
 Freeman Installer & Uninstaller User Manual Contents
Freeman Installer & Uninstaller is a shareware package to facilitate general software
installation and uninstallation tasks under Microsoft Windows.
If you don't know how to use help, press F1 now.
Copyright & License
Disclaimer
Red Hot Features
Using Freeman Installer
Using Freeman Constructor
Making your application uninstallable
Variables
Preparing compressed files
Preparing advertisement dialog boxes
Project files and class library
Bells and whistles
How the classes work together
Useful installation routines
Registering Freeman Installer!!!

Disclaimer
This software is provided "as is" without representation or warranty of any kind, either
expressed or implied, including without limitation, any representations or endorsements
regarding the use of, the results of, or performance of the software, its appropriateness,
accuracy, reliability, or correctness. The entire risk as to the use of this software is assumed
by the user. In no event will Ka Iok Tong be liable for any damages, direct, indirect,
incidental or consequential resulting from any defect in the software, even if Ka Iok Tong
has been advised of the possibility of such damages. This disclaimer shall supersede any
verbal or written statement to the contrary. If you do not accept these terms you must
cease and desist using this software immediately.

Copyright & license

Freeman Installer & Uninstaller
version 1.5

Copyright © 1994 Ka Iok Tong. All Rights Reserved

Freeman Installer & Uninstaller version 1.5 is copyrighted software. It is not public-domain
software. The version you are keeping is an evaluation copy only. You are entitled to try it

out for an unlimited period as long as you don't use this software to distribute any
application. For more info, see registering Freeman Installer.

How the classes work together
If you don't need bells and whistles, you don't need to read this topic.
Class installer
This class provides the common routines pertaining to installation and uninstallation. For
example, it has a member function to copy a file, to create a program group, to create a
program item. But it doesn't know any logic of the whole installation. For example, it
doesn't know the files will be copied one after one, nor does it know the program items will
be created after all the files have been copied. This kind of control flow is determined by
the class installcontroller.
The routines provided by this class are more than those actually used by the installer. For
example, it has a member function to execute an EXE file and wait until it terminates, the
installer doesn't call this at all. When you need to perform an extra operation, the installer
is the best place to look into.
See member functions of the class installer.
Class installcontroller
This class provides the most control flow of the whole program. It asks the class installinfo
for the install info such as how many files to copy, what are their names, and it dispatches
the class installer to do the real job. For example, it has a member function called
copyfiles() which looks like this,

int installcontroller::copyfiles()
{

n = ask installinfo how many files are there;
for (i = 0; i < n; i++)
{

ask installinfo what the name of the i'th file is;
ask installinfo what the source dir of the i'th file is;
ask installinfo what the target dir of the i'th file is;
call the installer to copy the file;

}
}

There is a hole is this class. It leaves a virtual function called run() to be defined by its
derived class. run() is supposed to control the top level control flow of the whole program.
The followings are the data members you might want to access,

saint ics; /* is the component selected? */
saint ifs; /* is the file selected? */
saint iis; /* is the item selected? */
saint ies; /* is the entry selected? */
saint irs; /* is the reg key selected? */
installer ir; /* installer */
installinfo *ii; /* custom install info obj */

Note that,
1. ir is the installer obj. The typical use is to call the common routines such as creating a

program item,
ir.createitem(...);

2. ii points the installinfo obj. The typical use is to typecast it to a pointer to the actual

installinfo obj, i.e., an instance of class fiuserinfo (a derived class of installinfo), to access
the extra variables,
((fiuserinfo*)ii)->extravariable

3. ics, ifs, iis, ies and irs are integer arrays to store the selection state of the components,
files, program items, INI entries and registration keys respectively. See determine install
or not according to criteria other than version info and user selection for the typical use
of them.

The followings are the function members you might want to access,
 char *getdiri(); // returns the install target dir
 char *getdirs(); // returns the source dir
 char *getdirw(); // returns the Windows dir
 char *getdiry(); // returns the shared dir

Class installinfo
This is an abstract class. It prescribes that any derived class must answer some questions
(asked by the class installcontroller). For example, it has a pure virtual function getnofiles()
which is supposed to return the total number of files to copy,

class installinfo
{

......
virtual int getnofiles() = 0;
......

};
It has only one data member, i.e., a reference to the installcontroller obj it is working with,

class installinfo
{

......
installcontroller ⁣ /* the controller we are working with */
......

};
The typical use of ic is to access the controller, from which we can access its data members
and the installer,

char *p;
p = ic.getdiri();
ic.ir.createitem(...);

Class fiusercontroller
This is a user class generated by Freeman Constructor. It is a derived class of
installcontroller. It defines its only member function run() to fill out the hole left by the class
installcontroller.
class fiusercontroller:public installcontroller
{
 public:
 fiusercontroller(...):installcontroller(...)
 {

 }

 int run();
};
run() is generated according to the install info you told Freeman Constructor. Here is a
typical definition of run(),
// return: true --- ok false --- error or cancel
int fiusercontroller::run()
{
 if (!welcome()) // show welcome message
 {
 return 0;
 }
 if (!selectcomps()) // select components
 {
 return 0;
 }
 if (!askdir()) // ask the user to input install target dir ($i)
 {
 return 0;
 }
 logmover lm(*this); // when destructed, move log file to $i
 if (!copyfiles()) // copy files
 {
 return 0;
 }
 switch (createitems()) // create program items
 {
 case 0:
 break; // ok
 case 1:
 break; // don't create
 case 2:
 return 0; // error
 }
 if (!setinientries()) // create/set ini entries
 {
 return 0;
 }
 if (!setregkeys()) // create/set registration keys
 {
 return 0;
 }
 lm.move(); // restarting windows won't activate lm's destructor
 done(); // display installation complete message
 return 1;
}

It performs the following tasks in the order shown,
1. Displays welcome dialog box.
2. Displays the component selection dialog box, if any.
3. Prompts the user for the install target directory.
4. Copies files, if any.
5. Creates program items, if any.
6. Sets INI entries, if any.
7. Sets registration keys, if any.
8. Displays installation completion dialog box or restart Windows dialog box.
For most customizations, run() is the best place to modify (usually add several lines of
code).
Class fiuserinfo
This is a user class generated by Freeman Constructor. It is a derived class of installinfo. It
defines all the member functions prescribed by the class installinfo, to actually answer the
questions asked by the class installcontroller. For example, it may define getnofiles() like
this,

class fiuserinfo::installinfo
{

......
int getnofiles()
{

return 10;
}
......

