
This Windows Help file was written by Graham Plowman
using HelpBuilder Version 1.05 and refers to:

Setup Version 3.03 / 28-11-1994

Copyright 1993, 1994 Graham Plowman

Chdir

Format
Chdir("Directory")

Purpose
Changes the current drive and/or directory

Parameters
• String name of directory to change to

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - directory not found
• FALSE Success

Comments
Unlike the DOS equivalent, this command changes both the drive and directory if they are specified

Example
CHDIR("C:\SETUP")

See Also
Mkdir, Rmdir

CheckExists

Format
CheckExists("filename")
CheckExists("filename", "message")

Purpose
Checks for the presence of the file 'filename'.
In its second form this function checks for the existence of the parameter file and displays a message box if the
file is not found. The message box continues to be displayed until a disk is inserted which contains the
specified file

Parameters
• String name of file to check for
• Optional message to display if the file is not found

Return Value
The %ERROR% variable contains the return value:
Method 1:
• TRUE File(s) exist(s)
• FALSE File(s) do/does not exist

Method 2:
• IDOK File(s) exist(s)
• IDCANCEL File(s) not found and user has pressed Cancel

Comments
The file name may contain wildcards, drive and directory specifications.
This function can be used to check whether the correct disk in an installation suite has been inserted in the
diskette drive

Example
CHECKEXISTS("C:\AUTOEXEC.BAT")
CHECKEXISTS("A:\DISK01", "Please insert DISK #1")

See Also
CheckLabel, GetModuleInUse

CheckLabel

Format
CheckLabel("drive", "label", "message")

Purpose
Checks the disk 'drive' to see if it has the label 'label' and if not, displays a message box containing the
parameter message

Parameters
• String drive letter
• String label of diskette to compare against
• String message to display if the diskette label does not

match the specified label

Return Value
Sets the %ERROR% variable according to which key the user pressed to terminate the message box:

• IDOK User pressed the Ok button or the disk
had the correct label

• IDCANCEL User pressed the Cancel button to quit

Example
CHECKLABEL("A:", "DISK1", "Insert disk labelled DISK1")

CloseIn

Format
CloseIn()

Purpose
Closes the file currently open for reading

Parameters
None

Return Value
None

Comments
If there is no file open, this function is ignored

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

OpenIn("C:\CONFIG.SYS")
IF %ERROR% == TRUE GOTO :OPENERROR

OpenOut("C:\TEMP.DAT")
:NEXTLINE
ReadLine(%Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(%Buffer%)
GOTO :NEXTLINE

:EOF
CloseIn()
CloseOut()

.

.

:OPENERROR

See Also
CloseOut, OpenIn, OpenOut

CloseOut

Format
CloseOut()

Purpose
Closes the file currently open for writing

Parameters
None

Return Value
None

Comments
If there is no file open, this function is ignored

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

OpenIn("C:\CONFIG.SYS")
IF %ERROR% == TRUE GOTO :OPENERROR

OpenOut("C:\TEMP.DAT")
:NEXTLINE
ReadLine(%Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(%Buffer%)
GOTO :NEXTLINE

:EOF
CloseIn()
CloseOut()

.

.

:OPENERROR

See Also
CloseIn, OpenIn, OpenOut

Command Directory

 IF Comparison command
 GOTO Control branching command
 SET Variable assignment command

Predefined Constants

The interpreter supports the following predefined constants whose numeric equivalents are listed.
The constant or its numeric value may be used in any place where a numeric parameter is permitted.

Message Box Keys
MB_OK 0
MB_OKCANCEL 1
MB_ABORTRETRYIGNORE 2
MB_YESNOCANCEL 3
MB_YESNO 4
MB_RETRYCANCEL 5

Message Box Icons
MB_ICONSTOP 16
MB_ICONQUESTION 32
MB_ICONEXCLAMATION 48
MB_ICONINFORMATION 64

Return Keys from MessageBox / DialogBox functions
IDOK 1
IDCANCEL 2
IDABORT 3
IDRETRY 4
IDIGNORE 5
IDYES 6
IDNO 7
IDBACK 10
IDBUTTON1 11
IDBUTTON2 12
IDBUTTON3 13
IDBUTTON4 14
IDBUTTON5 15

Logical Values
TRUE 1
FALSE 0

End Of File
EOF 2

Contents for Setup Script Help

Setup is a utility program for providing Windows-hosted procedures for installing Applications.
Press the F1 key for for Help on using Windows Help.

What is Setup ?

Creating a setup procedure

Standards and Notations
Command Directory
Function Directory

Error Message Directory
Predefined Variables
Predefined Constants

Suggestions for use

About this help file

CopyFile

Format
This command has two formats:

Method 1
CopyFile("source file name", "target directory")

Method 2
CopyFile(n)
"source file name", "target directory", "message"

Purpose
Copies file(s) from one location to another.

Parameters
Method 1
• String source file name which may include paths

and wildcards
• String name of target directory.

This must not contain wildcards or new file names

Method 2
The number of files to be copied. This is so that the gauge knows how many files it is to represent and does not
affect the actual number of files copied. It does not matter if you get the number wrong, but you might find the
gauge visually fills up before you expected it to or not to fully fill up.
The file name parameters are listed in the lines after the command:

• String source file name which may include paths and wildcards
• String name of target directory. This must not contain wildcards

or new file names
• String message which can be used to tell the user in the

'copy dialog' what files are being copied

Return Value
The %ERROR% variable holds the error number

Comments
Method (1) performs a straight copy whereas method (2) displays a 'gauge' to show copy progress. The number
10 in the example below would represent the number of files being copied. This is used purely for the purpose
of the fuel gauge to know how many files it should represent. If it is incorrect, it doesn't matter, but you may
find the gauge finishes too soon or not at all! It does not affect the number of files copied.

