
##$$KKTCGI Component
Properties Methods

Unit
CGI

Description
The TCGI Component allows Delphi programs to link to information servers supporting Windows CGI
version 1.1 and above.    Used in conjunction with a compatible server, it allows collection, processing,
and publication of data on the World Wide Web.    Its core functionality is provided by the FormFields and
Method properties, and by the Send method.    It is intentionally lacking in bells and whistles, providing the
basic properties and methods needed with as little overhead as possible.

The companion TCGIDlg Component makes visually debugging CGI applications quick and easy.

See Also
Acknowledgements

#hlp_tcgi
$TCGI Component
KTCGI

##Properties
ContentType ExternalFields FormFields
HugeFields Method Profile
ResponseHeaders StdOut ServerStatus

#tcgi_prop

##Methods
Send SendContent

#tcgi_meth

##$$ExternalFields Property

Unit
CGI

Applies to
TCGI

Declaration
property ExternalFields: TTupleList;
Description
The ExternalFields property contains a list of key/value pairs describing the external field data (field data
between 255 and 65,534 bytes) entered into the form on the client end.    This data should not be
accessed directly.    Use the GetExternalSize and GetExternalData methods.

#cgi_ExternalFields
$ExternalFields property

##$$FormFields Property

Unit
CGI

Applies to
TCGI

Declaration
property FormFields: TTupleList;
Description
The FormFields property contains a list of key/value pairs describing the small field data (field data of 254
bytes or fewer) entered into the form on the client end.

#cgi_FormFields
$FormFields property

##$$HugeFields Property

Unit
CGI

Applies to
TCGI

Declaration
property HugeFields: TTupleList;
Description
The HugeFields property contains a list of key/value pairs describing the huge field data (data larger than
65,535 bytes) sent by the client.

#cgi_HugeFields
$HugeFields property

##$$Method Property

Unit
CGI

Applies to
TCGI

Declaration
property Method: TRequestMethod;
Description
The Method property translates the RequestMethod field of the Profile record into an enumerated type.   
This is useful in that it allows you to use a case Method of construct to process CGI requests, since
Delphi only allows the use of ordinal types in case statements.

If the TCGI component doesn't recognize the method type, Method will be set to rmOTHER, and you can
test for the specific method by accessing the original, untranslated method string ('GET', 'POST', etc.) in
Profile.RequestMethod.

Example
procedure CGIProcess;
begin

case CGI.Method of
rmGET: SendForm;
rmPOST: ProcessForm;
else SendMethodError;

end;

#cgi_Method
$Method property

##$$Profile Property

Unit
CGI

Applies to
TCGI

Declaration
property Profile: TCGIProfile;
Description
The Profile property contains the CGI profile information for the current session.

#cgi_Profile
$Profile property

##$$ResponseHeaders Property

Unit
CGI

Applies to
TCGI

Declaration
property ResponseHeaders: TStringList;
Description
Use the ResponseHeaders property to output any HTTP response headers needed in the return
document.    Do not use this property to output Status, Content-Type, or Content-Length headers.   
Status and Content-Type are output automatically as designated by the ServerStatus and ContentType
properties, respectively.    Content-Length is determined automatically when the SendContent method is
called.

This property will usually not be needed.    For detailed descriptions of the standard HTML response
headers, see the HTTP 1.0 specification.

#cgi_ResponseHeaders
$ResponseHeaders property

##$$ServerStatus Property

Unit
CGI

Applies to
TCGI

Declaration
property ServerStatus: TServerStatus;
Description
ServerStatus contains the HTTP document status, which gets translated into the proper HTTP response
header when the SendContent method is called.    All of the statuses described by the HTTP 1.0
specification are supported by the ServerStatus property.    The default is stOK, which translates into the
'200 OK' response header.