};
These member functions are generated according to the install info you told Freeman
Constructor. Usually you don't need to modify them at all unless you need to determine the
install info dynamically.

installer::copy(char srcpath[], char dstpath[], int ischkver, int isshared, int iscompressed);
Copies a file. Optionally performs version checking and decompression.
In:

srcpath --- path of the source file
dstpath --- path of the target file
ischkver --- need version checking or not
isshared --- is a shared file or not. It will just be saved in the log
iscompressed --- is a compressed file or not

Return:
0 --- copied
1 --- skipped
2 --- error

Member functions of class installer
Here we only list the member functions you are most likely need to call. If you really need
to know other member functions, you can check the header file installr.h or even ask me.
If not stated otherwise, all member functions returning an integer will return true on
success and return false on failure (error or user cancel).
If not stated otherwise, all member functions will report error before returning if it
encountered an error.
If not stated otherwise, all changes made by all member functions will be recorded in the
install log.
File operations

int copy(char src[], char dst[], int ischkver, int isshared, int iscompressed);
int deldir(char dir[]);
// deletes a dir. it will fail if the directory is not empty
int multideldir(char dir[]);
// deletes a dir. all the files and sub-dirs will be deleted as well
int multimkdir(char dir[]);
// create a dir. all dirs involved will be created if necessary
int delfile(char path[]);
// deletes a file
int renfile(char oldpath[], char newpath[]);
// renames a file from oldpath to newpath

Program item operations
int begddepm();
// begins DDE'ing with Program Manager. runs Program Manager if necessary
// before calling any functions dealing with program items, this function
// must be called
void endddepm(int isendpm);
// finishes DDE'ing with Program Manager
int addgrup(char grup[]);
// creates a program group
int delgrup(char grup[]);
// deletes a program group
int additem(char grup[], char item[], char cmdl[], char icon[], int iidx = 0);
// creates a program item
int delitem(char grup[], char item[]);
// creates a program item

INI entry operations
int delinisect(char file[], char sect[]);
// deletes an INI section and all entries in it
int addinisect(char file[], char sect[]);
// creates an INI section
int insinientry(char file[], char sect[], char entry[], char value[], int seqno);

// inserts an INI entry at the given index (0 is the first, 1 is the second)
int addinientry(char file[], char sect[], char entry[], char value[]);
// appends an INI entry
int delinientry(char file[], char sect[], char entry[], int seqno);
// deletes an INI entry at the given index (0 is the first, 1 is the second)
int setinivalue(char file[], char sect[], char entry[], char value[], int seqno);
// sets an INI entry at the given index (0 is the first, 1 is the second)

Registration key operations
int setregkey(char kpath[], char value[]);
// sets the value of the registration key. creates the key if doesn't exist
int addregkey(char kpath[]);
// creates a registration key
int delregkey(char kpath[]);
// deletes a registration key
int getregkey(char kpath[], char value[]);
// get the value of a registration key
int getnosubkeys(char kpath[]);
// get the number of sub-keys of a registration key

Misc operations
int execwait(char path[], int showcmd);
// like WinExec except that it will wait until the child process terminates
void mergedf(char path[], char d[], char f[]);
// merges the dir and file to get a full path
void getdfrompath(char path[], char d[]);
// merges the dir from a full path
void getffrompath(char path[], char f[]);
// merges the file from a full path

Edit>General Information

Application name
The name used to refer to your application. It is used in a couple of dialog boxes.
Default installation target directory
The default value of the installation target directory. It is used to initialize the edit control
when prompting for the installation target directory.
Welcome texts
They will be displayed in the welcome dialog box.
Minimum time to copy a file
Suppose that it is 1000 ms. If it only takes 600 ms to copy a file readme.txt, the installer
will wait 400 ms before copying the next file. It is used to slow down the copying process to
let the user know what is going on. It is particularly useful for small applications.
Putting 0 here will instruct the installer not to wait at all.
Divide files into blocks of this big
Suppose that it is 1024 bytes. If a file manual.hlp is 2050 bytes, the installer will copy it at
three times, one block at a time. The block sizes are 1024, 1024, 2 bytes respectively.
Putting 0 here will instruct the installer copy the whole file without dividing it into blocks.
Here blocks are used as a kind of time unit to control how often to check the abort button
and how often to update the progress bar.
Check abort button when ?? blocks have been copied
Suppose that it is 2. The installer will check if the abort button has been pressed when 2
blocks have been copied. The smaller this value is, the quicker the response to the abort
button is.
Setting it to 1 is usually the best. Checking the abort button virtually doesn't slow down
anything.
Never put 0 here. It will cause the installer stop checking the abort button.
Update progress bar when ?? blocks have been copied
Suppose that it is 2. The installer will update the progress bar when 2 blocks have been
copied. The smaller this value is, the more frequently the progress bar is updated.
Setting it to a appropriate value according to the total size of the files in your application.
Suppose that the total size is 40960 bytes and the block size is 1024 bytes, if you want the
progress bar be updated at an interval of 5%, you should put 2 here, i.e., update every 2 *
1024 bytes = 2048 bytes = 5% * 40960 bytes.
Never put 0 here. It will cause the installer stop updating the progress bar.
Is in debug mode
If the installer is in debug mode, the files will not be actually copied. This is used to speed
up the testing of the install info you told Freeman Constructor.
Kill Program Manager if we started it to DDE with
If the shell does not support the shell DDE commands, the installer will load Program
Manager to create the program items. This controls whether the installer should kill
Program Manager or not when finishes creating the program items.
If you don't kill it, the user can have a chance to pick up those items he/she thinks useful
and migrate them to his/her shell. But this might also give the user an impression that the
install program doesn't clean up its own mess.

Edit>Disk Descriptions

Overview
A disk description is just a string description about a disk. When you are editing the set of
distribution files, for each file you can choose a disk description for it. When the installer
can not find a particular file, it will use the corresponding disk description as a (part of the)
prompt to ask the user to insert the disk. You must enter the disk descriptions here before
you can refer to them.
Insert
Insert a new disk description at the currently selected position. If nothing is selected, it is
equivalent to Insert End.
Insert End
Insert a new disk description as the last disk description.
Delete
Delete the selected disk description.

