
Easybar32/DLL (v2.0) for Windows 95

Overview
Examples
Functions
Supported Barcode Types
Distribution Files
Caveats

DISCLAIMER OF WARRANTY

Distribution Files
When developing applications using Easybar/DLL, you need the following files:

EZBAR32.DLL
EZBAR32.LIB
EASYBAR.H

To distribute an application using Easybar/DLL, simply include the following file with your application:

EZBAR32.DLL

Examples
The following example shows the simplest way to use Easybar/DLL. To see a more complex example,
please refer to the source code of the Easybar/DLL Demonstration program.

HBARCODE hBarcode;
/* ... */
hBacode = BarCreate(BCT_3OF9, 0);
BarSetData(hBarcode, "12345678", 8, NULL, 0);
SetRect(&rect, 100, 100, 300, 200);
BarDraw(hBarcode, hdc, NULL, &rect, 0, 0);
BarDestroy(hBarcode);
/* ... */

The following example shows you how to retrieve the position and width of each bar in a barcode; you
might use the information to draw your own barcode for example:

HBARCODE hBarcode;
int x, cx;
/* ... */
hBacode = BarCreate(BCT_3OF9, 0);
BarSetData(hBarcode, "12345678", 8, NULL, 0);
BarEnumBarStart(hBarcode, 2); /* 2 = scale factor */
while (BarEnumBarNext(hBarcode, &x, &cx, &ulBarStyle))
{

/* this bar starts at x and is of width cx */
/* and its style is indicated by ulBarStyle: */
/* - if its a long bar (EAN, UPC, POSTNET) */
/* - part of main barcode/add-on barcode */
/* you may write code to draw the bar here */
/* using PatBlt for example */

}
BarDestroy(hBarcode);

Functions

Basic Functions
BarCreate
BarDestroy
BarSetData
BarSetAddOnData
BarDraw

Information Functions
EnumBarcodeTypes
BarGetAddOnData
BarGetData
BarGetAddOnRect
BarGetMainRect
BarGetRect
GetBarcodeDefDrawFlags (1.21)
GetBarcodeDrawFlagsMask (1.21)
BarGetDrawFlagsMask (1.21)
BarGetDefDrawFlags (1.21)
BarEnumBarStart (1.22)
BarEnumBarNext (1.22)

Fine-Tuning Functions
BarGetBarExt
BarGetClearArea
BarGetInterCharExt
BarGetModuleCount
BarGetNumBarExts
BarGetNumSpaceExts
BarGetSpaceExt
BarSetBarExt
BarSetClearArea
BarSetInterCharExt
BarSetSpaceExt

EnumBarcodeTypes
int EnumBarcodeTypes(iPos, lpiType, lplpName)
int iPos;
LPINT lpiType;
LPSTR FAR *lplpName;

This function allows to enumerate the supported barcode types.

Parameter Description
iPos Specifies the current enumeration position. When starting enumeration, use 0 for

this parameter; in subsequent calls, use the return value of the previous call until
0 is returned (end of enumeration).

lpiType Points to an integer that gets filled with the barcode type.
lplpName Points to a string pointer that gets filled with the address of the barcode symbolic

name string.

Returns
The return value indicates the current enumeration position. it is 0 when end of enumeration is reached.

See Also
Supported Barcode Types, BarCreate

BarCreate
HBARCODE BarCreate(iBarcodeType, uStyle)
int iBarcodeType; /* barcode type */
UINT uStyle; /* barcode style */

The BarCreate function creates a barcode object for the specified barcode type and style.

Parameter Description
iBarcodeType Specifies the barcode type to create. Can be one of the following values:

Value Barcode Name
BCT_2OF5 2 of 5
BCT_INTERLEAVED2OF5 Interleaved 2 of 5
BCT_3OF9 Code 39
BCT_CODE93 Code 93
BCT_CODABAR Codabar
BCT_EAN13 EAN-13
BCT_EAN13_2 EAN-13 + 2
BCT_EAN13_5 EAN-13 + 5
BCT_EAN8 EAN-8
BCT_EAN8_2 EAN-8 + 2
BCT_EAN8_5 EAN-8 + 5
BCT_UPCA UPC-A
BCT_UPCA_2 UPC-A + 2
BCT_UPCA_5 UPC-A + 5
BCT_UPCE UPC-E
BCT_UPCE_2 UPC-E + 2
BCT_UPCE_5 UPC-E + 5
BCT_EAN128A EAN-128 A
BCT_EAN128B EAN-128 B
BCT_EAN128C EAN-128 C
BCT_POSTNET (1.20) POSTNET

uStyle Specifies the barcode style. Must be 0 currently.

