSConns event of the TInstall component.    The dialog that will be 
seen by the user is shown below.    Note:    You do NOT have to include this into your installation if you do 
not want this functionality.

You may change how the dialog looks at run-time by using the DialogForm property.    This property 
references the form that will be seen by the user.    You can reference the various components contained 
by their names, shown in the previous shematic.    To change the text string "The following Connections 
will now", you would execute the following code at run-time:    

DialogForm.Label1.Caption := 'These are the connections that will';

You can use the Title property to change the caption of the dialog.



Properties

AliasName

Driver

FileGroup

InstallComponent

Path

SQLParams



Properties

AliasCount ProgramItemCount CompressType

Aliases ProgramItems

CopyingFile RSConnectionCount

CopyingFileGroup RSConnections

FileGroupCount  Size

FileGroups SourceDir

INIFileCount TotalBytesCopied

INIFiles WindowGroupName



Properties

AlwaysInstall AllowChangeDir

Description

DestDir

FileCount

Files

GroupName

InstallComponent

Include

Size



Properties

FileGroup

FileName

IncludeInstallInfo

InstallComponent

Lines



Properties

CommandLine

Description

Directory

FileGroup

IconFile

IconIndex

InstallComponent

WindowGroup



Properties

ConnectionName

ConnectType

Database

DataFilePath

FileGroup

InstallComponent

OverwriteDuplicate

Password

UserId



Properties

CustomButton1

CustomButton2

CustomButton1Caption

CustomButton2Caption

DialogForm

InstallComponent

Title



Properties

ConnectionNames

CustomButton1

CustomButton1Caption

CustomButton2

CustomButton2Caption

InstallComponent

Title



Properties

CheckBoxes

DialogForm

InstallComponent

Title



Methods
FileGroupByName RemoveFileGroup

Install RemoveINIFile

InsertAlias RemoveProgramItem

InsertFileGroup RemoveRSConnection

InsertINIFile

InsertProgramItem

InsertRSConnection

RemoveAlias



Methods

ExpandPaths

Install



Methods

ClearFiles

FileByName

IndexOf

InsertFile

RemoveFile



Methods

ExpandPaths

Install



Methods

ExpandPaths

Install



Methods

ExpandPaths

Install



Methods

Execute

GetGroups



Methods

Execute



Methods

Execute



Events
AfterInstallAlias BeforeInstallPI OnDoneCopyingFiles

AfterInstallFile BeforeInstallRSC OnNeedChangeDisk

AfterInstallINI ChooseFileGroups ProgramManagerError

AfterInstallPI DoneInstallingAliases StartInstallingAliases

AfterInstallRSC DoneInstallingINIFiles StartInstallingINIFiles

AliasExists DoneInstallingPMItems StartInstallingPMItems

BeforeInstallAlias DoneInstallingRSConnections StartInstallingRSConns

BeforeInstallFile OnCopyingFileEvent BadInstallation

BeforeInstallINI     OnCannotOpenBDE GoodInstallation



Events
AfterInstall

AliasExists

BeforeInstall

CannotOpenBDE



Events



Events

AfterInstall

BeforeInstall



Events
AfterInstall

BeforeInstall

ProgramManagerError



Events
AfterInstall

BeforeInstall



Events
OnCustomButton1Click

OnCustomButton2Click

OnProgramManagerError



Events

OnCustomButton1Click

OnCustomButton2Click



Events

OnDestinationDirBtnClick

OnFileGroupClick

OnInitializeDialog

OnMouseOverFileGroup



AliasName Property
Applies To
TInstallAlias

Declaration
property AliasName: String;

Description
This property determines the name of the alias, as it will appear in the Borland Database Engine.



PropertyScreen
Applies To
TSelectWindowGroupDlg, TInstallRSConnectionDlg

Declaration
property xx

Description
xx



Driver Property
Applies To
TInstallAlias

Declaration
property Driver: String;

Description
This property determines the driver for the alias.    You cannot specify a value for the SQLParams property
if the alias is a Standard alias.    If the alias is an InterBase alias, then you cannot specify a value for the 
Path property.

Type Drivers:
DBASE
ASCII
PARADOX
INTRBASE



Path Property
Applies To
TInstallAlias

Declaration
property Path: String;

Description
This property is only valid for Standard aliases (refer to the Borland Database Engine documentation for 
more informtaion).    Any meta-variables will be expanded when the Install method is called.

Supports Meta-Variables



IconIndex Property
Applies To
TProgramItem

Declaration
property IconIndex: String;

Description
Specifies the offset of the image in the file, as specified by the IconFile property, that will be the icon for 
the Program Item.



SQLParams Property
Applies To
TInstallAlias

Declaration
property Path: String;

Description
This property is only valid for InterBase aliases (refer to the Borland Database Engine documentation for 
more informtaion).    Any meta-variables will be expanded when the Install method is called.

This is a list defined as follows: "AliasOption: Option Data[;AliasOption: Option Data][;...]"

Example:

SERVER NAME: c:\iblocal\examples\employee.gdb;USER NAME: sysdba

Supports Meta-Variables



Install Method
Applies To
TInstallAlias

Declaration
procedure Install; Virtual;

Description
This method first calls the ExpandPaths method and then installs the alias into the Borland Database 
Engine(BDE).    The BeforeInstall event is triggered before this method does anything.    If there is already 
an alias with the name as specified in the AliasName property, then the AliasExists event will be triggered.
If there is a problem with connecting to the BDE, then the CannotOpenBDE event will be triggered.    
Finally, if everything goes well, the AfterInstall event will be triggered.



BeforeInstall Event
Applies To
TInstallAlias,TInstallFileGroup,TInstallINIFile,TProgramItem,TInstallRSConnection,TInstallFile

Declaration
property AfterInstall: TNotifyEvent;

Description
This event is triggered before any code gets executed in the Install method of the component.    To abort 
the operation of installing the component, execute the Abort command.



AliasExists Event
Applies To
TInstallAlias

Declaration
property AliasExists: TNotifyEvent;

Description
This event occurs if the alias name, as specified by the AliasName property, is already in the Borland 
Database Engine.



CannotOpenBDE Event
Applies To
TInstallAlias

Declaration
property CannotOpenBDE: TNotifyEvent;

Description
This event occurs if there is trouble with connecting to the Borland Database Engine.    Usually there is 
trouble if the user does not have the BDE installed on his/her computer.



InstallComponent Property
Applies To
TInstallAlias,TInstallFileGroup,TInstallINIFile,TProgramItem,TInstallRSConnection,
(Dialog components)
TInstallRSConnectionDlg,TSelectWindowGroupDlg,TInstallFileGroupsDlg,TCopyFileDlg,
TComponentConflictDlg

Declaration
property InstallComponent: TInstall;

Description
Components that have this property are components that can run by themselves.    However, this property
allows you to use the component in conjuction with any TInstall component on the form.    I.e. the Install 
component will essentially install the component for you when the time is right (Except for the dialog 
components, in which case you should call their execute methods in the appropriate event in the TInstall). 
If you have specified a value for both this property and the FileGroup property, then the component will 
only be installed if the file group's Include property is True (N/A for the dialog components).    Note:    you 
can selectively allow the user to install/not install file groups.    If the user does not wish to install a file 
group, then the Include property should be set to false.



FileGroup Property
Applies To
TInstallAlias,TInstallFileGroup,TInstallINIFile,TProgramItem,TInstallRSConnection,TInstallFile

Declaration
property FileGroup: TInstallFileGroup;

Description
If you specify a value for both this property and the InstallComponent property, then the component will 
only be installed, by the TInstall component, if the file group's Included property is true when the TInstall 
component is run.    You must also specify a value for this property if you plan to use the %f meta-variable 
in any of the properties for the component that support meta-variables.



ExpandPaths Method
Applies To
TInstallAlias,TInstallFileGroup,TInstallINIFile,TProgramItem,TInstallRSConnection

Declaration
procedure ExpandPaths; virtual;

Description
This method expands the meta-variables that are embedded in various properties for the component.

TInstallAlias

Any meta-variables in the Path or SQLParams properties will be expanded.

TInstallINIFile

Any meta-variables in the FileName of Lines properties will be expanded.

TProgramItem

Any meta-variables in the CommandLine, Directory, or IconFile properties will be expanded.

TInstallRSConnection

Any meta-variables in the DataFilePath, Database,Server, Blahh.. Blah.. will be expanded.

Example:

Path (with meta-variables) Expanded 
%w Windows directory.    Assume 

(c:\window's) on users 
machine.

c:\windows

%s\foobar Window's sytem directory.    
Assume (d:\windows\system) 
on user's machine.

c:\windows\system\foobar

%f\new Assume this alias is linked to 
a file group and that file group
gets installed to c:\foo\bar.

c:\foo\bar\new



CommandLine Property
Applies To
TProgramItem

Declaration
property CommandLine: String;

Description
Specifies the Command Line for the Program Item.

Supports Meta-Variables



Description Property
Applies To
TProgramItem

Declaration
property Description: String;

Description
Specifies the description of the Program Item, as it appears in the Program Manager.