Edit>Files

Overview
In here we specify the set of files to be distributed and installed. The order of the files
appearing in the list box is important. The first file will be copied first and then the second
file and so on. The fastest way to specify the files is selecting them in File Manager and
then dragging them into the list box. The files dragged from File Manager will be inserted at
the currently selected position. If nothing is selected, they will be inserted at the end. If you
want to rearrange the order, you can use the cut and paste method.
Show full path
Show the full path rather than file name of the files in the list box.
Path
The path of the selected file. Note that this is the path on your own computer and has
nothing to do with installation. In the current version of Freeman Installer, the purposes of
the path are,
1. We need the file name.
2. We need the path to renew the file sizes.
In the future version, the path may be used to compress the files as well.
Source directory
The source directory of the file. If source directory is a: and the file name is readme.txt, the
installer will read from the file a:\readme.txt.
If the file resides in the same directory as the installer, you should put $s here. If the file
resides in a sub directory of that called doc, you should put $s\doc here. If the file is not in
the same directory nor in a sub directory, you must define your own variable.
See variables.
Target directory
The target directory of the file. If target directory is c:\csh\doc and the file name is
readme.txt, the installer will write to the file c:\csh\doc\readme.txt. You don't need to
bother about whether c:\csh and c:\csh\doc exist or not. If necessary, the installer will
create them automatically.
If the file should reside in the install target directory, you should put $i here. If the file
should reside in a sub directory of that called doc, you should put $i\doc here. If the file
should reside in the Windows directory, you should put $w here. If the file is a shared file
like bwcc.dll and ctrl3d.dll, you should put $y here. If the system variables are not enough,
you must define your own variable.
See variables.
Description
The description for the file. It will be displayed in the dialog box while the file is being
copied.
File size
The size (in bytes) of the file. If the file will be compressed, you should still used the original
size here. You are NOT encouraged to enter the size yourself. Rather, you are encouraged
to drag the files from File Manager into the list box. This way Freeman Constructor will be
able to get the size of the files automatically. If one of more files are modified and as a
result their sizes change later, you should issue the menu command Make>Renew File
Sizes to update the sizes. Unlike previous versions, the file size must be accurate in order
to set the progress bar properly.

Source disk
The disk description for the file. See Edit>Disk Descriptions.
Will be distributed in compressed format
The file will be compressed.
Need version checking
The file carries version info and needs version checking. This is mainly for DLLs.
Don't remove this file when uninstalling
Don't remove this file when uninstalling. This is mainly for DLLs.
Insert
Insert a new file at the currently selected position. If nothing is selected, it is equivalent to
Insert End.
Insert End
Insert a new file as the last file.
Cut
Cut the selected file (and the info about it) and put it onto the clipboard.
Copy
Copy the selected file (and the info about it) onto the clipboard.
Paste
Insert the file (and the info about it) on the clipboard at the currently selected position. If
nothing is selected, it is equivalent to Paste End.
Paste End
Insert the file (and the info about it) on the clipboard as the last file.

Edit>Program Items

Overview
In here we specify the set of program items to be created. The order of the items appearing
in the list box is important. The first item will be created first and then the second item and
so on.
Item
The name of the item.
Group
The name of the program group the item will belong to. If the group does not exist, it will
be created automatically.
Command line
The command line of the item. Here are some examples,

$i\csh.exe run csh.exe in the install target dir
$i\csh.exe -e $i\script same as above but passing two parameters
$w\winhelp.exe $i\manual.hlp run help on the manual help file
$i\manual.hlp same as above

Icon path
The path pointing to the icon file for the item. Here are some examples,

$i\csh.exe use an icon in csh.exe in the install target dir
$w\winfile.exe use File Manager's icon

If you set it to empty, Program Manager will get the icon from the command line.
Icon index
0 means using the first icon in the icon file. 1 means the second icon and so on.
Insert
Insert a new item at the currently selected position. If nothing is selected, it is equivalent to
Insert End.
Insert End
Insert a new item as the last item.
Delete
Delete the selected item.

Edit>INI Entries

Overview
In here we specify the set of INI entries to be created, set, or added.
Reboot to take effect
It determines if the installer should ask the user to restart Windows or not upon installation
completion. It can take 3 different values,
1. Don't reboot Never ask the user to restart
2. Reboot Must ask the user to restart
3. Reboot if system.ini changed Ask the user to restart if system.ini was changed
File
The INI file (path). If it doesn't exist, it will be created (including all directories involved)
automatically. Here are some examples,

$i\csh.ini File csh.ini in install target dir
$w\win.ini win.ini
$w\system.ini system.ini

Section
The section of the entry. If it doesn't exist, it will be created automatically.
Entry
The name (key) of the entry.
Value
The value of the entry.
Will be appended rather than set
The entry will be appended after all entries with the same name (key). Usually this is used
to add device drivers to system.ini because all device driver entries use the same name
(key) "driver".

Edit>Registration Keys

Overview
In here we specify the set of registration keys to be created or set.
Key path
The path of the registration key. Here are some examples,

PBrush
PBrush\shell
PBrush\shell\open\command

Suppose that the path is PBrush\shell\open\command and there is an existing key PBrush
but not PBrush\shell, the key PBrush\shell, PBrush\shell\open, and PBrush\shell\command
will be created automatically, with their values set to empty.
Value
The value of the registration key. This can be empty. Here are some examples,

Key path Value
PBrush Paintbrush Picture
PBrush\shell
PBrush\shell\open\command pbrush.exe %1

Insert
Insert a new registration key at the currently selected position. If nothing is selected, it is
equivalent to Insert End.
Insert End
Insert a new registration key as the last key.
Delete
Delete the selected registration key.

Edit>Software Components

Overview
A leaf component contains some files, program items, INI entries, and registration keys. If a
component is selected by the user, all the files, program items, INI entries, and registration
keys contained in it will be installed. If a component is not selected, the files, program
items, INI entries, and registration keys might still be installed because they might be
contained in another leaf component, i.e., different leaf components can share some or
even all their contents.
A branch component contains some other branch components and leaf components. If a
branch component is selected by the user, all the components (branch or leaf) contained in
it will be selected. If a component is not selected, the components might still be selected
because they might be contained in another branch component, i.e., different branch
components can share some or even all their contents.
The whole structure must have exactly one component which has no parent, i.e., not
contained in any other component. This is the root component.
This structure will be displayed in a DAG (directed acyclic graph). A DAG is like a tree
except that sub trees can share their offsprings. Each component is represented as a node
in the DAG. A node is in turn visualized as a check box, and with a push button at its right if
it is a branch component. The check box lets the user select/deselect the corresponding
component. The text of the check box is the name of the component. The push button lets
the user expand/collapse the corresponding branch component, i.e., show/hide its sub
components. A "+" appearing in the push button means that the branch node can be
expanded. A "-" appearing in the push button means that the branch node can be
collapsed.
There is a progress bar in the component selection dialog box indicating the maximum disk
space needed and the disk space needed by the current selection. When the user
select/deselect a component, the progress bar will be updated accordingly.
Maximum installation and minimum installation are simply implemented as trying to select
the root component and trying to deselect the root component respectively. If all the
components can be deselected, the minimum installation will install NOTHING. Therefore,
for the minimum installation to really install something, you should pre-select the
necessary components as the minimum installation and disable them (see below for how to
do this), making it impossible to deselect them.
Text width
The width of the check box (including the text) in dialog units. Because all nodes use the
same size, you should set this value big enough to hold the component with the longest
name.
Button width
The width of the push button in dialog units.
Height
The height of the check box and the push button in dialog units (they use the same height).
Name
The name of the component. This will be used as the text of the check box.
Sub-components
All potential sub-components of the currently selected component are listed here. The
actual sub components are selected.

