
MLIST.VBX
Multi-Purpose List Box Control for Visual Basic 3.0

Contents
Introduction
New Features

Properties and Events
Properties
Events

Miscellaneous
Acknowledgments
Reaching The Author
Registration
Revision History
Warranty
ZIP File Contents

Introduction

MLIST is a custom control for managing the way your data appears in a list box. MLIST is a
property-for-property replacement of the standard List Box control which comes with Visual
Basic 3.0.    In addition, MLIST has many more features than the normal List Box.    Some of
these features are:

Set up owner draw columnar data in the list box

Make a drawing region a bitmap or a checkbox

Control individual line colors in the list box

Total control over the checked and unchecked states of lines

Aligned bitmaps

True MUTLIPLE COLUMN list boxes, with bitmaps and check boxes

Checking and Selecting a range of line items

Properties to find closest match and find exact matches in the list box

3-D effects

Vertical and horizontal grids

Virtual List Boxes

Properties to aide you in drag and drop

ScrollMessage event for drawing column headers over scrolling list boxes

Handle entire drawing of items in your code

Set individual fonts for individual lines

Resort entire lists

Resize list box to fit windows

Improved string searching

Variable height lines in the list box

New Features

v4.6
v4.56 to v4.58
Prior to v4.56

ZIP File Contents

This ZIP file contains:
File Name Description

MLIST.VBX VB version of the MLIST custom control.
PROJECT1.MAK Sample project file for MLIST.
FORM1.FRM Form with some simple information.
READ.ME ASCII text representation of this file.
MLIST.HLP On-line Help file.
MLIST.BAS Contains cool reusable procedures that utilizes features of MLIST.
PLUS.BMP Bitmap used in example
PAGE.BMP Bitmap used in example
FINDSTR.MAK FindString and FindStringExact demo
FIND1.FRM Form for FindString demo
VIRTUAL.MAK Virtual List Box example
VIRTUAL.FRM Form for virtual list box example
SCROLL.MAK Scrolling column header examples
SCROLL.FRM Form for scrolling example
ITEMPIC.MAK Project file for ItemPicture example.
ITEMPIC.FRM Form file for ItemPicture example.
ITMHITE.MAK Project file for ItemHeight example.
ITMHITE.FRM Form file for ItemHeight example.

Registration

This Multi-Column List Box is Shareware. It is NOT crippled in anyway. When you download
this custom control, you have the same custom control that I am using in my everyday VB
programming. As a Shareware contributor, I am counting on the honor and moral fiber of
every person who downloads this custom control to do the right thing.
If you like and appreciate (and more importantly, use) this custom control...

1)    Send $25.00 to the address listed in the address topic, or
2)    Register in the CompuServe SWREG Forum, ID 7286

Registered users may purchase the source...
1)    Send $50.00 to the address listed in the address topic, or
2)    Register in the SWREG ID TBD.

If you register via CompuServe, the source will be e-mailed to you. Please remember, you
may not purchase source unless you are a registered user.
This control is written in C++ and has been compiled using Visual C++ 1.52.
You may now register this control in the SWREG on CompuServe.    Type GO SWREG, ID
7286.

    Warranty

Klasman Quality Consulting, Inc. disclaims all warranties, either express or implied, including,
but not limited to, implied warranties of merchantibility and fitness for a particular purpose,
with regard to the SOFTWARE, the sample applications and the accompanying written
materials.

Reaching The Author

Klasman Quality Consulting, Inc can be reached via US Mail at...
13 Vespa Lane
Nashua, NH 03060

You can reach us via E-Mail at the following locations...
CompuServe:

Kevin M. Klasman
70233,1476

INTERNET:
klasman@kqc.mv.com

Bug Fixes

Bug fixes and work-arounds:
v4.60

Feature Description
FindString MList won't search backwards all the way to 1st (0th) item

Answer: This has been fixed. The FINDSTR.MAK sample project has been
enhanced to demonstrate this fix.

FindString MList doesn't include the current item in this search.
Answer: This has been fixed. The FINDSTR.MAK sample project has been
enhanced to demonstrate this fix.

PageDown key MList with ListBoxStyle = 1 - Variable processes the first PageDown
keystroke but ignores subsequent PageDown keystrokes.
Answer: This has been fixed. This appears to be a bug in Windows itself.
There is sample on the MSDN CD (search for ODVHLB or
LBS_OWNERDRAWVARIABLE) that has the same problem. I have coded a
workaround to make MList behave exactly as VB's listbox control.

v4.58

Feature Description
ListRegion I'm getting GPFs when I have multiple draw regions, but I only add the first

region, then go back later and fill in all regions...
MList1.AddItem "A"
MList1.ActiveRegion = 2
MList1.ListRegion(3) = "Column 3"

Answer: This has been fixed.
Previous versions

Feature Description
ListIndex When assigning a value to ListIndex, there is no Click or SelChange event

triggered as in a regular list box.    Also the starting value is 0, not -1.
Answer: In versions 4.20 and greater, setting ListIndex will generate a
SelChange event. Note that in Multiple-Select list boxes, the starting index
is 0, where the focus rectangle is, and not -1, like in a normal list box.

SetFocus When I SetFocus to a list configured with both grid lines on, the first line
doesn't redraw its line correctly.
Answer: Make sure that your column lengths take up the entire list box,
even if you are not using the extra space at the end. MList assumes that
you are using the entire width of the list box.

ListRegion When loading information using ListRegion and TextRegion , ListIndex is
reset to -1 after first assignment. If multiple regions have to be loaded, I
have to cache the ListIndex property in a temporary variable throughout

the operation and reassign it to ListIndex in order to get back to the same
line.
Answer: This has been fixed.

SendMessage I'm getting General Protection Faults when sending messages directly to an
MList via SendMessage.
Warning: MList does not have LBS_HASSTRINGS style, which Windows
expects for some messages. Do not use SendMessage with an MList.

MultiSelect MList always reports ListIndex = 0 when a search is conducted with
MultiSelect is set to true.
Answer: This is a related Multiple-Select problem.    I appreciate both the
input and your patience. It has been fixed.

Sorted MList seems to have a problem finding things when Sorted is true.
Answer: Searches, whether sorted or not, always search from the current
item in the direction specified by FindDirection property. It will not wrap
around.

Click The Click event works differently from the standard list box which comes
with VB
Answer: I haven't figured out this one. Microsoft called their main
notification event, Click, which in all other controls responds to mouse
events. Yet, the one in the list box, responds to all events which change the
currently selected item, whether that is ListIndex, a mouse, or a key press.
Humph.    I used the SelChange event to do the same thing, because is
more indicative of what is happening to the list box. If someone asks me to,
I will provide a property to force the Click event to behave like the
SelChange event.

ItemLength This property returns space in pixels when it is set with twips.
Answer: OOPS! I do convert it to Pixels, but I return it NOW in twips. There
is a small conversion difference, so don't be surprised if you set
ItemLength(0) = 1000 and get back 997.

DrawRegions The more columns I have, the more the clipping region diminished.
Answer: When setting the number of DrawRegions (columns), MList will
evenly divide the current area of the list box into the number of
DrawRegions you specify.    If you want to use the horizontal scroll bar, then
you must reset the ItemLength of the desired columns to extend past the
edge of the list box.

DblClick Double clicking with the right mouse button acts as if I double clicked the
currently selected item with the left mouse button.
Answer: This has been corrected.

Revision History

Revision Comments
4.60 Change in ownership from McKean Consulting to Klasman Quality Consulting,

Inc.; update help; bug fixes.
4.58 Added SortType property; bug fixes.
4.56 Added (About), AutoCheck properties
4.55 Added FindResult, FindIndex, SearchCompare, FindPattern, FindPatternColumn,

SortOrder, OwnerCompare, ItemFont and ClickRegion properties.
4.50 Added font support, complete OwnerDraw, DisableDrawing, and

NoIntegralHeight properties.
Added InString, FindResult, FindColumn, and FindColumnString properties.
Added icon support.

