
dlgHELP
Version 1.0a

A Library of Dialog Box
Tools and Utilities

for Paradox for DOS

(Demo Included!)

Developed By
William A. Bailey, Jr., Ph.D.

9017 Gamesford Drive
Charlotte, NC 28277

Phone: (704) 541-8930
CompuServe: 102011,707
Internet: bailey@vnet.net

AOL: bbaileyjr

Copyright 1995
All Rights Reserved

26 Sep 1995

CONTENTS

1. Overview
2. Registration Information

Tools

3. PushDlg
4. AcceptDlg
5. CheckDlg
6. RadioDlg
7. PickDlg
8. MsgWin

Utilities

9. ClockDlg
10. ColorDlg
11. ExportDlg
12. FindRecord
13. SearchAndReplace
14. SysInfoDlg

Appendix

A. Color Codes and Descriptions
B. Demo Program
C. Revision History

1. OVERVIEW

If you have attempted to create dialog boxes for your Paradox for DOS applications, you already know that it can be
among the most tedious tasks required by PAL. dlgHELP can alleviate much of this headache by reducing the
creation of common dialog box types to simple procedure calls.

dlgHelp is library of procedures that can be divided into two types: 1) general purpose dialog box generation tools
2) and special purpose dialog box utilities. The first type allows you to define the parameters of the dialog box and
the procedure will create the layout (spacing and alignment of text, lines, and controls) automatically. The following
procedures fall into this first category:

1) PushDlg (1 to 6 pushbuttons, 1 to 18 lines of text)
2) AcceptDlg (1 to 6 type-in boxes, 2 or 3 pushbuttons)
3) CheckDlg (1 to 10 check boxes)
4) RadioDlg (1 to 10 radio buttons)
5) PickDlg (picklist, type-in box, 1 to 6 pushbuttons)
6) MsgWin (1 to 18 lines of text, non-modal)

The second type of procedure simply needs to be called. There are no parameters. The following procedures fall
into this second category:

1) ClockDlg
2) ColorDlg
3) ExportDlg
4) FindRecord
5) SearchAndReplace
6) SysInfoDlg

Global Variables

Values are returned to the calling program via predefined global variables, not via the parameters. The following
variables and dynamic arrays are used by one or more of the procedures to assign return values. If your program
uses one of them, conflicts may occur. You should either change your variable names (preferable) or edit the
procedure (which requires a password that you receive upon registering).

AcceptValue[], CheckValue[] (dynamic arrays)
AcceptValue
PickValue
RadioValue
ExportFileName, ExportDirectory, ExportType
ButtonValue
dlgRow, dlgCol

How to Use

To incorporate these utilities and tools into your application, simply copy the library file dlgHELP.lib to your
application directory (or whatever directory your libraries are in if different from your tables) and include it in your
library definition (see your PAL programmer's manual for more information on libraries if you are not already
familiar with them). Typically, you will simply assign it to the autolib system variable. For example, if you are not
using any other libraries, then the statement

autolib="dlghelp"

should be placed at or near the beginning of your main script (technically, as long as it is placed before the first call
to any of the library procedures, it doesn't really matter where, although it is good design practice to place
library declarations at the beginning). As long as autolib is global to your application, then you shouldn't have any
problems. However, if you are using "closed" procedures or if autolib is somehow not global to some procedures,
then you need to place the above statement in each of those procedures to make the dlgHELP tools available.

It should probably go without saying, but I will say it anyway, because SOMEONE won't know this. The dialog box
features were introduced with Paradox for DOS 4.0, which this library was compiled with. You cannot use this
library with Paradox 3.5 or earlier since it will not recognize the new PAL dialog commands.

If you wish to remove some of the procedures from the library in order to make dlgHELP.lib smaller, you can
remove the appropriate scripts from the dlgHELP.db table and recompile the library using the makelib.sc script
(which reads the scripts to be included in the library from the dlgHELP.db table). Be careful that you do not
remove scripts that are required by other procedures (see the requirements below). You can also use this script to
recompile the procedures after editing them (however, you must register in order to get the password which will
enable you to uprotect the scripts, otherwise you cannot edit them).

Contents of the dlgHELP.zip file :
dlgdemo.zip - NEW demo program. Unzip this file and run dlgdemo.sc.
readme.txt - Initial documentation.
dlgHELP.wri - This file: the dlgHELP manual. Contains the documentation for dlgHELP. Sorry it's so large, but
I wanted to include some graphic bitmap screen captures to illustrate sample dialog boxes.
dlgHELP.db - Table containing the names of the scripts to be compiled into dlgHELP library file dlgHELP.lib
dlgHELP.lib - This is all that needs to be included with your application (see How to Use above).
makelib.sc - Library compilation script. Compiles all scripts in dlgHELP.db table into dlgHELP.lib library. You
can edit this script if you want to compile the scripts (or a subset of them) into a different library file.
register.sc - You can run this script to decrypt the dlgHELP scripts below. You will be required to enter a password
which you will receive when you register. Otherwise, they cannot be viewed, editted or debugged.
They can, however, still be run or recompiled into a new library file name.
accptdlg.sc contains the AcceptDlg procedure. This is used by the FindRecord procedure.
checkdlg.sc contains the CheckDlg procedure
clockdlg.sc contains the ClockDlg procedure
colordlg.sc contains the ColorDlg procedure
expdlg.sc contains the ExportDlg procedure
findrec.sc contains the FindRecord procedure. Requires the AcceptDlg procedure to run.
msgwin.sc contains the MsgWin procedure
pickdlg.sc contains the PickDlg procedure
pushdlg.sc contains the PushDlg procedure. This is used by other procedures (SearchAndReplace, SysInfoDlg).
repldlg.sc contains the ReplaceDlg procedure. This is used by the SearchAndReplace procedure
srch&rep.sc contains the SearchAndReplace procedure. Requires both the ReplaceDlg and PushDlg procedures.
sysinfo.sc contains the SysInfoDlg procedure. This requires the PushDlg procedure.
textcolr.sc contains the SetTextColor procedure which is used by most of the other procedures. Removing it from
the dlgHELP.db file will probably result in a run-time error message (i.e. DEBUG | CANCEL) .