Note that source file names may contain drive, path and wildcard specifications.
Target file names MUST only contain a target path name and NO filename(s). They may end with a but this
will be appended automatically if not supplied. It is not possible to rename a file using the CopyFile function.
The 'Description' parameter is optional and may be left off, but if supplied will be displayed at the top of the
copy files dialog to inform the user of what is being copied.

The CopyFile function will handle files compressed using the Microsoft COMPRESS.EXE utility. In this
situation CopyFile will automatically read in the compressed file and write it out in its expanded form (ie
uncompressed form).

Example
Method 1
CopyFile("A:*.BAT", "C:\BATCH")

Method 2
CopyFile(10)
"A:*.BAT", "C:\BATCH", "Copying: Program batch files"

Creating a setup procedure

To create a setup procedure three components are required, although only two are required in certain situations:

• The SETUP.EXE installer program

• The INST.EXE interpreter program

• A user written setup script (.INF) file

There are two configurations in which the Setup utility may be used:

Running from Diskette
In this case all three of the above files are required on the first diskette of your installation suite.
The SETUP.EXE program copies the INST.EXE program and the SETUP.INF file to the WINDOWS directory
of the machine on which the program is running. SETUP.EXE then runs the INST.EXE interpreter program
which runs the script file from the hard disk. This is necessary since install procedures often request diskette
changes in which case the Setup executables would not run.
INST.EXE does not remove itself or SETUP.INF from the hard disk when it has completed however you can
place commands in a script yourself to do this.
WARNING: If SHARE.EXE is running and your script file attempts to delete INST.EXE or SETUP.INF you
will get a 'Share violation error' from Windows.

Running from a hard disk or network drive
In this case only INST.EXE and a .INF file are required. Note that INST.EXE takes the name of the script file
as its parameter so the script file can have any name whereas SETUP.EXE above always assumes a name of
SETUP.INF.
You may place INST.EXE on the Windows Program manager as an icon with the script file name as a
parameter. You can also set up a file association with the File Manager such that double-clicking on a script file
will cause INST.EXE to run it. This is optionally set up for you when you install the Setup utility software on
your machine.

Procedure for creating install suites
In order to create a successful windows hosted software installation procedure it is adviseable that you carry
out the following steps:

• Plan what is to be installed

• Plan what options the user is to be given

• Plan the layout of files on the disk / diskettes

• Ensure that the installation procedure is as
simple as possible - users do not expect
to see technical terms

• Ensure that the user is given feedback on what
is being or has been installed

• Above all, ensure that your script is bug-free
by testing it in as many environments as possible

Creating a script file
A setup script file is purely an ASCII text file which may be created with any ASCII file editor. Alternatively
you can use the Setup Builder application to automatically build a setup script and the appropriate diskettes for
you.
Be warned that Windows Notepad has an error in it which causes a file not to have a carriage return placed on
the last line of the file unless you explicitly place blank lines at the end. This can cause problems with setup
and with many other ASCII file editors since the end of the file is found on reading before an end of line
marker

Delete

Format
Delete("File name")

Purpose
Deletes a file

Parameters
• String name of file(s) to be deleted

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - file not found or deleted
• FALSE Success

Comments
The file name may contain both wild cards and/or drive/path specifications

Example
Delete("C:\AUTOEXEC.BAT")
Delete("C:\ABC.BAT")

DeleteGroup

Format
DeleteGroup("group name")

Purpose
Deletes a program group from Windows Program Manager

Parameters
• String name of group to be deleted

Return Value
None

Comments
The group name is the name which appears in the caption of the group when it is displayed by Program
Manager

Example
DeleteGroup("TEST")

See Also
MakeGroup

DeleteIcon

Format
DeleteIcon("name")

Purpose
Deletes an icon within the currently selected program group

Parameters
• String name of icon to delete

Return Value
None

Comments
The icon name is the text which appears below the icon in Program Manager

Example
DeleteIcon("Editor")

See Also
MakeIcon

DialogBox

Format
DialogBox("dialog name")

Purpose
Activates one of the predefined dialog boxes.

Parameters
• String name of dialog to display

Return Value
The %ERROR% variable contains the push/command button which terminated the dialog:

• IDOK
• IDCANCEL
• IDBACK
• IDBUTTON1
• IDBUTTON2
• IDBUTTON3
• IDBUTTON4
• IDBUTTON5

Any data entered in fields or buttons is returned in the following variables:
• %BUTTON1% For CHECKBOXn dialog boxes

to
%BUTTON6%

• %RADIOBUTTON% For RADIOBn dialog boxes
• %EF_1% or For INPUTBOXn dialog boxes

%EF_2%

Comments
The dialog name may be one of the following:

• "WELCOME" Display the Welcome to setup dialog
with an icon

• "ASKPATH" Display dialog to ask user install path
• "OKBOX" Display a standard Ok confirmation dialog

with icon
• "CHECKBOX1" Display a dialog with 1 checkbox
• "CHECKBOX2" Display a dialog with 2 checkboxes
• "CHECKBOX3" Display a dialog with 3 checkboxes
• "CHECKBOX4" Display a dialog with 4 checkboxes
• "CHECKBOX5" Display a dialog with 5 checkboxes
• "CHECKBOX6" Display a dialog with 6 checkboxes
• "RADIOB1" Display a dialog with 1 radio button
• "RADIOB2" Display a dialog with 2 radio buttons
• "RADIOB3" Display a dialog with 3 radio buttons
• "RADIOB4" Display a dialog with 4 radio buttons
• "RADIOB5" Display a dialog with 5 radio buttons
• "RADIOB6" Display a dialog with 6 radio buttons
• "INPUTBOX1" Display a dialog with 1 input field
• "INPUTBOX2" Display a dialog with 2 input fields

• "LICENSE" Display licensing dialog
• "PUSHB2" Display a dialog with 2 push buttons
• "PUSHB3" Display a dialog with 3 push buttons
• "PUSHB4" Display a dialog with 4 push buttons
• "PUSHB5" Display a dialog with 5 push buttons

Each of the dialogs has predefined text fields which you may change by setting the following variables:

• %CAPTION% Caption of the dialog
• %MESSAGE1% First static text field within the dialog

to
%MESSAGE6% Last static text field within the

dialog (depends on dialog)
• %INSTALLPATH% Sets the default prepopulated value

of the edit field in the ASKPATH dialog
• %BUTTON1% Preset status of check boxes in

to CHECKBOX dialogs. A '1' signifies
%BUTTON6% a check ie on.

Also used to return the states of
the buttons on exit from the dialog

• %RADIOBUTTON% Holds the initially active radio
button within the RADIOB dialogs.
The first button is 1, the last 6,
depending on the dialog.
Also used to return the selected button.

• %INIFILE% Controls the .INI file to which
the Licensing dialog writes the
name/company entered by the user.

• %PUSHB_1% Holds the text to be displayed on the push
to buttons within the PUSHB dialogs.

%PUSHB_5% The first button is 1, the last 5,
depending on the dialog.

Note: The ASKPATH dialog automatically checks the path entered by the user by attempting to create the
directory. Therefore the base install directory is automatically created and the programmer need not create it,
only any directories required under it

Example
DialogBox("OKBOX")

See Also
MessageBox, Predefined Constants

Error Message Directory

01 Invalid command
This error occurs when a command or function is encountered which the interpreter does not recognise.
See Command Directory, Function Directory

02 Invalid parameters
This error occurs when the wrong 'type' of parameter is given to a command or function, for example a number
given where a string is expected

03 Variable not found
This error occurs when an undefined variable is passed as a parameter. In future versions of Setup this error
message will no longer occur because undefined variables will default to an empty string

04 Invalid variable name
A variable name must start with and end with a % character. If the trailing % is left off, this error will result.
See Variables

05 Label not found
A GOTO command is attempting to pass control to a label which cannot be found within the script file. Check
that the label starts with a colon : both after the GOTO command and on the line to be branched to

06 Invalid string
A string must start with and end with a " character. If the trailing " is left off, this error will result.
See Variables

07 Label too long
A label may be a maximum of 20 characters. This error results if an attempt is made to use longer name.
Check that the label ends with a space character, end of line or that there is at least one space after it before a
comment.
See Labels

08 String stack full
Too many strings have been defined within a command. The limit is 20. No Setup command or function should
reach this limit, so if this error occurs it is likely that you have a severe syntax error!

09 Numeric stack full
The same applies to numbers as in error 08

10 Variable name too long
A variable name may be up to 20 characters long. This error occurs when an attempt is made to use a longer
name or if the trailing % sign is left off of the variable name.
See Variables

11 Text too long
Text strings may be up to 254 characters long. This error occurs when an attempt is made to use a string (with
no embedded variables) which is longer than 254 characters or the trailing " character has been left off.
See Strings

12 Invalid label
This error occurs when an invalid label is passed as a parameter to the GOTO command. You cannot supply
strings or variables to this command

13 Invalid template name
An attempt has been made to use the DialogBox() function but an invalid dialog template name was supplied.
See DialogBox

14 String concat too long
A string may be a maximum of 254 characters. This error usually results when embedded variables in a string
are used to concatenate strings and the resulting string is longer than 254 characters.
See Strings/Variables

15 No space on target drive
The CopyFile() function has been called to copy a file and there is not enough space on the target drive for the
file

16 Source file not found
The CopyFile() function has been called to copy a file but the file could not be found

17 Failure while copying
The CopyFile() function failed while copying. This usually occurs if the user removes a diskette while copying
from it or if a disk read failure occurs

18 Out of variable space
Setup allows up to 50 variables to be defined at a time. This error occurs when an attempt is made to create
more variables. Assign variables to empty strings to clear space

19 Source and target file names the same
The CopyFile() function has been called and both the source and target file names are the same - you cannot
copy a file onto itself

20 Invalid string parameter
A function has been called which expects a string parameter in the indicated position

21 Invalid numeric parameter
A function has been called which expects a numeric parameter in the indicated position

22 Missing variable name
This error occurs when the target return variable parameter is left off of the GetPrivateProfileString() function

23 Invalid comparison operator
The IF command has been supplied with an invalid comparison operator.
See IF

24 Invalid comparison value
This error occurs when the two values for comparison by an IF command are not of the same type.
See IF