Directory Property
Applies To
TProgramItem

Declaration
property Directory: String;

Description
Specifies the directory that the Program Item will run from.

Supports Meta-Variables



IconFile Property
Applies To
TProgramItem

Declaration
property IconFile: String;

Description
Specifies the file that will contain the icon for the Program Item.

Supports Meta-Variables



WindowGroup Property
Applies To
TProgramItem

Declaration
property WindowGroup: String;

Description
Specifies the Window's group in which to install the Program Item.



Install Method
Applies To
TProgramItem

Declaration
procedure Install: Virtual;

Description
Executes the ExpandPaths method and then installs the Program Item into the Window's group specified 
by the WindowGroup property.    Before any code is executed, the BeforeInstall event is triggered.    You 
may quit the installation of the Program Item by executing the Abort command in this event.    The 
ProgramManagerError event is triggered if Program Manager cannot be found.    The AfterInstall event is 
triggered if there are no glitches and the Program Item has been installed correctly.



AfterInstall Event
Applies To
TInstallAlias,TInstallFileGroup,TInstallINIFile,TProgramItem,TInstallRSConnection,TInstallFile

Declaration
property AfterInstall: TNotifyEvent;

Description
This event occurs if everything goes well with the installation of the component.



ProgramManagerError Event
Applies To
TProgramItem

Declaration
property ProgramManagerError: TNotifyEvent;

Description
This method is triggered if there is an error with trying to establish a link with Program Manager.



ConnectionName Property
Applies To
TInstallRSConnection

Declaration
property ConnectionName: String;

Description
Name of the ReportSmith connection.



ConnectType Property
Applies To
TInstallRSConnection

Declaration
property ConnectType: TConnectType;

Description
Type of the ReportSmith Connection.    Possible values are:

DBASE_IDAPI
DBASE_WINDOWS
IBLOCAL_IDAPI
INTERBASE_ODBC
PARADOX_IDAPI
RSBTRIEVE_ODBC
RSDBASE_ODBC
RSEXCEL_ODBC
RSFOXPRO_ODBC
RSMSACCESS_ODBC
RSPARADOX_ODBC
RSTEXT_ODBC.



Database Property
Applies To
TInstallRSConnection

Declaration
property Database: String;

Description
Name of the ReportSmith database.

Supports Meta-Variables



DataFilePath Property
Applies To
TInstallRSConnection

Declaration
property DataFilePath: String;;

Description
Path to the data files for the ReportSmith Connection..

Supports Meta-Variables



OverwriteDuplicates Property
Applies To
TInstallRSConnection

Declaration
property OverwriteDuplicates: Boolean;

Description
If set to true, any ReportSmith connections that have the same name will be overwritten.    If set to false 
and a Connection with the same name exists, the ReportSmith connection will not be installed, and the 
AfterInstall event will NOT be triggered.



Password Property
Applies To
TInstallRSConnection

Declaration
property Password: String;

Description
Password to the connection.



UserId Property
Applies To
TInstallRSConnection

Declaration
property UserId: String;

Description
UserId for the ReportSmith connection.



Install Method
Applies To
TInstallRSConnection

Declaration
procedure Install; Virtual;

Description.
Executes the ExpandPaths method and then installs the ReportSmith Connection into ReportSmith.    
Before any code is executed, the BeforeInstall event is triggered.    You may quit the installation of the 
Connection by executing the Abort command in this event.    The AfterInstall event is triggered if there are 
no glitches and the ReportSmith Connection has been installed correctly.    If you have set 
OverwriteDuplicate to False and a duplicate is encountered, the AfterInstall event will NOT be triggered.



AlwaysInstall Property
Applies To
TInstallFileGroup

Declaration
property AlwaysInstall: Boolean;

Description
If set to True, the file group should always be installed.    If set to False, the user should have the option of
including/excluding the file group.    The TInstallFileGroupsDlg complies with this behavior.



Description Property
Applies To
TInstallFileGroup

Declaration
property Description: TStrings;

Description
This property allows you to attach a description of the file group to the component.    The 
TInstallFileGroupsDlg component uses this property to give a description of the file group to the user.    If 
you design your own Dialogs, you will definitely find this property usefull.



DestDir Property
Applies To
TInstallFileGroup

Declaration
property DestDir: String;

Description
The DestDir property contains the directory to which the files that are owned by this component, in the 
Files property, will be installed when the Install method is executed.    The TInstallFileGroupsDlg allows 
the users to change this at run-time.    If you specify a parent file group in the ParentFileGroup property, 
then you can use the %f meta-variable, which will be expanded to the path where the parent file group is 
installed to.

Supports Meta-Variables



FileCount Property
Applies To
TInstallFileGroup

Declaration
property FileCount: Integer;

Description
This property contains a count of the number of files owned by this file group.    The files can be accessed 
through the Files property.



FileByName Method
Applies To
TInstallFileGroup

Declaration
function FileByName(Name: String): TInstallFile; Virtual;

Description
This method returns the file component with the file name of Name.    If the file group does not own the file
component, Nil will be returned.



Files Property
Applies To
TInstallFileGroup

Declaration
property Files[I: Integer]: TInstallFile;

Description
This property allows you to access the individual files owned by this file group.



GroupName Property
Applies To
TInstallFileGroup

Declaration
property GroupName: String;

Description
Attach a descriptive name of the file group with this property.    The TInstallFileGroupsDlg uses this 
property to display the name of the file group to the user.    If you create your own Dialogs, you should use
this property instead of the Name property.



Include Property
Applies To
TInstallFileGroup

Declaration
property Include: Boolean;;

Description
If set to True, the file group should be slated for installation.    However, if you set the AlwaysInstall 
property to false, the user should be able to exclude/include this file group from the installation.    The 
TInstallFileGroupsDlg component complies with this behavior.



Size Property
Applies To
TInstallFileGroup

Declaration
property Size: LongInt;

Description
This property contains the size of the file group in Bytes.    This property is calculated by summing the size
of the all the files owned by this file group, which can be accessed through the Files property.



ClearFiles Method
Applies To
TInstallFileGroup

Declaration
procedure ClearFiles; virtual;

Description
This method removes all files that are owned by the file group.



IndexOf Method
Applies To
TInstallFileGroup

Declaration
function IndexOf(InstallFile: TInstallFile): Integer; virtual;

Description
This method returns the index into the Files property of the file component specified by the InstallFile 
parameter.



InsertFile Method
Applies To
TInstallFileGroup

Declaration
procedure InsertFile(Value: TInstallFile); virtual;

Description
This method adds the file component to the list of files owned by the file group (see Files property).



RemoveFile Method
Applies To
TInstallFileGroup

Declaration
procedure RemoveFile(Value: TInstallFile);

Description
This method removes the file component in the Value parameter, that is owned by this file group.



Install Method
Applies To
TInstallINIFile

Declaration
method Install; virtual;

Description
This method calles the ExpandPaths method and installs the INI file into the path given in the FileName 
property.    The BeforeInstall event is triggered before any code executes, and the installation can be 
halted by executing the Abort command.    The AfterInstall event is triggered if the INI file is installed 
correctly and there are no glitches.



FileName Property
Applies To
TInstallINIFile

Declaration
property FileName: String;

Description
The INI file will be written to the path specified in this property.    You should include both a path and a file 
name.

Supports Meta-Variables



Lines Property
Applies To
TInstallINIFile

Declaration
property Lines: TStrings;

Description
This is the text that will be written to the INI file when it is installed.

Supports Meta-Variables



DialogForm Property
Applies To
TInstallFileGroupsDlg,TSelectWindowGroupDlg,TInstallRSConnectionDlg,TCopyFileDlg,
TGoodInstallationDlg,TComponentConflictDlg

Declaration
property DialogForm: TForm;

Description
This run-time only property gives you access to the form that is displayed to the user.    Basically, at run-
time you can change how the dialog form looks by referencing the components on the form through this 
property.

TInstallFileGroupsDlg Examples:

To change the image at the top left (the little setup image), you would execute the following code (of 
course you will have to include the .bmp file in your installation):

DialogForm.TopLeftImage.LoadFromFile('newimage.bmp');

To change what happens when the user clicks the Abort Installation button:

Form1 = class(TForm)
...
public
    MyClickMethod(Sender: TObject);
...

procedure Form1.MyClickMethod(Sender: TObject)
begin
    ShowMessage('I cannot believe you canceled this beautifull installation.');
    ModalResult := mrCancel;
end;

DialogForm.btnExit.OnClick := MyClickMethod;

TSelectWindowGroupDlg Examples:

DialogForm.cbGroups.Text := 'NewerGroup';



Title Property
Applies To
TInstallFileGroupsDlg,TSelectWindowGroupDlg,TGoodInstallationDlg,TCopyFileDlg,TComponentConflict
Dlg

Declaration
property Title: String;

Description
You can change the Caption for the dialog form that the user sees with this property.



Execute Method
Applies To
TInstallFileGroupsDlg

Declaration
function Execute: Boolean; virtual;

Description
This method displays the dialog form.    It returns true if the user clicked the Install button and False if the 
user clicks the Abort Installation button.    If hooked up to a TInstall component, the Installation will 
automatically be aborted if the user hits the Abort Installation button.