Disclaimer & Copyright

These programs are Copyright (C) 1995 William A. Bailey, Jr.
All Rights Reserved.

It is provided as shareware with the following limitations:

These programs are shareware and are not to be resold or distributed for sale. However, once registered, only
the run-time library can be used and distributed freely as part of another application or program. There is
no warranty or claim of fitness or reliability. The programs are distributed AS IS, and as such the author
shall not be held liable for any loss of data, down time, loss of revenue or any other direct or indirect damage
or claims caused by these programs.

2. REGISTRATION INFORMATION

dlgHELP is shareware, which means if you like it and use it, you should pay for it. The registration fee is very
reasonable:

$15.
I have considered different marketing approaches to enlarge my base of registered users. I could tell you that 2000
starving children with AIDS will die in South Central Bangladesh without your help (the Sally Struthers guilt-
manipulation strategy). Or I could could threaten you and your family (or, even worse, your computer) with
physical destruction (the Jimmy Swaggart hell-fire and brimstone approach). Or I could promise you unimaginable
riches (including a time-share condominium at Heritage USA) for your generous faith contribution (the Jim and
Tammy Faye method). Or I could say that I will die if I don't receive 250 registrations within six weeks (the Oral
Roberts "take me home" strategy).

The truth is, however, that I desperately need tennis lessons to improve my backhand (well... yeah, my serve and
forehand could use a little help also) so I can finally beat my wife. My friends have told me that this approach will
never work. Users will never be persuaded to register their shareware if they know that the fee is going to be used
for tennis lessons. So....

I have decided to offer an incentive. If you register, I will send you a password that will "decrypt" (or, in PAL
parlance, "unprotect") the scripts that are in the dlgHELP library. This will allow you to examine the code for
ideas, or customize the code for your own applications. For example, some people find the flexibility (as
determined by the number of parameter variables) to be more than they need. You could "hard code" some
parameter values (such as the text color and row/column position on the screen or even the number of buttons) into
the procedure and simply use a couple of parameters, thus simplifying your procedure calls.

In addition, I am willing to answer specific questions concerning the procedures for registered users (as long as it
doesn't get out of hand). I guess you would call this technical support. In any case, the registration fee is well worth
it. Once you receive the password, simply run the register.sc script and enter the password when prompted.

You can register via CompuServe's Shareware Registration (GO SWREG; Registration ID: 7456) or send
check or money order to:

William A. Bailey, Jr.
9017 Gamesford Drive
Charlotte, NC 28277

Please include your e-mail address so I can send you the password. If you don't have an e-mail address, please
include a stamped, self-addressed envelope and I'll send it "snail mail."

If you are really in a hurry, just send an e-note indicating that you have registered (i.e. it is in the mail or you have
used CompuServe) and I'll send you the password right away. I'm a trusting soul. My e-mail address is:

Internet: bailey@vnet.net CompuServe: 102011,707 AOL: bbaileyjr

3. PushDlg(boxtitle,msgline,buttonlabel,align,r,c,textcolor)

This procedure quickly and easily creates the most common of all dialog boxes: pushbuttons and text. Examples
(see below) include Abort/Retry/Ignore (text and 3 buttons), Info or Stop (text and OK button), Yes/No Question
(text and 2 buttons), Retry/Cancel (text and 2 buttons), Yes/No/Cancel (text and 3 buttons). You can define 1 to 6
buttons and up to 18 lines of text. All of the buttons except the last one are automatically defined as OK buttons; the
last is defined as a CANCEL button. This means that regardless of the text labels placed on the buttons, pressing
any button but the last one will result in the entered values being accepted. Pressing the last button will cause any
entries to be ignored. The first button is defined as the DEFAULT.

The message is assigned to the msgline parameter. If the message is more than one line you must use an array, with
each line requiring one array element (including blank lines). Each message line will be centered. If you want them
to all appear left-aligned, make sure each element is the same number of characters.

You can identify which button was pressed via the global variable buttonvalue. The text label for the pressed button
is assigned to buttonvalue, minus any '~' characters that may have been used to defined the hotkey character. For
example, if ~O~K is the label for the pressed button, then buttonvalue will be assigned the string value "OK".
Buttonvalue will be empty if the last button is pressed (since it is always a CANCEL button).