Returns
The function returns the barcode handle when successful; 0 otherwise

Comments
The barcode created must be destroyed using the BarDestroy function.

See Also
Supported Barcode Types, BarDestroy

BarDestroy
void BarDestroy(hBarcode)
HBARCODE hBarcode; /* barcode handle */

The BarDestroy function destroys a barcode object that was created by the BarCreate function.

Parameter Description
hBarcode Specifies the handle of the barcode object to destroy.

See Also
BarCreate

BarSetData
BOOL BarSetData(hBarcode, lpData, cbData, lpMsg, cbMsg)
HBARCODE hBarcode; /* handle of barcode */
LPSTR lpData; /* address of data */
int cbData; /* number of bytes in data */
LPSTR lpMsg; /* address of message */
int cbMsg; /* number of bytes in message */

This function sets/changes the data and the display message of a barcode.

Parameter Description
hBarcode Specifies the handle of the barcode.
lpData Address of the data (excluding check character if any) to set to the barcode.
cbData Count of bytes in lpData.
lpMsg Address of the message to be displayed; may be NULL.
cbMsg Count of bytes in lpMsg.

Returns
The return value is TRUE when the data is valid, FALSE otherwise.

Comments
The data of a barcode is used to generate the barcode graphic pattern. By default, it is also the text
displayed with the barcode. If you wish to display a different text, use the lpMsg parameter.
When the barcode has an add-on part, lpData is intended only for the main part (left side); use
BarSetAddOnData function for the add-on.

See Also
BarSetAddOnData

BarSetAddOnData
BOOL BarSetAddOnData(hBarcode, lpData, cbData, lpMsg, cbMsg)
HBARCODE hBarcode;
LPSTR lpData;
int cbData;
LPSTR lpMsg;
int cbMsg;

This function sets/changes the data and the display message of the add-on part of a barcode.

Parameter Description
hBarcode Specifies the handle of the barcode.
lpData Address of the data to set to the add-on part of the barcode.
cbData Count of bytes in lpData.
lpMsg Address of the message to be displayed with the add-on; may be NULL.
cbMsg Count of bytes in lpMsg.

Returns
The return value is TRUE when the data is valid, FALSE otherwise.

Comments
The data of a barcode is used to generate the barcode graphic pattern. By default, it is also the text
displayed with the barcode. If you wish to display a different text, use the lpMsg parameter.

See Also
BarSetData

BarGetData
BOOL BarGetData(hBarcode, lpszData, cbMaxData, lpszMsg, cbMaxMsg)
HBARCODE hBarcode;
LPSTR lpszData;
int cbMaxData;
LPSTR lpszMsg;
int cbMaxMsg;

This function retrieves the data and the display message of a barcode.

Parameter Description
hBarcode Specifies the handle of the barcode.
lpData Address of buffer to receive the barcode data.
cbMaxData Number of bytes available in lpData.
lpMsg Address of buffer to reveive the display message.
cbMaxMsg Number of bytes available in lpMsg.

Returns
The return value is TRUE when successful, FALSE otherwise.

See Also
BarSetData

BarGetAddOnData
BOOL BarGetAddOnData(hBarcode, lpszData, cbMaxData, lpszMsg, cbMaxMsg)
HBARCODE hBarcode;
LPSTR lpszData;
int cbMaxData;
LPSTR lpszMsg;
int cbMaxMsg;

This function retrieves the data and the display message of the add-on part of a barcode.

Parameter Description
hBarcode Specifies the handle of the barcode.
lpData Address of buffer to receive the add-on data.
cbMaxData Number of bytes available in lpData.
lpMsg Address of buffer to reveive the add-on display message.
cbMaxMsg Number of bytes available in lpMsg.

Returns
The return value is TRUE when successful, FALSE otherwise.