DestinationDirBtnClick Event
Applies To
TInstallFileGroupsDlg

Declaration
property DestinationDirBtnClick: TFileGroupsDlgNotifyEvent;

Description
This event occurs when the user clicks the file folder.



FileGroupsDlgNotifyEvent Type
Unit
IdFg

Applies To
TInstallFileGroupsDlg

Declaration
type 
    TFileGroupsDlgNotifyEvent = procedure(Sender: TObject;

CurrentFileGroup: TInstallFileGroup);

Description
This event type returns the Sender and also the currently selected file group.



OnFileGroupClick Event
Applies To
TInstallFileGroupsDlg

Declaration
property OnFileGroupClick: TFileGroupsDlgNotifyEvent;

Description
This event occurs when the user clicks on a file group checkbox.



OnMouseOverFileGroup Event
Applies To
TInstallFileGroupsDlg

Declaration
property OnMouseOverFileGroup: TFileGroupsDlgNotifyEvent;

Description
This event occurs when the user moves the mouse over a file group checkbox.



CustomButton1Caption Property
Applies To
TSelectWindowGroupDlg, TInstallRSConnectionDlg

Declaration
property CustomButton1Caption: String;

Description
Assign a non-blank string to this property to provide the user with a custom button on the dialog form.    
The OnCustomButton1Click event will be triggered if the user clicks on this button.



CustomButton2Caption Property
Applies To
TSelectWindowGroupDlg, TInstallRSConnectionDlg

Declaration
property CustomButton2Caption: String;

Description
Assign a non-blank value to this property to give the user a second custom button.    The 
OnCustomButton2Click event will be triggered if the user clicks the second custom button.



Execute Method
Applies To
TSelectWindowGroupDlg

Declaration
function Execute: Boolean; virtual;

Description
This method executes the select window group dialog.    The WindowGroup property will hold the user's 
choice of window group.    The function returns False if the user hit the Skip button and True if the user 
clicked the Install Icons button.    If this component is hooked up to an Install Component through the 
InstallComponent property, then the TInstall's WindowGroupName property will contain the value of the 
window group that the user selected.



GetGroups Method
Applies To
TSelectWindowGroupDlg

Declaration
procedure GetGroups(Value: TStrings);

Description
The Value parameter will be cleared and a list of all the Window Group names will be in the Value 
parameter.



CustomButton1 Property
Applies To
TSelectWindowGroupDlg,TInstallRSConnectionDlg

Declaration
property CustomButton1: TBitBtn;

Description
Provides a run-time reference to the Custom Button #1.



CustomButton2 Property
Applies To
TSelectWindowGroupDlg,TInstallRSConnectionDlg

Declaration
property CustomButton2: TBitBtn;

Description
Provides a run-time reference to the Custom Button #2.



OnCustomButton1Click Event
Applies To
TSelectWindowGroupDlg,TInstallRSConnectionDlg

Declaration
property OnCustomButton1Click: TNotifyEvent;

Description
Occurs when the user clicks on Custom Button #1.
.



OnCustomButton2Click Event
Applies To
TSelectWindowGroupDlg,TInstallRSConnectionDlg

Declaration
property OnCustomButton2Click: TNotifyEvent;

Description
Occurs when the user clicks on Custom Button #2.
.



OnProgramManagerError Event
Applies To
TSelectWindowGroupDlg

Declaration
property OnProgramManagerError: TNotifyEvent;

Description
Occurs when there is a problem with "linking" to Program Manager.



BeforeInstallFile Event
Applies To
TInstall

Declaration
property BeforeInstallFile: TInstallFileNotifyEvent;

Description
This event is called before a File has been installed.    Execute the Abort command to abort the installation
of the file.



Execute Method
Applies To
TInstallRSConnectionDlg

Declaration
function Execute: Boolean; virtual;;

Description
If you have assigned a value to the InstallComponent property, then when this component is executed 
and the user hits the Skip button, the ReportSmith connections will not be installed.    This method returns 
True if the user hits the Install Connections Button and False if the user hits the Skip button.



ConnectionNames Property
Applies To
TInstallRSConnectionDlg

Declaration
property ConnectionNames: TStrings;

Description
If you have assigned a value to the InstallComponent property, then when this component is executed, 
this property will contain the names of the ReportSmith Connections.    If this component is not linked to a 
TInstall component, then use this property manually create a list of ReportSmith connections that will be 
installed.    You will normally want to use this in conjuction with a TInstall component.



AfterInstallRSC Event
Applies To
TInstall

Declaration
property AfterInstallRSC: TInstallRSConnectionNotifyEvent;

Description
This event is called after a ReportSmith connection has been installed.



AfterInstallAlias Event
Applies To
TInstall

Declaration
property AfterInstallAlias: TInstallAliasNotifyEvent;

Description
This event is called after an Alias has been installed.



AfterInstallFile Event
Applies To
TInstall

Declaration
property AfterInstallFile: TInstallFileNotifyEvent;

Description
This event is called after an File has been installed.



AfterInstallINI Event
Applies To
TInstall

Declaration
property AfterInstallINI: TInstallININotifyEvent;

Description
This event is called after an INI File has been installed.



AfterInstallPI Event
Applies To
TInstall

Declaration
property AfterInstallPI: TProgramItemNotifyEvent;

Description
This event is called after a Program Item has been installed.



AliasExists Event
Applies To
TInstall

Declaration
property AliasExists: TInstallAliasNotifyEvent;

Description
This event is called when there is an alias that already exists in the BDE on the user's machine.    The 
alias will not be installed.



BeforeInstallAlias Event
Applies To
TInstall

Declaration
property BeforeInstallAlias: TInstallAliasNotifyEvent;

Description
This event is called before an Alias has been installed.    Execute the Abort command to abort the 
installation of the alias.



BeforeInstallINI    Event
Applies To
TInstall

Declaration
property BeforeInstallINI: TInstallINIFileNotifyEvent;

Description
This event is called before an INI File has been installed.    Execute the Abort command to abort the 
installation of the INI File.



BeforeInstallPI Event
Applies To
TInstall

Declaration
property BeforeInstallPI: TProgramItemNotifyEvent;

Description
This event is called before a Program Item has been installed.    Execute the Abort command to abort the 
installation of the Program Item.



BeforeInstallRSC Event
Applies To
TInstall

Declaration
property BeforeInstallRSC: TInstallRSConnectionNotifyEvent;

Description
This event is called before a ReportSmith Connection has been installed.    Execute the Abort command to
abort the installation of the ReportSmith Connection.



ChooseFileGroups Event
Applies To
TInstall

Declaration
property ChooseFileGroups: TNotifyEvent;

Description
If you are going to use a TInstallFileGroupsDlg component in conjunction with this component, then you 
need to call the Execute method of the TInstallFileGroupsDlg component in this event.

InstallFileGroupsDlg1.Execute;



DoneInstallingAliases Event
Applies To
TInstall

Declaration
property DoneInstallingAliases: TNotifyEvent;

Description
This event is called after all the aliases have been installed.



DoneInstallingINIFiles Event
Applies To
TInstall

Declaration
property DoneInstallingINIFiles: TNotifyEvent;

Description
This event is called after all the INI Files have been installed.



DoneInstallingPMItems Event
Applies To
TInstall

Declaration
property DoneInstallingPMItems: TNotifyEvent;

Description
This event is called after all the Program Items have been installed.



AliasCount Property
Applies To
TInstall

Declaration
property AliasCount: Integer;

Description
Run-time only.    This property contains the number of aliases in the Aliases property.



DoneInstallingRSConnections Event
Applies To
TInstall

Declaration
property DoneInstallingRSConnections: TNotifyEvent;

Description
This event is called after all the ReportSmith Connections have been installed.



OnCopyingFileEvent Event
Applies To
TInstall

Declaration
property OnCopyingFileEvent: TCopyFileNotifyEvent;

Type
    TCopyFileNotifyEvent = procedure(Sender: TObject;InstallFile: TInstallFile) of object;

Description
If you are going to use the TCopyFileDlg in conjuction with this component, then you should call the 
Update method of the TCopyFileDlg component in this event.

CopyFileDlg1.Update;



OnCannotOpenBDE Event
Applies To
TInstall

Declaration
property OnCannotOpenBDE: TNotifyEvent;

Description
This event is called when the Borland Database Engine cannot be found.



OnDoneCopyingFiles Event
Applies To
TInstall

Declaration
property OnDoneCopyingFiles: TNotifyEvent;

Description
This event is called after copying the files (successfully or non-successfully).    If you are using a 
TCopyFileDlg component in conjunction with this component, you should call the TCopyFileDlg 
component's Hide method to hide the Copy File Dialog Box.

CopyFileDlg1.Hide;.

If you have a TComponentConflictDlg component that you are using, you should call its Execute method 
in this event.