#cgi_ServerStatus
$ServerStatus property

##$$ContentType Property

Unit
CGI

Applies to
TCGI

Declaration
property ContentType: String;
Description
The ContentType property contains the MIME content type/subtype of the data which will be returned by
the CGI application.    It is used by the SendContent method to generated the HTTP Content-Type
response header.    The default is 'text/html', but can be changed for other types of return data ('image/gif',
for example).    This property must contain a valid MIME type/subtype, or you will most likely choke
the browser!

#cgi_ContentType
$ContentType property

##$$StdOut Property

Unit
CGI

Applies to
TCGI

Declaration
property StdOut: TMemoryStream;
Description
The StdOut property acts as virtual standard output for the CGI application.    For string-based data, you
don't need to access StdOut directly; use the TCGI.Send method instead.    For data stored in a memory
buffer (or a PChar), use the StdOut.Write method.    For stream-based data, use the
StdOut.LoadFromStream method or the source stream's SaveToStream method.

Examples
procedure SendSomeStuff;
var

Buffer: PChar;
PicFile: TFileStream;

begin
Buffer := StrNew('This is how you send a PChar.');
PicFile := TFileStream.Create('picture.bmp',fmOpenRead);
with CGI do begin

{ Use Send to output a string }
Send('This works fine for strings.');
try

{ Use Write to output a buffer }
StdOut.Write(Buffer,StrLen(Buffer));

{ Use LoadFromStream to output stream content }
StdOut.LoadFromStream(PicFile);

finally
StrDispose(Buffer);
PicFile.Free;

end;
end;

end;

#cgi_StdOut
$StdOut property

##$$Send Method

Unit
CGI

Applies to
TCGI

Declaration
procedure Send(Text: String);
Description
The Send method writes a string to the StdOut stream, which is later returned to the server via the
SendContent method.

Example
CGI1.Send('All this talk about servers is making me hungry.');

#cgi_Send
$Send method

##$$SendContent Method

Unit
CGI

Applies to
TCGI

Declaration
procedure SendContent;
Description
The SendContent method sends the buffered response data contained in StdOut to the server-specified
output file.    It also generates the Status, Content-Type, and Content-Length response headers based on
the ServerStatus and ContentType properties and the length of the data in the StdOut stream.   
SendContent should be the last method your CGI application calls, since it finalizes the length of the data
stream and reports the content information back to the server.

#cgi_SendContent
$SendContent method

##AcceptTypes Field

Applies to
TCGIProfile

Declaration
AcceptTypes: TTupleList;
Description
The AcceptTypes field contains the key/value pairs describing the MIME types that the client reports it can
accept.

#prof_AcceptTypes

##AuthType Field

Applies to
TCGIProfile

Declaration
AuthType: String;
Description
If execution of the back-end is protected, AuthType is the protocol-specific authentication method used to
validate the user.

#prof_AuthType

##AuthUser Field

Applies to
TCGIProfile

Declaration
AuthUser: String;
Description
If execution of the back-end is protected, AuthUser is the username that the client used to authenticate for
access to the back-end.

#prof_AuthUser

##ContentFile Field

Applies to
TCGIProfile

Declaration
ContentFile: String;
Description
The full name (including path) of the file containing the raw request content (for requests which have
attached data).

#prof_ContentFile

##ContentLength Field

Applies to
TCGIProfile

Declaration
ContentLength: LongInt;
Description
The length (in bytes) of the data supplied with the request (for requests which have attached data).

#prof_ContentLength

##ContentType Field

Applies to
TCGIProfile

Declaration
ContentType: String;
Description
For requests which have attached data, ContentType is the MIME content type of the data in the format
type/subtype.    Example: "text/html"

#prof_ContentType

##DebugMode Field

Applies to
TCGIProfile

Declaration
DebugMode: Boolean;
Description
DebugMode is True if the server's back-end debug flag is set.

#prof_DebugMode

##ExecutablePath Field

Applies to
TCGIProfile

Declaration
ExecutablePath: String;
Description
The logical path to the back-end executable, as needed for self-referencing URLs.