Parameter Descriptions
boxtitle - An alphanumeric (string) variable defining the title of the dialog box. It will be centered automatically.

msgline - Text of message. Use an alphanumeric variable for a single-line message, fixed or dynamic array for
multiple lines (one element per line). Blank lines must also be assigned an array element.

buttonlabel - Defines the label text for each pushbutton. Use an alphanumeric variable for a single button; fixed
array or dynamic array for multiple buttons. If you wish to define hotkeys for each button, remember to include a '~'
character before and after the hotkey character. For, example, ~C~ancel could be the label for a pushbutton, where
the letter C would be the hotkey.

align - "V" for vertically-aligned buttons, "H" for horizontally-aligned buttons. Actually, anything but a "V" will
result in horizontal alignment.

r, c - Defines the upper left coordinates (row, column) of dialog box. To center the dialog box, use r=0 and c=0.

textcolor - Defines the foreground color of dialog canvas (affects text and lines). You can enter either a number
from 0 to 15 or the color description (see appendix for list of color codes and descriptions). A blank value ("")
defaults to the color black.

Example Usages

autolib="dlghelp"
; Example 1
pushDlg("Trivia","The capital of Oregon is Salem.","~O~K","H",0,0,"")
; Example 2
ARRAY msg[3]
msg[1]="You cannot delete these records. "
msg[3]="Call 123-4567 for more information. "
pushDlg("Cannot Delete",msg,"~O~K","H",0,0,"")
(cont.)

; Example 3
ARRAY BL[2]
BL[1]="~Y~es"
BL[2]="~N~o"
pushDlg("Confirm","Do you wish to delete this record?",BL,"H",0,0,"")
; Example 4 - this one is a little more unusual; no message; vertical buttons
ARRAY BL[5]
BL[1]="Menu ~1~"
BL[2]="Menu ~2~"
BL[3]="Menu ~3~"
BL[4]="Menu ~4~"
BL[5]="~E~xit"
pushDlg("Main Menu","",BL,"V",0,0,"Red")

Screen Captures of Examples Above

4. AcceptDlg(boxtitle,acceptlabel,acceptwidth,buttonlabel,r,c,textcolor)

This procedure displays a dialog box with ACCEPT (type-in box) controls. This allows the user to enter values
which can then be captured by the script, similar to the use of the ACCEPT statement.

You can define 1 to 6 type-in boxes and 2 or 3 pushbuttons. All of the buttons except the last one are automatically
defined as OK buttons; the last is defined as a CANCEL button. This means that regardless of the text labels placed
on the buttons, pressing any button but the last one will result in the entered values being accepted, pressing the last
button will cause any entries to be ignored. The first button is defined as the DEFAULT.

If the entries are accepted, they will be assigned to the global dynamic array variable AcceptValue[]. If only a single
type-in box is defined, then the entry will be assigned to AcceptValue[1]; two entries will be assigned to
AcceptValue[1] and AcceptValue[2], respectively, and so on. Tip: Assigning values to the elements of
AcceptValue[] prior to calling AcceptDlg will result in those values being displayed in the corresponding type-in
boxes as defaults.

In addition, you can identify which button was pressed via the global variable ButtonValue. The text label for the
pressed button is assigned to ButtonValue, minus any '~' characters that may have been used to defined the hotkey
character. For example, if ~O~K is the label for the last button, then ButtonValue will be assigned the string value
"OK". Buttonvalue will be empty if the last button is pressed (since it is always a CANCEL button).

Note: If your program already uses the variables AcceptValue[] or ButtonValue, conflicts may occur. You should
either change your variables (preferable) or edit the AcceptDlg script (which requires a password that you receive
upon registering).

Parameter Descriptions
boxtitle - An alphanumeric (string) variable defining the title of the dialog box. It will be centered automatically.

acceptlabel - Defines the label text for each type-in box. Use an alphanumeric variable for a single type-in box,
fixed array or dynamic array for multiple type-in boxes.

acceptwidth - Defines the size of the edit region for each type-in box. Use an alphanumeric variable for a single
type-in box, fixed array or dynamic array for multiple type-in boxes. This variable must be the same size and type
as acceptlabel.

buttonlabel - Defines the label text for each pushbutton. Use an alphanumeric variable for a single button, fixed
array or dynamic array for multiple buttons. If you wish to define hotkeys for each button, remember to include a '~'
character before and after the hotkey character. For, example, ~C~ancel could be the label for a pushbutton, where
the letter C would be the hotkey.

r, c - Defines the upper left coordinates (row, column) of dialog box. To center the dialog box, use r=0 and c=0.

textcolor - Defines the foreground color of dialog canvas (affects text and lines). You can enter either a number
from 0 to 15 or the color description (see appendix for list of color codes and descriptions). A blank value ("")
defaults to the color black.

Example Usage (2 buttons, 2 type-in boxes, centered, with blue text)

autolib="dlghelp"
DYNARRAY AL[]
DYNARRAY AW[]
DYNARRAY BL[]
AL[1]="First Name"
AL[2]="Last Name"
AW[1]=15 ; 15 characters allowed for first name
AW[2]=20 ; 20 characters allowed for last name
BL[1]="~O~K"
BL[2]="~C~ancel"
AcceptDlg("Customer Name",AL,AW,BL,0,0,"Blue")
MESSAGE "First Name: "+AcceptValue[1]+" Last Name: "+AcceptValue[2]
x=getchar()

If the first button is pressed, then the entry for the first name will be assigned to AcceptValue[1] and the entry for the
last name will be assigned to AcceptValue[2]. ButtonValue will have the value "OK".