See Also
BarSetAddOnData

BarDraw
BOOL BarDraw(hBarcode, hdcDraw, hicTarget, lpRect, iOrient, dwFlags)
HBARCODE hBarcode;
HDC hdcDraw;
HDC hicTarget;
LPRECT lpRect;
int iOrient;
DWORD dwFlags;

This function actually renders the barcode on a device context.

Parameter Description
hBarcode Specifies the handle of the barcode.
hdcDraw Specifies the device context handle to which the barcode is to be rendered.
hicTarget Specifies the information context handle of the target device; may be NULL. This

parameter is used to force WYSIWYG drawing on hdcDraw.
lpRect Address of the rectangle to which the barcode is to be drawn. The rectangle is in

the current logical coordinates of hdcDraw.
iOrient Specifies the orientation of the barcode: 0, 90, 180 or 270 degrees (counter-

clockwise rotation angle).
dwFlags Drawing flags; may be a combination (ORd) of one or more of the following

values:
Value Meaning
BDF_LEFT Drawing left-aligned (default).
BDF_RIGHT Drawing right-aligned.
BDF_CENTER Drawing centered.
BDF_TOP Drawing top-aligned (default).
BDF_BOTTOM Drawing bottom-aligned.
BDF_VCENTER Drawing centered vertically.
BDF_UNIBARHEIGHT Uses one unique bar height (instead of two

which is the default for some EAN and UPC
barcode types)

BDF_HIDEMAINTEXT Hides the main text.
BDF_HIDEADDONTEXT Hides the add-on text.
BDF_ADDONTEXTATTOP Displays add-on text at the top of drawing.
BDF_ADDONTEXTATBOTTOM Displays add-on text at the bottom of drawing.
BDF_MAINTEXTATTOP Displays main text at the top of drawing.
BDF_MAINTEXTATBOTTOM Displays main text at the bottom of drawing.
BDF_NOUPCSMALLFONT Displays the first and last characters of the

UPC-A barcode text using the normal font
instead of a smaller one.

BDF_RETAINASPECTRATIO Changes the height and width of the barcode
proportionally should the barcode size be
adjusted.

BDF_CALCSIZEONLY No actual drawing should take place. The
function is called only for calculating the actual
size of the drawing (which can then be
retrieved through the functions: BarGetRect,
BarGetMainRect, BarGetAddOnRect).

BDF_NOPIXELALIGN By default, the barcode size is adjusted so
that the narrowest bar width is an integral
number of pixels. When this flag is set, the
barcode size will not be adjusted. When the
hicTarget parameter is not NULL, this flag is

automatically set internally.
BDF_NOSTETCHTEXT By default, the barcode text is displayed

stretched to occupy the whole width of the
barcode. When this flag is set, the barcode
text will not be stretched.

BDF_SHOWCODE39STARTSTOP (1.21) By default, the Code 39
barcode's display text does not show the start
and stop characters ('*'); but if you set this
flag, they will be shown.

BDF_WYSIWYGEXCLCOLOR (1.21) When you are drawing WYSIWYG, the
color on the screen also mirrors that of the
printer; if you set this flag, the color mirroring
will be excluded.

Returns
TRUE when successful, FALSE otherwise.

Comments
When the hicTarget parameter is not NULL, you must make sure that hdcDraw and hicTarget have the
same logical coordinates, i.e., any point (x,y) in one should correspond to (x,y) (same value) in the other.
In this case, the drawing is WYSIWYG: the barcode will be drawn on hdcDraw the same as it would
appear on hicTarget, in terms of size, as well as font and fore/background colors.

The lpRect specifies the rectangle onto which the barcode should be drawn. In most cases, the actual
size of the barcode will be smaller than this rectangle. This is because, by default, the narrowest bar width
of the barcode is chosen to be a multiple of pixels (pixel alignment), unless the BDF_NOPIXELALIGN flag
is set or the hicTarget parameter is provided. In the latter case, the BDF_NOPIXELALIGN flag is
automatically set and the size of the barcode reflects closely that on the target device context (most likely
the printer) represented by hicTarget.

Usually you should not set the BDF_NOPIXELALIGN flag when outputing to the printer; otherwise the
barcode may not be readable, unless your printer resolution is high enough and/or the barcode is big
enough to make the bar width distortion negligible.

