
FILE TRANSFER BASICS:

This is an edited and condensed excerpt from The Modem
Reference, written by Michael A. Banks and recommended by the
Associated Press, The Smithsonian Magazine, Jerry Pournelle in
Byte, et al.

The right to reproduce this article is granted on the
condition that all text, including this notice and the notices at
the end of the article, remain unchanged, and that no text is
added to the body of the article. Thanks! --MB

 Copyright (c), 1988, 1989, 1990, Michael A. Banks
 All Rights Reserved

 (From Chapter 9)
 File Transfers

 When you first connect with an online system, you usually
communicate with that system one line at a time. This kind of
communication is fine when you're participating in an interactive
online activity, such as browsing a system, using realtime
conference, reading E-mail, etc. But it's impractical when you
need to send or receive large blocks of text or non-text data,
programs, or other files for use offline or at a later time. For
these types of exchanges, you need to make use of file transfer.

 The idea of sending a file over telephone lines may be a bit
intimidating at first. What, you may ask yourself, if something
goes wrong? What do I need to know? Does file transfer involve
complex procedures? In partial answer to those questions,
consider this: modem file transfers are today almost as common as
long-distance voice telephone calls. Tens of thousands of
executable programs, database and spreadsheet files, and
documents of all types flow over telephone lines 24 hours a day,
seven days a week. The vast majority of these transfers go
through without a hitch, and are conducted by people who possess
less technical knowledge than you have gained by reading the
earlier chapters in this book.

 This is not to say that file transfer is strictly a "plug-
and-go" proposition. Knowledge of certain terms and concepts is
necessary. And, as with the other elements of telecomputing
discussed in this book, it helps to know something of what goes
on behind the scenes.

 Which brings us to the purpose of this chapter, which is to
show you what file transfer is all about. There are certain
methods common to all kinds of file transfers, and I'll explain
those in detail here. I'll also show you how transfers are
conducted, and how you can successfully send and receive files
using your microcomputer. All of the basic information you need
is right here, along with technical details and hands-on
examples.

 Read as much--or as little--of the technical explanations as
you find necessary to achieve a working understanding of file-
transfer techniques. But don't skip over any topic entirely; you
should be familiar with each of the various file-transfer
methods. Take the time to look over the examples, too. These
will prepare you for transferring files on your own.

 Simply defined, file transfer is the process of sending a
file--text, binary data, or program--from one computer to
another. The computers involved may range from mainframe and
mini-computers operated by businesses, governments, or online
services, to home and business microcomputers.

 Regardless of the type of file or the size of the computers

involved, the basic steps involved are fairly simple: The
sending computer's hardware and software read the contents of a
file from a mass storage device (usually a hard or floppy disk).
As it reads the file, the computer sends what it reads to its
modem, which converts the data to analog form and transmits it to
the receiving system via telephone line.

 The receiving modem converts the data back to digital form
and sends it to its computer. The receiving computer reads the
data and stores it in a file. (Note that what is actually sent
is a copy of a file--the file on the receiving end remains
intact.) ((NOTE: The hardcopy of THE MODEM REFERENCE contains
several figures, showing various "hands-on" examples of file
transfer procedures and processes.))

 Depending upon the transfer method in use, the sending and
receiving systems may perform error checks and exchange
information about the transfer along the way.

 From the hardware viewpoint, this transmission takes place
in pretty much the same way as the transmission of keyboard
input, although serial ports and modems may handle flow control
and error checking differently.

 On the software end, both the sending and the receiving
system have to be given commands to initiate transfer. Online
systems often use special software file-transfer protocols to
handle data flow and error checking during transfer.

Uploads and Downloads:

 In case you missed it earlier, a file transfer can take
place in either of two directions--to your computer, or from it.
The terms used to describe file transfers refer to the direction
in which data is transmitted, and are relative. If you are
sending data to another computer, you are uploading; if you are
receiving data, you are downloading.

File Transfer Methods:

 ASCII Transfer and Error-Checking Protocols. There are two
basic categories of file transfer methods: ASCII transfer, and
what are usually called error-checking protocol transfers. ASCII
transfer is the transfer of straight text files. Error-checking
protocols transfer files in groups of bytes, and use
sophisticated error-checking routines to verify the integrity of
each group sent.

 Batch File Transfers. Only one file can be transferred at a
time via an asynchronous dial-up system of the type focused on by
this book; if you want to transfer more than one file, you
usually have to issue new commands for each file. However, some
file transfer protocols, like Kermit (q.v.), let you specify a
group (or batch) of files to be transmitted, after which the
program takes over and handles the commands and transfer
operations for each file. This kind of operation is known as
batch processing, or batch file transfer. It's especially
convenient when you have to upload or download a large number of
files, but cannot be at your computer to direct and supervise the
transfers.

File Transfer Channels:

 There are two possible channels for file transfer. The
first is direct (or sender-to-receiver) file transfer, in which
the individuals who wish to transfer a file or files link their
computers directly. The second channel is what I call "third
party" transfer, in which an online system serves as an
intermediary and storage place for files. This third party is
usually a BBS or an online service. We'll take a closer look at

using these channels in a later segment of this chapter.