4.30 Changed the way that virtual list boxes determine when they are in the virtual
region. I used to use the TopIndex standard property, now I use the thumb
position on the scroll bar.
Added SortColumn and StringCompare properties. These properties allow you
sort on different columns as well as specify if the sort is case sensitive or case
insensitive.
Added new properties for Drag and Drop.    The first, SelectMode, doesn't allow
items to become "de-selected" when dragging. ItemX, ItemY, and Item help
you determine which line item is being dragged over or dropped upon.
Fixed dynamic loading of an MLIST, and calling AddItem "MyString", 0 when
there are no items in the list.
Added ScrollMessage event for scrolling column headers.

4.20 Tightened up the difference between a multi-select list box and a normal list
box.
Added GridColor property; VirtualMessage event, check marks in check boxes,
Added SelChange event when ListIndex is changed,
Added SelCheck    event for when an item is checked or unchecked.

4.11 Hilited lines will default to the system colors as controlled by the Control
Panel. The user may still override using the HiliteForeColor and
HiliteBackColor.
Added the ExtendedSelect property.

4.10 Added 3-D RiseColor and FallColor properties, and SelChange event.
4.02 Removed a bug which caused a GP fault when more than 16 drawing regions

were requested by the user.
Reworked VB2.0 compatibility strategy.

4.01 Removed the 64k limit. MLIST will now allow more than 64k worth of data to
be added to it.

Also, quit handling default methods, such as Move (which didn't work),
Refresh, and others.
Fixed problem with RemoveItem not deleting lines data. Changing the way
MLIST handles strings did the job.

4.00 Added the MultiColumn property and item width.
Added the FindString and FindStringExact properties for searching the list box.
Added the range properties for checking and selecting multiple line items.

3.04 Fixed the bug with setting the Checked property, and then not having the user
be able to double click it or click the box to change it back.
Added the AlignBitmap image type and the Alignment property.

3.03 Fixed the index problem with the List default property. If anything, I am guilty
of being over enthusiastic. I apologize to those who got the previous version
and thought it sucked. Probably because it did.
Added bitmaps and checkboxes as well as the ability to change the color of a
specific line (ItemBkColor and ItemForeColor properties.) You can also change
the bitmap of a specific line item.

3.02 Fixed a ton of problems. Namely, that page down didn't work. Delete current
controls and rebuild to fix this problem.
Added ALL default properties for the standard list box. Tested all of them
before uploading.

3.01 Fixed "Bad Index" error message when setting Selected property to True or
False.
Added ItemData default property.
Added ListIndex default property.
Fixed an apparent bug in the VB API that was passing right mouse button
clicks to the Click event, but not the left mouse button.

3.00 Initial release of the MLIST.VBX Custom Control

Acknowledgments

I would like to thank Robin McKean, for without his vision, skills and determination, this
software would not exist. And also for giving me the opportunity and responsibility for
moving this software into the future.

Properties

All of the properties supported by MLIST are listed below. Properties that apply only to this
control, or require special consideration when used with it, are underlined. The other
properties are documented in Visual Basic's on-line help and in the Visual Basic Custom
Control Reference (see the section "Standard Properties, Events, and Methods" Appendix
A). MLIST now implements all standard list box properties

(About) GridColor MousePointer
ActiveRegion GridStyle MultiColumn
AddItemHeight Height MultiSelect
Alignment HelpContextID Name
AllowFocusRect HiliteBackColor NewIndex
AutoCheck HiliteForeColor NoIntegralHeigh

t
BackColor HorizontalGrids OwnerCompare
BorderStyle hWnd OwnerDraw
CheckColor ImageRegion Parent
Checked ImageType RangeChecked
CheckStyle Index RangeEnd
ClickRegion IndItemHeight RangeSelected
Columns InString RangeStart
DefPicture Item Resort
DisableDrawing ItemBkColor RiseColor
DragIcon ItemData SearchCompare
DragMode ItemFont SelCount
DrawFlags ItemFontBold Selected
DrawRegions ItemFontItalic SelectMode
Enabled ItemFontName SetHzScroll
EnableVirtualMs
gs

ItemFontSize SortColumn

ExtendedSelect ItemFontStrikeT
hru

Sorted

FallColor ItemFontUnderli
ne

SortOrder

FindColumn ItemForeColor SortType
FindColumnStrin
g

ItemHeight StringCompare

FindDirection ItemHiliteBackC
olor

TabIndex

FindIndex ItemHiliteForeCo
lor

TabStop

FindPattern ItemLength Tag
FindPatternColu
mn

ItemPicture Text

FindResult ItemWidth TextRegion
FindString ItemX Top
FindStringExact ItemY TopIndex
FontBold Left Version
FontItalic List VerticalGrids
FontName ListBoxStyle VirtualMsgZone
FontSize ListCount Visible
FontStrikethru ListIndex Width
FontUnderline ListRegion
ForeColor MaskingColor

Events

All of the events supported by MLIST are listed below. Events that apply only to this control,
or require special consideration when used with it, are underlined. The other events are
documented in Visual Basic's on-line help and in the Visual Basic Custom Control Reference
(see the section "Standard Properties, Events, and Methods" Appendix A).

Click KeyUp
CompareItem LostFocus
DblClick MouseDown
DragDrop MouseMove
DragOver MouseUp
DrawItem ScrollMessage
GotFocus SelChange
KeyDown SelCheck
KeyPress VirtualMessage

Klasman Quality Consulting, Inc.

With over 17 years combined in the computer industry, Klasman Quality Consulting,
Inc., brings a wealth of experience in all aspects of software development to the delivery of
high quality, user-friendly solutions to customer requirements in a Microsoft Windows
environment. We can help you with:

Custom programming in Visual Basic, including database access using SQL

Windows Help systems, or other applications of the WinHelp hypertext engine

Software test automation strategies and tools

With expertise in today's advanced communications technologies, we can tele-commute
anywhere!
Call or e-mail us with your needs and let us propose a high quality, cost-effective solution.

Klasman Quality Consulting, Inc.
Kevin M. and Lisa S. Klasman, Owners
13 Vespa Lane
Nashua, NH 03060

Phone: (603) 880-7801
Fax: (603) 886-6152
CompuServ
e:

70233,1476

Internet: 70233,1476@compuserve.c
om

 pseudo-property
A pseudo-property is one that appears in the
property list of a control, but is used to access
some feature instead of actually storing data
related to the control.

 grayed
The bitmap colors are
reversed

 range properties
RangeChecked
RangeEnd
RangeSelected
RangeStart

(About) Property

Description
Displays an informative dialog box identifying the current version of the MLIST control at
design time. Not available at runtime.

Remarks
The (About) property is a pseudo-property.

Data Type
String

ItemHeight Property

Description
Controls the height of all lines in the list box.

Remarks
It defaults to 195 Twips, the height of the font used by the standard list box. You should
adjust this height if you change the font, font size, etc.
This property will not change the height of the lines after the list box has already been
loaded. It was not designed to have the height of the items changed dynamically. Set the
height of this item at design time, and the font, and your list box will be fine.

Example
You can resize the height of every item by unloading the list box (saving them to a local
array), setting this property, then reloading the Mlist. See the sample project ITMHITE.MAK.

Data Type
Long

DrawRegions Property

Description
Determines the number of drawing regions on each line.

Remarks
This is basically equivalent to the number of COLUMNS, but this list box will still scroll like a
normal list box.

Setting
The DrawRegions property settings are:
Setting Description
0 (Default) No regions are specified, thus MList acts like a normal list box.
1 1 region specified, but in essence this is equivalent to 0.
2 to N The number of regions.
Note When setting this property, the control clears the flags for the draw regions
and sets them to left aligned, single line, and centered vertically. Consult the Windows API
for DrawText to see exactly what these flags mean.

Data Type
Integer

ItemLength Property

Description
Controls the length of each drawing region. Not available at design time.

Remarks
If you want a drawing region to be a specific length, set that drawing region's length to the
desired number of twips.