25 Invalid date format specified
This error occurs when an invalid date format is specified to the date functions.
See GetDate, GetFileDate

26 Invalid arithmetic operator. Operator must be + - * or /
This error occurs with the SET statement when arithmetic operations are being performed.
Setup only supports addition, subtraction, multiplication and division of integer numbers.
See Set

27 String subscript out of range
This error occurs with the string handling functions when a position within a string is specified which doesn't
exist.
This may be because the value specified is negative or because the value is greater than the maximum length
that a string is allowed to be (ie 254 characters)
See Left, Right, Mid, Instr

ExitWindows

Format
ExitWindows(numstate)

Purpose
Restarts Windows or reboots the machine

Parameters
A numeric which is either TRUE or 1 to reboot the machine or FALSE or 0 just to restart Windows

Return Value
The %ERROR% variable holds the return value of the standard Windows ExitWindows function ie 0 if any
applications fail to terminate otherwise there is no return.

Comments
WARNING: This function should be used with care since it can cause loss of data

Example
ExitWindows(TRUE)

Function Directory

Date/Time Functions
 GetDate Get the system date
 GetTime Get the system time
 GetFileDate Get file date
 GetFileTime Get file time
 SetFileDate Set file date
 SetFileTime Set file time

Disk & Directory Functions
 Chdir Change current drive/directory
 CheckLabel Check disk label
 GetDiskSpace Get free disk space
 Mkdir Make a new directory
 Rmdir Remove a directory

File Related Functions
 CheckExists Check if file exists
 CloseIn Close the input file
 CloseOut Close the output file
 CopyFile Copy file(s) from one location to another
 Delete Delete a file
 GetFileAttr Get file attributes
 GetFileLength Get file length
 OpenIn Open a file for reading
 OpenOut Open a file for reading
 ReadLine Read a line from the input file
 Rename Rename a file to another name
 SetFileAttr Set file attributes
 WriteLine Write a line to the output file

Program Manager Functions
 DeleteGroup Delete a Program Manager group
 DeleteIcon Delete a Program Manager Icon
 MakeGroup Make/Select a Program Manager group
 MakeGroupFromFile Make a Program Manager group
 MakeIcon Make a Program Manager Icon
 Reload Reload Program Manager groups
 ShowGroup Display a Program Manager group

String Manipulation Functions
 Instr Find one string in another
 LCase Convert string to lower case
 Left Get left n characters of a string
 Len Get length of string
 Mid Get a sub-string from a string
 Right Get the right n characters of a string
 UCase Convert a string to upper case

Windows Interface/API Functions
 DialogBox Use an inbuilt dialog
 ExitWindows Terminate Windows

 GetModuleInUse Check if Windows is using a file
 GetProfileString Get an .INI file string
 MessageBox Pop up a message box
 Release Release control to Windows
 SendKey Send key strokes
 WinExec Execute another program
 WriteProfileString Write an .INI file string

GetDate

Format
GetDate(%varname%)
GetDate(%varname%, format)

Purpose
Gets the system date into a variable

Parameters
• Variable to store the result in
• Optional date format required which may be:

0 For dd/mm/yy
1 For yy/mm/dd

Return Value
None

Comments
The date format specifier is optional, the default being 0.
If an invalid date format is specified a run time error will occur

Example
GetDate(%Date%) // 21/10/93
GetDate(%Date%, 1) // 93/10/21

See Also
GetTime

GetDiskSpace

Format
GetDiskSpace("drive letter")

Purpose
Retrieves the amount of space available on a disk.

Parameters
• String containing the letter of the drive to be chacked.

The text case is not important

Return Value
The %ERROR% variable contains the number of free bytes on the specified disk

Comments

Example
GetDiskSpace("A:")

GetFileAttr

Format
GetFileAttr("filename", %varname%)

Purpose
Gets the attributes of a file into a variable

Parameters
• String name of file to get the attributes of
• Variable to store the result in

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The file name must NOT contain wildcards

Example
GetFileAttr("C:\AUTOEXEC.BAT", %Attribs%)

GetFileDate

Format
GetFileDate("filename", %varname%)
GetFileDate("filename", %varname%, format)

Purpose
Gets the date of a file into a variable

Parameters
• String name of file to get the date of
• Variable to store the result in
• Optional date format required which may be:

0 For dd/mm/yy
1 For yy/mm/dd

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The date format specifier is optional, the default being 0.
If an invalid date format is specified a run time error will occur

Example
GetFileDate("C:\AUTOEXEC.BAT", %Date%) // 29/03/92
GetFileDate("C:\AUTOEXEC.BAT", %Date%, 1) // 92/03/29

See Also
GetFileTime

GetFileLength

Format
GetFileLength("filename")

Purpose
Gets the length of a file

Parameters
None

Return Value
The %ERROR% variable contains the length of the file if successful or -1 if an error occured

Comments

Example
GetFileLength("C:\AUTOEXEC.BAT")

GetFileTime

Format
GetFileTime("filename", %varname%)

Purpose
Gets the time of a file into a variable

Parameters
• String name of file to get the time of
• Variable to store the result in

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The file name must NOT contain wildcards

Example
GetFileTime("C:\AUTOEXEC.BAT", %Time%)

See Also
GetFileDate

GetModuleInUse

Format
GetModuleInUse("filename")