ASCII FILE TRANSFER:

 For most computer users, the simplest type of file transfer
is an ASCII transfer. Limited in a practical sense to files that
contain only 7-bit ASCII characters, it is commonly used to
transfer small- and medium-sized "straight" text files. ("7-bit
ASCII characters" here refers to the letters, numbers,
punctuation symbols, and spaces found on most keyboards.)

 ASCII transfer can sometimes be used with transfer binary
files, if they are output as text in hexadecimal form, or, as is
the case with some BASIC programs, in straight ASCII text. This
is, however, accommodated by few systems, and very tricky to get
right. (Binary files of many types can be converted to 7-bit
ASCII for transmission, too. They must be reconverted--offline--
before use at the receiving end, however.)

 8-bit ASCII transfer is possible, too--provided both systems
are set up for 8-bit communication. But the applications for 8-
bit transfer are limited. Many communications programs offer the
option of "stripping" (removing) the eighth bit from bytes in 8-
bit files, thus enabling you to transfer 8-bit text files--like
those produced by WordStar--in 7-bit (and human-readable) form.

How ASCII Transfer Works:

 When a file is transmitted via ASCII protocol, it is read
from a computer's disk or memory, and sent character-by-
character, just as it would be sent if you were typing it at your
keyboard. The rate of transmission is much faster than you can
type, though (unless you are a very fast typist and comparing
yourself to 300 bps transmission!). When the file is received,
it is handled just like any other text input--read into the
computer's buffer, then written to disk or stored in RAM.

 Data Buffering and Flow Control. Almost all computer
systems use data buffering, which means that incoming or outgoing
data is temporarily stored in RAM in what is called a buffer.
DAta buffering speeds up file transfer because it eliminates the
number of times a transmission must be paused while the receiving
or sending computer accesses its disk.

 At the sending end of a file transfer, enough data is read
from disk to fill a RAM buffer, then sent from RAM. When the
send buffer is empty, the disk is read again. Because the buffer
holds enough data for several seconds of transmission, there is
less disk access (i.e., the sending computer doesn't have to stop
to read data from its disk each time it sends a line).

 The reverse occurs at the receiving end, with data being
written to disk only when the receive buffer is filled. The flow
of incoming data is paused when this occurs, and is usually
controlled by XON/XOFF (^Q/^S) protocol. Additional flow control
may consist of turnaround characters or time delays, or hardware
(modem or serial port) control. (Flow control, turnaround
characters, and time delays are discussed in detail in Chapter
5.)

 The overall process is pretty much the same as exchanging
commands and textual data with a remote system in realtime. (As
you've seen, the same systems of buffering and flow control are
used.) Aside from the speed, the main difference between
realtime data entry and text-file transfer is that, when a file
is transferred, text is generated and stored at each end by the
respective computers, without human involvement.

Advantages of ASCII File Transfer:

 The main advantage of using ASCII file transfer is that it's
easy. All you have to do is tell the remote system that you want
to send or receive a file, switch to your communications
software's command mode, and type something like SEND <file name>
to transmit a file, or RECEIVE or CAPTURE <filename> to receive a
file.

 ASCII transfer is simple to implement in a program, too.
All that's required are a capture buffer to temporarily store
incoming data, a series of commands to read and write to a disk
file, and a simple flow-control technique. With the rare
exception of disk read- and write-commands, virtually any
communications program or online system has everything it needs
to support ASCII file transfer built in.

 Because it is so easy to use and implement, almost all
online systems provide ASCII file transfer (something that is not
true with all error-checking protocols). And, even if an online
system doesn't provide an ASCII download command, turning on your
communications program's capture-to-disk while a text file is
displayed by the online system is the same as performing an ASCII
file download.

Disadvantages of ASCII File Transfer:

 Where large files or "noisy" telephone connections are
involved, data may be lost or garbled during an ASCII transfer.
This is because parity checking (the only type of error-checking
protocol used with ASCII transfers) is sometimes not used (as is
the case when communications parameters are 8N1). Even when it
is used, parity-checking rarely provides for re-transmission of
garbled data (see Chapter 3). (Error-checking protocols do re-
transmit garbled data.) The chance of losing or fouling up data
increases with communications speed, too.

 Another major drawback of using ASCII file transfer in the
modern world of telecomputing is its inability to handle binary
data files, programs, and most 8-bit files, for reasons discussed
in the paragraphs immediately following.

ERROR-CHECKING (BINARY) FILE TRANSFER PROTOCOLS:
WHAT THEY ARE, AND HOW AND WHY THEY'RE USED

 In the early days of telecomputing, file transfers consisted
of simple 7-bit ASCII text files--messages, program source code,
reports, and the like. As telecomputing evolved, there emerged a
need to transfer other kinds of files. A reliable method of
error checking was also needed. Error-checking file transfer
protocols (sometimes called "binary protocols," or simply
"protocols") were developed to meet these needs.

 As noted earlier, error-checking protocols operate by
sending data in discrete groups, whose integrity is tested at the
receiving end to insure error-free transmission. Error-checking
protocols can be used to transfer any type of file, from binary
data files and machine-language programs to 7-bit text files.