Usage
MList1.DrawRegions = 2
MList.ItemLength(1) = 500
MList.ItemLength(2) = 500

' Both of the following statements
' generate an out of index error
MList1.ItemLength(0) = XXX
MList1.ItemLength(3) = XXX

Note It is probably a good idea to set the lengths of all drawing regions when you are
changing the defaults.

Data Type
Array of Integers

DrawFlags Property

Description
An indexed property which corresponds to the flags of each drawing region. Not available at
design time.

Remarks
If you want a drawing region to be drawn in a specific manner, set that drawing region's
flags to the desired settings. For specific flags, look up the DrawText API function in the
Windows API Reference.

Usage
In the following example, I set up two drawing regions and set the second drawing region's
flags to right justify the text. In this example, the second drawing region displays currency
values.
Const DT_RIGHT = 2
Const DT_VCENTER = 4
Const DT_SINGLELINE = 32

MList1.DrawRegions = 2
MList1.DrawFlags(2) = DT_RIGHT + DT_VCENTER + DT_SINGLELINE
MList.ItemLength(1) = 500
MList.ItemLength(2) = 500

Note If you are planning to include the '&' character in your strings, you should include the
DT_NOPREFIX flag to avoid the underline.    I do NOT automatically add this flag for you, as I
want you to have total control over the flags.

Data Type
Integer

ActiveRegion Property

Description
Defines the drawing region (or index or column) that the TextRegion and ListRegion
properties return. Not available at design time.

Usage
An MList is divided up into three columns; name, account number, and dollar amount. I
want to get the account number from both the currently selected line as well as the first
item.
MList1.ActiveRegion = 2
' Gets 2nd column of currently selected item
aString$ = MList1.TextRegion
' Gets 2nd column of item at index 0
bString$ = MList1.ListRegion(0)

Data Type
Integer

TextRegion Property

Description
Gets or sets the value of the ActiveRegion in the currently selected item. Not available at
design time.

Remarks
This property corresponds to a one of the DrawRegions of the Text standard property.

Usage
MList1.ActiveRegion = 2
' Gets 2nd column of currently selected item
aString$ = MList1.TextRegion

Data Type
String

ListRegion Property

Description
This property returns the contents of the ActiveRegion in the item at the specific index. Not
available at design time.

Remarks
This property corresponds to one of the DrawRegions of the List standard property.

Usage
MList1.ActiveRegion = 2
' Gets 2nd column of item at index 0
bString$ = MList1.ListRegion(0)

Data Type
String

DefPicture Property

Description
Determines the default bitmap to be displayed in the ImageRegion when a specific bitmap
has not been assigned to that item's ItemPicture property

Remarks
To set this property at run time, you must use the LoadPicture function. For example
Mlist1.Picture = LoadPicture(c:\page.bmp)

Note See the demo on setting your own DefPicture and ItemPicture properties.
Data Type
Picture

ImageType Property

Description
Determines what type of image is contained in an ImageRegion.

Setting
The ImageType property settings are:
Setting Description
0 (Default) None
1 Bitmap
2 CheckBox
3 Aligned Bitmap

Remarks
If this property is set to 0, then the ImageRegion property is ignored and only text is
displayed. If this image type is valid, then a checkbox or bitmap/icon is displayed in the
ImageRegion.
Note When the image type is set to AlignBitmap, the normal drawing regions no longer
apply.    Anybody got a problem with that?

Data Type
Integer (enum)

ImageRegion Property

Description
Specifies which region contains the image region.

Remarks
This value should be any number between 1 and the number of DrawRegions. You may not
set this property to a value of less than zero or greater then DrawRegions.

Usage
When setting up your DrawRegions, the following is a good example:
MList1.DrawRegions = 3
MList1.ImageRegion = 1
' Bitmap or Icon is in here
MList1.ItemLength(1) = 100
MList1.ItemLength(2) = 500
MList1.ItemLength(3) = 750

' Don't leave a space for the ImageRegion
' in your strings
MList1.AddItem "Region2" + Chr$(9) + "Region3"
MList1.AddItem "Region22" + Chr$(9) + "Region33"

Note The ImageRegion is ignored when calculating the "piece" of text that goes in that
region.

Data Type
Integer

Checked Property

Description
Determines if a Check mark is displayed in an MList with ImageType set to 2 (CheckBox).
Not available at design time.

Setting
The Checked property settings are:
Setting Description
True (default) The CheckBox is checked.
False The CheckBox is not checked.

Remarks
This property is very similar to the Selected standard property. In a Multi-Column list box
with the ImageType set to 2 (CheckBox), this property will return to you whether or not that
line item is checked.

Usage
For X% = 0 To MList1.ListCount - 1

If MList1.Checked(X%) Then
Debug.Print "I am Checked! "; X%

Else
Debug.Print "I am not checked! "; X%

End If
Next X%
' Check the first item
MList1.Checked(0) = True

Data Type
Integer (boolean)

ItemPicture Property

Description
Controls the bitmap for each line item in the list box. Not available at design time.

Remarks
If this item is not set by you, then the MList uses the DefPicture property.

Usage
' Change the first items picture in the list box
MList1.ItemPicture(0) = Image1.Picture

To set this property at run time, you must use the LoadPicture function. For example
Mlist1.ItemPicture(0) = LoadPicture(c:\page.bmp)

Example

Data Type
Array of Pictures

 ' ItemPicture Example
 MList1.DrawRegions = 2
 MList1.ImageRegion = 1
 MList1.ImageType = 1 ' bitmap
 ' In reality, you would probably set these picture properties in the
 ' properties window to be more efficient!
 MList1.DefPicture = LoadPicture(app.Path & "\page.bmp")
 Image1.Picture = LoadPicture(app.Path & "\plus.bmp")

 ' set height to display entire picture
 ' (Mlist1.ListBoxStyle is set to 1 - Variable in Properties window)
 Mlist1.AddItemHeight = Image1.Height

 ' Bitmap or Icon is in here
 MList1.ItemLength(1) = 400
 MList1.ItemLength(2) = MList1.Width - MList1.ItemLength(1)
 For i = 1 To 20
 MList1.AddItem "MList1" & Str$(i)
 Next I

Sub MList1_Click ()
 MList1.ItemPicture(MList1.ListIndex) = Image1.Picture
End Sub

ItemForeColor Property

Description
Controls the foreground color for each line item in the list box. Not available at design time.

Setting
The ItemForeColor property settings are:
Setting Description
Normal RGB colors Colors specified by using the RGB or QBColor functions.

Remarks
If this item is not set by you, then the MList uses the default foreground color property.

Usage
' Change the first items foreground color to white
MList1.ItemForeColor(0) = RGB(255,255,255)

Data Type
Array of Long (color)

ItemBkColor Property

Description
This property is an array of colors which correspond to the background color for each line
item in the list box. Not available at design time.

Setting
The ItemBkColor property settings are:
Setting Description
Normal RGB colors Colors specified by using the RGB or QBColor functions.

Remarks
If this item is not set by you, then the MList uses the default background color property.

Usage
' Change the first item's background color to black
MList1.ItemBkColor(0) = RGB(0,0,0)

Data Type
Long (color)

Alignment Property

Description
Controls the placement of the bitmap when ImageType is set to 4, AlignBitmap. See the
demo for details.

Setting
The Alignment property settings are:
Setting Description
0 (Default) None
1 Left. Align the bitmap or icon to the left, centered, then the text, centered

vertically and left justified.
2 Top. Align the bitmap or icon on top, centered, then the text, centered

horizontally and vertically.
3 Right. Align the bitmap or icon to the right, centered, then the text, centered

vertically and left justified.
4 Bottom. Align the bitmap or icon on bottom, centered, then the text, centered

horizontally and vertically.
Note When ImageType is set to AlignBitmap, the normal drawing regions no longer apply.
Anybody got a problem with that?

Data Type
Integer (enum)

MultiColumn Property

Description
Determines whether an MList will scroll horizontally or vertically. Read-only at run time.

Setting
The MultiColumn property settings are:
Setting Description
True Items are arranged in snaking columns, filling the first column, then the

second column, and so on. The MList scrolls horizontally.
False (Default) The MList scrolls vertically.