If the currently selected component is a leaf component, the potential sub-components are
all files, program items, INI entries, registration keys.
If the currently selected component is a branch component, the potential sub-components
are all components. Although all components are listed there, you MUST NOT select its
ancestor or itself as its sub-component.
Is leaf component
Determine if the currently selected component is a leaf component or a branch component.
Is check box enabled
If the check box is enabled, the user can select or deselect it. Otherwise, the user can not
change the state of the check box. This is useful when you need to force the user to install
something (such as in the case of minimum installation) or prohibit the user from installing
something (such as in the case of crippled software). See below for how to achieve this
effect.
Is checked at startup
Determine if the check box is checked or not initially. If the check box is disabled, checking
the check box initially will force the user to install it, unchecking the check box initially will
prohibit the user from installing it.
Show sub-components at startup
Determine if the sub-components of the currently selected component should be shown or
not initially.
Insert
Insert a new component at the currently selected position. If nothing is selected, it is
equivalent to Insert End.
Insert End
Insert a new component as the last component.
Cut
Cut the selected component (and the info about it) and put it onto the clipboard.
Copy
Copy the selected component (and the info about it) onto the clipboard.
Paste
Insert the component (and the info about it) on the clipboard at the currently selected
position. If nothing is selected, it is equivalent to Paste End.
Paste End
Insert the component (and the info about it) on the clipboard as the last component.

Edit>Background Texts

Overview
The background the installer is a gradient blue screen on top which there are some texts. In
here you specify how many there are, their positions, colors, fonts, sizes, the order they are
drawn. The order they are drawn is the order they appear in the list box. The first one is
drawn first and then the second one and so on. If you are going to add 3D effect to the text,
you should draw a white text first and then the original text. If you are going to add shadow
effect to the text, you should a black text first and then the original text.
Text
The text string to be drawn.
x
The x coordinate of the left top corner of the text. The coordinate is in points, starting from
the left top corner of the screen.
y
The y coordinate of the left top corner of the text. The coordinate is in points, starting from
the left top corner of the screen.
Choose Font
The change the font of the currently selected text.
Test
Draw the background (including the texts) immediately to let you see the outcome. Clicking
the mouse will end the test.
Insert
Insert a new text at the currently selected position. If nothing is selected, it is equivalent to
Insert End.
Insert End
Insert a new text as the last text.
Delete
Delete the selected text.

Edit>Advertisement Dialogs

Overview
If you specify some dialog boxes (or rather, their ascii id's), the installer will displayed them
one by one while copying files. The order in which they are listed in the list box is
important. The first one will be displayed first and then the second and so on. Suppose that
the total size to be copied (after user selection) is 3000 bytes and there are 3
advertisement dialog boxes, the first one will be displayed while copying 0--1000 bytes.
The second one will be displayed while copying 1001--2000 bytes and so on. An
advertisement dialog box is basically a usual dialog box except that it has the built-in
capacity to display bitmaps. The capacity is there, you can make use of it or not at your
own discretion.
Dialog resource name
The ascii id of the advertisement dialog box. You must use ascii id in the resource file to
identify the dialog box resource, i.e., integer id is not supported.
Insert
Insert a new dialog box at the currently selected position. If nothing is selected, it is
equivalent to Insert End.
Insert End
Insert a new dialog box as the last dialog box.
Delete
Delete the selected dialog box.

Edit>Variables

Overview
In here you specify the extra variables you need. For most applications, you don't need any
extra variables. Freeman Constructor will add one data member to the class fiuserinfo for
each extra variable you specify here. For the extra variables to be usable, you need to
initialize/set their values yourself. See defining extra variables.
Variable
The name of the extra variable.
Insert
Insert a new variable at the currently selected position. If nothing is selected, it is
equivalent to Insert End.
Insert End
Insert a new variable as the last variable.
Delete
Delete the selected variable.

Make>install.inf
Save the install info you told Freeman Constructor into a file called install.inf in the current
directory. This contents of this file are 100% identical to that of the one generated by
issuing the menu command File>Save. But they are of different purposes. install.inf is
intended to be read/interpreted by install.exe. The file generated by issuing File>Save is
intended to be kept by yourself.

Make>fiuser.cpp
Compile the install info you told Freeman Constructor into a C++ source file called
fiuser.cpp in the current directory. According to the install info, Freeman Constructor defines
two tailor-made C++ classes, fiusercontroller and fiuserinfo in fiuser.cpp. This file is ready
to compile and link with class library to generate an integrated and compact EXE file. See
compilation approach.
Note that if, for customizations, you have modified an existing fiuser.cpp, issuing this
command will OVERWRITE your customized version without a single warning.

Make>Renew File Sizes
After specifying the files to be distributed, if you didn't use drag and drop method to specify
the files, or some of the files have changed their sizes since then, you should issue this
command to force Freeman Constructor to re-collect the sizes of the files. If, in this process,
a file can not be found, it will ask you if you want to remove the file from distribution or not.
This is a fast way to remove files which no longer exist on your system. It is suggested that
you at least issue this command once before making the final distribution disks, because in
this version of Freeman Installer, the sizes of the files must be accurate.

Freeman Constructor

Overview
Freeman Constructor is a front end to let you specify the install info, e.g., how many files
you want to copy, what are their names and so on. Using Freeman Constructor is the
fastest and recommended way to specify your install info.
It can save the install info in INI format as its native file format. Although the INI file is very
similar to the INF file supported in the previous versions, the INI file is not supposed to be
modified manually. In fact, doing this will not provide you with any extra freedom, i.e.,
anything you can specify in that INI file can also be specified in Freeman Constructor.
Freeman Constructor can, according to the info you told it, generate an INF file called
install.inf. This file is 100% identical to the INI file it may generate. The INF can be
interpreted by the file install.exe to do the installation. See translation approach.
Freeman Constructor can compile the info you told it into a C++ source file called
fiuser.cpp. This file is ready to compile and link with the class library file to get an
integrated and tailored EXE file. See compilation approach.
Practical Hints on Using Freeman Constructor
1. You can use cut, copy and paste in ALL edit controls. When you are entering data in

those dialog boxes, using them will save you much time.
Cut --- Ctrl-X
Copy --- Ctrl-C
Paste --- Ctrl-V

2. Looking for an example (typical values)? Load the file install.inf and then go to the dialog
boxes to inspect the values.

Command explanations
Edit>General Information
Edit>Disk Descriptions
Edit>Files
Edit>Program Items
Edit>INI Entries
Edit>Registration Keys
Edit>Software Components
Edit>Background Texts
Edit>Advertisement Dialogs
Edit>Variables

Make>install.inf
Make>fiuser.cpp
Make>Renew File Sizes

Variables
Freeman Installer supports variables. The name of a variable is a string containing
alphabets and/or digits (but the first character must be alphabet). The value of a variable is
a string. You can reference a variable (i.e., retrieve its value) by preceding the name of the
variable with a dollar sign "$", i.e., $xxx means the value of the variable called "xxx".
However, you can do this only in Freeman Constructor when specifying string parameters.
Also, for some groundless reason, component names should not contain variable
references.
There are four system variables,
1. $i. Its value is the install target directory entered by the user.
2. $s. Its value is the source directory, i.e., the directory where the installer resides. Usually

it is "a:".
3. $w. Its value is the Windows directory. Usually it is "c:\windows".
4. $y. Its value is the directory where shared files such as bwcc.dll and ctrl3d.dll should

resides. Usually it is the Windows system directory like c:\windows\system But it is the
Windows directory under a network shared copy of Windows.