You can know the minimum width of the barcode by calling the function BarGetModuleCount. In fact, the
minimum width in pixels of the barcode is equal to the the number of modules it has. And the other
possible widths of the barcode are multiples of this minimum width, unless you set the
BDF_NOPIXELALIGN flag or provide the parameter hicTarget.

The BarDraw function uses the following attributes currently selected into the information context
hicTarget or the device context hdcDraw if hicTarget is NULL:

- Font, used to draw text
- Text Color, used to draw both the text and the barcode's bars
- Back Color, used to draw the barcode background when the Back Mode is OPAQUE
- Back Mode

See Also
Caveats, BarGetRect, BarGetMainRect, BarGetAddOnRect, BarGetModuleCount

BarGetRect
BOOL BarGetRect(hBarcode, lpRect)
HBARCODE hBarcode;
LPRECT lpRect;

This function retrieves the actual bounding rectangle of the entire barcode. Use this function only after the
BarDraw function was called successfully.

Parameter Description
hBarcode Specifies the handle of the barcode.
lpRect Address of rectangle to receive the bounding rectangle.

Returns
The return value is TRUE when successful, FALSE otherwise.

See Also
BarGetMainRect, BarGetAddOnRect, BarDraw

BarGetMainRect
BOOL BarGetMainRect(hBarcode, lpRect)
HBARCODE hBarcode;
LPRECT lpRect;

This function retrieves the actual bounding rectangle of the main part of the barcode (cf. add-on)
excluding the display text. Use this function only after the BarDraw function was called successfully.

Parameter Description
hBarcode Specifies the handle of the barcode.
lpRect Address of rectangle to receive the bounding rectangle.

Returns
The return value is TRUE when successful, FALSE otherwise.

See Also
BarGetRect, BarGetAddOnRect, BarDraw

BarGetAddOnRect
BOOL BarGetAddOnRect(hBarcode, lpRect)
HBARCODE hBarcode;
LPRECT lpRect;

This function retrieves the actual bounding rectangle of the add-on part of the barcode excluding the
display text. Use this function only after the BarDraw function was called successfully.

Parameter Description
hBarcode Specifies the handle of the barcode.
lpRect Address of rectangle to receive the bounding rectangle.

Returns
The return value is TRUE when successful, FALSE otherwise.

See Also
BarGetRect, BarGetMainRect, BarDraw

BarGetModuleCount
int BarGetModuleCount(hBarcode)
HBARCODE hBarcode;

This function retrieves the number of modules comprising the barcode. A module is the basic width unit in
terms of which all the bar/space widths are expressed: they always correspond to an integral number of
modules.

Parameter Description
hBarcode Specifies the handle of the barcode.

Returns
The function returns the number of modules comprising the barcode.

Comments
By default, the BarDraw function adjusts the barcode size so that a module is an integral number of
pixels, except when the BDF_NOPIXELALIGN flag is set or the hicTarget parameter is provided. So,
unless one or both of these two conditions are met, your minimum barcode width in pixels is equal to the
number of modules of the barcode.

See Also
BarDraw

BarGetClearArea
int BarGetClearArea(hBarcode, iClearAreaID)
HBARCODE hBarcode;
int iClearAreaID;

This function retrieves the width (or height) of one of the barcode clear areas: left margin, right margin,
top margin, bottom margin and the gap between the main part and add-on part. The value is in units of
the narrowest bar width of the barcode.

Parameter Description
hBarcode Specifies the handle of the barcode.
iClearAreaID Specifies the clear area ID. Can be one of the following:

Value Meaning
BGCA_LEFT Left margin.
BGCA_RIGHT Right margin.
BGCA_TOP Top margin.
BGCA_BOTTOM Bottom margin.
BGCA_MIDDLE Gap between main part and add-on.

Returns
The return value is the width (or height) of the clear area, in units of the narrowest bar width of the
barcode.

See Also
BarSetClearArea

BarSetClearArea
int BarSetClearArea(hBarcode, iClearAreaID, iNumNarrowBars)
HBARCODE hBarcode;
int iClearAreaID;
int iNumNarrowBars;

This function modifies the width (or height) of one of the barcode clear areas: left margin, right margin, top
margin, bottom margin and the gap between the main part and add-on part.