Remarks
A default ItemWidth is provided, but you, the developer, should override this property
Note This property is analogous to the standard list box Columns property, in that it
determines which way the control scrolls. It does not, however, set the number of Columns
(use the DrawRegions property instead.)

Data Type
Integer (boolean)

ItemWidth Property

Description
The property specifies the width of each line in a multiple column list box. Read-only at run
time.

Remarks
The width is set in Twips. The normal drawing regions still apply, but I can't think of a
reason why someone would want to divide line items in a column list box into more
columns.

Data Type
Integer

FindString Property

Description
Setting this property causes the MList to search, from the current ListIndex, for an item with
the closest match . Not available at design time. Write-only at run time.

Remarks
If a match is found, that item is set to the current ListIndex. This is useful for moving the
selection through a list box while typing the string in an edit control, like the Search dialog
in Help.
This property is the same as FindStringExact, except that it will search for the closest
match.
Note The direction of the search is determined by the FindDirection property.

Data Type
String

FindStringExact Property

Description
Setting this property causes the MList to search, from the current ListIndex, for an exact
match. Not available at design time. Write-only at run time.

Remarks
If a match is found, that item is set to the current ListIndex. This is useful for moving the
selection through a list box while typing the string in an edit control, like the Search dialog
in Help.
This property is the same as FindString, except that it will search for an exact match.
Note The direction of the search is determined by the FindDirection property.

Data Type
String

RangeStart Property

Description
This property marks the beginning line item of a range for use with the RangeSelected or
RangeChecked. properties. Not available at design time.

Remarks
As is the case with all list boxes and combo boxes in Visual Basic, the offset is 0 based, so
the first item is 0.

Usage
The following example selects the first 4 items in an MList.
MList1.RangeStart = 0
MList1.RangeEnd = 3
MList1.RangeSelected = True

Data Type
Integer

RangeEnd Property

Description
Marks the ending line item for RangeSelected or RangeChecked. Not available at design
time.

Remarks
As is the case with all list boxes and combo boxes in Visual Basic, the offset is 0 based, so
the first item is 0.

Usage
The following example checks the first 4 items in an MList.
MList1.RangeStart = 0
MList1.RangeEnd = 3
MList1.RangeChecked = True

Data Type
Integer

RangeSelected Property

Description
Determines if all items in the range RangeStart to RangeEnd are marked as selected in the
list box. Not available at design time. Write-only at run time.

Setting
The RangeSelected property settings are:
Setting Description
True All items in the range are selected
False (Default) All items in the range are not selected.

Remarks
As is the case with all list boxes and combo boxes in Visual Basic, the offset is 0 based, so
the first item is 0.

Usage
The following example selects the first 4 items in an MList.
MList1.RangeStart = 0
MList1.RangeEnd = 3
MList1.RangeSelected = True

Note If the list box is not MultiSelect, then this property is ignored.
Data Type
Integer (boolean)

RangeChecked Property

Description
Determines if all items in the range RangeStart to RangeEnd are marked as checked. Not
available at design time. Write-only at run time.

Setting
The RangeChecked property settings are:
Setting Description
True All items in the range are checked.
False (Default) All items in the range are not checked.

Remarks
As is the case with all list boxes and combo boxes in Visual Basic, the offset is 0 based, so
the first item is 0.

Usage
The following example checks the first 4 items in an MList.
MList1.RangeStart = 0
MList1.RangeEnd = 3
MList1.RangeChecked = True

Data Type
Integer (boolean)

SetHzScroll Property

Description
Adds a horizontal scroll bar to the MList if a column extends past the right edge of the
control. Not available at design time. Write-only at run time.

Setting
The SetHzScroll property settings are:
Setting Description
False (Default) No horizontal scroll bar.
True Displays a horizontal scroll bar, if required.

Remarks
When all is said and done, and you are through setting up your list box, and your columns
extend past the displayable area of the list box, setting this property to True will cause the
MLIST control to add up all of the drawing regions and add a horizontal scroll bar to the list
box if one is necessary.

Data Type
Integer (boolean)

HiliteForeColor Property

Description
Determines the default foreground color to use when a line in the list box is hilited.

Setting
The HiliteForeColor property settings are:
Setting Description
&H00000000& (Default) Black.
Normal RGB colors Colors specified by using the Color palette, or by using the RGB or

QBColor functions in code.
Remarks
If these colors are set, then the normal colors are ignored, and the HiliteForeColor is used to
draw the text, and HiliteBackColor is used to draw the background.
You can force MList to use the default colors by setting this color equal to HiliteBackColor.

Data Type
Long (color)

HiliteBackColor Property

Description
Determines the default background color to use when a line in the list box is hilited.

Setting
The HiliteBackColor property settings are:
Setting Description
&H00000000& (Default) Black.
Normal RGB colors Colors specified by using the Color palette, or by using the RGB or

QBColor functions in code.
Remarks
If these colors are set, then the normal colors are ignored, and the HiliteForeColor is used to
draw the text, and HiliteBackColor is used to draw the background.
Note You can force MList to use the default colors by setting this color equal to
HiliteForeColor.

Data Type
Long (color)

ItemHiliteForeColor Property

Description
Controls the foreground color of hilited individual line items. Not available at design time.

Setting
The ItemHiliteForeColor property settings are:
Setting Description
Normal RGB colors Colors specified by using the RGB or QBColor functions.

Remarks
If this item is not set by you, then the MList uses the default hilite foreground color
property.

Usage
MList1.ItemHiliteForeColor(0) = RGB(0,0,0)
MList1.ItemHiliteBackColor(0) = RGB(255,255,255)

Data Type
Array of Longs (color)

ItemHiliteBackColor Property

Description
Controls the background color of hilited individual line items. Not available at design time.

Setting
The ItemHiliteBackColor property settings are:
Setting Description
Normal RGB colors Colors specified by using the RGB or QBColor functions.

Remarks
If this item is not set by you, then the MList uses the default hilite background color
property.

Usage
MList1.ItemHiliteForeColor(0) = RGB(0,0,0)
MList1.ItemHiliteBackColor(0) = RGB(255,255,255)

Data Type
Array of Longs (color)

MaskingColor Property

Description
This color is used to mask out colors in your bitmaps when they are included in your MList
Box.

Setting
The MaskingColor property settings are:
Setting Description
Normal RGB colors Colors specified by using the Color palette, or by using the RGB or

QBColor functions in code.
Remarks
For example, lets say that you know you are not going to use white in your bitmaps or list
boxes. If you set to white all the pixels in your bitmap that you want to be transparent, the
natural color of the list box will show through your bitmap in these places. Think of this as
the transparent color, like in Icons, except you get to determine what it is.

Data Type
Long (color)

HorizontalGrids Property

Description
Determines if horizontal grid lines are drawn on the MList.

Setting
The HorizontalGrids property settings are:
Setting Description
True Horizontal grid lines are drawn.
False (Default) Horizontal grid lines are not drawn.

Data Type
Integer (boolean)

VerticalGrids Property

Description
This property determines if vertical grid lines are drawn on the MList.

Setting
The VerticalGrids property settings are:
Setting Description
True Vertical grid lines are drawn.
False (Default) Vertical grid lines are not drawn.

Data Type
Integer (boolean)

GridStyle Property

Description
Determines what line style is used to draw the grid lines.

Setting
The GridStyle property settings are:
Setting Description
0 (Default) Solid
1 Dash
2 Dot
3 Dash Dot

Remarks
This didn't quite turn out the way I wanted, but experiment if you like, and give me some
suggestions.
Note This property is ignored if both HorizontalGrids and VerticalGrids are false.

Data Type
Integer (enum)

BorderStyle Property

Description
Determines the border style of the MList.

Setting
The BorderStyle property settings are:
Setting Description
0 (Default) Normal
1 Raised. The control appears to be above the form (embossed)
2 Inset. The control appears to be sunken into the form.

Data Type
Integer (enum)

RiseColor Property

Description
This is the color of the rising edge of a 3-D Style list box.