#prof_ExecutablePath

##ExtraHeaders Field

Applies to
TCGIProfile

Declaration
ExtraHeaders: TTupleList;
Description
The ExtraHeaders field contains a list of key/value pairs describing extra data reported by the client (e.g.,
browser name).

#prof_ExtraHeaders

##GMTOffset Field

Applies to
TCGIProfile

Declaration
ExtraHeaders: LongInt;
Description
The number of seconds to be added to GMT time to reach local time.    For Pacific Standard Time, this
number is -28,800.    Useful for computing GMT times.

#prof_GMTOffset

##LogicalPath Field

Applies to
TCGIProfile

Declaration
LogicalPath: String;
Description
A request may specify a path to a resource needed to complete that request. This path may be in a logical
pathname space. This item contain the pathname exactly as received by the server, without logical-to-
physical translation.

Example
In the following URL, the LogicalPath info is in boldface:

http://www.fruit.org/cgi-win/compare/apples/oranges

See Also
PhysicalPath

#prof_LogicalPath

##OutputFile Field

Applies to
TCGIProfile

Declaration
OutputFile: String;
Description
The full path/name of the file in which the server expects to receive the back-end's results. There is
usually no need to maintain the file yourself; it is handled by the Send method.

#prof_OutputFile

##PhysicalPath Field

Applies to
TCGIProfile

Declaration
PhysicalPath: String;
Description
If the request contained logical path information, the server provides the path in physical form, in the
native object (e.g., file) access syntax of the operating system.

See Also
LogicalPath

#prof_PhysicalPath

##ProfileFile Field

Applies to
TCGIProfile

Declaration
ProfileFile: String;
Description
The full name (including path) of the file containing the CGI environment information and decoded form
data.

#prof_ProfileFile

##QueryString Field

Applies to
TCGIProfile

Declaration
QueryString: String;
Description
The information which follows the ? in the URL that generated the request is the "query" information. The
server furnishes this to the back end whenever it is present on the request URL, without any decoding or
translation.

Example
In the following URL, the QueryString is in boldface:

http://www.fruit.org/cgi-win/getprice?grapes+kiwis

#prof_QueryString

##RemoteAddr Field

Applies to
TCGIProfile

Declaration
RemoteAddr: String;
Description
The network (IP) address of the client (requestor) system. This item is used for logging if the host name is
not available.

#prof_RemoteAddr

##RemoteHost Field

Applies to
TCGIProfile

Declaration
RemoteHost: String;
Description
The network host name of the client (requestor) system, if available. This item is used for logging.

#prof_RemoteHost

##RequestMethod Field

Applies to
TCGIProfile

Declaration
RequestMethod: String;
Description
The method with which the request was made. For HTTP, this is "GET", "HEAD", "POST", etc.

#prof_RequestMethod

##RequestProtocol Field

Applies to
TCGIProfile

Declaration
RequestProtocol: String;
Description
The name and revision of the information protocol this request came in with in the format
protocol/revision.    Example: "HTTP/1.0".

#prof_RequestProtocol

##ServerAdmin Field

Applies to
TCGIProfile

Declaration
ServerAdmin: String;
Description
The e-mail address of the server administrator.

#prof_ServerAdmin

##ServerName Field

Applies to
TCGIProfile

Declaration
ServerName: String;
Description
Hostname (or alias) of the information server.    Needed for self-referencing URLs.

#prof_ServerName

##ServerPort Field

Applies to
TCGIProfile

Declaration
ServerPort: Integer;
Description
The information server's network port number.    Needed for self-referencing URLs.

#prof_ServerPort

##ServerSoftware Field

Applies to
TCGIProfile

Declaration
ServerSoftware: String;
Description
The name and version of the information server software.

#prof_ServerSoftware

##TAPUser Field

Applies to
TCGIProfile

Declaration
TAPUser: String;
Description
TAP identity of the authenticated client user.