ProgramManagerError Event
Applies To
TInstall

Declaration
property ProgramManagerError: TNotifyEvent;

Description
This event is called when Program Manager is not up and running.    This event occurs each time a 
Program Item is installing itself and cannot link to the Program Manager.



StartInstallingAliases Event
Applies To
TInstall

Declaration
property StartInstallingAliases: TNotifyEvent;

Description
This event is called before the aliases are to be installed.    Call the Abort procedure to abort installing the 
aliases.



StartInstallingINIFiles Event
Applies To
TInstall

Declaration
property StartInstallingAliases: TNotifyEvent;

Description
This event is called before the INI Files are to be installed.    Call the Abort procedure to abort installing 
the INI Files.



StartInstallingPMItems Event
Applies To
TInstall

Declaration
property StartInstallingPMItems: TNotifyEvent;

Description
This event is called before the Program Items are to be installed.    Call the Abort procedure to abort 
installing the Program Items.    If you want to use the TSelectWindowGroupDlg component in conjunction 
with this component, then you will need to call the Execute method of the TSelectWindowGroupDlg 
component in this event.

SelectWindowGroupDlg1.Execute;



StartInstallingRSConns Event
Applies To
TInstall

Declaration
property StartInstallingRSConns: TNotifyEvent;

Description
This event is called before the ReportSmith connections are to be installed.    Call the Abort procedure to 
abort installing the ReportSmith connections.    If you want to use the TInstallRSConnectionDlg with this 
component, then you will want to call the Execute method of the TInstallRSConnectionDlg component in 
this event.

InstallRSConnectionDlg1.Execute;



Aliases Property
Applies To
TInstall

Declaration
property Aliases[I: Integer]: TInstallAlias;

Description
Run-time only.    This property contains references to all the aliases in the installation.



CopyingFile Property
Applies To
TInstall

Declaration
property CopyingFile: TInstallFile;

Description
Run-time only.    This property contains a reference to the file that is currently being copied.    It is Nil if 
there is no file being copied.



CopyingFileGroup Property
Applies To
TInstall

Declaration
property CopyingFileGroup: TInstallFileGroup;

Description
Run-time only.    This property contains a reference to the file group that is currently being copied.    It is Nil
if there is no file group is being copied.



FileGroupCount Property
Applies To
TInstall

Declaration
property FileGroupCount: Integer;

Description
Run-time only.    This property contains the number of file groups contained in the FileGroups property.



FileGroups Property
Applies To
TInstall

Declaration
property FileGroups[I: Integer]: TInstallFileGroup;

Description
Run-time only.    This property contains references to all the file groups in the installation.



INIFiles Property
Applies To
TInstall

Declaration
property INIFiles[I: Integer]: TInstallINIFiles;

Description
Run-time only.    This property contains references to all the INI Files in the installation.



ProgramItems Property
Applies To
TInstall

Declaration
property ProgramItems[I: Integer]: TProgramItem;

Description
Run-time only.    This property contains references to all the Program Items in the installation.



RSConnections Property
Applies To
TInstall

Declaration
property RSConnections[I: Integer]: TInstallRSConnection;

Description
Run-time only.    This property contains references to all the ReportSmith Connections in the installation.



WHY TINSTALL?

Besides the obvious: installing files, program items, aliases, ReportSmith Connections, and INI files, and 
an Installation Builder to build the Installation disks for you, TInstall is powerfull because it is a native 
Delphi VCL component.    This means that there are no scripts to learn when you have to do a little 
something different--And you can change almost anything and everything about how your installation will 
run.    

The TInstall publishes a slew of events for you to provide installation specific behavior--all in native Delphi
code!    The TInstall also supports polymorphism, inheritance and all the object oriented concepts that 
makes Delphi so great!    For instance, if you want to make a change to the TInstall and you want to use 
that change in your installations, just make a new class that descends from TInstall, make the changes, 
and install your new component.    You can now plop your component and create your installation.    Your 
component will inherit all the powerfull features of the TInstall and will add your own features.    You can 
also do this piecemeal with any of the other components (TInstallAlias, TInstallFile, TInstallFileGroup, 
TInstallINIFile, TProgramItem, TInstallRSConnection, TInstallFileGroupsDlg, TInstallRSConnectionDlg, 
TSelectWindowGroupDlg, and TCopyFIleDlg).



lNIFileCount Property
Applies To
TInstall

Declaration
property INIFileCount: Integer;

Description
Run-time only.    This property contains the number of INI Files in the INIFiles property.



ProgramItemCount Property
Applies To
TInstall

Declaration
property ProgramItemCount: Integer;

Description
Run-time only.    This property contains the number of Program Items in the ProgramItems property.



RSConnectionCount Property
Applies To
TInstall

Declaration
property RSConnectionCount: Integer;

Description
Run-time only.    This property contains the number of ReportSmith Connections in the RSConnections 
property.



Size Property
Applies To
TInstall

Declaration
property Sizet: Integer;

Description
Run-time only.    This property contains the size of the installation in bytes..



SourceDir Property
Applies To
TInstall

Declaration
property SourceDir: String;

Description
Run-time only.    This property contains the number of the directory from which the user is running the 
install program.
.



TotalBytesCopied Property
Applies To
TInstall

Declaration
property TotalBytesCopied: Integer;

Description
Run-time only.    This property contains the total number of bytes currently copied.    This is usefull for 
calculating percentages if you decide to make your own Copy File Dialog form.



WindowGroupName Property
Applies To
TInstall

Declaration
property WindowGroupName: String;

Description
This property contains the name of the window's group into which you want to install all of your program 
items.    If you leave this blank, then the program items will be installed into the window groups dictated by
the TProgramItem component's WindowGroup property.



InsertFileGroup Method
Applies To
TInstall

Declaration
procedure InsertFileGroup(Value: TInstallFileGroup);

Description
This method inserts a file group into the FileGroups property.



InsertINIFile Method
Applies To
TInstall

Declaration
procedure InsertINIFile(Value: TInstallINIFile);

Description
This method inserts an INI File into the INIFiles property.



InsertAlias Method
Applies To
TInstall

Declaration
procedure InsertAlias(Value: TInstallAlias);

Description
This method inserts an Alias into the Aliases property.



InsertProgramItem Method
Applies To
TInstall

Declaration
procedure InsertProgramItem(Value: TProgramItem);

Description
This method inserts a Program Item into the ProgramItems property.



InsertRSConnection Method
Applies To
TInstall

Declaration
procedure InsertRSConnection(Value: TInstallRSConnection);

Description
This method inserts a ReportSmith Connection into the RSConnections property.



RemoveAlias Method
Applies To
TInstall

Declaration
procedure RemoveAlias(Value: TInstallAlias);

Description
This method removes an alias from the Aliases property.



RemoveFileGroup Method
Applies To
TInstall

Declaration
procedure RemoveFileGroup(Value: TInstallFileGroup);

Description
This method removes a File Group from the FileGroups property.



RemoveINIFile Method
Applies To
TInstall

Declaration
procedure RemoveINIFile(Value: TInstallINIFIle);

Description
This method removes an INI File from the INIFiles property.



RemoveProgramItem Method
Applies To
TInstall

Declaration
procedure RemoveProgramItem(Value: TProgramItem);

Description
This method removes a Program Item from the ProgramItems property.



RemoveRSConnection Method
Applies To
TInstall

Declaration
procedure RemoveRSConnection(Value: TInstallRSConnection);

Description
This method removes a ReportSmith Connection from the RSConnections property.



Install Method
Applies To
TInstall

Declaration
procedure Install; virtual;

Description
This method Installs all the Aliases, FileGroups, INI Files, Program Items, and ReportSmith connections
associated with this TInstall component.



Building The Installation Files

Double-click on the TInstall component.    You should see another dialog box come up.    Before you build 
the installation files, you should remember to save your project and compile it.



Getting Started--BASIC

1. Open a new project.

2. Place the TInstall on your main form (You can actually put it on any form!).

3. Design your form anyway you want to; put a nice bitmap on the form, place a huge label on the form 
with the name of your software, whatever you want.    Remember, your users will see this form when they 
crank your installation program up.

4. Think about your installation.    You will probably have groups of files that you want to copy to the same 
directories;    All the files that are going to a common directory on the user's computer should be part of a 
TInstallFileGroup component.    So plop down some TInstallFileGroup components and set the properties 
appropriately (i.e. Remember to set a value for the InstallComponent property).

5.    Double-click on the TInstallFileGroup components, one at a time.    You should add the appropriate 
files to each file group in the dialog box.

6.    You will probably want to use the TCopyFileDlg to show the user when the files are being copied.    So
plop down a TCopyFileDlg component onto the form.    Next you will want to attach the following code to 
the OnCopyingFileEvent Event for the TInstall component:

CopyFileDlg1.Update;

7.    To hide the dialog box, you will want to attach the following code to the OnDoneCopyingFiles Event 
for the TInstall Component.