Setting
The RiseColor property settings are:
Setting Description
&H00FFFFFF& (Default) White.
Normal RGB colors Colors specified by using the Color palette, or by using the RGB or

QBColor functions in code.
Remarks
Visual Basic uses the Microsoft Windows environment RGB scheme for colors.

Data Type
Long (color)

3D Style
The control has BorderStyle set to 1 (Raised) or 2 (Inset).

FallColor Property

Description
Determines the color of the falling edge of the 3-D Style list box.

Setting
The FallColor property settings are:
Setting Description
&H00808080& (Default) Dark gray.
Normal RGB colors Colors specified by using the Color palette, or by using the RGB or

QBColor functions in code.
Remarks
Visual Basic uses the Microsoft Windows environment RGB scheme for colors.

Data Type
Long (color)

Version Property

Description
This property was included to insure backwards compatibility. You don't need to be
concerned with its use, as it is used internally for different things. Read-only at design time.

ExtendedSelect Property

Description
Determines if multiple items can be selected by using the Ctrl and/or Shift keys and the
mouse. Read-only at run time.

Setting
The ExtendedSelect property settings are:
Setting Description
True (Default) Enables multiple select.
False Enables single select.

Remarks
This property causes the MList to be created with the LBS_EXTENDEDSEL style. Shift-
clicking an item selects a range of items running from the previous value of ListIndex to the
new value of ListIndex. Ctrl-clicking an item selects or deselects it without affecting any
others. You can mix Shift-clicks and Ctrl-clicks in the same Extended Selection. See the MS-
Windows SDK help for more on extended select.
Notes If ExtendedSelect is True, the default value for ListIndex is 0, not -1, as is the
case with the standard list box. Otherwise, it is -1. This property is ignored if MultiSelect is
False.

Data Type
Integer (boolean)

GridColor Property

Description
Determines the color of the horizontal and vertical grids.

Setting
The GridColor property settings are:
Setting Description
&H00000000& (Default) Black.
&H00C0C0C0& I prefer Light gray.
Normal RGB colors Colors specified by using the Color palette, or by using the RGB or

QBColor functions in code.
Remarks
Visual Basic uses the Microsoft Windows environment RGB scheme for colors.
Note This property is ignored if both HorizontalGrids and VerticalGrids are false.

Data Type
Long (color)

FindDirection Property

Description
Determines which direction a FindString, FindPattern, FindPatternColumn, or FindStringExact
will search the list.

Setting
The FindDirection property settings are:
Setting Description
0 (Default) Forward. The search will begin at the currently active ListIndex and

search to the bottom of the list.
1 Backwards. MList will begin at the current ListIndex and search to the top of

the list.
Data Type
Integer (enum)

EnableVirtualMsgs Property

Description
Determines if the MList is a virtual list box.

Setting
The EnableVirtualMsgs property settings are:
Setting Description
True (Default) Makes the MList a virtual list box.
False Makes the MList a normal list box.

Remarks
Setting this property to True causes a message to be sent to the VirtualMessage event
whenever the user approaches the beginning or end of the list. These messages are sent
whether caused by a mouse or keyboard event.

Data Type
Integer (boolean)

VirtualMsgZone Property

Description
Determines when a message is sent to the VirtualMessage event.

Setting
The VirtualMsgZone property settings are:
Setting Description
0 (Default) Virtual messages are not sent.
>0 Indicates the "zone" at the beginning and end of the list that triggers the

event.
Remarks
It indicates the "zone" at the beginning and end of the list that triggers the event. For
example, setting this property to 100, causes a VIRTUAL_END message to be sent to
VirtualMessage event when the user gets within 100 lines of the end of the list box, and a
VIRTUAL_BEGIN message when the user gets within 100 lines of the beginning of the list
box. The event is only triggered if the user is heading towards the respective end of the list
box.
Note This property is ignored if the EnableVirtualMsgs property is False.

Data Type
Integer

CheckStyle Property

Description
Determines the type of "checkmark" displayed by a checkbox style MList, with the
ImageType property set to 2 (CheckBox).

Setting
The CheckStyle property settings are:
Setting Description
0 (default) The normal "cross/diagonal" check box is used.
1 A check mark is used.

Data Type
Integer (enum)

CheckColor Property

Description
Determines the color of the check mark for an MList with the ImageType property set to 2
(CheckBox).

Setting
The CheckColor property settings are:
Setting Description
&H00000000& (Default) Black
Normal RGB colors Colors specified by using the Color palette, or by using the RGB or

QBColor functions in code.
Remarks
Visual Basic uses the Microsoft Windows environment RGB scheme for colors.

Data Type
Long (color)

SortColumn Property

Description
Determines which column is sorted, when the DrawRegions property is greater than 1 and
the Sorted property is True.

Setting
The SortColumn property settings are:
Setting Description
0 (Default) Sorts the entire string.
1 to N Sorts on the specified column. (N = DrawRegions)

Usage
The following example sorts the MList by priority.
MList1.DrawRegions = 2
MList1.SortColumn = 2
MList1.AddItem "100" + Chr$(9) + "High"
MList1.AddItem "101" + Chr$(9) + "Critical"

Note Only strings added after this property is set will be affected. If this property is
changed after the strings are added, you will have to remove all the strings and then re-add
them. I thought about doing this myself, but the issues over preserving pictures, drawing
information, and all that other stuff made it a little more difficult than I care to tackle at this
moment.

Data Type
Integer

SelectMode Property

Description
Determines how selected items in an ExtendedSelect or MultiSelect MList respond to left
mouse clicks.

Setting
The SelectMode property settings are:
Setting Description
0 (Default) Normal. All other selected items (if any) are deselected when the left

mouse button is clicked on a selected item.
1 Drag Mode. A selected item ignores a left mouse button click, thus allowing

the MouseMove event to fire.
Remarks
This property will help you when you want to drag and drop with a ExtendedSelect or
MultiSelect list box. When this property is set to 0 (Normal), after selecting X number of
items, if you select a hilited item with the mouse, all the other items are de-selected. This is
a problem when trying to drag and drop multiple items from the list. Setting this property
to 1 (Drag Mode) causes the left mouse click to be ignored when the item being selected is
already hilited. This allows the user to start the drag (MouseMove), and you, the developer,
can then set MList1.Drag 1, so dragging can begin. If the user releases the drag over the
same list box, nothing changes. If the user moves over other controls, you will get the
appropriate messages.
Clicking on a hilited item, and not moving the mouse, then releasing the mouse over the
same spot, will de-select all other items in the list box, except for the one over which the
mouse was released.
All in all, this property causes MList to behave like the File Manager program which comes
with Windows. See the PROJECT1.MAK and File Manager for examples of the behavior.
Note This property is ignored if both ExtendedSelect and MultiSelect are False.

Data Type
Integer (enum)

ItemX Property

Description
This property, in conjunction with ItemY, determines which item in the list is currently
processing mouse events. Not available at design time.

Usage
Here is an example that determines over which item a control was dropped:
Sub MList1_DragDrop (Source As Control, X As Single, Y As Single)

MList1.ItemX = X
MList1.ItemY = Y

Debug.Print "Control was dropped over item at Index"; Str$(MList1.Item)

End Sub
Data Type
Integer

ItemY Property

Description
This property, in conjunction with ItemX, determines which item in the list is currently
processing mouse events. Not available at design time.

Usage
Here is an example that determines over which item a control was dropped:
Sub MList1_DragDrop (Source As Control, X As Single, Y As Single)

MList1.ItemX = X
MList1.ItemY = Y

Debug.Print "Control was dropped over item at Index"; Str$(MList1.Item)

End Sub
Data Type
Integer

Item Property

Description
Returns the Index of the string at ItemX and ItemY. Not available at design time. Read-only
at run time.

Usage
Here is an example that determines over which item a control was dropped:
Sub MList1_DragDrop (Source As Control, X As Single, Y As Single)

MList1.ItemX = X
MList1.ItemY = Y
Debug.Print "Control was dropped over item at Index"; Str$(MList1.Item)

End Sub
Note This property starts the search at TopIndex, since it assumes that the item you are
looking for is currently displayed in the list box.