For examples, you may use
$i\lib as the target dir of a library file
$s\doc as the source dir of a document file
$w\notepad.exe as path of notepad
$y as the target dir of DLL

These four variables are enough for most occasions. Otherwise, you need to define your
own.

File version attributes here refer to some of the attributes stated in the version statement,
consisting of language ID, character set, file type (EXE, DLL, etc.) and subtype (display
driver, keyboard driver, etc.).

Version Checking

What is version checking?
Version statement is a kind of resource whose purpose is to attach version info (version
number, among some other things) to a file.
Version checking means when trying to copy a file onto the user's system, if there is
already an existing file with the same name in the intended target directory, the version
statement of two files are retrieved and compared against each other to determine which
one is newer.
What is the implementation in Freeman Installer?
The installer will decide to overwrite the existing file if and only if at least one of the
following conditions holds,
1. The distribution file and the existing file share the same file version attributes and the

version number of the distribution file is greater than that of the existing file.
2. The existing file has no version info.
The installer will decide to keep the existing file if and only if at least one of the following
conditions holds,
1. the distribution file and the existing file share the same file version    attributes and the

version number of the distribution file is equal to or smaller than that of the existing file.
2. The existing file has version info but the distribution file has not.
If none of these conditions holds, the installer will pop up a dialog box with the file version   
attributes shown, asking the user to decide to overwrite or not and giving the user a
chance to specify another path as the destination path for the distribution file.

Preparing Compressed Files

In order to distribution your files in compressed format, your need to,
1. Compress your files with the Microsoft File Compression Utility called "compress.exe"

which comes with every copy of Windows SDK. Make sure that you use the -r option to
instruct compress.exe to automatically generate the name of the compressed file and
more importantly to store the original name in the compressed file. For example,

compress -r *.doc c:\temp
In this case, all files with extension DOC in the current directory will be compressed and
the compressed files will be put into c:\temp.
If you don't use -r option, Freeman Installer will be unable to know the original file name.
Even worse, there is no way for Freeman Installer to detect if -r option has been used or
not.

2. Copy those compressed files to floppy disks.
3. Tell Freeman Constructor that these files are already compressed.

Using Freeman Installer

If you are taking the translation approach,
1. Run Freeman Constructor to specify what files you are going to install onto your users'

system, what program items you are going to create and etc.
2. Issue the menu command Make>install.inf to generate the file install.inf.
3. Copy install.exe and install.inf onto your first distribution disk. Before that you should

remove all unwanted resources in install.exe. For example, there is a large bitmap which
is displayed in an advertisement dialog box while copying files. If you don't need them,
you should remove them to save space.

4. Compress those files you want to distribute in compress format. You must use the
Microsoft's compress.exe with the -r option, e.g.,

compress -r myfile.exe
5. Copy all files comprising your application onto your distribution disks.
You need to do something more If you are going to make your application uninstallable.
If you are taking the compilation approach,
1. Run Freeman Constructor to specify what files you are going to install onto your users'

system, what program items you are going to create and etc.
2. Issue the menu command Make>fiuser.cpp to generate the file fiuser.cpp.
3. Go to your favorite C++ compiler, open the appropriate project/make file (e.g.,

b31fins.prj if BC 3.1 is used), make the project to generate an EXE file (e.g., b31fins.exe if
BC 3.1 is used).

4. Copy the EXE file (e.g., b31fins.exe) onto your first distribution disk. Before that you
should remove the debug info (if any) in the EXE file.

5. Compress those files you want to distribute in compress format. You must use the
Microsoft's compress.exe with the -r option, e.g.,

compress -r myfile.exe
6. Copy all files comprising your application onto your distribution disks.
You need to do something more If you are going to make your application uninstallable.

Making your application uninstallable

In order to make your application uninstallable, you need to,
1. Copy llatsni.exe onto your distribution disk. It is recommended that you compress it.
2. Install it onto your users' Windows directory. Because starting from this version of

Freeman Installer, the uninstaller has become an application shared by different
applications from different sources (just like bwcc or ctrl3d), it contains a version
statement in it. In cooperation, you should tell Freeman Constructor that it needs version
checking and it should NOT be removed on uninstallation.

3. Create a program item for it. Use the second icon in llatsni.exe, i.e., icon index should be
1 rather than 0. Because there may be more than one applications to get uninstalled on
the user's system but there can be only one copy of llatsni.exe, you must tell llatsni.exe
which application is being uninstalled by providing the path to the installation log as the
only command line parameter for the uninstaller, i.e., the command line of the program
item should be like,

$w\llatsni.exe $i\filog.ini

An INI file called filog.ini. This file will be created by Freeman Installer automatically during
the installation to log down what changes have been made to the user's system. Upon
completion, this file will be moved to the install target directory (where it initially was is not
important). The uninstaller, upon request, will try to undo these changes recorded in this
file.

Translation Approach
In this approach, you use two files to provide the functionality of an installer, i.e., the file
install.exe coming with Freeman Installer plus the file install.inf generated by Freeman
Constructor according to what you told it. The role played by install.exe is exactly that of an
interpreter. It reads the file install.inf and perform the appropriate operations required.
You should take this approach when,
1. You are testing/debugging to see if the info you told Freeman Constructor is really what

you want.
2. You don't have a copy of a C++ compiler or it is not one of BC 3.1, BC 4.0, VC 1.0, VC

1.5.
3. You don't care about the size or the speed of the install program.
Usually, the compilation approach is better than the translation approach when you are
actually making your final distribution disks. At that time the compilation approach should
be used as far as possible.
See Also
Using Freeman Installer

Compilation Approach
In this approach, you use a single file to provide the functionality of an installer, i.e., the
EXE file generated by your own C++ compiler, made from the class library (e.g., b31flib.lib
for BC 3.1) coming with Freeman Installer plus the file fiuser.cpp generated by Freeman
Constructor according to what you told it. The file fiuser.cpp is exactly the compiled
image/version of the info you told Freeman Constructor
You should take this approach when,
1. You have finished testing/debugging and you are sure what you told Freeman Constructor

is really what you want.
2. You have a copy of BC 3.1, BC 4.0, VC 1.0, or VC 1.5. It does NOT matter whether you

know C++ or not. The file fiuser.cpp is ready to compiler and run.
3. When you need bells and whistles. This means what you want to tell Freeman