Purpose
Determines whether a module is in use by Windows ie it is already running. This can be used to prevent
installation of an executable which is being presently run by Windows

Parameters
• String name of file to be checked

Return Value
The %ERROR% variable holds the state:

• TRUE Module is in use
• FALSE Module is not in use

Comments
It is worth using this function within an installation script since the CopyFile() function will abort with an error
message and terminate an installation script if an attempt is made to overwrite a file which is in use. This
function enables the programmer to retain control over this situation

Example
GetModuleInUse("progman.exe")

GetPrivateProfileString
GetProfileString

Format
GetProfileString("section" , "entry", "default",

"file name", %varname%)

Purpose
Reads a string from a Windows .INI file into a variable

Parameters
• String [Section] of .INI file to read from
• String entry within the section to read
• String default if entry not found
• String name of .INI file to read from
• String name of variable to place the string read

Return Value
None

Comments
Along with the standard windows function, if no path is specified in the .INI file name, reading defaults to the
Windows directory.
The GetPrivateProfileString function is only supplied for compatibility with earlier versions of Setup. You
should use the GetProfileString function.

Example
GetProfileString("Windows", "Spooler", "yes", "win.ini", %spooler%)

See Also
WriteProfileString

GetTime

Format
GetTime(%varname%)

Purpose
Gets the system time into a variable

Parameters
• Variable to store the result in

Return Value
None

Comments
The time is in the format hh:mm:ss

Example
GetTime(%Time%)

See Also
GetDate

GOTO command

Format
GOTO :label

Purpose
Causes a branch of execution of the script file to another line within the file. That line must start with the same
label name preceeded with a colon :

Parameters
• A label

Return Value
None

Comments
A label cannot be a variable name.
A run time error will occur if the parameter label cannot be found

Example
GOTO :END
.
.
:END

See Also
Standards and Notations

IF command

Format
IF <value> <comparison operator> <value> <statement>

Purpose
Performs a comparison between two values

Parameters
There are three parameters to this command:

• A numeric/string value
• A comparison operator
• A second numeric/string value

Return Value
None

Comments
Valid comparison operators are:

• == Equals
• != Not equals
• > Greater than
• < Less than
• >= Greater than or equal to
• <= Less than or equal to

Since Setup does not have a concept of variable 'types' the IF command follows certain rules depending on the
comparison being performed.
If the first value is a numeric ie numeric digits or a variable name, then a numeric comparison is performed
with the second value.
If the first value is a string ie text enclosed in quotes or text enclosing a variable name, then a string
comparison is performed.
If the 'type' of the second parameter does not conform with the first parameter then a run time error will occur.

Any Setup command may follow the comparison and this will be executed if the result of the comparison is
true

Example
Numeric comparisons
IF 1 < 2 GOTO :END
IF %NUMBER% == 10 GOTO :TEN
IF %ERROR% == IDBACK GOTO :BACK
IF %ERROR% == TRUE GOTO :END

String comparisons
IF "TEXT" == "TEST" GOTO :SAME
IF "%INSTALLPATH%" != "C:\" GOTO :END

See Also
Standards and Notations

Instr

Format
Instr(start, "SearchString", "FindString")

Purpose
Used in conjunction with the SET command, this function finds the position of one string within another string

Parameters
• Numeric position to start searching from (first character is 1)
• String to search
• String to search for

Return Value
The return value is the position within the string where the requested string was found. It is 0 if the string was
not found or greater than 0 if it was found.
The return value is a numeric and is assigned to the variable in the SET statement

Example
Set %Var% = Instr(1, "Test String", "st") // %Var% holds 3

LCase

Format
LCase("String")

Purpose
Used in conjunction with the SET command, this function converts a string to lower case

Parameters
• String to convert

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = LCase("Test String") // %Var% holds 'test string'

See Also
UCase

Left

Format
Left("String", numchars)

Purpose
Used in conjunction with the SET command, this function extracts the number of characters specified from the
start of a string

Parameters
• String to extract from
• Numeric number of characters to extract

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = Left("Test String", 3) // %Var% holds 'Tes'

See Also
Mid, Right

Len

Format
Len("String")

Purpose
Used in conjunction with the SET command, this function finds the length of a string in characters

Parameters
• String to obtain the length of

Return Value
The return value is a numeric and is assigned to the variable in the SET statement

Example
Set %Var% = Len("Test String") // %Var% holds 11

MakeGroup

Format
MakeGroup("group name")
MakeGroup("group name", "group file")

Purpose
Creates a program group on Windows Program Manager

Parameters
• String name of group to be created or selected
• String name of group file to be created for the group

Return Value
None

Comments
The group name is the name which appears in the caption of the group when it is displayed by Program
Manager.
The group file name may include drive/path specifiers.
Note that creating a group which already exists does not create a new group, instead it makes the existing
group the current group. Therefore, this command can be used for selecting groups as well as creating them.

Example
MakeGroup("TEST")
MakeGroup("TEST", "FILE.GRP")

See Also
DeleteGroup

MakeGroupFromFile

Format
MakeGroupFromFile("group file name")

Purpose
Creates a program group on Windows Program Manager from an existing group file

Parameters
• String name of group file to be installed

Return Value
None

Comments
The group file name may include drive/path specifiers.
Note that creating a group which already exists does not create a new group.