Data Type
Long

StringCompare Property

Description
Determines whether compares are case sensitive or case insensitive

Setting
The StringCompare property settings are:
Setting Description
0 (Default) Case Sensitive.
1 Case Insensitive.

Remarks
This only affects the compare when determining placement in a Sorted list box.
Note This property does not affect the various searching properties.

Data Type
Integer (enum)

Resort Property

Description
Setting this property to 1 causes the list box to resort its contents. Not available at design
time.

Setting
The Resort property settings are:
Setting Description
False (Default) The property is ignored.
True Forces the MList to resort its contents.

Remarks
This property is ignored if the MList is not Sorted.
Warning The sort may fail if there is not enough disk space for resorting.

Data Type
Integer (boolean)

NoIntegralHeight Property

Description
Determines if the MList is sized to show only complete items. Read-only at run time.

Setting
The NoIntegralHeight property settings are:
Setting Description
True The MList can be set to any arbitrary size, and may partially obscure the last

visible item.
False (Default) The MList is sized to be an exact fit for the height of each line item.

Remarks
Set this property to True if you want to be able to size the list box to fit inside the entire
window.    Normally, Windows forces the list box to be an exact fit for the height of each line
item. For example: If you have room for ten line items, and each line item is 195 twips high,
Windows will resize the list box to 1950 even if you tell it to set the list box to 2015.
Note Setting the ListBoxStyle property to 1 causes the MList to be created with the
LBS_OWNERDRAWVARIABLE style. For list boxes with this style, the
LBS_NOINTEGRALHEIGHT style is always enforced, and thus the setting of this property
(NoIntegralHeight) is ignored. (See the List Box Controls topic in MSDN CD 7/95 for more
information.)

Data Type
Integer (boolean)

DisableDrawing Property

Description
Suspends drawing until font changes, position changes, etc., are completed. Not available
at design time.

Setting
The DisableDrawing property settings are:
Setting Description
True (Default) Suspends drawing (redrawing) of the control
False Resumes drawing of the control.

Remarks
You might want to set this property to True while you are changing the font characteristics
of a line that is visible in the list box. Before you set the last font attribute, set this value to
False, and the line will redisplay itself with the correct font.

Data Type
Integer (boolean)

ItemFontBold Property

Description
Controls the bold style of an individual line item. Not available at design time.

Setting
The ItemFontBold property settings are:
Setting Description
True The item's text has the bold style.
False (Default) The item's text does not have the bold style.

Caution
Setting the individual font attributes of each line will cause a font for that line to be
created.    Windows will only support so many fonts. If you are going to be setting individual
fonts, consider using the Unimplented property which will accept an actual font handle.

Usage
MList1.ItemFontBold = True

Note You should set ItemFontName before setting this property.
Data Type
Array of Integers (boolean)

ItemFontItalic Property

Description
Controls the italics style of the font for a specific line. Not available at design time.

Setting
The ItemFontItalic property settings are:
Setting Description
True The item's text has the italics style.
False (Default) The item's text does not have the italics style.

Caution
Setting the individual font attributes of each line will cause a font for that line to be
created.    Windows will only support so many fonts. If you are going to be setting individual
fonts, consider using the Unimplented property which will accept an actual font handle.

Usage
MList1.ItemFontItalic = True

Note You should set ItemFontName before setting this property.
Data Type
Array of Integers (boolean)

ItemFontName Property

Description
Controls the font name for a specific line of text. Not available at design time.

Remarks
You should set this property first and then set the other font properties. See VB Help for
details on the property "FontName".

Usage
MList1.ItemFontName(0) = "MS Sans Serif"

Data Type
Array of String

ItemFontSize Property

Description
Controls the individual size for a specific line of text. Not available at design time.

Usage
MList1.ItemFontSize(0) = 7.8

Note You should set ItemFontName before setting this property.
Data Type
Array of Integers

ItemFontStrikeThru Property

Description
Controls the strikethru style of the font for a specific line. Not available at design time.

Setting
The ItemFontStrikeThru property settings are:
Setting Description
True The item's text has the strikethru style.
False (Default) The item's text does not have the strikethru style.

Caution
Setting the individual font attributes of each line will cause a font for that line to be
created.    Windows will only support so many fonts. If you are going to be setting individual
fonts, consider using the Unimplented property which will accept an actual font handle.

Usage
MList1.ItemFontStrikeThru(0) = True

Note You should set ItemFontName before setting this property.
Data Type
Array of Integers (boolean)

ItemFontUnderline Property

Description
Controls the underline style of the font for a specific line. Not available at design time.

Setting
The ItemFontUnderline property settings are:
Setting Description
True The item's text has the underline style.
False (Default) The item's text does not have the underline style.

Caution
Setting the individual font attributes of each line will cause a font for that line to be
created.    Windows will only support so many fonts. If you are going to be setting individual
fonts, consider using the Unimplented property which will accept an actual font handle.

Usage
MList1.ItemFontUnderline(0) = True

Note You should set ItemFontName before setting this property.
Data Type
Array of Integers (boolean)

OwnerDraw Property

Description
Determines whether the program controls all drawing of an item in the list.

Setting
The OwnerDraw property settings are:
Setting Description
True The program controls all aspects of drawing an item in the MList.
False (Default) Windows is responsible for drawing the item.

Remarks
See the DrawItem event for handling drawing of a line.

Data Type
Integer (boolean)

ListBoxStyle Property

Description
This property determines whether the lines in a list box are a fixed height or a variable
height.

Setting
The ListBoxStyle property settings are:
Setting Description
0 (Default) Fixed. All lines in the list box are a fixed height.
1 Variable. All lines in the list box are variable height.

Remarks
The property AddItemHeight should be set before adding an item to the list. After that, you
can use IndItemHeight to adjust the height of a line. The reason for this is because I need
the height of the line before the line is displayed, otherwise, the entire list must be redrawn
when you change the height of that line with IndItemHeight.
Note Setting this property to 1 causes the MList to be created with the
LBS_OWNERDRAWVARIABLE style. For list boxes with this style, the
LBS_NOINTEGRALHEIGHT style is always enforced, and thus the setting of the
NoIntegralHeight property is ignored. (See the List Box Controls topic in MSDN CD 7/95 for
more information.)

Data Type
Integer (enum)

AddItemHeight Property

Description
Determines the height of the next line to be added when the MList is a variable height list
box. (ListBoxStyle = 1).

Usage
' Default line height
MList1.AddItemHeight = 195

Data Type
Integer

IndItemHeight Property

Description
Adjusts the height of a line item after it has been added to a variable height MList. Not
available at design time.

Remarks
Be aware that setting this property causes the entire list box to be redrawn. You might want
to disable redrawing (DisableDrawing) while you adjust the height of a lot of lines.

Usage
MList1.IndItemHeight(0) = 395
MList1.IndItemHeight(2) = 595

Note This property only affects an Mlist with the ListBoxStyle property set to 1.
Data Type
Integer

InString Property

Description
Setting this property will cause the list box to search, from the current ListIndex, for an item
that contains the property's value . If one is found, that item is set to the current ListIndex.
Not available at design time. Write-only at run time.

Remarks
This property is like FindString, except this one looks for a string within another string.
Note The direction of the search is determined by the FindDirection property.

Data Type
String

FindColumn Property

Description
Determines the column searched by the FindColumnString property. Not available at design
time.

Remarks
The direction of the search is determined by the FindDirection property.

Data Type
Integer

FindColumnString Property

Description
Specifies the string to search for in the FindColumn. Not available at design time. Write-only
at run time.

Remarks
The direction of the search is determined by the FindDirection property.

Data Type
String

FindResult Property

Description
Controls the action of MList after it finds a string via FindString, FindStringExact,
FindColumnString, or InString.

Setting
The FindResult property settings are:
Setting Description
0 (Default) Update ListIndex. The ListIndex is updated, and the image of the list

box is updated as well.
1 Store in FindIndex. The list box is not updated.