If the second button is pressed, then AcceptValue[1] and AcceptValue[2] will be empty (but they will exist) and
ButtonValue will equal "Cancel".

If you wish to assign default values for the first and last names, add the following code prior to calling the
AcceptDlg procedure (if the user presses the CANCEL button, these values will be retained -- they will not be
emptied):

DYNARRAY AcceptValue[]
AcceptValue[1]="John" ; obviously you can supply your own default values
AcceptValue[2]="Doe"

Screen Capture

5. CheckDlg(boxtitle,checktitle,checklabel,checkrows,r,c,textcolor)

This procedure displays a dialog box with 1 to 10 check box controls. The user can select any combination of
check boxes. The dialog box also contains two pushbuttons with the labels "OK" and "Cancel". As the labels imply,
the first button is an OK button (the DEFAULT) and the second is a CANCEL button.

If the check box entries are accepted (by pressing the OK button), the value True or False will be assigned to each of
the elements of the global dynamic array variable CheckValue[]. If the first check box is "checked," then
CheckValue[1] will be True, otherwise it will be False, and so on for each check box. Tip: Assigning a value of
True to the elements of CheckValue[] prior to calling CheckDlg will result in the corresponding check boxes being
checked as defaults.

In addition, you can identify which button was pressed via the global variable ButtonValue. If the OK button is
pressed, ButtonValue will equal "OK". If the CANCEL button is pressed, ButtonValue will be empty.

Note: If your program already uses the variables CheckValue[] or ButtonValue, conflicts may occur. You should
either change your variables (preferable) or edit the CheckDlg script (which requires a password that you receive
upon registering).

Parameter Descriptions
boxtitle - An alphanumeric (string) variable defining the title of the dialog box. It will be centered automatically.

checktitle - An alphanumeric variable defining the title for the set of check boxes. The grouping of check boxes is
"framed," that is, it is enclosed within a single-line box. The title will be centered at the top of the frame.

checklabel - Defines the label text for each check box. Use an alphanumeric variable for a single check box, fixed
array or dynamic array for multiple check boxes.

checkrows - Defines the number of rows to be used in arranging the group of check boxes. For example, if there are
8 check boxes, specifying 2 rows will result in an arrangement of 4 check boxes per row.

r, c - Defines the upper left coordinates (row, column) of dialog box. To center the dialog box, use r=0 and c=0.

textcolor - Defines the foreground color of dialog canvas (affects text and lines). You can enter either a number
from 0 to 15 or the color description (see appendix for list of color codes and descriptions). A blank value ("")
defaults to the color black.

Example Usage (6 check boxes, 3 rows, centered, with black text)

autolib="dlghelp"
DYNARRAY CL[]
CL[1]="Customer"
CL[2]="Orders"
CL[3]="BackOrd"
CL[4]="Employee"
CL[5]="Products"
CL[6]="Sales"
CheckDlg("Tables to Copy","Select Tables",CL,3,0,0,"")
MESSAGE STRVAL(CheckValue[1])+STRVAL(CheckValue[2])+STRVAL(CheckValue[3])+
 STRVAL(CheckValue[4])+STRVAL(CheckValue[5])+STRVAL(CheckValue[6])
x=getchar()

If the OK button is pressed, then the value True will be assigned to CheckValue[1] if the "Customer" check box is
selected, to CheckValue[2] if the "Orders" check box is checked, and so on. If the check box is not selected, the
value of the corresponding CheckValue[] element will be False. ButtonValue will equal "OK".

If the second button is pressed, then the CheckValue[] elements will all be False and ButtonValue will equal
"Cancel".

If you wish to assign default selections for the check boxes, add the following code prior to calling the CheckDlg
procedure (if the user presses the CANCEL button, these values will be retained -- they will not be reset to False):

DYNARRAY CheckValue[]
CheckValue[1]=True ; obviously you can assign your own True/False values
CheckValue[2]=True
CheckValue[3]=True
CheckValue[4]=False
CheckValue[5]=False
CheckValue[6]=False

Screen Capture

6. RadioDlg(boxtitle, radiotitle, radiolabel, radiorows, r, c, textcolor)

This procedure displays a dialog box with 1 to 10 radio button controls. The user can select only one of the radio
buttons. The dialog box also contains two pushbuttons with the labels "OK" and "Cancel". As the labels imply, the
first button is an OK button (the DEFAULT) and the second is a CANCEL button.

If the radio button selection is accepted (by pressing the OK button), the ordinal value of the radio button is assigned
to the global variable radiovalue. If the first radio button is selected, then radiovalue will equal 1; if the second
button is selected, then radiovalue will equal 2, and so on. Tip: Assigning a numeric value to radiovalue prior to
calling RadioDlg will result in the corresponding button appearing selected by default.

In addition, you can identify which button was pressed via the global variable ButtonValue. If the OK button is
pressed, ButtonValue will equal "OK". If the CANCEL button is pressed, ButtonValue will be empty.

Note: If your program already uses the variables radiovalue or ButtonValue, conflicts may occur. You should
either change your variables (preferable) or edit the RadioDlg script (which requires a password that you receive
upon registering).