Transferring Binary Data and Programs with Error-Checking Protocols:

 Programs, "binary" data files, and certain other types of
files cannot be transferred via conventional ASCII transfer
methods because such files may contain any or all of the 128
"standard" characters from the 7-bit ASCII group (including
control-characters), as well as special 8-bit characters. 7-bit
ASCII transfer methods can deal only with 7-bit alphanumeric
characters; control-characters may be ignored or perceived by
software or hardware as commands, and 8-bit characters are
truncated.

 When you attempt to transfer anything other than 7-bit

alphanumeric characters via modem, all sorts of problems can pop
up. Here are a few examples:
 1. The receiving system may interpret some characters (like
 as ^S) as a flow-control or other command character and
 "lock up."
 2. The receiving system may receive an "end of file" marker
 (typically a ^Z), and stop accepting data, resulting in
 a partial transfer.
 3. 8-bit characters will be truncated (i.e., the final bit
 in each byte ignored), which will result in the wrong
 characters being "received."
 4. The receiving computer or either of the modems may,
 depending on their internal makeup and configuration,
 interpret 7-bit control-characters or 8-bit characters
 in other, unpredictable ways, resulting in lost data,
 system lockup, disconnection, etc.

 All of these problems are avoided with error-checking
protocol transfer, because control-characters are transmitted in
such a way that they are not perceived as such by the receiving
system.

 Too, protocol transfers usually take place using 8 data
bits, so 8-bit characters (when sent individually) are handled
without truncation. If the transfer takes place at 7 bits, as is
the case when the Kermit protocol is used, 8-bit characters are
translated into "passable" 7-bit characters for transmission.

 On top of all this, error-checking protocols provide the
bonus of reliable error checking. When you're transferring a
large file of any type, error-checking is a very welcome bonus,
because the odds are high that some sort of telephone-line noise
or other garbage will be introduced into the file. When binary
data or program files are involved, error-checking becomes a
necessity, because it's almost impossible to find garbled data in
such files after download.

Transferring ASCII Text Files with Error-Checking Protocols:

 Error-checking protocols can be used to transfer 7-bit text
files as easily as other types of files. In fact, error-checking
protocol transfer is to be preferred when you transfer large text
files, for two reasons. First, as I've pointed out before, the
simple parity checks performed during an ASCII file transfer are
all but worthless. By comparison, error-checking protocols can
transfer files with a reliability of more than 99%. Second,
depending on the method used, error-checking protocol transfer is
often faster than ASCII transfer.

 Add to these advantages the byte-by-byte reports and other
extras provided by some communications programs during file
transfer, and it's easy to see that error-checking protocols are
by far the better way to transfer files. I've found error-
checking protocols to be so useful that I routinely use the
Xmodem or Kermit error-checking protocol for even the smallest
text-file transfers. (I reserve ASCII transfer for use with
systems that don't accommodate error-checking protocols, and for
inserting small disk files into the middle of messages I'm
composing online.)

HOW ERROR-CHECKING PROTOCOL TRANSFER WORKS:

 When a file is transferred using an error-checking protocol,
data is transmitted in groups of characters called blocks
(sometimes referred to as "packets" or "frames"), rather than one
byte or one line at a time. The blocks are usually of a fixed
size, such as 128 bytes or 1024 bytes.

 A simplified description of the process goes like this: The
sending computer transmits no data until it has read enough from

a file to make up a block, which it then transmits. When the
block is received at the other end, the receiving computer
unpacks the block and adds it to the file it is writing.

 During a protocol transfer, the computer systems involved
usually exchange information about the transmission, relying on a
mutually-recognized set of control signals to signal data receipt
or error, mark the end of a transmission, and perform other
chores related to file transfer and error-checking. These
control signals sometimes vary from one protocol to another, and
consist of device and communications control characters from the
ASCII character set designated by the American National Standards
Institute (ANSI). Table 9.1 Provides a list of these codes and
their applications in device and communication control.

Error-Checking:

 Accurate error-checking is accomplished by any of several
methods during protocol transfer. Information about the number
and type of bytes or bits in each block may be included with the
block in what is called a block "header," or transmitted before
or after the block. Additional bits may be added to each block
for the receiving system to use in determining (by calculations
based on the sum of the binary ones in a block) whether a block
has been properly received. Or, the sending and receiving
systems may exchange information about the content of blocks
after a block or group of blocks is transferred.

 Suffice to say, the integrity of each block is accurately
checked. If the block is "good," the receiving system sends an
acknowledgment signal (usually an ACK) to tell the sending
system to transmit the next block. If a block is "bad" (i.e.,
the information about the block doesn't agree with the block
contents as received), the receiving system asks the sending
system to re-send the block by sending a negative acknowledgment
signal (usually a NAK).

Retries:

 As indicated above, "bad" data blocks are automatically re-
transmitted by protocol transfer systems. However, a transfer is
terminated if a block is re-transmitted a set number of times
(usually 9) without success. This provides extra insurance
against bad data getting through, and also eliminates the
possibility of computers being tied up for hours while a bad
block is transmitted over and over again. The number of retries
can usually be set within a communications program, and some
online systems will allow you to do the same in an online profile
or configuration area.