#prof_TAPUser

##Version Field

Applies to
TCGIProfile

Declaration
Version: String;
Description
The revision of the CGI specification to which this information server complies. Format: CGI/revision. For
this version, "CGI/1.1 WIN".

#prof_Version

##TCGIProfile Type

Unit
CGI

Declaration
TCGIProfile = record

AcceptTypes: TTupleList;
AuthType: String;
AuthUser: String;
ContentFile: String;
ContentLength: LongInt;
ContentType: String;
DebugMode: ByteBool;
ExecutablePath: String;
ExtraHeaders: TTupleList;
GMTOffset: LongInt;
LogicalPath: String;
OutputFile: String;
PhysicalPath: String;
ProfileFile: String;
QueryString: String;
RemoteAddr: String;
RemoteHost: String;
RequestMethod: String;
RequestProtocol: String;
ServerAdmin: String;
ServerName: String;
ServerPort: Integer;
ServerSoftware: String;
TAPUser: String;
Version: String;

end;
Description
The TCGIProfile type holds Common Gateway Interface (CGI) profile information.

See Also
TCGI Component

#hlp_tcgiprofile

##$$TRequestMethod Type

Unit
CGI

Declaration
TRequestMethod = (rmGET, rmPOST, rmTEXTSEARCH, rmHEAD, rmLINK, rmUNLINK,

rmPUT, rmOTHER);
Description
TRequestMethod defines the possible values of the Method property.

#hlp_trequestmethod
$TRequestMethod Type

##$$TServerStatus Type

Unit
CGI

Declaration
TServerStatus = (stOK, stCreated, stAccepted, stPartialInfo, stNoResponse,

stMoved, stNotModified, stBadRequest, stUnauthorized, stPaymentRequired,
stForbidden, stNotFound, stInternalError, stNotImplemented, stOverloaded,
stTimeout);

Description
TServerStatus defines the possible values of the ServerStatus property.    All of the values defined by the
HTML 1.0 specification are represented.

#hlp_tserverstatus
$TRequestMethod Type

##$$TTupleList Object
Properties Methods

Unit
CGI

Description
The TTupleList object is descended from the TStringList object.    It adds the Keys and IntValues
properties and the IndexOfKey method.

#hlp_ttuplelist
$TTupleList Object

##Properties
IntValues Keys

#ttuplelist_prop

##Methods
GetExternalData GetExternalSize
IndexOfKey

#ttuplelist_meth

##$$IntValues Property

Unit
CGI

Applies to
TTupleList

Declaration
property IntValues[const Key: String]: Integer;
Description
Returns the value half of the key/value pair identified by Key as an integer type.    See the
TStringList.Values property for more information on key/value pairs stored in string lists.

Example
If the key/value pair 'guava=30' were stored in TupleList FruitCount, then
FruitCount.IntValues['guava'] would be equal to 30.

See Also
Keys property

#tuple_IntValues
$IntValues property

##$$Keys Property

Unit
CGI

Applies to
TTupleList

Declaration
property Keys[const Index: Integer]: String;
Description
Returns the key half of the key/value pair at the specified Index in the TupleList.    See the
TStringList.Values property for more information on key/value pairs stored in string lists.

Example
If the key/value pair 'guava=30' were stored as the first item in TupleList FruitCount, then
FruitCount.Keys[0] would be equal to 'guava'.

See Also
IntValues property
IndexOfKey method

#tuple_Keys
$Keys property

##$$IndexOfKey Method

Unit
CGI

Applies to
TTupleList

Declaration
function IndexOfKey(const Key: String): Integer;
Description
Returns the index of the key/value pair identified by Key.    If the specified Key does not exist, IndexOfKey
returns -1.

See Also
Keys property

#tuple_IndexOfKey
$IndexOfKey method

##$$GetExternalData Method

Unit
CGI

Applies to
TTupleList

Declaration
function GetExternalData(const Key: String, var Buffer: PChar): Integer;
Description
Reads the external field specified by Key into Buffer.    Buffer must be large enough to hold the external
field data.    Returns the number of bytes read.