Example
MakeGroupFromFile("C:\ABC\TEST.GRP")

See Also
MakeGroup, DeleteGroup

MakeIcon

Format
MakeIcon("name", "file name")

Purpose
Creates an icon within the currently selected program group

Parameters
• String name of icon to create
• String containing command line to run the icon

Return Value
None

Comments
The name appears below the icon in Program Manager.
Note that it is not possible to create duplicate icons with the same name
- the new overwrites the old

Example
MakeIcon("Editor", "notepad.exe")

See Also
DeleteIcon

Mid

Format
Mid("String", start, length)

Purpose
Used in conjunction with the SET command, this function extract a substring from another string

Parameters
• String to obtain the substring from
• Numeric position to start extracting from (first character is 1)
• Numeric number of characters to extract

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = Mid("Test String", 2, 5) // %Var% holds 'est S'

See Also
Left, Right

Mkdir

Format
MkDir("directory name")

Purpose
Creates a new directory on a disk

Parameters

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - directory exists or could not be created
• FALSE Success

Example
RmDir("C:\TEST")

See Also
Rmdir, Chdir

MessageBox

Format
MessageBox("message", "caption", buttons, icon)

Purpose
Provides the ability to pop-up a standard Windows message box

Parameters
• String message to be displayed
• String caption of message box
• Button setting:

MB_OKCANCEL
MB_OK
MB_ABORTRETRYIGNORE
MB_YESNOCANCEL
MB_YESNO
MB_RETRYCANCEL

• Icon required:
0 - no icon
MB_ICONQUESTION
MB_ICONEXCLAMATION
MB_ICONINFORMATION
MB_ICONSTOP

Return Value
The %ERROR% variable holds the button pressed:

• IDOK
• IDCANCEL
• IDABORT
• IDRETRY
• IDIGNORE
• IDYES
• IDNO
• IDBACK

Comments
By convention you should use message boxes and dialog boxes to ask the user simple questions and give them
the ability to perform selective or special installations.
Always use a message box to ask the user to confirm loss of data!

Example
MessageBox("A test message", "Test", MB_OK, MB_ICONQUESTION)

See Also
DialogBox, Predefined Constants

OpenIn

Format
OpenIn("filename")

Purpose
Opens a file on a disk for reading

Parameters
• String name of the file to open

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - failed to open file
• FALSE Success

Comments
The file name must be a standard DOS format name which may contain drive and/or path specifications

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

OpenIn("C:\CONFIG.SYS")
IF %ERROR% == TRUE GOTO :OPENERROR

OpenOut("C:\TEMP.DAT")
:NEXTLINE
ReadLine(%Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(%Buffer%)
GOTO :NEXTLINE

:EOF
CloseIn()
CloseOut()

.

.

:OPENERROR

See Also
CloseIn, CloseOut, OpenOut

OpenOut

Format
OpenOut("filename")

Purpose
Opens a file on a disk for writing

Parameters
• String name of the file to open for writing

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - failed to open file
• FALSE Success

Comments
The file name must be a standard DOS format name which may contain drive and/or path specifications.
If the file already exists, its contents are destroyed. If the file does not exist, it is created

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

OpenIn("C:\CONFIG.SYS")
IF %ERROR% == TRUE GOTO :OPENERROR

OpenOut("C:\TEMP.DAT")
:NEXTLINE
ReadLine(%Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(%Buffer%)
GOTO :NEXTLINE

:EOF
CloseIn()
CloseOut()

.

.

:OPENERROR

See Also
CloseIn, CloseOut, OpenIn

Predefined Variables

CAPTION
This variable holds the text which is used as the caption for all of the predefined dialogs. It defaults to 'Setup'.

CURRENTDIRECTORY
This variable holds the full drive and path name of the current directory, complete with a trailing backslash
character:
eg: C:\MAIN\TEST\

CURRENTDRIVE
This variable holds the current drive letter:
eg: A:
Note that along with CURRENTDIRECTORY, this variable is automatically updated when the ChDir()
function is used.

ERROR
This variable is the 'accumulator' for return values. All functions which return a value set this variable. The
contents of this variable are numeric and may be any positive number. For example a call to MessageBox()
will place the value of IDOK (1) or IDCANCEL (2) in the ERROR variable whereas GetDiskSpace() will
place the number of bytes free on the specified disk in the ERROR variable.

INSTALLPATH
This variable is used by the AskPath dialog and should be used as the target path for any copying

INSTALLDRIVE
This variable holds the drive letter portion of the INSTALLPATH variable.

PROGRAMFILE
This variable holds the fully qualified file name (including drive and path name) of the interpreter program.

SCRIPTFILE
This variable holds the fully qualified file name of the script file currently being executed.

SYSTEMDIRECTORY
This variable contains the drive and path of the Windows System directory which is normally C:\WINDOWS\
SYSTEM\

WINDOWSDIRECTORY
This variable contains the drive and path of the Windows directory which is normally C:\WINDOWS\
This variable is normally used when a .INI file is to be copied / installed into the Windows directory during a
Setup procedure.

NOTE:
The predefined variables are treated in exactly the same way as any user variable and can therefore be
'nullified' to free up the variable space, however, some will automatically recreate themselves when certain
commands or functions are used!
If required, they can be assigned values although this defeats the object of some of them displaying the current
system state. It is most likely that you might wish to do this with CAPTION and ERROR.