Timeouts:

 Protocol transfer systems will wait for a specified period
of time to receive a block of data or, when transmitting, for an
acknowledgment that data was properly received. If this time
limit is exceeded, the protocol transfer is terminated. This is
called a "timeout." As with the number of retries, protocol
transfer timeout can usually be set within a communications
program and on some online systems.

Buffers:

 Most error-checking protocols take advantage of data
buffering, which means that (as is the case with ASCII file
transfers) data is temporarily stored in RAM in what is called a
buffer. Data buffering speeds up file transfer because it
eliminates the number of times a transmission must be paused
while the receiving or sending computer accesses its disk.

 Data buffers usually hold several blocks' worth of data,

which means the sending computer doesn't have to stop to read
data from its disk each time it sends a block. For the same
reason, the receiving system doesn't have to pause to write each
time it receives a block. Data is written to disk only when the
receive buffer is filled.

Bit "Overhead" and Speed:

 You may have wondered whether the addition of extra bits for
error-checking purposes adds enough "overhead" to a file to slow
down a transfer. It might, if not compensated for. Most error-
checking protocols, however, remove the start-, stop-, and
parity-bits from each byte before including the byte in a packet.
The net result is that the total number of bits transferred is
less than it would be if the bytes were sent via ASCII transfer.

 Some protocols compress data before transmitting it, too.
(The data is, of course, decompressed before being stored at the
receiving end.)

Reports:

 As you know, error-checking protocols exchange information
on the status of a transfer, but these are not intended to be
viewed by the computer user. However, most implementations of
error-checking protocol in communications programs provide some
sort of ongoing report on the status of protocol file transfers.
Information such as the number of blocks and/or bytes
transferred, the percentage of the transmission completed, and
more is available at any point during the transmission.

 Status reports from two different programs--COM-AND and
MIRROR II--are shown in Figures 9.2 and 9.3.

 Online systems often report on the final status of error-
checking protocol transfers with a quick summary that scrolls
onto the screen at the conclusion of each transfer. As shown
below in figures 9.4 and 9.5, these reports vary in detail from
one system to another.

 This is a general description of the way error-checking
protocols work; there are some more esoteric approaches, but this
is the most common. The descriptions of specific error-checking
protocols that follow contain additional details on particular
protocols.

COMMON ERROR-CHECKING PROTOCOLS AND HOW THEY WORK:

 Discussing every public domain, commercial/proprietary, and
machine-specific error-checking protocol in existence is beyond
the scope of this book. However, we'll take a look at the most
popular protocols in public use here, along with machine- and
system-specific protocols, and proprietary protocols.

Xmodem and Variations:

 Xmodem file transfer protocol (sometimes called MODEM7 or
Xmodem/Checksum) is an error-checking protocol you'll encounter
very frequently. Created in 1978 by Ward Christensen and placed
immediately into the public domain, Xmodem has become a de facto
standard. It can be found on almost all BBSs and online systems
that offer error-checking protocols. And, if a communications
program offers any error-checking protocols at all--even one--
Xmodem will be among them (systems and programs that use strictly
proprietary protocols excepted, of course).

 How Xmodem Works. Xmodem transfers files in 128-byte
blocks. It adds an extra bit--called a checksum--to each block,
which the receiving system uses to calculate whether or not the
block was accurately transmitted. (A complex algorithm, based on

the contents of the block, is used for this calculation.) If the
checksums don't agree, the receiving computer requests the
sending computer to re-transmit the packet by sending a NAK.
Otherwise, the receiver sends an ACK, and the sending system
transmits the next block. This process is repeated for each
block until the entire file is transferred, or until the transfer
is aborted by the user, by too many retries, or by a timeout.

 Although it is a superb error-checking protocol, Xmodem has
a couple of drawbacks. It cannot be used to communicate at 7
data bits, as it transmits files in 8-bit format only. (If you
try to use Xmodem with a 7-bit system, not all the bits
transmitted will be received, or the system may lock up.) If a
hardware error-checking protocol or flow control is in effect,
some Xmodem characters can be perceived as control characters,
with unpredictable effects.

 You may encounter some versions of Xmodem (or MODEM7) that
offer a batch file processing. Such implementations are
generally restrictive and difficult to use, however.

 Overall, Xmodem is a superior approach to error-checking
protocol design. It is relatively easy to use, and offers 96%
reliability--extremely high where file transfers are concerned,
and far better reliability than can be achieved with ASCII
transfers.

 Xmodem CRC. CRC (Cyclic Redundancy Check) is an Xmodem
option that modifies how Xmodem checks for errors. CRC adds a
second checksum bit to each block to enhance error checking. The
fact that an extra bit must be transmitted with each block makes
for a noticeable difference in transmission times only for
extremely large files, and the gain in efficiency is worth it.
Using the CRC option with Xmodem increases reliability to an
amazing 99.6%!

 Xmodem programs on online systems that use CRC usually have
the capability to detect whether or not another system is using
CRC, and then use CRC or not, as appropriate. GEnie is one
example of a system that can detect and adjust to the presence or
absence of the CRC option.