Remarks
Regardless of the setting, FindIndex is updated with the ListIndex of the found item, when
an item is successfully found.

Data Type
Integer (enum)

FindIndex Property

Description
Contains the ListIndex of the last successful find of an item. Not available at design time.

Remarks
This property is updated whether FindResult is set to Update List Index or Update FindIndex.
Compare this to ListIndex or previously set FindIndex to see if a find is successful.
Note In version 4.51, FindIndex will be set to -1 if the search should fail.

Data Type
Integer

OwnerCompare Property

Description
Determines whether the internal compare function or the CompareItem event is used to
compare strings during sorting.

Setting
The OwnerCompare property settings are:
Setting Description
True The CompareItem event is called, thus allowing a user-defined compare

algorithm to be executed.
False (Default) The internal compare function is used.

Data Type
Integer (boolean)

FindPattern Property

Description
Searches the MList for the specified pattern. The FindIndex property contains the result. Not
available at design time. Write-only at run time.

Remarks
You can use this property to find a pattern in the list. This property behaves exactly as
FindString except that you may use wild cards.
Note Use the FindPatternColumn property to perform a wild-card search in a particular
column.

Usage
The following example would find yours truly if it appears anywhere (in any column) in the
list box. The starting point is determined by the FindDirection and SearchCompare
determines the case sensitivity of the search.
MList1.FindPattern = "Robin W. Mc*"

Note See FINDSTR.MAK for a demo of this property.
Data Type
String

FindPatternColumn Property

Description
Searches the MList for the specified pattern in a particular column. The FindIndex property
contains the result. Not available at design time. Write-only at run time.

Remarks
Set FindColumn to the column you want to search, then use this property to search for the
pattern of the string in that column.
Note Use the FindPattern property to perform a wild-card search in all columns.

Usage
The following example would find the strings "Bits", "Bite" or "Bitstream" only if they
appeared in column 2.
MList1.FindColumn = 2
MList1.FindPatternColumn = "Bit*"

Data Type
String

 searching properties
FindColumnString
FindPattern
FindPatternColumn
FindString
FindStringExact

SearchCompare Property

Description
Determines the case sensitivity of the searching used by MList.

Setting
The SearchCompare property settings are:
Setting Description
0 Case Sensitive
1 (Default) Case Insensitive

Remarks
This property is set apart from StringCompare so that you can have different case
sensitivities for the sort order and the searches.
Note: This property does NOT affect InString, which is always case sensitive.

Data Type
Integer (enum)

ItemFont Property

Description
Sets the font property of one or more lines with the same font. Not available at design time.

Remarks
You can create a font by calling CreateFont or CreateFontIndirect. You can also get a system
font by calling GetSystemObject. You can then use this font to assign a font property to
different lines in your list box.
Dim font As Integer

font = CreateFont(...)

MList1.ItemFont(1) = font
MList1.ItemFont(20) = font
MList1.ItemFont(21) = MList1.ItemFont(20)

It is your responsibility to destroy the font. If you use the standard VB font properties,
FontName, FontBold, etc., VB will destroy the font for you. MList assumes that the font you
have assigned to an individual line item through this property is spread out all over the
galaxy. Therefore, you need to clean it up.
Note You can also use the font property of a line whose font was created with the regular
ItemFont properties. For example:
MList1.ItemFontName(0) = "Arial"
MList1.ItemFontBold(0) = TRUE
MList1.ItemFont(1) = MList1.ItemFont(0)

MList will clean up the font used by ItemFont(0), since it was created with the normal VB
properties. Since the font is being cleaned up automatically, you do not have to clean up
the same font which was assigned to ItemFont(1).

Data Type
Array of Integers

SelChange Event

Description
Occurs when a selection in the list box is changed either through the keyboard or a mouse
event.

Syntax
Sub ctlname_SelChange()

Remarks
The event uses no arguments. You might want to use this event instead of or in addition to
the Click event if you want to respond to selection changes when the user uses the arrow
keys instead of the mouse.
Note This event mimics the standard list box's Click event. To respond only to mouse
clicks, use the Click event.

SelCheck Event

Description
Occurs when the Checked property of a line in the list box is changed.

Syntax
Sub ctlname_SelCheck(Index As Integer, State As Integer)

Remarks
The SelCheck event uses these arguments:
Argument Description
Index The line item that has been affected
State The state of the checked box. It is either True or False.

VirtualMessage Event

Description
Occurs when the user moves within VirtualMsgZone items of each the top or the bottom of
the MList.

Syntax
Sub ctlname_VirtualMessage(Message As Integer)

Remarks
The VirtualMessage event uses these arguments:
Argument Description
Message The message sent to this event.

This event provides the means to notify you when more data is needed. For now, you will
have to keep track of your own data.
The following Message(s) are sent to this event:
Message Description
VIRTUAL_UP This message will be sent when you need to add items to the end of

the list, because it is scrolling up.
VIRTUAL_DOWN This message will be sent when you need to add items to the

beginning of the list, because it is scrolling down.
VIRTUAL_END This is sent when the user is moving to the end of the list. You should

load whatever number of lines you need, then MList will position
ListIndex to the end of the list.

VIRTUAL_HOME This is sent when the user is moving to the beginning of the list. You
should load whatever number of lines you need, then MList will position
ListIndex to the start of the list

MList will move the current ListIndex as items are added to and removed from the list. You
should try to cache all the items you will load in memory, then add them to the list one at a
time. Save TopIndex and ListIndex, so that you can restore them. You will need to add or
subtract the number of new items added or removed depending on the direction in which
you are moving. See the example for details.
Note There are no properties like VirtualListIndex, VirtualTopIndex, VirtualCount, etc.    I am
thinking hard about these, and hope to come up with an elegant solution. Any suggestions?
I guess what I have done is provide virtual capabilities while leaving most of the
implementation in your court.

VIRTUAL_UP      1

VIRTUAL_DOWN      2

VIRTUAL_END      3

VIRTUAL_HOME      4

ScrollMessage Event

Description
Occurs when the list box is scrolling horizontally.

Syntax
Sub ctlname_ScrollMessage(Offset As Integer)

Remarks
This event allows you to scroll your own column headers over the list box. The
ScrollMessage event uses the following arguments:
Argument Description
Offset The number of pixels the window has been scrolled.    See the scroll demo for

details.

Known Problem
Due to Twips To Pixels and vice versa, there is no exact relationship between the number of
pixels and the number of twips. If you look at the example, you will see that the more
columns to the right you go, the further out of line the column header is. Manually placing
each column header to start with solves this problem. Once this is done, just copy the code
and go!

DrawItem Event

Description
Occurs when OwnerDraw is set to True and any change is made to the item at ListIndex.

Syntax
Sub ctlname_DrawItem(ListIndex As Integer, ItemAction As Integer, ItemState
As Integer, ItemDC As Integer, ItemLeft As Integer, ItemTop As Integer,
ItemRight As Integer, ItemBottom As Integer, ItemText As String)

Remarks
OwnerDraw basically forces you to be responsible for drawing each and every line item.
The DrawItem event uses these arguments (See DRAWITEMSTRUCT in WinAPI Help for more
details):
Argument Description
ListIndex 0 based index of item being drawn.
ItemAction Action being performed. (See DRAWITEMSTRUCT)
ItemState State of line. (See DRAWITEMSTRUCT)
ItemDC DC to do the drawing with. DON'T use MList1.hDC.
ItemLeft Left coordinate of rectangle.
ItemTop Top coordinate of rectangle.
ItemRight Right coordinate of rectangle.
ItemBottom Bottom coordinate of rectangle.
ItemText The text that needs to be drawn.

Note See the commented out code in SCROLL.MAK for details on how you might get
started using this feature (Set OwnerDraw to True!).