Example
var

Buffer: PChar;
Size: Integer;

begin
with CGI.ExternalFields do begin

Size := GetExternalSize('kiwi');
Buffer := StrAlloc(Size);
GetExternalData('kiwi',Buffer);

end;
end;
See Also
GetExternalSize method

#tuple_GetExternalData
$GetExternalData method

##$$GetExternalSize Method

Unit
CGI

Applies to
TTupleList

Declaration
function GetExternalSize(const Key: String): Integer;
Description
Returns the number of bytes required to read the field data specified by Key into a buffer.

Example
var

Buffer: PChar;
Size: Integer;

begin
with CGI.ExternalFields do begin

Size := GetExternalSize('kiwi');
Buffer := StrAlloc(Size);
GetExternalData('kiwi',Buffer);

end;
end;
See Also
GetExternalData method

#tuple_GetExternalSize
$GetExternalSize method

##$$KKTCGIDlg Component
Properties Methods

Unit
CGIDlg

Description
The TCGIDlg component provides feedback about the status and operation of the TCGI component.   
Calling the Execute method will pop up a modal dialog displaying the values included in the CGI Profile,
any Form Fields, and a buffer containing the data to be sent back to the client.

#hlp_TCGIDebugDlg
$TCGIDlg Component
KTCGIDlg

##Properties
CGI

#debug_prop

##Methods
Execute

#debug_meth

##$$CGI Property

Unit
CGIDlg

Applies to
TCGIDlg

Declaration
property CGI: TCGI;
Description
The CGI Property points to the TCGI component to be dumped/debugged/displayed.

#debug_cgi
$CGI Property

##$$Execute Method

Unit
CGIDlg

Applies to
TCGIDlg

Declaration
procedure Execute;
Description
The Execute method retrieves the relevant data from the CGI component and displays the debugging
dialog.

#debug_exec
$Execute Method

##The Common Gateway Interface (CGI) acts as a conduit between a web server and a back-end
processing application (or script).    CGI defines how the back-end script retrieves its data (such as query
strings or filled out form fields), and where it should put the results it generates for transmission back to
the client.

#def_CGI

##$$About the TCGI Component
The TCGI component is being released to the public as postcard-ware.    If you find it useful, entertaining,
enlightening, or simply cool, just send a postcard letting me know what you think, and consider yourself
registered!    Postcards larger than 1 bit by 1 bit won't fit through my e-mail slot, so please forward them
to:

Cool CGI Component
c/o Michael B. Klein
Washington Publishing Company
806 W. Diamond Ave., Suite 400
Gaithersburg, MD    20878

The design of the TCGI component was based largely on the CGI.BAS framework written in Visual Basic
and provided along with the Windows httpd v1.4 Web Server for Windows 3.1.    The WinHTTPD server,
the Visual Basic framework, and a good deal of the definitions and explanations which appear in this help
file were written by Robert B. Denny.    His documentation and comments have been an invaluable aid to
the creation of this component, so I feel he deserves a couple shameless plugs:

Windows httpd v1.4a for Windows 3.1 (shareware, $99 commercial licence fee) is available at
http://www.city.net/win-httpd.

The brand-spankin'-new, 32-bit WebSite for Windows NT 3.5 and Windows 95 (list price $499) is
available from O'Reilly and Associates, Inc.    Check out http://website.ora.com/ for details
and ordering information.

Windows httpd 1.4 and portions of this help file are copyright © 1994, 1995 Robert B. Denny, Pasadena,
California.    Used by permission. • WebSite is a trademark of O'Reilly and Associates, Inc. • The TCGI
component and its source code and documentation are copyright © 1995 Michael B. Klein, Alexandria,
Virginia.

Please direct all inquiries about this component to:

Internet: mbk@baldrick.com
Compuserve: 74323,3555

#hlp_aboutcgi
$About the TCGI component