 (Don't count on every system being able to sense CRC,
though; if you plan to use CRC during file transfers with a
particular online system, look for a terminal settings option on
the system where you can specify Xmodem/CRC as a default, or
always select Xmodem/CRC specifically at a download menu. If
there is no such selection available, the system can probably
adjust for CRC automatically. If, on the other hand, nothing
happens when you try to send or receive a file using Xmodem/CRC,
you'll probably have to fall back on "straight" Xmodem.)

 WXmodem. WXmodem stands for "Windowed Xmodem." Like
Xmodem, WXmodem transmits 128-byte blocks; unlike Xmodem, it does
not wait between blocks for an ACK or NAK. It monitors for those
signals, but it "assumes" each block has been transmitted
successfully, and immediately sends the next block.

 In transmitting blocks in this nonstop manner, the sending
computer is always one to four blocks ahead of the receiving
computer's ACKs or NAKs. (The receiving computer's buffer must
be large enough to accommodate this slightly faster influx of
data, or WXmodem will not work.) The difference between the
block being sent and the most currently received ACK or NAK is
called the window--hence WXmodem. Under ideal situations,
WXmodem keeps track of this difference, and thus knows which
block is referred to and must be re-transmitted if a NAK is
received.

Kermit:

 Kermit (yes, it's named after Kermit the Frog) is equally as
popular as Xmodem. Created at Columbia University in 1981, it
was designed to be more flexible and convenient to use than
Xmodem. It's not yet implemented on as many online systems and
programs as Xmodem, but this is changing as computer users
discover the program's usefulness.

 How Kermit Works. Kermit is similar to Xmodem in that it
transfers files in blocks--or packets, as they are referred to in
Kermit. It also resembles Xmodem in its use of a checksum
technique for error checking (a checksum bit--based on packet
contents--is included with each packet).

 Special Features. Kermit differs from Xmodem in several
ways, not the least of which is the fact that it can transfer
files using 7 data bits. Where necessary, Kermit converts 8-bit
characters in a file to 7-bit characters, by stripping the 8th
bit and sending it as a separate bit. Kermit also converts
control characters into other ASCII characters that can be
"safely" transmitted.

 Another interesting feature of Kermit is that its packet
sizes can be changed to accommodate fixed packet sizes on a
remote system, or varying transmission conditions.

 Finally, Kermit programs can re-synchronize their
transmissions if interrupted by line noise--something else that
isn't true of Xmodem.

 "Wild Card" Transfers. If these advantages aren't enough,
Kermit also allows "wild card" file transfers, which means you
can use an asterisk in place of a file name or extension to
transfer all files of a type. (Examples: Typing MIKE.* would
transfer all files named "MIKE," no matter what their extensions.
Typing *.TXT would transfer all files with the extension TXT.)

 File Compression. Kermit saves time by using a clever
transmission technique in which repeating characters in certain
kinds of files are sent only once; this can result in a
significant time savings.

 Naturally, both the sending and receiving computers must use
the same Kermit protocol, as quite a bit of decoding is required
at the receiving end.

 The Kermit Server Mode. Most versions of Kermit also offer
what is called a "server" mode, which is a mode in which your
software will take over and issue all commands necessary for
sending and receiving files.

Ymodem:

 Ymodem operates in a manner very similar to that of Xmodem,
the major difference between the two being the fact that Ymodem
transmits data in 1024-byte (1K) blocks, rather than in 128-byte
blocks. Its major application is transmitting very large files.

 You may encounter a UNIX-based version of Ymodem called YAM,
which is actually the protocol from which Ymodem is derived.

 Ymodem Advantages. Ymodem's large block size increases
transfer speed significantly when few or no errors are
encountered. Too, some implementations of Ymodem (called Batch-
YAM) offer batch processing.

 Ymodem Disadvantages. At first glance, Ymodem may seem
imminently superior to Xmodem, due to its larger block size. It
is--sometimes. The checksum error-correcting scheme used by
Ymodem is similar to that of Xmodem/CRC in that it uses two

checksum bits at the end of each block. However, it differs in
such wise that, if there is a lot of line noise, the re-
transmission of blocks can slow down transfer significantly.

 Another drawback of Ymodem is the fact that it adds to
(pads) a block with extra nul characters to make sure it is
exactly 1024 bytes in size. This means extra transmission time,
too.

Zmodem:

 Zmodem operates much faster than most other protocols, as it
does not wait for ACKs when it sends data blocks. It only
recognizes and acts on NAKs from the remote system. Zmodem
blocks are 512 bytes in size. The protocol is relatively fast,
even though it uses no buffering, which means a pause for disk
access each time it sends or receives a block. Efficiency rates
of 99% (239 cps @ 2400 bps) are routinely achieved with many
online services' implementations of Zmodem.

Machine-specific Protocols:

 There are a number of machine-specific protocol transfer
programs, among them Cat-Fur for the Apple II series of
computers, Punter for the Commodore 64/128, and Telink for the
IBM PC.