Formatting Strings

Description
You should place the Tab character between each column in your string. The following
example formats a string for the DrawFlags example:
MList1.AddItem "Robin W. McKean" + Chr$(9) + "$100.00"

Examples
The following string is for three columns:
MList1.AddItem "Robin W. McKean" + Chr$(9) + "$100.00" + Chr$(9) + "True"

Remember, you do NOT have to include a column for the ImageRegion. If the ImageRegion
property was 1 and the DrawRegions property was 3, then the following line would work
fine (3-1=2)
MList1.AddItem "Robin W. McKean" + Chr$(9) + "$100.00"

Click Event

Description
Occurs when the user clicks the mouse on an item in the MList.

Syntax
Sub ctlname_Click()

Remarks
The Click event has no arguments.
Note This event responds only to mouse clicks, unlike the standard list box's Click event.
Use the SelChange event instead to mimic the standard Click event.

CompareItem Event

Description
Occurs during a sorting operation when OwnerCompare is set to True.

Syntax
Sub ctlname_CompareItem(ListItem1 As String, ListItem2 As String, Result As
Long)

Remarks
You may parse the string out any way you like. The CompareItem event uses these
arguments:
Argument Description
ListItem1 The first string to be compared.
ListItem2 The second string to be compared.
Result The result of the compare, returned to the calling routine (internal to the

MList.) The return values for Result follow:
Value Meaning
-1 ListItem1 is less then ListItem2.
 1 ListItem1 is greater than ListItem2.
 0 ListItem1 and    ListItem2 are equal.

WARNING: Result will still be affected by SortOrder. If you plan to determine your own
sort order, then set SortOrder to Ascending and leave it. Your sort order will not be affected.
A SortOrder of Descending will effectively negate Result so it is the opposite of what you
set it to.

AllowFocusRect Property

Description
Determines if the focus rectangle is drawn on the MList when it gets the focus.

Setting
The AllowFocusRect property settings are:
Setting Description
True (Default) The focus rectangle is drawn.
False The focus rectangle is not drawn.

Data Type
Integer (boolean)

SortOrder Property

Description
Determines the sort order.

Setting
The SortOrder property settings are:
Setting Description
0 (Default) Ascending. Sorts list items alphabetically, from A to Z
1 Descending. Sorts list items alphabetically, from Z to A

Data Type
Integer (enum)

MultiSelect Property

Description
Enables or disables the multiple-select feature of the list box. Read-only at run time.

Setting
The MultiSelect property settings are:
Setting Description
True Enables multiple-select.
False (Default) Disables multiple-select.

Remarks
When enabled, this property allows the user to select multiple items by simply single-
clicking them, without the need to hold down the Ctrl key. Clicking on an item that is
already selected deselects that item (and only that item.)

Known Problem
When deselecting an item in an Mlist with MultiSelect set to True, subsequently retrieving
the Text property returns the value of the just deselected item. This is due to ListIndex
being set to the last item clicked. If this is not the desired behavior, it is up to you to set
ListIndex to one of the currently selected items.
Note If MultiSelect is True, the default value for ListIndex is 0, not -1, as is the case with
the standard list box. Otherwise, it is -1.

Data Type
Integer (boolean)

Sorted Property

Description
Specifies whether the elements of the MList are automatically sorted alphabetically. Read-
only at run time.

Setting
The Sorted property settings are:
Setting Description
True List items are sorted alphabetically
False (Default) List items are not sorted alphabetically

Remarks
When set to True, the control handles almost all necessary string processing to maintain
alphabetical order, including changing the index numbers for items as required by the
addition or removal of items.
Note    Using the AddItem method to add an element to a specific location in the list may
violate the sort order, and subsequent additions may not be correctly sorted.

Data Type
Integer (boolean)

 sorting operation
Occurs when the AddItem method is invoked
for a sorted MList, or when the Resort
property is set to true.

ItemPicture Example

Description
This example demonstrates the interrelated properties required to make the ItemPicture
property work.

Steps
Open the ItemPic sample project (ITEMPIC.MAK)
Copy the code in the Form_Load topic to the Form_Load procedure.
Copy the code in the Declarations topic to the Declarations section.

Examples
Here is a list of the example projects documented in this Help file and supplied with MList.
Example Description
ItemPicture Demonstrates the use of this and other related properties
ItemHeight Demonstrates the dynamic resizing of ItemHeight when changing the FontSize

property.

Text Property

Description
Returns the text from all DrawRegions (columns) of the item pointed to by ListIndex. Not
available at design time. Read-only at run time.

Remarks
If MultiSelect is True and multiple items are selected, the text from the last item selected is
returned, since that is the item pointed to by ListIndex. (If no items are selected, ListIndex
= 0.)
If ExtendedSelect is True and multiple items are selected, the text from the list item
selected (at one end of the range) is returned, since that is the item pointed to by
ListIndex. (If no items are selected, ListIndex = 0.)
Note This property differs from the standard list box's Text property in that it is unavailable
at design time and read-only at run-time.

Data Type
String

ClickRegion Property

Description
Returns the DrawRegions (column) in which the last mouse click occurred. Read only at
runtime.

Remarks
This property is set during the mouse down event.

Data Type
Integer

AutoCheck Property

Description
Controls the action taken when a user double clicks a line in the list box

Setting
The AutoCheck property settings are:
Setting Description
True (default) Double clicking a line will toggle the Checked state of the line item.
False The checked state of the line item is not changed.

Remarks
The user may still change the checked state by clicking in the box.

Data Type
Integer (boolean)

SortType Property

Description
Determines the type of data in the SortColumn.

Setting
The SortType property settings are:
Setting Description
0 (Default) String
1 Number, assumed of type float, but any number will do!
2 Date in the order MM/DD/YY or MM/DD/YYYY

Remarks
This isn't fair to users of other countries, so look for an enhancement to the date format.

Data Type
Integer (enum)

New Features Prior to v4.55

SelCheck Event is triggered by code and events.

FindIndex property is set to -1 when a search fails.

Case sensitive finds and searches.

Added FindPattern and FindPatternColumn properties for searching strings by pattern.

Added SortOrder property for ascending and descending sort order.

Added CompareItem function for implementing your own compare function.

Added SelectMode property to allow you to use Ctrl Key and/or Mouse press to deselect
items in a multiple select (ExtendedSelect) list box. This behavior imitates File Manager to a
large degree.

Added ItemFont property to allow to set the font properties of many lines with the same
font.

New Features v4.56 to v4.58

Added AutoCheck property

Added SortType property

New Features v4.6

Added ItemHgt.MAK demo project to illustrate how to resize the item height of an Mlist
dynamically in response to changes in FontSize the property.

ItemHeight Example

Description
Demonstrates the dynamic resizing of ItemHeight when changing the FontSize property.
The example is self-contained, so just run it and experiment. Try the following:

Steps
1. Load ITMHITE.MAK into VB and run it
2. Enter 15 in the FontSize textbox, then click Set Size. The font will get larger (assuming

that 8.25 is the default FontSize in your environment.) But the space between each line
has not increased.

3. Now scroll to the bottom of the list and click Add Items, and notice that the new items
are spaced better, but the earlier items remain the same height.

4. Now click Reload Mlist....voila! All the items are the same, right height!
5. Now uncheck Skip Reload from the Options menu
6. Enter 8.25 in the FontSize textbox, then click Set Size. This time the entire contents of

the MList are resized, as you would expect.
All the magic occurs in MListItemsResize... check it out!
You can also set the height directly by entering values in the ItemHeight textbox and
clicking Set Height.

Remarks
You probably noticed that when you click Set Size after entering a FontSize, the value in the
ItemHeight changed. Where did I get this value?
From a hidden Label control. The Label has an AutoSize property, which does exactly that.
I'd seen it change size to fit the length of text, but I'd never tried changing the Height. So I
tried that, and saw that it did resize the height of the label, automatically. I also noticed
that the default Label.Height was 195, exactly that of the MList, when using the same Font
and FontSize. So by setting the Label.FontSize to the same value as the MList.FontSize, I
can get the appropriate value for MList.ItemHeight from Label.Height, which I then pass to
MListItemsResize. (You can watch the Label change size by selecting Show Label Control
from the Options menu.)
Notice that the value of ListBoxStyle is set to 1 - Variable at design time. If you change it
to 0 - Fixed and rerun this example, the font size will change but the item height will not.