Parameter Description
hBarcode Specifies the handle of the barcode.
iClearAreaID Specifies the clear area ID. Can be one of the following:

Value Meaning
BGCA_LEFT Left margin.
BGCA_RIGHT Right margin.
BGCA_TOP Top margin.
BGCA_BOTTOM Bottom margin.
BGCA_MIDDLE Gap between main part and add-on.

iNumNarrowBars Specifies the new width (height) of the clear area in units of the narrowest bar
width.

Returns
The return value is the previous width (or height) of the clear area in units of the narrowest bar width.

See Also
BarGetClearArea

BarGetNumBarExts
int BarGetNumBarExts(hBarcode)
HBARCODE hBarcode;

This function retrieves the number of bar width types of the barcode.

Parameter Description
hBarcode Specifies the handle of the barcode.

Returns
The return value is the number of bar width types of the barcode.

See Also
BarGetModuleCount, BarGetBarExt, BarSetBarExt

BarGetBarExt
int BarGetBarExt(HBARCODE hBarcode, int iBarIndex)
HBARCODE hBarcode;
int iBarIndex;

This function retrieves the relative bar width corresponding to a bar width type. The bar width is in units of
modules, thus a value relative to the other bar or space widths.

Parameter Description
hBarcode Specifies the handle of the barcode.
iBarIndex Specifies the index of the bar width type. The narrowest bar type has the index of

0 and the widest has the biggest index which is the number of bar width types of
the barcode minus 1.

Returns
The return value is the bar width in units of modules.

See Also
BarGetModuleCount, BarGetNumBarExts, BarSetBarExt

BarSetBarExt
int BarSetBarExt(hBarcode, iBarIndex, iNumModules)
HBARCODE hBarcode;
int iBarIndex;
int iNumModules;

This function modifies the relative bar width corresponding to a bar width type. The bar width is in units of
modules, thus a value relative to the other bar or space widths.

Parameter Description
hBarcode Specifies the handle of the barcode.
iBarIndex Specifies the index of the bar width type. The narrowest bar type has the index of

0 and the widest has the biggest index which is the number of bar width types of
the barcode minus 1.

iNumModules Specifies the bar width value in units of modules.

Returns
The return value is the previous bar width in units of modules.

See Also
BarGetModuleCount, BarGetNumBarExts, BarGetBarExt

BarGetNumSpaceExts
int BarGetNumSpaceExts(hBarcode)
HBARCODE hBarcode;

This function retrieves the number of space width types of the barcode.

Parameter Description
hBarcode Specifies the handle of the barcode.

Returns
The return value is the number of space width types of the barcode.

See Also
BarGetModuleCount, BarGetSpaceExt, BarSetSpaceExt

BarGetSpaceExt
int BarGetSpaceExt(hBarcode, iSpaceIndex)
HBARCODE hBarcode;
int iSpaceIndex;

This function retrieves the relative space width corresponding to a space width type. The space width is in
units of modules, thus a value relative to the other space or bar widths.

Parameter Description
hBarcode Specifies the handle of the barcode.
iSpace Specifies the index of the space width type. The narrowest space type has the

index of 0 and the widest has the biggest index which is the number of space
width types of the barcode minus 1.

Returns
The return value is the space width in units of modules.

See Also
BarGetModuleCount, BarGetNumSpaceExts, BarSetSpaceExt

BarSetSpaceExt
int BarSetSpaceExt(hBarcode, iSpaceIndex, iNumModules)
HBARCODE hBarcode;
int iSpaceIndex;
int iNumModules;

This function modifies the relative space width corresponding to a space width type. The space width is in
units of modules, thus a value relative to the other space or bar widths.

Parameter Description
hBarcode Specifies the handle of the barcode.
iSpace Specifies the index of the space width type. The narrowest space type has the

index of 0 and the widest has the biggest index which is the number of space
width types of the barcode minus 1.

iNumModules Specifies the space width value in units of modules.

Returns
The return value is the previous space width in units of modules.

See Also
BarGetModuleCount, BarGetNumSpaceExts BarGetSpaceExt

BarGetInterCharExt
int BarGetInterCharExt(hBarcode)
HBARCODE hBarcode;

This function retrieves the width of the inter-character gaps of a non-continuous (discrete) barcode. The
width value is in units of modules, thus a value relative to the other space or bar widths.