 These protocols aren't generally used by online services,
but can be found on BBSs and a few online services that cater to
specific computers.

System-specific Protocols:

 Certain online services offer special file-transfer
protocols designed to make optimum use of their software.
CompuServe, for example, offers B Protocol, which is quite
popular among users. It is supplied with all CompuServe VIDTEX
software (see Chapter 5), as well as with many PD, shareware, and
commercial programs. If your favorite communications program
doesn't accommodate B Protocol, you may be able to find a
"standalone" B Protocol (usable with almost any communications
programs) on a BBS or other online system.

Proprietary Protocols:

 Various modem and software manufacturers have developed what
are called proprietary error-checking protocols. These are
protocols that use special file transfer and error-checking
techniques developed by the manufacturer and not released to the
public.

 As with other error-checking protocols, successful use of a
proprietary protocol requires that the same protocol be used at
each end of a file transfer. Because some such protocols are
available only with a specific modem or software package, the
product in question must be used at both ends. This obviously
means, in turn, that the manufacturer or publisher sells more
modem units or copies of software.

 This may sound overly mercenary, but it's not all bad.
Proprietary protocols often offer advantages that make
restriction to a particular modem and/or software package
worthwhile. Some of those advantages are discussed in the
following paragraphs.

 Software Protocols. Proprietary error-checking protocols
implemented in software vary in design and features, but
generally use a block- or packet-based system of file transfer.

 Sometimes a proprietary protocol is the only protocol

provided with a communications program. Because such a program
focuses on one job--transferring files via a specific protocol--
it may include features such as file compression and adaptive
parameter block size, in addition to what its designers feel is
the best file transfer technique available. (In many cases, this
may be close to the truth.) If you use this kind of program,
however, you can transfer files only with programs that use the
same protocol.

 Ideally, a program that comes with a proprietary protocol
should provide some of the more common protocols, such as Xmodem
and Kermit, as well.

 Some proprietary software protocols are available with more
than one program. The Hayes protocol, for instance, is offered
by many programs other than Hayes' designated software, Smartcom.
The same is true of Crosstalk's protocol, which is implemented in
Mirror II, among others.

 No matter if a proprietary protocol is available with only
one program or with several, using one may result in improved
transfer efficiency and ease of use. This is because the
implementations of proprietary protocols do not vary, and use the
same set of commands and signals. Too, you can usually use the
default communications parameters provided with the program,
which greatly streamlines operation.

 Hardware Protocols. Several error-checking protocols are
implemented in hardware by modem manufacturers, among them MNP
and ARQ. When these protocols are used, data is collected into
packets (or "frames") before transmission. Virtually all such
hardware protocols use an approach similar to the checksum/CRC
method to check for errors.

 Hardware protocols are particularly effective in eliminating
the effects of telephone line noise, and may offer data
compression and other enhancements.

 On the negative side, using a hardware protocol can cause
minor delays during realtime operations. When the protocol is
"on," the modem may not send typed-in characters until enough
have been entered to fill a packet. Or, it may wait until a
certain number of milliseconds have passed before sending
characters--to make certain that no more are immediately
forthcoming. Such delays are sometimes perceptible, sometimes
not, but it is best to disable hardware protocols during direct,
realtime communication with another system. (Save the error-
checking protocol for use when you're transferring files, or if a
connection is bad.)

 Hardware error-checking protocols sometimes interfere with
software error-checking protocol transfer, too. This kind of
problem can be overcome, but you'll probably have to consult with
the modem's manufacturer.

 Modem manufacturers are particularly competitive in this
area, and proprietary protocols are jealously guarded. However,
a number use licensed file-transfer protocols like MNP, so it is
possible to use some hardware protocols with modems from
different manufacturers.

STANDARDS AND SELECTIONS: WHAT TO LOOK FOR

 The communications software package you select should offer
some means of ASCII file transfer. And, whether or not you
intend to do much uploading or downloading right now, make sure
you get a program that has at least one binary file transfer
protocol. Sooner or later, you'll find a reason to transfer a
file via modem.

Which Protocol?

 Generally speaking, it's a good idea to have on hand as many
protocols as possible. But Xmodem and Kermit are by far the most
popular error-checking protocols in existence. You'll find
either or both available on any online service or BBS that offers
protocol file transfer--Xmodem more often than Kermit. So, you
should at least have Xmodem capability. (Fortunately, almost all
communications software packages include Xmodem.)

 After Xmodem, I recommend Kermit--because of its efficiency
and because it will eventually be on as many systems as Xmodem.

 If you intend to deal with a BBS or online service that
offers a system-specific protocol, it's a good idea to have that
protocol, too--even if the system in question offers Xmodem,
Kermit, or other protocols. As I implied earlier, a system's own
protocol tends to be the fastest and most efficient.

 The other general error-checking protocols discussed in this
chapter will be of interest to you if you like to experiment, and
you can probably find a good reason to use each of them.
However, I suggest that you do your training with Xmodem and/or
Kermit, if for no other reason than the fact that a lot of
information is available on using those protocols.

 As for machine-specific protocols, remember that you will
find them in use on a limited number of systems. Proprietary
protocols are, of course, recommended only under special
circumstances.