See Also Standards and Notations, DialogBox

ReadLine

Format
ReadLine(%Variable%)

Purpose
Reads a line from the currently open file into a variable

Parameters
• The variable into which to read the line

Return Value
The %ERROR% variable holds the error status:

• 0 Success
• 1 File not open
• 2 End of file reached

Comments
The maximum length of line which can be read is 254 characters.
This function will only handle ASCII text files with lines ending in CR/LF

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

OpenIn("C:\CONFIG.SYS")
IF %ERROR% == TRUE GOTO :OPENERROR

OpenOut("C:\TEMP.DAT")
:NEXTLINE
ReadLine(%Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(%Buffer%)
GOTO :NEXTLINE

:EOF
CloseIn()
CloseOut()

.

.

:OPENERROR

See Also

CloseIn, CloseOut, OpenIn, OpenOut, WriteLine

Release

Format
Release()

Purpose
Relinquishes control to Windows in order to achieve multi-tasking

Parameters
None

Return Value
None

Comments
The Setup program only performs multi-tasking during file copying and while dialog or message boxes are
present on the screen.
Since Windows requires applications to relinquish control in order to achieve multi-tasking, this function
provides multi-tasking ability to the Setup program

Example
This example waits for a file to be created by another process. It terminates when the file becomes present

:WAIT
CheckExists("TEST.TXT")
IF %ERROR% == TRUE GOTO :FOUND

Release()
GOTO :WAIT

:FOUND

Reload

Format
Reload()
Reload("group name")

Purpose
Tells Program Manager to reload all its group files from those specified in PROGMAN.INI
Tells Program Manager to reload a specific group file.

Parameters
• String name of the program group to reload.

Note that an empty string here will cause Program Manager to do nothing!
If all groups are to be reloaded, use the first format of the command with no name between the brackets

Return Value
None

Comments
This function is useful when the PROGMAN.INI file has been changed manually via the
WritePrivateProfileString() function

Example
Reload()
Reload("Main")

Rename

Format
Rename("OldName", "NewName")

Purpose
Renames a file to a new name

Parameters
• String name of file to be renamed
• String new name of file

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - file not found or renamed
• FALSE Success

Comments
The file name may not contain wild cards or path/drive specifications which means that when renaming files,
the file to be renamed must be in the current directory

Example
Rename("TEST.DAT", "DATA.DAT")

Right

Format
Right("String", numchars)

Purpose
Used in conjunction with the SET command, this function extracts the number of characters specified from the
end of a string

Parameters
• String to extract from
• Numeric number of characters to extract

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = Right("Test String", 3) // %Var% holds 'ing'

See Also
Left, Mid

Rmdir

Format
RmDir("directory name")

Purpose
Removes a directory from a disk

Parameters
• String name of directory to remove

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - directory not found or could not
be removed possibly because it still contains files

• FALSE Success

Example
RmDir("C:\SETUP")

See Also
Chdir, Mkdir

Running a Script

There are two ways in which the Setup utility may be run in order to execute a script file:

Diskette
If Setup is to be run from a diskette then both the SETUP.EXE and INST.EXE programs will need to be
copied to the diskette.
The script file must be named SETUP.INF
The SETUP.EXE program copies INST.EXE and SETUP.INF into the Windows directory and then runs
the interpreter from there since the user may have requested some diskette changes within the script.
This is a typical installation diskette suite.

Fixed disk
If setup is to be run from a fixed disk then it can be set up as an icon on Windows Program Manager.
In this case, only the INST.EXE program is required and the name of the script file to be executed should
be passed as a parameter to the program.
The script file may have any name.

SendKey

Format
SendKey("keys")

Purpose
Sends a sequence of key strokes to the currently active window

Parameters
A text string containing the keys to be sent

Return Value
None

Comments
The key sequence is a string of ASCII characters to be sent. To send an ALT key, preceed the character with a ~
(tilde) character

Example
// Send Alt+W A for program manager Window/Arrange
SendKey("~WA")
Release() // Makes it happen!

See Also
Release

SET command

Format
SET %varname% = "text"
SET %varname% = number
SET %varname% = %varname%
SET %varname% = number + number

Purpose
Assigns a value to a variable

Parameters
• A string enclosed in double " quotes which in turn may

include embedded variable names.
• An integer positive or negative number
• Another variable
• Arithmetic operators + - * and /
• A Predefined Constant

Return Value
None

Comments
The string may contain embedded variables.
Since numbers are held internally in their string form, they may be specified as string parameters.
If an attempt is made to perform an arithmetic operation and one or more of the parameters is not a valid
number, a run time error will occur

Example
SET %varname% = "Some text"
SET %varname% = 1024
SET %varname% = %othervar%
SET %varname% = IDOK
SET %newvar% = %varname% * 3
SET %newvar% = 3 + 4
SET %newvar% = -2 * %varname%
SET %newvar% = "%varname%" / "2"

See Also
Standards and Notations

SetFileAttr

Format
SetFileAttr("filename", rdonly, hidden, system, archive)

Purpose
Sets the attributes of a file

Parameters
• String name of file to set attributes on
• Numeric 1 or 0 to make file read only
• Numeric 1 or 0 to make file hidden
• Numeric 1 or 0 to make file a system file
• Numeric 1 or 0 to flag the file for archive

Return Value
None

Comments
The file name must NOT contain wildcards

Example
SetFileAttr("C:\AUTOEXEC.BAT", TRUE, FALSE, FALSE, FALSE)