CopyFileDlg1.Hide;

8.    You probably want to have a button on your form that notifies when to start the install.    So, wherever 
you want to start the installation (maybe in the OnClick event of the button), write the following code:

Install1.Install; { Unless of course you named the component something different. }

9.    Save your project, compile it, and then double-click on the TInstall component.    The rest is cake.

SEE ALSO
Getting Started--Advanced



Getting Started--Advanced

1.    You will probably want the users to be able to include/exclude some of the file groups.    I.e. this allows
the user to install only pertinent portions of your software.    To do this you will probably want to use the 
TInstallFileGroupsDlg component.    So plop down a TInstallFileGroupsDlg onto your form (Did you 
remember to assign a value for the InstallComponent property?).    To use this component, attach the 
following code to the ChooseFileGroups Event of the TInstall component:

InstallFileGroupsDlg1.Execute; { Unless of course the component is named something different. }

2.    If you want to install any Program Items, you should plop some TProgramItem components down on 
your form (Of course, you should assign a value for the InstallComponent property).

3.    If you want your users the ability to install the Program Items into a different Window's Group than 
what you had assigned at Design-Time, plop a TSelectWindowGroupDlg onto the form and assign a 
value for the InstallComponent property.    To show this dialog to the users at the appropriate time, you 
should attach the following code to the StartInstallingPMItems event of the TInstall component:

SelectWindowsGroupDlg1.Execute; { Unless of course the component is named something different }

4.    It is the same way if you want to install ReportSmith connections:    Plop some TInstallRSConnection 
components onto your form.    You will probably not want to show a dialog box to the user about 
installation ReportSmith connections, but if you do, plop down a TInstallRSConnectionDlg component 
onto your form and in the StartInstallingRSConns event of the TInstall component, attach the following 
code:    

InstallRSConnectionDlg1.Execute;

SEE ALSO
GettingStarted--Basic



TCopyFileDlg Component

Properties

Methods
Events

Unit
Install

Description
You should only use this component in conjunction with a TInstall component.    I.e. it is not really a stand-
alone component.    You connect this component to a TInstall component through the InstallComponent 
property.    Call the Update method in the OnCopyingFileEvent event of the TInstall component and the 
Hide method in the OnDoneCopyingFiles event of the TInstall component to use this component.

You may change how the dialog looks at run-time by using the DialogForm property.    This property 
references the form that will be seen by the user.    You can reference the various components contained 
by their names, shown in the previous shematic.    To change the text string "Extracting File", you would 
execute the following code at run-time:    

DialogForm.lblCopyFileHeader.Caption := 'UnZipping File:';

You can use the Title property to change the caption of the dialog.



Properties

DialogForm

InstallComponent

Title



Methods

Hide

Update



Events



Hide Method
Applies To
TInstall

Declaration
procedure Hide: virtual;

Description
This procedure hides the copy file dialog box.    You should call this method in the OnDoneCopyingFiles 
event of the TInstall component.



Update Method
Applies To
TInstall

Declaration
procedure Update; virtual;

Description
This method updates the copy file dialog box (you MUST hook up a TInstall component to the 
InstallComponent property to use this).    You should call this method in the OnCopyingFileEvent of the 
TInstall Component.



TInstallFile Component

Properties

Methods
Events

Unit
Install

Description
This component is created for each file that you want in your installation.    It stores information about the 
file itself and the things that you want done to the file when the user runs the installation.



Size Property
Applies To
TInstallFile

Declaration
property Size: Integer;

Description
The size of the file in bytes.



IncludeFromDir Property
Applies To
TInstallFile

Declaration
property IncludeFromDir: String;

Description
Specifies where the installation builder will find your file to build the installation disk(s)/file.



FileName Property
Applies To
TInstallFile

Declaration
property FileName: String;

Description
Specifies the name of the file.



Disk Property
Applies To
TInstallFile

Declaration
property FileName: String;

Description
Run-Time Only.    Specifies the disk on which the file is found.



Methods
Create

Install



Install Method
Applies To
TInstall

Declaration
procedure Install; virtual;

Description
This method installs the file onto the user's computer.    It will only be installed if it's corresponding file 
group's Include property is True.



Create Method
Applies To
TInstall

Declaration
constructor Create(AOwner: TComponent;FName: String;FGroup: TInstallFileGroup); virtual;

Description
This method creates the TInstallFile component.    You must have a non-null FGroup parameter and a 
non-blank FName property.    The FileName property will be assigned the value of FName and the 
FileGroup property will be assigned the value of FGroup..



Events
AfterInstall

BeforeInstall

OnNeedChangeDisk



OnNeedChangeDisk Event
Applies To
TInstallFile

Declaration
property OnNeedChangeDisk: TNotifyEvent;

Description
This event is called when the file 'files' + DiskNumber + '.zip' cannot be found on the current disk.    I.e. if 
the Disk property is 2, then this event will be triggered if 'files2.zip' cannot be found on the SourceDir path.
If you do not attach any code, then a little message box will appear asking the user to enter the 
appropriate disk.



OnNeedChangeDisk Event
Applies To
TInstall

Declaration
property OnNeedChangeDisk: TNeedChangeDiskEvent;

Type
    TNeedChangeDisk = procedure(Sender: TObject;NewDisk: Integer) of Object;

Description
This event will be triggered when a new disk is needed.    The NewDisk parameter is the number of the 
disk that needs to be inserted.    This event is generated if the file 'files' + Disk Number + '.zip' cannot be 
found on the SourceDir path.    I.e. if a file was supposed to be on disk #2, then if 'files2.zip' cannot be 
found on the SourceDir path, then this event will be generated.



Installating this software into the Delphi VCL
You should get rid of all occurrences of TInstall on your computer, in your Delphi path and what not (if you
have TInstall or an earlier copy of the Youseful components already installed on your computer).:

1.    Remove the TInstall component from your VCL library path (including the path to the TInstall 
component).
2.    Delete all files associated with the TInstall.    You will probably find the help files in the windows 
directory and the .kwf files in the \delphi\help directory.

Before you can use this software you must install the Youseful components into the Delphi palette and 
rebuild the component library.    Unfortunately their is no programatic way to install components into your 
VCL library; you must do it manually.    From within Delphi, select "Options|Install components" from the 
main menu, select "Add" from the available buttons at the right of the dialog, enter YOUSEFUL, and 
select the OK button.    Before closing the "Install Components" dialog, append the path name where you 
installed the Youseful components to to the "Search path" edit control (if it isn't already there).    Select OK
to have Delphi compile and add the Youseful components to the component library.    

If you receive an error that there has been a version mismatch, then you probably have the old TInstall 
component floating somewhere around your computer.    The files inst*.* all belong to the TInstall 
component, so after you delete those (except for any Youseful files), try this procedure again.



Merging the Youseful help into the Delphi Help System
From the windows Program Manager, run the Delphi Help File Installer program (HelpInst), located in 
your Delphi Program Group.    

1.    Click the Open an existing HDX file button or select the file and Open... menu options and open the 
file DELPHI.HDX in your \delphi\bin directory.

2.    Click the Add a new keyword file button or select the Keywords and Add Keyword File... menu options
and add the file YOUSEFUL.KWF to the list of keyword files being displayed.

3.    Click the Compile and save the current HDX file button or select the File and Save menu options to 
save and compile the modified HDX file.    Depending on your CPU, this process may take up to 30 
seconds.

4.    Close the Help File Installer window or select the File and Exit menu options to terminate the 
program.



TModifiedReport Component

Properties

Unit
Rpt2

Declaration
TModifiedReport = class(TReport);

Description
The TModifiedReport allows you to "link" a reportsmith connection to an alias, a database, or a hard-
coded path,    thus allowing you to run reports on data files in different directories without having to create 
multiple reports.    The TModifiedReport component also allows you to hook to a TReportManager 
component, which provides a level of abstraction for the location of your reports.    E.g. normally you have 
to specify where your reports are in the ReportDir property, to be able to run a report.    This isn't very 
flexible because there is never any guarantee that your users are going to have their system set up just 
like yours.    Consider this example:    you are designing a system for your users and your users have the 
option of running a report.    So when you are designing the system, you set the ReportDir property of all 
your TReport components to 'c:\app\reports'.    When you go to install your system, your users decide that 
they want your program on the D-drive.    Now you have to go back to your office, change the ReportDir 
property for of ALL of the TReport components, re-compile it, and then go back over to your users office.   
This is even worse if you are releasing software for general consumption.    Very fustrating indeed!    In 
essence, the TModifiedReport-TReportManager connection is just like the TTable-TDatabase connection; 
your TTable components do not have to know anything about where the physical data tables are, just as 
your TModifiedReport components do not have to know anything about where your reports are physically 
located.

As mentioned earlier, the TModified report component inherits all of the funtionality of the TReport 
component.    This means that you can specify a ReportDir and ReportName and the TModifiedReport 
component will behave just like the regular TReport component.    However, you will probably want to use 
the full power of the component.    To do this, you will want to specify to which ReportSmith connection 
you want to "link".    You do this by changing the value of the ConnectionName property.    After that, you 
will want to either specify a hard-coded path, database, or alias with which the ReportSmith connection 
will be "linked".    To specify a hard-coded path, change the value of the NewPath property.    To specify a 
database or alias change the value of the DatabaseName property.    Finally, you can specify a 
ReportManager by settting the ReportManager property.