Parameter Description
hBarcode Specifies the handle of the barcode.

Returns
The return value is the inter-character gap width in units of modules.

See Also
BarGetModuleCount, BarSetInterCharExt.

BarSetInterCharExt
int BarSetInterCharExt(HBARCODE hBarcode, int iNumModules)
HBARCODE hBarcode;
int iNumModules;

This function modifies the width of the inter-character gaps of a non-continuous (discrete) barcode. The
width is in units of modules, thus a value relative to the other space or bar widths.

Parameter Description
hBarcode Specifies the handle of the barcode.
iNumModules Specifies the inter-character gap width in units of modules.

Returns
The return value is the previous inter-character gap width in units of modules.

See Also
BarGetModuleCount, BarGetInterCharExt.

GetBarcodeDefDrawFlags (1.21)
DWORD GetBarcodeDefDrawFlags(int iBarcodeType)
int hBarcodeType;

This function is similar to BarGetDefDrawFlags. The only difference is that it doesn't take a barcode
handle but the barcode type instead.

Parameter Description
iBarcodeType Specifies a barcode type. Refer to BarCreate for the list of values.

Returns
The return value is a combination of the default drawing flags (see BarDraw) corresponding to the
barcode type.

See Also
BarCreate, BarGetDefDrawFlags, BarDraw.

GetBarcodeDrawFlagsMask (1.21)
DWORD GetBarcodeDrawFlagsMask(int iBarcodeType)
int iBarcodeType;

This function allows you to know what drawing flags are applicable to the given barcode type. It is the
same as BarGetDefDrawFlags except that it takes as parameter directly the barcode type instead of a
barcode handle.

Parameter Description
iBarcodeType Specifies a barcode type. Refer to BarCreate for the list of values.

Returns
The return value is a combination of drawing flags (OR'd) that are applicable to the barcode.

Comments
The return value may also include the value 0x80000000 (i.e., highest bit on) to indicate that the barcode
type has an add-on, though it is not a drawing flag.

See Also
BarGetDefDrawFlags, BarCreate.

BarGetDrawFlagsMask (1.21)
DWORD BarGetDrawFlagsMask(HBARCODE hBarcode)
HBARCODE hBarcode;

This function allows you to know what drawing flags are applicable to the barcode type that the given
barcode belong to. It can be useful in user interface design: when the user has selected a particular
barcode type, you should disable (gray them on the UI) the drawing flag options that are not applicable to
the barcode type.

Parameter Description
hBarcode Specifies the handle of the barcode.

Returns
The return value is a combination of drawing flags (OR'd) that are applicable to the barcode.

Comments
The return value may also include the value 0x80000000 (i.e., highest bit on) to indicate that the barcode
type has an add-on, though it is not a drawing flag.

See Also
GetBarcodeDrawFlagsMask, BarDraw.

BarGetDefDrawFlags (1.21)
DWORD BarGetDefDrawFlags(HBARCODE hBarcode)
HBARCODE hBarcode;

This function returns the default drawing flags for the barcode type that the barcode belongs to. Typically,
you may pass on the return value to the BarDraw function.

Parameter Description
hBarcode Specifies the handle of the barcode.

Returns
The return value is a combination of the default drawing flags (see BarDraw) corresponding to the
barcode type.

See Also
BarCreate, GetBarcodeDefDrawFlags, BarDraw.

BarEnumBarStart (1.22)
void BarEnumBarStart(HBARCODE hBarcode, int iModuleWidth)
HBARCODE hBarcode;
int iModuleWidth;

This function initializes the enumeration of bars, so that subsequent calls to BarEnumBarNext can be
made.

Parameter Description
hBarcode Specifies the handle of the barcode.
iModuleWidth Specifies the scale factor.

See Also
BarEnumBarNext.

BarEnumBarNext (1.22)
BOOL BarEnumBarNext(HBARCODE hBarcode, LPINT lpx, LPINT lpWidth,

DWORD FAR *lpdwBarStyle)
HBARCODE hBarcode;
LPINT lpx;
LPINT lpWidth;
DWORD FAR *lpdwBarStyle;

This function enumerates the bars in a barcode starting from the left-most bar. Each call to
BarEnumBarNext will retrieve the specification of the next bar. The first call must be preceded by a call to
BarEnumBarStart.