Constructor is more than what it can accept.
4. You want to minimize the size and/or to maximize the speed of the install program.
Usually, the translation approach can give faster feedback than the compilation approach
when you are testing/debugging. At that time the translation approach should be used as
far as possible.
See Also
Using Freeman Installer

Determine install info dynamically
Suppose that the name of your application is normal "C Shell v2.0". But you want to set it
to "C Shell v2.0 upgrade" if a previous version of your application can be found when it is
being installed. To do this, you need to locate the member function getappname() of the
class fiuserinfo in the file fiuser.cpp. The original getappname() should be like this,

char *fiuserinfo::getappname()
{

wsprintf(sharedbuf, "C Shell v2.0");
return sharedbuf;

}
You need to change it to,

char *fiuserinfo::getappname()
{

if (there is a previous version on this computer)
{

return "C Shell v2.0 upgrade";
}
wsprintf(sharedbuf, "C Shell v2.0");
return sharedbuf;

}
Because installcontroller does NOT save the info provided by installinfo, getappname() will
be called whenever installcontroller needs to know the application name, in this case, more
than once. In order to avoid searching for a previous version for more than once, we better
off searching for it at the beginning and putting the appropriate application name in a
variable. When getappname() is called, we simply return the variable,

static char *appname; // store the application name
int fiusercontroller::run()
{

// CUSTOMIZATION BEGINS: determine the appropriate application name
if (there is a previous version on this computer)
{

appname = "C Shell v2.0 upgrade";
}
else
{

appname = "C Shell v2.0";
}
// CUSTOMIZATION ENDS
// show welcome message
if (!welcome())
{

return 0;
}
......

}
char *fiuserinfo::getappname()
{

return appname;
}

Because welcome() will call getappname(), we must set the application name before
welcome() is executed, in this case, at the very beginning of the member function run() of
the class fiusercontroller.
Note that we set appname in a member function of fiusercontroller but we reference
appname in a member function of fiuserinfo. Therefore appname is required to be visible
for both classes. Here we define appname as a static variable. We could also define
appname as a data member of fiuserinfo,

class fiuserinfo
{

public:
fiuserinfo(installcontroller &ic):installinfo(ic)
{

}
 ~fiuserinfo()

{

}
char *appname; // store the application name
char sharedbuf[256];
......

};
int fiusercontroller::run()
{

// CUSTOMIZATION BEGINS: determine the appropriate application name
if (there is a previous version on this computer)
{

((fiuserinfo*)ii)->appname = "C Shell v2.0 upgrade";
}
else
{

((fiuserinfo*)ii)->appname = "C Shell v2.0";
}
// CUSTOMIZATION ENDS
// show welcome message
if (!welcome())
{

return 0;
}
......

}
char *fiuserinfo::getappname()
{

return appname;
}

Now, you can proceed as normal, i.e., build the project. Also, please keep in mind that if
you use Freeman Constructor to generate the file fiuser.cpp again, your customized version
will be overwritten.

Disabling built-in operations
Suppose that you don't want to prompt for the install target directory, you need to remove
or comment out the function call askdir() in run() of the class fiusercontroller,

int fiusercontroller::run()
{

// show welcome message
if (!welcome())
{

return 0;
}
// select components
if (!selectcomps())
{

return 0;
}

// DON'T ask the user to input install target dir ($i)
// if (!askdir())
// {
// return 0;
// }

// when destructed, move log file to $i
logmover lm(*this);
// copy files
if (!copyfiles())
{

return 0;
}
......

}
Now, you can proceed as normal, i.e., build the project. Also, please keep in mind that if
you use Freeman Constructor to generate the file fiuser.cpp again, your customized version
will be overwritten.

Performing extra operations
Suppose that you want to execute notepad.exe to load a file readme.txt in the install target
directory just after displaying the installation completion message, you need to add a piece
of code to run() of the class fiusercontroller,

int fiusercontroller::run()
{

// show welcome message
if (!welcome())
{

return 0;
}
......
// restarting windows won't activate lm's destructor
lm.move();
// display installation complete message
done();
// CUSTOMIZATION BEGINS: executing notepad.exe to load readme.txt
char readmepath[128]; // e.g., c:\cshwin\readme.txt
char commandline[256]; // e.g., c:\windows\notepad.exe c:\cshwin\readme.txt
ir.mergedf(readmepath, getdiri(), "readme.txt"); // get readme path
ir.mergedf(commandline, getdirw(), "notepad.exe"); // get notepad path
lstrcat(commandline, " "); // concat readme path
lstrcat(commandline, readmepath);
WinExec(commandline, SW_SHOWNORMAL); // execute but not wait
// CUSTOMIZATION ENDS
return 1;

}
In fact, there is no need to specify the full path of notepad because WinExec will search
through the Windows directory. The purpose here is to show you how to use,
1. mergedf() to merge a directory and a file to get the full path.
2. getdiri(), getdirw(), getdirs(), getdiry() to get the install target directory, Windows

directory, install source directory, and Windows system directory respectively.
If you want to execute notepad and wait until it finishes, you can use the member function
execwait() of the class installer. It is similar to WinExec except that it will wait until the child
process terminates,

int fiusercontroller::run()
{

// show welcome message
if (!welcome())
{

return 0;
}
......
// restarting windows won't activate lm's destructor

lm.move();
// display installation complete message
done();
// CUSTOMIZATION BEGINS: executing notepad.exe to load readme.txt
char readmepath[128]; // e.g., c:\cshwin\readme.txt
char commandline[256]; // e.g., c:\windows\notepad.exe c:\cshwin\readme.txt
ir.mergedf(readmepath, getdiri(), "readme.txt"); // get readme path
ir.mergedf(commandline, getdirw(), "notepad.exe"); // get notepad path
lstrcat(commandline, " "); // concat readme path
lstrcat(commandline, readmepath);
ir.execwait(commandline, SW_SHOWNORMAL); // execute and wait
// CUSTOMIZATION ENDS
return 1;

}
Now, you can proceed as normal, i.e., build the project. Also, please keep in mind that if
you use Freeman Constructor to generate the file fiuser.cpp again, your customized version
will be overwritten.

Defining extra variables
Suppose that you want to define an extra variable called cddrive and use it to hold the
drive name (e.g., "e:") from which your user is installing your application, you need to,
1. Issue menu command Edit>Variables in Freeman Constructor. Tell it you have an extra

variable called cddrive. After that (in fact, even before that) you can use this variable as
if it were a system variable, e.g., you can specify the source directory of your files as,

$cddrive, or $cddrive\video, or $cddrive\wav
2. When you generate the file fiuser.cpp later, the class fiuserinfo will have an extra data

member called cddrive,
class fiuserinfo
{

public:
fiuserinfo(installcontroller &ic):installinfo(ic)
{

}
 ~fiuserinfo()

{

}
char cddrive[128]; // we have an extra data member here
char sharedbuf[256];
......