In essence, you can have BDE/IDAPI aliases in ReportSmith by creating ReportSmith connections and 
then using this component.    At run-time, the ReportSmith connection's path will be replaced by the same 
as the BDE/IDAPI aliases path.

Because the TModifiedReport component is a descendant of the TReport component, it inherits all the 
methods and properties of the TReport component.    I.e. you would set all the other properties how you 
normally set them and then call the Run method.



ConnectionName Property
Applies To
TModifiedReport

Declaration
property ConnectionName: String;

Description
The ConnectionName property allows you to specifies the connection with which you want to "link".    
Specifying a value for the DatabaseName property along with this property, it is possible to use 
BDE/IDAPI aliases in ReportSmith.    At run-time the ReportSmith connection's path will be replaced by 
the BDE/IDAPI (Databases's/aliases's) path.



NewPath property
Applies To
TModifiedReport

Declaration
property NewPath: String;

Description
The NewPath property allows you to specify a hard-coded path with which to connect the    ReportSmith 
connection that you specified in the ConnectionName property.    At run-time the ReportSmith connection's
path will be replaced by the value of this property if it is non-blank path.



DatabaseName property
Applies To
TModifiedReport

Declaration
property Database: TSymbolStr;

Description
The Database property allows you to specify a database or alias with which to connect the ReportSmith 
connection that you specified in the ConnectionName property.    Specifying a value for the 
ConnectionName property along with this property, it is possible to use BDE/IDAPI aliases in 
ReportSmith.    At run-time the ReportSmith connection's path will be replaced by the BDE/IDAPI 
(Database's/aliases's) path.



Properties

ConnectionName

DatabaseName

NewPath

ReportManager



ReportManager Property
Applies To
TModifiedReport

Declaration
property ReportManager: String;

Description
The ReportManager property provides a level of abstraction for the location of your reports.    E.g. 
normally you would have to specify the ReportDir property to be able to run a report.    This isn't very 
flexible because there is never any guarantee that your users are going to have their system setup just 
like yours.    Consider this example:    you are designing a system for your users and your users have the 
option of running a report.    So when you are designing the system, you set the ReportDir property of all 
your TReport components to c:\app\reports.    When you go to install your system, your users decide that 
they want your program on the D-drive.    Now you have to go back to your work, change the ReportDir 
property for of ALL of the TReport components, re-compile it, and then go back over to your users office.   
Very fustrating indeed!    In essence, the TModifiedReport-TReportManager connection is just the TTable-
TDatabase connection;    just as your TTable components do not have to know anything about where the 
physical data tables are, your TModifiedReport components do not have to know anything about where 
your reports are physically located.



Properties

Directory

FileGroup

Groups

ININame

ReportDirectory



TReportManager Component

Properties

Unit
RptMan

Version Info
This is version 1.0 of the TReportManager.

Description
Use this component in conjunction with the TModifiedReport component to provide a level of abstraction 
for running reports, from Delphi, with ReportSmith.    The TModifiedReport is analgous to the TDatabase 
component.    While a single Database component provides an indirect reference to a path where data 
tables can be found, a single TReportManager component provides an indirect reference to a path where 
reports can be found.    Currently, using TReport components, you have to specify the ReportDir property 
for each of your TReport components.    This isn't very flexible because there is never any guarantee that 
your users are going to have their system setup just like yours.    Consider this example:    you are 
designing a system for your users and your users have the option of running a report.    So when you are 
designing the system, you set the ReportDir property of all your TReport components to c:\app\reports.    
When you go to install your system, your users decide that they want your program on the D-drive.    Now 
you have to go back to your office, change the ReportDir property for of ALL of the TReport components, 
re-compile it, and then go back over to your users office.    This is even worse if you are writing software 
for general consumption.    Very fustrating indeed!    In essence, the TModifiedReport-TReportManager 
connection is just the TTable-TDatabase connection;    just as your TTable components do not have to 
know anything about where the physical data tables are, your TModifiedReport components do not have 
to know anything about where your reports are physically located.

If you want to hard-code a directory for TReportManager to use, you always have that option.    To do this,
simply specify a directory for the Directory property.    However, I recommend that you go with the extra 
layer of abstraction by providing a file that the TReportManager will use to find the path.    (Note:    this is 
sort of like the BDE for reports).    To do this, you must specify a filename in the ININame property.    For 
more information on the format    of this file see INI File Format For TReportManager.    

The ReportDirectory property will hold the directory that your reports are in, at run-time.    You can obtain a
list of the file groups, at run-time, that are in the file specified by the ININame property with the Groups 
property.

If you are using the TInstall component to install your programs, then if you want to use this component, 
you will want to have at least one TInstallINIFile component linked to the TInstall component that has the 
IncludeInstallInfo property set to true.    This will automatically create the information for the 
TReportManager.



IncludeInstallInfo
Applies To
TInstallINIFile

Declaration
property IncludeInstallInfo: Boolean;

Description
You should set at least one TInstallINIFile component's IncludeInstallInfo property to true if you want to 
use the TReportManager component to point to a file group.



Directory Property
Applies To
TReportManager

Declaration
property Directory: String;

Description
The Directory property allows you to specified a hard-code directory in which the TReportManager 
component will find reports.    I recommend using the ININame property instead.



FileGroup Property
Applies To
TReportManager

Declaration
property FileGroup: String;

Description
The FileGroup property specifies which file group, in the file specified by the ININame property, to use.    
E.g. each file group has an associated directory and the TReportManager component will return the 
filegroup's associated directory as the directory where reports will be found.    For information on the 
format of this file see INI File Format For TReportManager.



ININame Property
Applies To
TReportManager

Declaration
property ININame: String;

Description
The ININame property tells the TReportManager component where to find a listing of the file groups and 
file group directories.    For information on the format of this file see INI File Format For TReportManager.  
If you specify a full path for ININame, then the TReportManager will look for the file in that path.    If you do
not specify a full path, but just a name, for ININame, then TReportManager will look in the current 
directory for the file.    I recommend using the last method.    Of course, if you do this, then you have to 
make sure that the file is in the same directory as your executable. If you are using the TInstall 
component to install your programs and you specify a filename for the ININame property, then this file 
gets written automatically!





GoodInstallation Event
Applies To
TInstall

Declaration
property GoodInstallation: TNotifyEvent;

Description
This event is called when there is no exception raised internally and the EAbortInstallation exception is 
not raised programatically.    This is a good place to reassure the user that the software is ready to go.
.



TInstallAliasNotifyEvent Type
Declaration
TInstallAliasNotifyEvent = procedure(Sender: TObject;InstallAlias: TInstallAlias) of Object;



TInstallININotifyEvent Type
Declaration
TInstallININotifyEvent = procedure(Sender: TObject;InstallINIFile: TInstallINIFile) of Object;



Groups Property
Applies To
TReportManager

Declaration
property Groups: TStrings;

Description
Run-time only.    The Groups property simply returns a list of all the group names in file specified by the 
ININame property.



BadInstallation Event
Applies To
TInstall

Declaration
property BadInstallation: TNotifyEvent;

Description
This event is called when there an exception is raised internally or the EAbortInstallation exception is 
raised programatically.    This is a good place to tell the user what to do to rectify the situation.



ReportDirectory Property
Applies To
TReportManager

Declaration
property ReportDirectory: String;

Description
Run-time only.    The ReportDirectory property is the directory in which your reports are found.    If you 
have specified a value for the Directory property, then that directory will be found.    If you have specified 
values for both the FileGroup property and the ININame property, then ReportDirectory will return the 
directory for the file group that is specified in the file (specified by the ININame property).    For more 
information on the format of this file see INI File Format For TReportManager.    



INI File Format For TReportManager

The file you use must contain, but is not limited to (see sample #3), the following information; It 
can have anything other information that your program needs.    If you are using the TInstall 
component to install your programs and you specify a filename for the ININame property, then 
this file gets written automatically.    Note that sample #1 has one file group, specifically 
Reports1 and sample #2 has three file groups, specifically Finance, Commerce, and Industry.    
If you specify one of the file groups for the FileGroup property, then when the run method of any
of your TModifiedReport components is called, its associated TReportManager component 
looks up the directory in this file and passes it to the TModifiedReport. 

For example, Assume you have a file, named 'myapp.ini' that has the same format as in sample 
#1, in the same directory as your executable.    If you specify 'myapp.ini' for the ININame 
property and Reports1 as the value for the FileGroup property, then the ReportDirectory 
property will be 'c:\myapp\reports1'.    Also, if you have any TModifiedReport components 
hooked to this TReportManager, when their run method is called, the ReportDir property will be 
changed to 'c:\myapp\reports1' and ReportSmith will run the report, specified by ReportName, in
this directory.