Parameter Descriptions
boxtitle - An alphanumeric (string) variable defining the title of the dialog box. It will be centered automatically.

radiotitle - An alphanumeric variable defining the title for the set of radio buttons. The grouping of radio buttons is
"framed", that is, it is enclosed within a single-line box. The title will be centered.

radiolabel - Defines the label text for each radio button. Use an alphanumeric variable for a single radio button;
fixed array or dynamic array for multiple radio buttons.

radiorows - Defines the number of rows to be used in arranging the group of radio buttons. For example, if there are
8 radio buttons, specifying 2 rows will result in an arrangement of 4 radio buttons per row.

r, c - Defines the upper left coordinates (row, column) of dialog box. To center the dialog box, use r=0 and c=0.

textcolor - Defines the foreground color of dialog canvas (affects text and lines). You can enter either a number
from 0 to 15 or the color description (see appendix for list of color codes and descriptions). A blank value ("")
defaults to the color black.

Example Usage (3 radio buttons, 3 rows, centered, with black text)

autolib="dlghelp"
DYNARRAY RL[]
RL[1]="Printer"
RL[2]="Screen"
RL[3]="File"
RadioDlg("Output","Select Device",RL,3,0,0,"")
MESSAGE STRVAL(radiovalue)
x=getchar()

Screen Capture

7. PickDlg(boxtitle, picktitle, acceptlabel, picklist, buttonlabel,
pickrows, pickcolumns, align, r, c, textcolor)

This procedure is a more flexible version of the type-in box/picklist dialog box used by Paradox for selecting tables
(or other files). For example, if you select VIEW from the main Paradox menu, a dialog box appears containing a
single type-in box (with the label "Table: ") and an empty pick list (with four columns) below it. If you press
ENTER while in the empty type-in box, a list of tables in the default directory appears in the pick list. The first
table is highlighted and you can use the arrow keys to navigate the picklist and highlight other tables. As you do
this, the name of the currently highlighted table is displayed in the type-in box.

PickDlg does exactly the same thing, except that, in addition, you can specify the title of the dialog box, a title for
the picklist frame, a label for the type-in box, up to six pushbuttons (with custom labels), how many rows and
columns for the picklist, whether the buttons will be displayed horizontally along the bottom or vertically along the
right edge, the location of the dialog box on the screen, and the color of the foreground text. Whew! This was
challenging to create but very useful. By the way, if you just want a picklist without the type-in box, simply pass an
empty string for the acceptlabel parameter. The type-in box will be removed., leaving only a picklist which is useful
for field lookups.

You can define 1 to 6 pushbuttons. All of the buttons except the last one are automatically defined as OK buttons.
The last is defined as a CANCEL button. This means that regardless of the text labels assigned to the buttons,
pressing any button but the last one will result in the entered or selected value being accepted. Pressing the last
button will cause any entry or selection to be ignored. The first button is defined as the DEFAULT.

If the entry or selection is accepted, the string value is assigned to the global variable acceptvalue while the index
value of the corresponding element in the picklist array (see parameter list) is assigned to pickvalue. If the picklist
parameter is a fixed array, then pickvalue will be numeric. If the picklist parameter is a dynamic array, then
pickvalue will be the same datatype as the tag.

In addition, as with the other procedures, you can identify which button was pressed via the global variable
buttonvalue. The text label for the pressed button is assigned to buttonvalue, minus any '~' characters that may have
been used to defined the hotkey character. For example, if ~O~K is the label for the last button, then buttonvalue
will be assigned the string value "OK". Buttonvalue will be empty if the last button is pressed (since it is always a
CANCEL button).

Parameter Descriptions
boxtitle - An alphanumeric (string) variable defining the title of the dialog box. It will be centered automatically.

picktitle - Title for picklist frame. A single-line box is placed around the picklist table. The title, which can be
blank, will be centered.

acceptlabel - An alphanumeric variable defining the label text for the type-in box. Use an empty string ("") to
exclude the type-in box.

picklist - A fixed or dynamic array containing the items for the picklist.

buttonlabel - Defines the label text for each pushbutton. Use an alphanumeric variable for a single button, fixed
array or dynamic array for multiple buttons. If you wish to define hotkeys for each button, remember to include a '~'
character before and after the hotkey character. For, example, ~C~ancel could be the label for a pushbutton, where
the letter C would be the hotkey.

pickrows - Defines the number of picklist rows.

pickcolumns - Defines the number of picklist columns.

align - "V" for vertically-aligned buttons, "H" for horizontally-aligned buttons. Actually, anything but a "V" will
result in horizontal alignment.

r, c - Defines the upper left coordinates (row, column) of dialog box. To center the dialog box, use r=0 and c=0.

textcolor - Defines the foreground color of dialog canvas (affects text and lines). You can enter either a number
from 0 to 15 or the color description (see appendix for list of color codes and descriptions). A blank value ("")
defaults to the color black.