};
This data member corresponds to your variable. You MUST initialize/set this variable
properly before it is referenced.
For simplicity, let's suppose that the drive must be drive e:. We can set it in the member
function run() of the class fiusercontroller,
int fiusercontroller::run()
{

// CUSTOMIZATION BEGINS: setting $cddrive
fiuserinfo *p; // point to our info obj
p = (fiuserinfo*)ii; // ii is installinfo*, we need fiuserinfo*
lstrcpy(p->cddrive, "e:"); // initialize $cddrive for future use
// CUSTOMIZATION ENDS

// show welcome message
if (!welcome())
{

return 0;
}
......

}
A more realistic approach is that we should prompt the user for the CD drive. The class

installer has a member function askdrive() to prompt for a drive. We still put our code in
run(),
int fiusercontroller::run()
{

// show welcome message
if (!welcome())
{

return 0;
}
// select components
if (!selectcomps())
{

return 0;
}
// ask the user to input install target dir ($i)
if (!askdir())
{

return 0;
}
// CUSTOMIZATION BEGINS: setting $cddrive
int driveno; // 0 for a:, 1 for b:, 2 for c:
if (!ir.askdrive(&driveno, "Please select your CD drive"))
{ // prompt for the drive

return 0; // user cancel
}
fiuserinfo *p; // point to our info obj
p = (fiuserinfo*)ii; // ii is installinfo*, we need fiuserinfo*
p->cddrive[0] = 'a'+driveno; // 0 ==> "a:", 1 ==> "b:", 2 ==> "c:"
p->cddrive[1] = ':';
p->cddrive[2] = '\0';
// CUSTOMIZATION ENDS
......

}
Here we prompt for the drive after prompting for the install target directory. Of course,
you could insert this piece of code somewhere else. But you must put it before you start
to copy the files.

Now, you can proceed as normal, i.e., build the project. Also, please keep in mind that if
you use Freeman Constructor to generate the file fiuser.cpp again, your customized version
will be overwritten.

Setting $i is very similar to defining your own variables. The major difference is that the
data member corresponding to $i is a (inherited) data member of the class fiusercontroller,
rather than that of the class fiuserinfo. We can access this data member directly in run(),

int fiusercontroller::run()
{

......
lstrcpy(diri, "c:\\cshwin"); // set $i to c:\cshwin
......

}

Determine install or not according to criteria other than version
info and user selection
There are 5 data members of the class installcontroller related to this purpose,

class installcontroller
{

......
saint ics; /* is the component selected? */
saint ifs; /* is the file selected? */
saint iis; /* is the item selected? */
saint ies; /* is the entry selected? */
saint irs; /* is the reg key selected? */
......

};
The class saint can be conceived as int [??] and can be used in the same way.
For example,

ics[3] == 1 means that the user has selected the fourth leaf component
ifs[0] == 0 means that the first file is not going to be copied
iis[1] == 1 means that the second program item is going to be created
ies[4] == 0 means that the fifth INI entry is not going to be set
irs[2] == 0 means that the third registration key is not going to be set

These data members will be set to true's (i.e., 1's) at the beginning of the program and
they will be set again in selectcomps() according to the user selection.
These data members will only be referenced when they are actually needed, e.g., ifs will
only be referenced while copying files, i.e., in copyfiles().
Therefore the best time to set ifs according to our own criteria is after selectcomps()
returns and before copyfiles() is called.
Suppose that,
1. Your application includes a default phone book usually you will copy onto the user's

system.
2. If an existing phone book can be found in the install target directory when the application

is being installed, you want to skip (not copy) the default phone book.
3. The phone book is the 10th file you specified in Freeman Constructor.
4. The file name of the phone book is phbook.dat.
To do this, you need to add a piece of code the member function run() of the class

fiusercontroller,
int fiusercontroller::run()
{

// show welcome message
if (!welcome())
{

return 0;
}
// select components
if (!selectcomps())

{
return 0;

}
// ask the user to input install target dir ($i)
if (!askdir())
{

return 0;
}
// CUSTOMIZATION BEGINS: set ifs[9] to false if phbook.dat already exists
char phbookpath[128]; // hold the path to the phone book

 // path = $i + phbook.dat
ir.mergedf(phbookpath, getdiri(), "phbook.dat");
if (access(phbookpath, 00) != -1) // it exists
{

ifs[9] = 0; // don't copy the 10th file (phbook.dat)
}
// CUSTOMIZATION ENDS
......

}
Also Note that we can use,
1. mergedf() to merge a directory and a file to get the full path.
2. getdiri(), getdirw(), getdirs(), getdiry() to get the install target directory, Windows

directory, install source directory, and Windows system directory respectively.
Now, you can proceed as normal, i.e., build the project. Also, please keep in mind that if
you use Freeman Constructor to generate the file fiuser.cpp again, your customized version
will be overwritten.

Using bitmaps in advertisement dialog boxes
1. Add the bitmap you want to use to the resource file. You must give it an ascii id. Integer

id should not be used here.
2. Add the dialog box you want to use to the resource file.
3. Put an owner-draw button in the dialog box. The button should be sized and positioned

as if the bitmap were occupying its position.
4. Set the title of the owner-draw button to the ascii id of the bitmap.
When the dialog box is displayed, Freeman Installer will stretch the bitmap and then display
it in the place of the owner-draw button.

Modifying the resources of the installer

What resources am I entitled to modify?
You are entitled to modify all resources in the file install.exe, finstall.res, finstall.rc, all BMP
files and all ICO files. This includes the icon called iconfinstall which is the logo of Freeman
Installer.
However, you are NOT entitled to modify the resources in other places such as in the
uninstaller (file llatsni.exe) and Freeman Constructor (file fctor.exe).
Can I add any resource I like?
No. In this version of Freeman Installer, dialog boxes, bitmaps, icons, version statements
are the only kinds of resources allowed. You can use them as you would in other Windows
programs. Freeman Installer will take care of them automatically.
See Also
Using bitmaps in advertisement dialog boxes

Bells and whistles

Here are some common bells and whistles you might want,
1. Define extra variables. Some examples are,

a. You will put the install program on a floppy disk but your own application on a CD. So
you need to define an extra variable, say, $cddrive and use it in the source directory for
the files.
b. You need two or more install target directories.
c. Your install target directory is the directory where AutoCAD resides. Therefore you
need to search for AutoCAD and set $i to its home directory.

2. Perform extra operations. Some examples are,
a. Check for a dongle when installing.
b. Execute external programs during or after the installation.
c. Your install target directory is the directory where AutoCAD resides. Therefore you
need to search for AutoCAD and set $i to its home directory.
d. Ask your user for his/her name, company, and etc.
e. Ask your user for a password.

3. Disable built-in operations. Some examples are,
a. Your install target directory is the directory where AutoCAD resides. Therefore you
don't want to ask the user for the install target directory.