Sample formats:

{ The following is sample #1: the file does NOT contain this line }

[FileGroups]
GroupNames=Reports1

[Reports1]
Directory=c:\myapp\reports1

{ The following is sample #2: the file does NOT contain this line }

[FileGroups]
GroupNames=Finance,Commerce,Industry,

[Finance]
Directory=c:\myapp\finance

[Commerce]
Directory=c:\myapp\commerce

[Industry]
Directory=c:\myapp\industry

{ The following is sample #3: the file does NOT contain this line }

[MyProgramInfo]
Directory=c:\myapp
UserName=Bill
Version=1.0
Copyright=1995

[Miscellaneous]
Description=This is my application



[FileGroups]
GroupNames=Reports1

[Reports1]
Directory=c:\myapp\reports1



TInstallRSConnectionNotifyEvent Type
Declaration
TInstallRSConnectionNotifyEvent = procedure(Sender: TObject;InstallRSConnection: 
TInstallRSConneciton) of Object;



TProgramItemNotifyEvent Type
Declaration
TProgramItemNotifyEvent = procedure(Sender: TObject;ProgramItem: TProgramItem) of Object;



TInstallFileNotifyEvent Type
Declaration
TInstallFileNotifyEvent = procedure(Sender: TObject;InstallFile: TInstallFile) of Object;



GoodInstallationDlg Component

Properties

Methods

Unit
IdGI

Description
This is a stand-alone component, but not very usefull outside of using it with the TInstall component.    To 
use this component, call the Execute method in the GoodInstallation event of the TInstall component.

You may change how the dialog looks at run-time by using the DialogForm property.    This property 
references the form that will be seen by the user.    You can reference the various components contained 
by their names, shown in the previous shematic.    To change the text string "The installation is complete 
and the software ...", you would execute the following code at run-time:    

DialogForm.label1.Caption := 'Good going man, it's like all set up and everything.';

You can use the Title property to change the caption of the dialog.



Properties

DialogForm

Title



Execute Method
Applies To
TGoodInstallationDlg

Declaration
procedure Execute;

Description
This method shows the dialog.



Methods

Execute



Registering this software
Price Of Software

$50.00 + 
$5.00 Shipping/Handling Inside U.S.
$10.00 Shipping/Handling Outside U.S.

There are several ways for you to register this software:

Note:    To receive your registered version faster, you can download a password protected ZIP file from 
either the World Wide Web site or the FTP site.    Since I get notification of your registration on the day 
you register, you can send me e-mail telling me that you would like to receive the password for the 
software.    As soon as I receive notification of your registration, I will e-mail you back and tell you the 
password.    The name of the file on the FTP site will be ysfl + the version number + pw.zip.    So for 
version 1.1, the file will be ysfl11pw.zip.    For version 1.2, ysfl12pw.zip and so on and so forth.

CompuServe

You may register this software via CompuServe.    To do this, go to the SWREG (Software Registration) 
Forum.    Select the Register Software option.    The Id # for this software is 6010.

Credit Card Orders:    Note: The author is not available at the following numbers.

You can order by credit card from PsL by calling 800-2424-PsL or 713-524-6394 from 7 a.m.-6 p.m. Mon-
Thurs., 7 a.m.-Noon Friday or FAX 713-524-6398 or email to 71355.470@compuserve.com or mail credit 
card orders to PsL at P.O. Box 35705, Houston, TX 77235.

Ask for this software by it's number:    14160.

THE ABOVE NUMBERS ARE FOR ORDERS ONLY.    FOR INFORMATION OR SUPPORT, CONTACT 
BILL WHITE.

Any questions about the status of the shipment of the order, refunds, registration options, product details, 
technical support, volume discounts, dealer pricing, site licenses, etc, must be directed to Bill White.    To 
insure that you get the latest version, PsL will notify me the day of your order and I will ship the product 
directly to you.



Author Information
Bill White
3117 Raymond Drive
Atlanta, GA 30340

CompuServe:    73612, 3477
(770)457-5348



CheckBoxes Property
Applies To
TInstallFileGroupsDlg

Declaration
property CheckBoxes[I: Integer]: TCheckBox;

Description
Use this property to gain access to the checkboxes at run-time in the InitializeDialog event.



InitializeDialog Event
Applies To
TInstallFileGroupsDlg,TComponentConflictDlg

Declaration
property InitializeDialog: TNotifyEvent;

Description
This event occurs just before the dialog is displayed.    You may get access to the dialog through the 
DialogForm property.



TUnInstall Component

Properties

Methods
Events

Unit
UI

Description
The TUnInstall component allows you to provide an un-installation program for your users.    Just like the 
TInstall component, the TUnInstall component cannot work without a form.    However, unlike the TInstall 
component, if you set the RunAutomatic property to True, the TUnInstall component will start doing its 
thing when the user runs the program and it will also close the application automatically.    The most basic 
uninstallation program consists of four steps.    

Step #1:

Drop a TUnInstall component onto your new project's main form.

Step #2:

Drop a TUnInstallingFileDlg component onto your new project's form.

Step #3:

Set the UnInstallingFileDlg property of the TUnInstall component to point to the TUnInstallingFileDlg 
component that you added in step #2.

Step #4:

Set the INIFileName property to the name of an INI file that was set-up during the installation process, 
that includes the installation information.    I.e. the IncludeInstallInfo property was set True.    Therefore, 
the working directory for your UnInstall application must be the same directory in which this INI file is 
located.





INIFileName Property
Applies To
TUnInstall

Declaration
property INIFileName: String;

Description
This property specified the name of the INI File that holds information about the installation.    I.e. an INI 
File that was created during the installation with a TInstallINIFile component whose IncludeInstallInfo 
property was set to True.



Properties

INIFileName

RunAutomatic

UnInstallingFileDlg



UnInstall Method
Applies To
TUnInstall

Declaration
procedure UnInstall; virtual;

Description
This method uninstalls the files and program items created with the install program.



RunAutomatic Property
Applies To
TUnInstall

Declaration
property RunAutomatic: Boolean;

Description
If set to true, when your program is run, the UnInstall component will call the UnInstall method and when 
the uninstallation is finished, the TUnInstall component will terminate the application.    If false, you must 
call the UnInstall method manually.



UnInstallingFileDlg Property
Applies To
TUnInstall

Declaration
property UnInstallingFileDlg: TUnInstallingFileDlg;

Description
This property specifies the TUnInstallFileDlg component that will be used in conjunction with this 
component.    Set this property if you want show the users which files are being removed.



Methods
UnInstall



class_TUnInstallingFileDlg



OnAfterDeleteFile Event
Applies To
TUnInstall

Declaration
property OnAfterDeleteFile: TUnInstallFileEvent;

Description
This event is called after a file has been removed.



Events
OnAfterDeleteFile

OnBeforeDeleteFile

OnVerifyUnInstall



OnBeforeDeleteFile Event
Applies To
TUnInstall

Declaration
property OnBeforeDeleteFile: TUnInstallFileEvent;

Description
This event is called before a file has been removed.    You can call the Abort procedure to abort the 
removal of the file.



OnVerifyUnInstall Event
Applies To
TUnInstall

Declaration
property OnVerifyUnInstall: TNotifyEvent;

Description
This event is called before any files or program items are removed.    If you want to prompt the user about 
whether or not he/she wants to continue, this is the place.    You can raise the EAbortUnInstall exception 
to abort the process.



TColorFade Component
Unit
YsflTool

Description
This is a stand-alone component that lets you put a color fade background into your installations.    You 
may set the direction of the fade with the Direction property.    The color will fade from StartingColor to 
EndingColor.    The ColorCount property specifies how many shades will appear between the 
StartingColor and EndingColor.

To use this with your installation, just plop this component onto your main form.



Version Info
Version 1.2

Fixed the TInstallINIFile so that it does not overwrite the file that you specify; not it inserts the 
information into the file if it already exists (i.e. now it works like you think it would and should work).

Added ParentFileGroup property to TInstallFileGroup.
Added AllowChangeDir property to TInstallFileGroup.
Added file group meta-variable capability to DestDir property for TInstallFileGroup.
Fixed bug when groups were referenced with %f variable but the groups were not installed.
Added CheckForVCLConflict property to TInstallFile.
Enhanced the TInstallFileGroup component editor.    You can now set the values for properties of 

multiple files at the same time.

Checks for missing files before calling the Installation Builder--whereas before it just crashed.

Installation Builder now allows you to partition your installation files onto the hard drive.    I.e. you can 
build your multiple disk installations on the hard disk--whereas before you had to build to the floppy drive 
if you had multiple disk installations.

Added CompressType to TInstall component.    You can now use Microsoft's Compress utility, 
although you cannot use Installation Builder to build your installation disks if you use compress; you must 
build it manually..

Added a new component TComponentConflictDlg.    Allows developers to check the user's computer 
for possible conflicts with existing files in the user's Delphi VCL search path and files that will be installed.

Version 1.1

In version 1.0, when the Include property was set to False for a file group, it got installed anyway.    
This has been fixed in 1.1.

Fixed the problem with Program Manager hiding the setup program at the end of the installation.

Added a gradient fill component to the set of components.

Added the TUnInstall and TUnInstallingFilesDlg component.