Example Usage

autolib="dlghelp"
; the picklist array is loaded with values from a table; in this case, I just used the script names in the dlghelp table
DYNARRAY picklist[]
VIEW "dlghelp"
i=0
scan
 i=i+1
 picklist[i]=[Script]
endscan
CLEARALL ; removes the dlghelp table from the screen
DYNARRAY BL[] ; button labels
BL[1]="~O~K"
BL[2]="~C~ancel"
PickDlg("Pick a Script","Script List","Enter Script",picklist,BL,5,3,"H",0,0,"")
MESSAGE acceptvalue+" "+STRVAL(pickvalue)
x=getchar()

Screen Capture

This is what is looks like after pressing the ENTER key (while in the type-in box) and scrolling down to the
Colordlg choice. Prior to pressing the ENTER key, the type-in box and script list appear empty.

8. MsgWin(boxtitle,msgline)

This procedure differs from all the others in that it is a non-modal window and not a dialog box (which is almost
always modal). What that means is that this window can appear on the screen and stay there while the program
continues processing. Typically, the MESSAGE statement is used to indicate the status of a long process by
displaying a line of text near the bottom right-hand corner of the screen. The MsgWin procedure simulates a
Windows Status dialog box instead, providing a much more attractive interface (see screen captures below).

It is very easy to use. There are two parameters: boxtitle and msgline. Boxtitle requires a string value and will be
centered at the top of the window frame. Msgline requires either a string value or a fixed or dynamic array with
string elements, one for each line of text in the window (an example of each type is given below). Once the
procedure is called, the size and shape of the window will be determined automatically based on the length of the
text and the number of lines. Each line will be centered within the window so if you want the text to be left-
aligned, make sure that each line of text is the same length (pad it with blanks if you have to). You are allowed a
maximum of 18 lines.

One global variable is used to assign a handle to the window: msgwinhandle. You need to use this to close the
window at some point. In the examples below you can see that the following two commands are necessary:
WINDOW SELECT msgwinhandle
WINDOW CLOSE.
Example Usage 1

autolib="dlghelp"
; since message is a single line, text can be directly passed as string value
MsgWin("Status","Importing File...")
; these lines are simply used to pass time to illustrate the message window
for i from 1 to 1000
 message "Record "+strval(i)
endfor
; the message window can now be closed
WINDOW SELECT msgwinhandle
WINDOW CLOSE

Screen Capture

Example Usage 2

autolib="dlghelp"
; Since message is multiple lines, an array must be used.
; Notice that index values are skipped to create blank lines.
; This is harder to do with Dynamic Arrays, so I recommend
; sticking with Fixed arrays.
ARRAY msg[8]
msg[1]="This is an example "
msg[3]="of how to use the "
msg[5]="non-modal message "
msg[7]="window procedure. "
MsgWin("Status",msg)
for i from 1 to 1000
 message "Record "+strval(i)
endfor
WINDOW SELECT msgwinhandle
WINDOW CLOSE

Screen Capture

9. ClockDlg()

This procedure simply displays the current date and time. However, it is not just a snapshot of the time, but an
actual running clock.

There are no parameters, but there are two global variables that are useful for positioning the dialog box on the
screen: dlgRow and dlgCol. By default, the clock will be centered on the screen each time it is called. If you want
it to be positioned somewhere else, you can assign values to the variables dlgRow and dlgCol prior to calling
ClockDlg. Finally, you can also have the clock reappear at its last position each time it is called because ClockDlg
updates the values of dlgRow and dlgCol whenever you move the dialog box on the screen . Thus, if you use the
following code, you can specify the initial position of the clock on the screen and then let the program determine
future positions based on where it was at last.

Example Usage

autolib="dlghelp"
if not isassigned(dlgRow) then ;this must be the first running of the script
 dlgRow=5 ; these coordinates will center the clock
 dlgCol=26
endif
ClockDlg()
; at this point dlgRow and dlgCol will contain the most recent coordinates
; of the clock. If you rerun the script, the clock should reappear in its
; most recent position. This is true only as long as the values of dlgRow and
; dlgCol are not "released" either by using the RELEASE VARS statement or by
; limiting their scope in a way that results in their values not being
; maintained between calls to the ClockDlg procedure.

Screen Capture

10. ColorDlg()

This procedure is a special application of the more general PickDlg procedure. It allows you to see the effect of
different foreground and background color selections and then returns the Paradox color code for the selection that is
made. I don't know how often you'll use it, but it is so cool I had to include it.

Instead of requiring parameter values to determine the characteristics of the dialog box (as would be necessary with
the PickDlg procedure), I have already assigned default values to the key parameters within the ColorDlg script,
however, you can easily edit them within the script if you want your picklist to take on a different size and shape (of
course, you have to register first before you can view or edit the script).

There are two ways to select a color: 1) type the color combination (e.g. Red on Green) in the type-in box or 2)
press ENTER while the cursor is in the type-in box to display a pick list of color combinations (there are 256 - 16
foreground x 16 background).

There are three predefined buttons on the dialog box: OK, Display, and Cancel. Pressing "Display" when a color
has been selected will cause the color picklist frame to display that color selection. Pressing OK will cause the text
of the color selection to be assigned to the global variable acceptvalue and the Paradox color code value to be
assigned to pickvalue. For example, if the color combination 'Red on Green' is selected, acceptvalue will equal "Red
on Green" and pickvalue will equal 36. Pressing CANCEL will result in both of these variables remaining empty.
Also, as with other procedures, the global variable buttonvalue is assigned the value of the button that was pressed:
"OK" or "" (for CANCEL).