SAMPLE FILE TRANSFERS

 I've already presented a number examples of file transfer in
this chapter, but we'll wrap things up with a few more examples
of specific transfer methods.

 Incidentally, the menus, prompts, and messages from BBSs and
online services in the illustrations are exactly as you would see
them if you dialed up these systems. The communications software
windows and commands probably differ from what your computer and
software will display, but the steps depicted are pretty much the
same no matter what your system.

ASCII Download:

 An ASCII file transfer can be as simple as opening your
software's capture buffer and commanding the remote system to
display the desired text file. Some systems offer a more formal
ASCII download, though, providing prompts and sending specific
end-of-file characters. DELPHI is one such system.

 When you select ASCII Download at a DELPHI download menu,
the system sends the file, followed by a delay, Control-Z, and
Control-G (bell). These signal some communications programs to
close the capture file. A portion of the ASCII download process
is shown below, in Figure 9.24.

ASCII Uploads:

 As with an ASCII download, an ASCII upload can be fairly
simple: let the remote system know you are going to send text,
supply a file name, and then use your software's TRANSMIT or SEND
command to send the text. As shown in Figure 9.25, you usually
have to signal the receiving system via a control-character,
carriage return, or special command character when you've
finished uploading.

 Timed and Prompted Uploads. As I mentioned a while back,
the buffers in certain areas on some online systems cannot take

ASCII input at high speed. Such a system may require that your
system wait a specified time between each line it sends, or that
a line be sent only when a specified character, called a
turnaround character, is sent. (This is rarely found outside of
message entry areas nowadays; most database and personal file
area buffers are designed to handle text at full speed.)

 On systems that use a time delay, the upload will look just
like a "straight" upload, except that the flow of text will be
slowed down greatly.

 When turnaround character prompting is used, you must set
your system's turnaround character to match that used by the
remote system (it's usually ?, >, or :). Once the turnaround
character is set, your software will wait for the turnaround
character (usually ?, >, or :) before it sends each line. (Some
communications programs require you to specify that the
turnaround-character prompting be used, while others "turn on"
this feature whenever a turnaround character is set.) Figure
9.26 shows a portion of a prompted ASCII upload.

Xmodem Download:

 The Xmodem download procedure is fairly straightforward on
most systems. Xmodem protocol is either selected at a menu, or
exists as a system default (set by you or by the system). In the
example that follows--Figures 9.27 through 9.30--you'll see the
steps involved. (Note that GEnie has the Xmodem protocol as a
system default. You can use CRC, as I am in this example, and
GEnie will adopt to it automatically. This is true of most BBSs,
as well.)

 Note that GEnie provides a rather complete report on the
outcome of the download. Had I aborted the download, the system
would have responded with: ((sample screen here))

Xmodem Upload:

 Next, we'll take a look at an Xmodem upload on DELPHI. As
with an ASCII upload, the system asks me for a filename when I
type the Xmodem upload command (XUPLOAD). After I've entered the
filename, I'm asked whether the file is text or binary. That
question answered (use "binary" if you're in doubt), I'm prompted
to send the file, as shown in Figure 9.32.

 I'm using Xmodem/CRC in this example, but I didn't have to
specify the CRC option because it is stored in my DELPHI system
profile as my file-transfer protocol-of-choice.

 When the download is complete, DELPHI provides me with a
rather brief status report (Figure 9.33).

 The procedures for other protocol downloads and uploads are
not unlike those shown for Xmodem. The basic steps are the same:
Let the remote system know you are going to download or upload,
provide a filename and protocol choice if necessary, and initiate
the transfer process on your end when prompted to do so. You may
have to set packet sizes with some protocols, or provide commands
to specify file groups in a batch transfer; consult your
communications program's documentation for more information.

File Transfer Tips:

 A file transfer can go wrong in a number of ways, but the
most common sources of trouble during file transfer include
telephone line noise, bad files, and unmatched protocols. You
can't anticipate every problem, but there are certain precautions
and procedures you can observe to minimize the possibility of
trouble during file transfer.

Setting Up and Signing On:

 You should, of course, make sure your equipment is properly
connected and that you have set the proper communications
parameters for the system you are dialing up before you attempt
to sign on to a system.

 You'll want to give special attention to telephone line
conditions when you first sign on. Watch for evidence of line
noise (in the form of "garbage" characters appearing on your
screen). If it appears that you have a noisy line, sign off and
redial to get a better connection. If the problem persists, wait
an hour or two before attempting the file transfer.

 If the weather in your area is bad, postpone the file
transfer until things quiet down. Telephone line noise
frequently accompanies bad weather--especially when lightning is
present (and you shouldn't be using your computer during a
lightning storm in any event).

Observing Protocol:

 Make sure you select the proper protocol when you tell the
remote system you want to transfer a file. Sometimes one
letter's difference--entering an X rather than a K, for example--
can result in your system trying to communicate with the remote
system under the wrong protocol.