Parameter Description
hBarcode Specifies the handle of the barcode.
lpx Address of an integer that will be filled with the starting position of the bar

measureed from the left-most edge of the barcode.
lpWidth Address of an integer that will be filled with the width of the bar.
lpdwBarStyle Address of a long integer that will be filled with the style of the bar which may be

a combination (ORd) of one or more of the following values:
Value Meaning
BEBN_ADDONBARS The current bar belongs to the add-on part of

the barcode (significant when the barcode has
an add-on).

BEBN_LONGBARS The current bar is a long bar (significant only
for EAN, UPC and POSTNET barcodes).

Returns
The return value is FALSE when the last bar of the barcode has already been reached; otherwise TRUE.

Comment
The values of the width and position of a bar are relative (in units of modules); in particular, they are not
related to the rectangle with which you might have called the BarDraw() function. Its your responsibility to
map them to physical units when you actually render the bar.

See Also
BarEnumBarStart.

Supported Barcode Types

Basic Types

2 of 5 Interleaved 2 of 5 Code 39
Code 93 Codabar EAN-8
EAN-13 UPC-A UPC-E
EAN-128 A EAN-128 B EAN-128 C
POSTNET (1.20)

Types with Add-ons

EAN-8 + 2 EAN-8 + 5
EAN-13 + 2 EAN-13 + 5
UPC-A + 2 UPC-A + 5
UPC-E + 2 UPC-E + 5

2 of 5

2 of 5 is a non-continuous barcode without check character. Its character set is '0' to '9'.

The following default values are used:
- wide/narrow bar ratio = 3
- space width = narrow bar width
- intercharacter gap = narrow bar

Interleaved 2 of 5

Interleaved 2 of 5 is a continuous barcode. Its character set is '0' to '9'. The number of characters should
be even. The check character is optional and not implemented in Easybar/DLL. You can always integrate
it into the data (last digit) should you need it.

The following default value is used:
- wide/narrow bar ratio = 3

Code 39

Code 39 is a non-continuous barcode. Its character set is composed of '0' to '9', 'A' to 'Z', SPACE, '*', '$',
'/', '+', '-', '.', '%'. The check character is optional and not implemented in Easybar/DLL; you may always
integrate it into the data (last digit) should you need it.

The following default values are used:
- wide/narrow bar ratio = 3
- intercharacter gap = 2 * narrow bar

The character '*' being built in as both the start and stop characters of the barcode (they may be shown or
hidden according to the flag in the BarDraw() call), you should not attempt to set them any more as part of
the data.

Code 93

Code 93 is a continuous barcode with character set composed of '0' to '9', 'A' to 'Z', '-', '.', SPACE, '*', '$',
'/', '+', '%' (plus special characters). It has two check characters (not displayed as part of the display text in
Easybar/DLL).

The following default value is used:
- bar width = space width

Codabar

Codabar is a non-continuous barcode without check character. Its character set is composed of '0' to '9',
'A', 'B', 'C', 'D', '$', '-', ':', '/', '.', '+'. 'A' to 'D' are eligible only for start/stop characters; in order for them to be
part of the barcode, you have to include them in the barcode data. Though the characters 'T', 'n', '*', 'e'
may be used instead of 'A', 'B', 'C', 'D', in Easybar/DLL, you cannot directly use them to set data. You may,
of course, display them (as well as any other characters) through the lpMsg parameter in the BarSetData
function.

The following default values are used:
- wide/narrow bar ratio = 3
- intercharacter gap = 2 * narrow bar

UPC-A

UPC-A has a fixed length of 11 characters plus the check character. Its character set is '0' to '9'.

See Also
UPC-A + 2, UPC-A + 5

UPC-E

UPC-E has a fixed length of 7 characters plus the check character. Its character set is '0' to '9'.

See Also
UPC-E + 2, UPC-E + 5

EAN-13

EAN-13 has a fixed length of 12 characters plus the check character. Its character set is '0' to '9'.