Note: If your program already uses the variables acceptvalue or pickvalue, conflicts may occur. You should either
change your variables (preferable) or edit the ColorDlg script (which requires a password that you receive upon
registering).

Example Usage

autolib="dlghelp"
ColorDlg()
MESSAGE "Description: "+acceptvalue+" Code: "+strval(pickvalue)
x=getchar()

Screen Capture

11. ExportDlg()

This procedure displays a special-purpose dialog box that allows the user to specify the filename and directory for
the target of a file export activity. In addition, two export "types" can be selected: 1) all fields or 2) just fields for
mailing labels. Of course, if you would like to define different export types, you can easily modify the script (again,
you need to register in order to edit any script). Different export types may be necessary if you need to transfer
different subsets of data other users.

There are six global variables that are used with ExportDlg. The three primary ones correspond to the three
controls on the dialog box: 1) exportfilename contains the name of the file entered in the first type-in box (up to 8
characters), 2) exportdirectory contains the name of the directory entered in the second type-in box (up to 40
characters), and 3) exporttype contains the number that refers to which export-type radio button was selected (1
refers to the first radio button, 2 the second, and so on). Once you have these values you can perform your export
operation. If you wish to assign default values to any of these variables prior to calling this procedure, you can do
so.

There are two pushbuttons: OK and CANCEL. As with the other dialog boxes, pressing OK accepts the entries and
assigns the variables. Pressing CANCEL leaves the variables in the same state as before the procedure was called.
The global variable buttonvalue is assigned the value "OK" or "" (for CANCEL) based upon which button is
pressed.

Finally, if you wish to control the position of the export dialog box on the screen you can use the global variables
dlgRow and dlgCol. By default, the dialog box will be centered, however, you can assign your own values to these
variables prior to calling this procedure. In addition, if the dialog box is moved on the screen, the values of these
variables are dynamically updated to reflect the current and most recent position. Thus if you use the following
code, you can both specify the initial position of the dialog box and allow the user to move it (subsequent calls to
this procedure will cause the dialog box to reappear in its last location).

Note: If your program already uses any of these global variables, conflicts may occur. You should either change
your variables (preferable) or edit the ExportDlg script (which requires a password that you receive upon
registering).

Example Usage

autolib="dlghelp"
if not isassigned(dlgRow) then ;this must be the first running of the script
 dlgRow=4 ; these coordinates are arbitrary
 dlgCol=20
endif
ExportDlg()
; at this point dlgRow and dlgCol will contain the most recent coordinates
; of the dialog box. If you rerun the script, then it should reappear in its
; most recent position. This is true only as long as the values of dlgRow and
; dlgCol are not "released" either by using the RELEASE VARS statement or by
; limiting their scope in a way that results in their values not being
; maintained between calls to the ExportDlg procedure.

; what follows is an example of what you could do after calling ExportDlg()
if buttonvalue="OK" then

switch
case exporttype=1: PLAY "Query1" ; result is in Answer table
case exporttype=2: PLAY "Query2" ; result is in Answer table
endswitch
MENU {Tools} {ExportImport} {Export} {ASCII} {Delimited} {Answer}
TYPEIN exportdirectory+exportfilename ENTER

endif

Screen Capture

12. FindRecord()

This procedure is a special case of the AcceptDlg procedure with one type-in box and two buttons. It allows the
user to search the current field for a value. The name of the current field (as defined in the table structure) will
automatically be used as the label for the type-in box. Users can use all of the same special characters and values
that are permitted by the Paradox Zoom command (e.g. ".." for partial matches).

There are no parameters, but there are four global variables: SearchValue, ButtonValue, dlgRow, dlgCol.
SearchValue returns the user's entry in the type-in box if the OK button is pressed. If the Cancel button is pressed,
then SearchValue retains its original value (probably null). You can, if you wish, assign a default value to
SearchValue prior to calling FindRecord.

Note: If your program already uses the variable searchvalue, conflicts may occur. You should either change your
variable (preferable) or edit the FindRecord script (which requires a password that you receive upon registering).

The variable buttonvalue is assigned the value "OK" or "" (for CANCEL) based upon which button is pressed.

Finally, if you wish to control the position of the dialog box on the screen you can use the global variables dlgRow
and dlgCol. By default, the dialog box will be centered, however, you can assign your own values to these variables
prior to calling this procedure. In addition, if the dialog box is moved on the screen, the values of these variables are
dynamically updated to reflect the current and most recent position. Thus if you use the following code, you can
both specify the initial position of the dialog box and allow the user to move it (subsequent calls to this procedure
will cause the dialog box to reappear in its last location).

Example Usage

autolib="dlghelp"
VIEW "Customer" ; make the Customer table the current image
MOVETO [Account Number] ; move to the "Account Number" field
if not isassigned(dlgRow) then
 dlgRow=3 ; these coordinates are arbitrary
 dlgCol=15
endif
FindRecord()
; at this point dlgRow and dlgCol will contain the most recent coordinates
; of the dialog box. If you rerun the script, then it should reappear in its
; most recent position. This is true only as long as the values of dlgRow and
; dlgCol are not "released" either by using the RELEASE VARS statement or by
; limiting their scope in a way that results in their values not being
; maintained between calls to the ExportDlg procedure.