 If you can't get a protocol to work with a particular
system, experiment a bit with different settings. Because
implementations of protocols differ slightly from system to
system, you may occasionally find that "modified" protocols don't
work. For example, two bulletin board systems that I call
regularly implement Xmodem/CRC in a manner that is slightly
different from the way my communications program handles it.
Even though I select Xmodem/CRC when I want to upload a file, and
initiate an Xmodem/CRC upload at my end, my software refuses to
communicate with the BBSs software. So, I have to "fall back" to
straight Xmodem to transfer files on these systems.

 If a system offers a specific protocol (like B Protocol on
CompuServe), use it. You'll find it faster and more reliable
than other protocols every time.

Aborting a Transfer:

 If you feel that a transfer is not going right, wait a few
seconds before aborting it. Either your system or the remote
system may correct the problem by resending bad data, or abort
the transfer themselves.

 If you do abort the transfer, you may have to issue an
additional command to the remote system to let it know you want
to abort the transfer. This is usually done by sending several
^Cs or ^Xs (the remote system will usually tell you how to abort
before you initiate the transfer). In some cases, your software
may send the proper abort signal to the remote system when you
tell it to abort the transfer at your end.

 If for some reason the remote system doesn't respond to the
abort commands or to any other commands, refer to the "In Case of
Fire..." section at the end of Chapter 7.

A NOTE ON TRANSFERRING PROGRAMS BETWEEN NON-COMPATIBLE COMPUTERS

 I've already established that text files can be transferred
between computers of varying types, but what about programs? The
answer is no and yes. No, you cannot transfer IBM programs from,
say, an IBM PC to a Commodore 64 and expect them to run on
Commodore. This is because the content of the IBM files would be

absolutely meaningless to the Commodore. You can, however,
transfer a Commodore program or data file from an IBM PC to a
Commodore 64--I've done it. And how did I get a Commodore
program on an IBM disk? Well, I downloaded the program from
GEnie, where it was stored on a Honeywell mainframe computer. I
then had a friend with a Commodore 64 dial up my computer direct,
and I uploaded the program to him, It worked perfectly on his
machine.

 This may seem a bit odd until you consider that what I did
was no different from what happens when a program is uploaded to
and stored on an online service mainframe or mini-computer, where
disk formats are definitely alien. As long as the content of a
program file remains intact, it can be stored in any disk format
for later transfer to a computer that can use it; modem transfer
is the key. So, if you're online and see a file you'd like to
get for a friend with a "foreign" computer, don't hesitate to
download it for later transfer to his or her computer.

 If you found this excerpt useful, you may want to pick up a
copy of the book from which it was excerpted, THE MODEM
REFERENCE, recommended by Jerry Pournelle in Byte, The New York
times, The Smithsonian Magazine, various computer magazines, etc.
(Excerpts from this book accompany this file.) THE MODEM
REFERENCE published by Brady Books/Simon & Schuster, and is
available at your local B. Dalton's, WaldenSoftware,
Waldenbooks, or other bookstore, either in stock or by order.
Or, phone 800-624-0023 to order direct.

 In addition to explaining the technical aspects of modem
operation, communications software, data links, and other
elements of computer communications, the book provides detailed,
illustrated "tours" of major online services such as UNISON,
CompuServe, DELPHI, BIX, Dow Jones News/Retrieval, MCI Mail,
Prodigy, and others. It contains information on using packet
switching networks and BBSs, as well as dial-up numbers for
various networks and BBSs, and the illustrations alluded to in
this excerpt.

 You'll also find hands-on guides to buying, setting up,
using, and troubleshooting computer communications hardware and
software. (And the book "supports" all major microcomputer
brands.)

 Want the lowdown on getting more out of your word processor?
Read the only book on word processing written by writers, for
writers: WORD PROCESSING SECRETS FOR WRITERS, by Michael A. Banks
& Ansen Dibel (Writer's Digest Books). WORD PROCESSING SECRETS
FOR WRITERS is available at your local B. Dalton's, Waldenbooks,
or other bookstore, either in stock or by order. Or, phone
800-543-4644 (800-551-0884 in Ohio) to order direct.

 Do you use DeskMate 3? Are you getting the most out of the
program? To find out, get a copy of GETTING THE MOST OUT OF
DESKMATE 3, by Michael A. Banks, published by
Brady Books/Simon & Schuster, and available in your local
Tandy/Radio Shack or Waldenbooks store now. Or, phone 800-624-
0023 to order direct.

 Other books by Michael A. Banks
UNDERSTANDING FAX & E-MAIL (Howard W. Sams & Co.)
THE ODYSSEUS SOLUTION (w/Dean Lambe; SF novel; Baen Books)
JOE MAUSER: MERCENARY FROM TOMORROW (w/Mack Reynolds; SF novel; Baen Books)
SWEET DREAMS, SWEET PRICES (w/Mack Reynolds; SF novel; Baen Books)
COUNTDOWN: THE COMPLETE GUIDE TO MODEL ROCKETRY (TAB Books)
THE ROCKET BOOK (w/Robert Cannon; Prentice Hall Press)
SECOND STAGE: ADVANCED MODEL ROCKETRY (Kalmbach Books)
 For more information, contact:
 Michael A. Banks
 P.O. Box 312

 Milford, OH 45150