SetFileDate

Format
SetFileDate("filename", "date")

Purpose
Sets the date of a file

Parameters
• String name of file to set the date of
• The new date in the format dd/mm/yy

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The file name must NOT contain wildcards

Example
SetFileDate("C:\AUTOEXEC.BAT", "01/12/92")

SetFileTime

Format
SetFileTime("filename", "time")

Purpose
Sets the time of a file

Parameters
• String name of file to set the time of
• The new time in the format hh/mm/ss

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The file name must NOT contain wildcards

Example
SetFileTime("C:\AUTOEXEC.BAT", "09:16:03")

ShowGroup

Format
ShowGroup("group name", showflag)

Purpose
Displays an existing program group on Windows Program Manager

Parameters
• String name of group to be shown
• Numeric value of type of show which may be:

1 Activates and displays the group window.
If the window is minimized or maximized, Windows
restores it to its original size and position.

2 Activates the group window and displays it as an icon.
3 Activates the group window and displays it as

a maximized window.
4 Displays the group window in its most recent size and

position. The window that is currently active remains
active.

5 Activates the group window and displays it in its
current size and position.

6 Minimizes the group window.
7 Displays the group window as an icon. The window that

is currently active remains active.
8 Displays the group window in its current state. The

window that is currently active remains active.

Return Value
None

Comments
The group name is the full name which appears in the caption of the group when it is displayed by Program
Manager including spaces.
This command can be used for selecting groups.

Example
ShowGroup("Main", 1)
ShowGroup("Accessories", 2)
ShowGroup("Visual Basic 3.0", 1)

Standards and Notations

Commands
Commands/function/variable names are not case sensitive and with the exception of the open bracket on a
function name, the user may use spaces as required between statements.
Whereever a string appears as a parameter to a function or command a variable may also be placed.

Variables
All variable names start with and end with a % character.
A variable name may consist up up to 20 characters of the users choice.
You may create up to 50 variables at any one time.
To clear a variable from the variable space, set it to an empty "" string
See Also Predefined Variables

Strings
Strings always start with and end with a " character. Within a string you may place any combination of
characters you wish, however the | (vertical bar) symbol will be translated into a carriage return.
This is useful for creating blank lines in message boxes etc.
By placing text and/or several variables into a string, string concatenation is achieved:

"Here is a variable:|%varname% more text"

It is also possible to insert special characters into a string by preceding the appropriate decimal ASCII code
with a '\' character:

"Here is a character\13return before the \34return\34 word"

This would display as:

Here is a character
return before the "return" word

Numbers
Both positive and negative integer numeric values are supported with a 32 bit range.
See Also Predefined Constants

Labels
Labels start with a : character and end with a space or the end of the line. Statements on the same line after a
label are not executed.

Comments
Comments may be placed in scripts using the standard 'C' language // notation.

Suggestions for Use

The INST.EXE program is an interpreter program which may have many uses other than just installation
scripts.

Here are some suggested uses for the Setup and Setup/Builder software products:

• Application Installation
• Application De-installation
• Windows hosted 'batch/script' programs
• Network logon scripts
• Software version upgrading (eg copying from a network)

UCase

Format
UCase("String")

Purpose
Used in conjunction with the SET command, this function converts a string to upper case

Parameters
• String to convert

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = UCase("Test String") // %Var% holds 'TEST STRING'

See Also
LCase

What is Setup ?

Setup is a utility program which can be used to interpret script files written by a user to install applications in a
Windows-hosted environment.

It may also be used as a tool for automating configurations of software and as a 'Windows hosted batch file
interpreter'.

WinExec

Format
WinExec("Filename")

Purpose
Executes another program

Parameters
• String name of program file to be run

Return Value
The %ERROR% variable holds the return value of the standard Windows WinExec function

Example
WinExec("notepad.exe")

WritePrivateProfileString
WriteProfileString

Format
WriteProfileString("section" , "entry",

"setting", "file name")

Purpose
Writes a string to a Windows .INI file.

Parameters
• String [Section] of .INI file to write to
• String entry within the section to write
• String data to be written for the entry
• String name of .INI file to write to

Return Value
None

Comments
Along with the standard windows function, if no path is specified in the .INI file name, writing defaults to the
Windows directory
This function is useful for making changes to WIN.INI or SYSTEM.INI during your installation procedures.
The setup procedure which installs the Setup software for you will optionally use this function to create a File
Manager file association for you.
The WritePrivateProfileString function is only supplied for compatibility with earlier versions of Setup. You
should use the WriteProfileString function.

Example
WriteProfileString("Extensions", "inf", "inst.exe ^.inf", "win.ini")

See Also
GetProfileString

WriteLine

Format
WriteLine("string")

Purpose
Writes a line to the currently open output file

Parameters
• The text to write to the file

Return Value
The %ERROR% variable holds the error status:

• 0 Success
• 1 File not open

Comments
The string may contain embedded variables.
This function will only write to ASCII files and automatically appends a CR/LF after any text written to a file

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

OpenIn("C:\CONFIG.SYS")
IF %ERROR% == TRUE GOTO :OPENERROR

OpenOut("C:\TEMP.DAT")
:NEXTLINE
ReadLine(%Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(%Buffer%)
GOTO :NEXTLINE

:EOF
CloseIn()
CloseOut()

.

.

:OPENERROR

See Also
CloseIn, CloseOut, OpenIn, OpenOut, ReadLine