Screen Capture

13. SearchAndReplace()

This procedure is rather sophisticated (at least I'm kind of proud of it). It allows you to search the current field (i.e.
the one the cursor is positioned on when this procedure was triggered) for a value and replace it with another value.
The user has the option of specifiying case sensitivity and/or full word vs. partial matches. In addition, all matches
can be replaced without prompts or can require individual verification by the user. Try it! You'll be impressed also
(hopefully it works).

There are no parameters, but there are two global variables that are useful for positioning the dialog box on the
screen: dlgRow and dlgCol. By default, the dialog box will be centered on the screen each time it is called. If you
want it to be positioned somewhere else, you can assign values to the variables dlgRow and dlgCol prior to calling
SearchAndReplace. Finally, you can also have the dialog box reappear at its last position each time it is called
because SearchAndReplace updates the values of dlgRow and dlgCol whenever you move the dialog box on the
screen. Thus, if you use the following code, you can specify the initial position of the clock on the screen and then
let the program determine future positions based on where it was at last.

The variable buttonvalue is assigned the value "OK" or "" (for CANCEL) based upon which button is pressed.

Example Usage

autolib="dlghelp"
if not isassigned(dlgRow) then ;this must be the first running of the script
 dlgRow=4 ; these coordinates are arbitrary
 dlgCol=20
endif
SearchAndReplace()
; at this point dlgRow and dlgCol will contain the most recent coordinates
; of the dialog box. If you rerun the script, it should reappear in its
; most recent position. This is true only as long as the values of dlgRow and
; dlgCol are not "released" either by using the RELEASE VARS statement or by
; limiting their scope in a way that results in their values not being
; maintained between calls to the SysInfoDlg procedure.

Screen Capture

14. SysInfoDlg()

This procedure simply displays selected information about the system. I usually include it as a menu choice under
the Help option on my custom menu bar.

There are no parameters, but there are two global variables that are useful for positioning the dialog box on the
screen: dlgRow and dlgCol. By default, the dialog box will be centered on the screen each time it is called. If you
want it to be positioned somewhere else, you can assign values to the variables dlgRow and dlgCol prior to calling
SysInfoDlg. Finally, you can also have the dialog box reappear at its last position each time it is called because
SysInfoDlg updates the values of dlgRow and dlgCol whenever you move the dialog box on the screen . Thus, if
you use the following code, you can specify the initial position of the clock on the screen and then let the program
determine future positions based on where it was at last.

Example Usage

autolib="dlghelp"
if not isassigned(dlgRow) then ;this must be the first running of the script
 dlgRow=4 ; these coordinates are arbitrary
 dlgCol=25
endif
SysInfoDlg()
; at this point dlgRow and dlgCol will contain the most recent coordinates
; of the dialog box. If you rerun the script, it should reappear in its
; most recent position. This is true only as long as the values of dlgRow and
; dlgCol are not "released" either by using the RELEASE VARS statement or by
; limiting their scope in a way that results in their values not being
; maintained between calls to the SysInfoDlg procedure.

Screen Capture

Appendix A - Color Codes and Descriptions

These color code values and descriptions can be used in assigning values to the textcolor parameter for some of the
procedures.

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light Gray
8 Dark Gray
9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Yellow
15 White

Appendix B - Demo Program

Due to several requests, dlgHELP now contains a demo program to illustrate its features. The demo program is
contained in the dlgdemo.zip file which can be 'unzipped' in the dlgHELP directory or in another directory.

dlgdemo.zip contains the following files:

accept.db
accept.px
accept.f1
check.db
check.px
check.f1
customer.db
demobox.db
demobox.f1
demobox.f3
demobox.f2
demobox.f4
demobox.f6
demobox.f5
dlgdemo.sc - Play this script to run the demo
dlghelp.lib - This is the same library file that comes with dlgHELP. It is used by the demo.
label.db
label.px
label.f1
msgline.db
msgline.px
msgline.f1
picklist.db
picklist.px
picklist.f1
readme2.txt

In addition to demonstrating the tools and utilities of dlgHELP, you can also enter your registration password from
the demo main menu. However, the demo files must be in the same directory as your dlgHELP library scripts.

This is not intended to be an 'airtight' or polished Paradox application. While it is very functional, it is not user-
proof.

Appendix C - Revision History

1.0a 26 Sep 1995

dlgHELP Library

Fixed register.sc. It was looking to dialog.db (which didn't exist) for list of script names to unprotect instead of
dlghelp.db.

Fixed SearchAndReplace utility. It inaccurately reported that system mode was not CoEdit or Edit when in fact it
was. You must be in CoEdit or Edit mode to run this utility.

Fixed CheckDlg tool. There was a minor problem declaring the global variable checkvalue[] which returns the
selected checkbox values.

Added dlgdemo.zip file, which contains files for a demo of dlghelp.lib.

Manual

Corrected inaccuracy concerning value of buttonvalue. Buttonvalue does contain the value of the button label that
was pressed, EXCEPT when that button is a CANCEL button. For those dialog boxes that can have varous numbers
of pushbuttons, the LAST button is always a CANCEL button (regardless of the label you assign to it). If the
CANCEL button is pressed, buttonvalue does not equal "Cancel" (as was reported earlier). It is empty (i.e.
buttonvalue = "") .

Minor changes in wording to improve clarity of some explanations.

1.0 9 Sep 1995

Original Manual