See Also
EAN-13 + 2, EAN-13 + 5

EAN-8

EAN-8 has a fixed length of 7 characters plus the check character. Its character set is '0' to '9'.

See Also
EAN-8 + 2, EAN-8 + 5

UPC-A + 2

See Also
UPC-A, UPC-A + 5

UPC-A + 5

See Also
UPC-A, UPC-A + 2

UPC-E + 2

See Also
UPC-E, UPC-E + 5

UPC-E + 5

See Also
UPC-E, UPC-E + 2

EAN-13 + 2

See Also
EAN-13, EAN-13 + 5

EAN-13 + 5

See Also
EAN-13, EAN-13 + 2

EAN-8 + 2

See Also
EAN-8, EAN-8 + 5

EAN-8 + 5

See Also
EAN-8, EAN-8 + 2

EAN-128 A

EAN-128 A is a continuous barcode. Its character set is ASCII 0 to 95 (plus special characters). It has one
check character (not shown as part of the dispaly text in Easybar/DLL).

EAN-128 B

EAN-128 B is a continuous barcode. Its character set is ASCII 32 to 127 (plus special characters). It has
one check character (not shown as part of the display text in Easybar/DLL).

EAN-128 C

EAN-128 C is a continuous barcode. Its character set is '0' to '9' (plus special characters), internally coded
every two characters. It has one check character (not shown as part of the display text in Easybar/DLL).
The number of single digit characters (excluding the check character) must be even.

POSTNET (1.20)

POSTNET is the barcode that represents the U.S. zip code. It may have two fixed lengths: 5 or 9, plus the
check character. Its character set is '0' to '9'. Though not part of the character set, the dash (-) can be
used (optional), when working with a 9-digit ZIP code, to separate the first 5 and the last 4 digits in the
BarSetData() function call.

Caveats
When you use a rotation angle other than 0 in the BarDraw function call, the text of the barcode might
not be positioned appropriately on the printer, depending on the printer that you are using. As a
workaround, you may elect to hide the text by setting the BDF_HIDEMAINTEXT and
BDF_HIDEADDONTEXT bits in the BarDraw function call. And then you can also write your own code to
print text, the actual size and position of the barcode being retrievable through the functions BarGetRect,
BarGetMainRect, BarGetAddOnRect.

Registration
What you have here is the RELEASE version of EASYBAR/DLL. However, EASYBAR/DLL IS NOT IN
THE PUBLIC DOMAIN; IT IS PROTECTED BY COPYRIGHT LAWS AND INTERNATIONAL TREATIES.
If you use this software and have not registered yet, please read the following instructions.

This software is free for previously registered users of any version of EASYBAR/DLL or VBX. For new
users, the registration fee is US$35 (or CAN$45); with source code, $95 (or CAN$135), shipping by mail
included. You may send cheques (U.S. & Canada; elsewhere, you may consider to get traveller's
cheques), money order or cash (not for source code order; all major currencies accepted) directly to
Bokai Corporation (see address below). All direct payments to Bokai Coporation will cause an invoice to
be generated and sent to you. CompuServe members may also register in SWREG #4487; the
registration will be confirmed by us sending you an e-mail giving you a registration number.

For more information, please contact:

Bokai Corporation
1221 Dundix Rd., #106
Mississauga, ON L4Y 3Y9 (Canada)

Fax: (+1) 905 276-7692
Internet: 75333.1235@compuserve.com
CompuServe: 75333,1235

Disclaimer of Warranty
Bokai Corporation makes no warranties, express or implied, and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose. In no event shall Bokai Corporation be
liable for any special, incidental or consequential damages even if Bokai Corporation has been advised of
the possibility of the same.

Overview
Easybar/DLL is a DLL for creating and printing barcodes. It allows using various drawing attributes
including rotation, text position, font, etc. It supports WYSIWYG drawing. The barcode parameters
(bar/space widths, margins, etc.) are fine-tunable. Moreover, it allows you to render your own barcode by
retrieving the position and width of each bar. 21 barcode types are supported, of which 13 are basic types
and 8 with add-ons.

For more information on this and other products, please contact:

Bokai Corporation
1221 Dundix Rd., #106
Mississauga, ON L4Y 3Y9 (Canada)

Fax: (+1) 905 276-7692
Internet: 75333.1235@compuserve.com