Organization Of Setup Files
There are four parts to your installation.    Note:    it is only necessary to look at this if you have the 
CompressType property set to ctWinCompress or if you want to make the installation file(s)/disk(s) 
yourself.

setup.exe --

A file named 'ysflpsu.exe' should have been copied to your Window's directory when you installed the 
Youseful Delphi Components.    'Setup.exe', on your installation, is this file.    If you are manually building 
the installation, you must copy 'ysflpsu.exe' to your installation and I suggest that you rename it to 
'setup.exe'.    This is the file that the users will run to start your installation.    This file actually copies your 
installation application executable to the user's Window's directory and then runs it.

files.lst --

This file should be included with your installation and should have the following format:

[Begin Text File] { Do not include this line }
Name of your installation application executable
Disk #-Uncompressed Name Of File-Compressed Name Of File {ctWinCompress -- Optional;ctZIP -- N/A}
.
.
[EndTextFile] { Do not include this line }

You must list the files in the following order:
All files for the first file group (In the order of first file first)
All files for the second file group (In the order of first file first)
.
.
All files for the last file group (In the order of first file first)

Unzipping DLL --

A file name 'uzdll20.dll' should have been included in your Window's directory when you installed the 
Youseful Delphi Components.    You MUST include this file in your installation.

Your Files --

If you have the CompressType property set to ctZIP then you should ZIP the files you want on disk #1 to 
files1.zip, on disk #2 to files2.zip, on disk #3 to files3.zip, and so on and so forth.    Important:    You must 
zip your installation application executable file into files1.zip as 'XYZZY.EXE'.    I.e. there should be a file 
in files1.zip called 'XYZZY.EXE', and it should be the compiled executable of your project with all the 
components.

If you have the CompressType property set to ctWinCompress then all you need do is to compress the 
files onto their respective disks with Microsoft's Compress utility.



CompressType Property
Applies To
TInstall

Declaration
property CompressType: TCompressType;

Description
The default value for this property is ctZIP.    If you set it to ctZIP, then you can use the installation builder 
to build the installation disk(s)/file(s) for you.    Even if you set this property to ctZIP, you can create the 
installation file(s)/disk(s) manually, see Organization Of Setup Files.

If you set this property to ctWinCompress, then YOU MUST build the installation file(s)/disk(s) manually--
see Organization Of Setup Files.    The files should be compressed onto your installation with Microsoft's 
Compress utility.    Even though you must compress the files manually, the TInstall will uncompress them 
and copy them to their respective directories when the user runs your installation.



TComponentConflictDlg Component

Properties

Methods
Events

Unit
IdCS

Description
You connect this component to a TInstall component through the InstallComponent property.    Basically, 
this component allows component writers to build installations that will automatically search the user's 
computer for possible conflicts with existing components.    A conflict occurs, in Delphi, when the user tries
to install components or rebuild his/her library and there are two files with the same name in the library 
search path (for .PAS files, conflict will occur if there is another file with the same base name but with 
a .DCU extension; Similarly .PAS files will cause a conflict with .DCU files).    For example, suppose the 
user already has a component name TWidget installed in his VCL.    Your software is a TFoobar 
component.    The unit that TWidget is in is called 'cmpnt.pas'.    Similarly, your TFoobar component is 
contained in a unit called 'cmpnt.pas'.    TWidget is located in the 'c:\widget' directory and the user 
installed your component into the 'c:\foobar' directory.    When the user goes to install your component, 
Delphi will give an error message.

Hence, by using this component you can warn the user of possible conflicts that may exist with already 
installed components on his/her computer.    If you want the user to see the default dialog, set the 
ShowDialog property to True.    If you want the user to be prompted each time there is a conflict, set the 
ErrorReport property to erPrompt.    If, however, you want the conflicts to be logged to a file, set the 
ErrorReport property to erLogToFile.    Finally, you should call the Execute method AFTER the FILES in 
the installation have been COPIED--usually in the OnDoneCopyingFiles event of the TInstall component.  



You may change how the dialog looks at run-time by using the DialogForm property.    This property 
references the form that will be seen by the user.    You can reference the various components contained 
by their names, shown in the previous schematic.    To change the caption of the Proceed button, you 
would execute the following code at run-time:    

DialogForm.btnProceed.Caption := 'Start';

You can use the Title property to change the caption of the dialog.



Properties

DialogForm

ErrorReport

InstallComponent

ShowDialog

Title



ErrorReport Property
Applies To
TComponentConflictDlg

Declaration
property ErrorReport: TErrorReport;

Description
If set to erPrompt, then the user will be prompted whether or not to delete the file that caused the conflict. 
If set to erLogToFile then the user will be prompted to enter the name and path of a file in which to log all 
conflicts.



ShowDialog Property
Applies To
TComponentConflictDlg

Declaration
property ShowDialog: Boolean;

Description
If set to True then the user will see the default dialog.    If set to false, then the user will NOT see the 
default dialog.    This allows you to create your own custom dialogs if you like.



Methods

Execute



Execute Method
Applies To
TComponentConflictDlg

Declaration
function Execute: Boolean; virtual;

Description
This method displays the dialog to the user, if the ShowDialog property is set to True.    When the user hits
the proceed button, the component then starts searching the user's computer for possible conflicts 
between units that are already on the user's computer and on the VCL path and units that have been 
installed.    If the ShowDialog property is set to False, then the component starts the search without 
showing the dialog.



Events
OnInitializeDialog

OnSearchForConflictEvent

OnUnitConflict



OnSearchForConflict Event
Applies To
TComponentConflictDlg

Declaration
property OnSearchForConflict: TSearchForConflictEvent;

Description
This event occurs for each file for which you have set the CheckForVCLConflict property to True.    I.e. this
event occurs when a file is being checked for possible conflicts on the user's computer.    This event is 
provided so that you may present your own dialogs or interfaces to the user instead of using the default 
interface.
.



TSearchForConflictEvent Type
Unit
IdCs

Applies To
TComponentConflictDlg

Declaration
type 
    TSearchForConflictEvent = procedure(Sender: TObject;

UnitName: String;
VCLPaths: TString;
var DefaultHandle: Boolean);

Description
This event type returns the Sender, the unit that is being checked for conflicts, the paths on the user's 
VCL search path, and a variable that determines whether or not to perform the default handling.    If you 
want to provide your own messages to the user, set the DefaultHandle to False.



OnUnitConflict Event
Applies To
TComponentConflictDlg

Declaration
property OnUnitConflict: TUnitConflictEvent;

Description
This event occurs whenever there is a conflict between the unit (as specified in the FileName parameter) 
and a file with the same name on the user's VCL search path.



TUnitConflictEvent Type
Unit
IdCs

Applies To
TComponentConflictDlg

Declaration
type 
    TUnitConflictEvent = procedure(Sender: TObject;

FileName: String;
var DefaultHandle: Boolean);

Description
This event type returns the Sender, the unit that is being checked for conflicts, and a variable that 
determines whether or not to perform the default handling.    If you want to provide your own messages to 
the user, set the DefaultHandle to False.



CheckForVCLConflict Property
Applies To
TInstallFile

Declaration
property CheckForVCLConflict: Boolean;

Description
This property is used by the TComponentConflictDlg component.    If set to True, then this file will be 
checked against the all files on the user's VCL search path for a possible conflict.    A conflict occurs if 
another file has the same base name (i.e. w/o the file extension), and an extension of either .PAS 
or .DCU.    



AllowChangeDir Property
Applies To
TInstallFileGroup

Declaration
property AllowChangeDir: Boolean;

Description
This property is mainly used by the TInstallFileGroupsDlg component.    If set to true, then the user will not
be allowed to change where the files will be copied.    This should mostly be used if you have specified 
another TInstallFileGroup component in the ParentFileGroup property.    By specifying a parent file group, 
you can put the %f meta-variable in the DestDir property to make sure that the files for this component 
always get copied to a subdirectory of the directory into which the parent file group gets copied.    
However, if you write your own interface, then you should mimic this behavior.

Example:

Property Value
AllowChangeDir True
DestDir %f\subdir1
ParentFileGroup <another TInstallFileGroup component>

If the user installs the parent file group to 'c:\install', then this file group will get copied to 'c:\install\
subdir1'.



ParentFileGroup Property
Applies To
TInstallFileGroup

Declaration
property ParentFileGroup: TComponent;

Description
By specifying a parent file group, you can put the %f meta-variable in the DestDir property to make sure 
that the files for this component always get copied to a subdirectory of the directory into which the parent 
file group gets copied.

Example:

Property Value
AllowChangeDir True
DestDir %f\subdir1
ParentFileGroup <another TInstallFileGroup component>

If the user installs the parent file group to 'c:\install', then this file group will get copied to 'c:\install\
subdir1'.



It Just Will Not Work
Did you make sure that all the InstallComponent properties are set--especially for the file groups?

Did you make sure that you SAVED and COMPILED your project before building the installation.

Did you know that you must BUILD the installation before you can test it.    You cannot test it under the 
Delphi IDE.

There is a bug in the software if you try to build the installation files in the same directory as your project.   
Try building it in another directory.

If you select a floppy drive as the destination for your installation files, then your installation will 
AUTOMATICALLY be split across disks if necessary.