4. Determine install info (e.g., which files to copy) dynamically. Some examples are,
b. Your install target directory is the directory where AutoCAD resides. Therefore you
don't want to ask the user for the install target directory.
c. You need to ask the user to re-enter Windows upon installation completion even
though system.ini is not modified at all.

5. Determine to install or not according to criteria other than version info and user
selection.

6. Modify the resources of the installer.

Features

New features introduced in v1.5,
1. The installer will create a log file (in INI format) to record down all changes made to the

user's system during the installation.
2. The uninstaller will read the log file and display those changes in a structured and easy-

to-read format. Upon request, the uninstaller will try to undo those changes. More
exactly, the following changes will be undone,
a. changes (additions, deletions, modifications) of any INI section and entry in any INI
files.
b. changes (additions, deletions, modifications) of any registration key.
c. changes (additions, deletions, modifications) of any program groups and items.
d. creations or deletions of any directory.
e. creations, renaming, moving of any file.
f. modifications of any file attribute.
An apparent exception is that the deletion of a file can not be undone, i.e., if a file is
deleted (including overwritten), it can not be saved anyway.

3. An easy to use front end to let you specify the install info, e.g., what files to copy, in a
GUI environment. According to the info you told it, it can generated an INF file which can
be interpreted by a ready-to-run EXE file coming with Freeman Installer. More
importantly, it can compile the info you told it into a C++ source file which is ready to
compile and link with the class library (provided in the registered version) to get an
integrated and tailored EXE file, without the need to add a single line of code and
disregarding you know C++ or not. The EXE file will only contain the necessary code you
really need, e.g., if you don't set INI entries, it won't contain INI entry setting code.

4. The control flow of the whole program is determined by a function called run() in the file
fiuser.cpp. This function, despite its important role, consists of less than 20 lines of
statements and is extremely easy to modify to achieve most customizations.

5. Supports selective installation. You can group files, program items, INI entries,
registration keys into leaf components, and group leaf or branch components into other
branch components. The whole structure will be displayed in a DAG (directed acyclic
graph) with a check box in each node to let the user to select. Files, program items, INI
entries, registration keys, components can be shared by more than one components
(This is why a DAG rather than a tree is used).

6. Displays user defined dialog boxes while copying files. Bitmaps can be used as a control
in those dialog boxes simply by specifying the name of the bitmap resources.

7. Loads Program Manager to create program items if the shell doesn't support shell DDE
commands. Optionally (depends on my user, you are a potential one) kills Program
Manager when done.

8. The definition of $y has been changed to mean Windows system directory when the
installer is running under a private copy of Windows and to mean Windows directory
when it is running under a network shared copy of Windows. This makes installing shared
files (mostly DLLs) onto $y abide by the rules set out by Microsoft (don't install files onto
Windows system directory if on a network).

Features inherited from previous versions,
1. Supports version checking. Won't ruin your users' ctrl3d.dll or bwcc.dll.
2. Supports variables. Uses this simple mechanism to access install target directory, install

source directory, Windows directory and Windows system directory.

3. Works with files compressed by Microsoft compress.exe.
4. Optionally slows down the install process to let small applications appear bigger.
5. A class library is included (registered version only) to support virtually unlimited

customizations.

Project files & class library coming with Freeman Installer
There are four versions of project file coming with Freeman Installer for use with BC 3.1, BC
4.0, VC 1.0, and VC1.5 respectively,

b31fins.prj --- Project file for Borland C++ 3.1
b40fins.prj --- Project file for Borland C++ 4.0
v10fins.mak --- Make file for Visual C++ 1.0
v15fins.mak --- Make file for Visual C++ 1.5

There are four versions of the class library for use with the four supported compilers,
b31flib.lib --- Class library for Borland C++ 3.1
b40flib.lib --- Class library for Borland C++ 4.0
v10flib.lib --- Class library for Visual C++ 1.0
v15flib.lib --- Class library for Visual C++ 1.5

All project files and libraries are in large memory model. No other models are supported.
The two major components of a project is the compiler-independent file fiuser.cpp and the
compiler-dependent class library. After generating fiuser.cpp in Freeman Constructor and
optionally modifying it to add bells and whistles, you can load the appropriate project file
for the compiler you are using and build the project. When you are sure the resulting EXE
really does what you want, you should remove the debug info (if any) in the EXE.

You can remove the debug info in the EXE by,
tdstrip b31fins.exe --- for Borland C++ 3.1
tdstrip b40fins.exe --- for Borland C++ 4.0 (presumably)
cvpack -strip v10fins.exe --- for Visual C++ 1.0
cvpack -strip v15fins.exe --- for Visual C++ 1.5 (presumably)

Registering Freeman Installer

When to register?
The copy you are keeping is an evaluation copy only. So, if, fortunately, you like it and you
would like to get the full product, you should get registered (Getting registered does NOT
necessarily mean paying).
How much is the registration fee? What can I do with the registered version?
There are three kinds of licenses available. They are application license, author license and
organization license.
You can choose that kind of license which suits your needs most at your own discretion.
All prices (your or mine) mentioned below don't include shipping & handling.
Application license
The registration fee for an application license is the same as the price of your application at
which I can buy/get when I receive your registration form. That is, if you sell it at $20 a
copy when I receive your registration form, an application license costs you $20. After
getting an application license, you are entitled to distribute Freeman Installer & Uninstaller,
including any derived work, with that application to install that application only.
Applications with the same name but different version numbers are considered the same
application. That is, Turbo C 1.0 and Turbo C 1.5 are considered the same application but
Turbo C 1.5 and Borland C 1.0 are considered different applications. How the price of your
application varies after you getting the application license does NOT interest me. A
particular case is freeware or public domain software, because their prices are $0, the
application license fees for them are also $0.
Author license
The registration fee for an author license is US$60. After getting an author license, you are
entitled to distribute Freeman Installer & Uninstaller, including any derived work, with all
applications you participate in developing and/or you at least own a part of the copyright of
which, to install those applications only.
Organization license
The registration fee for an organization license will be determined by negotiation. After
getting an organization license, that organization is entitled to distribute Freeman Installer
& Uninstaller, including any derived work, with all applications that organization
participates in developing and/or it at least owns a part of the copyright of which, to install
those applications only.
What can I get by registration?
1. License to let you distribute Freeman Installer with your application(s).
2. The class library.
3. Life time technical support (via email or mail only).
4. Free upgrade to next version.
5. Discounted upgrade to future versions.
How to register?
1. Fill out the order form (double click the order form icon in the Freeman Installer group)

and mail/e-mail/fax it to me.
2. Send the registration fee (if any) to me. Payment can be made via CompuServe's SWREG

(available only when you are applying for an application license), cheques, money
orders, bank drafts, purchase orders, TT (telegraphic transfers), or even cash.
a. If you pay via SWREG, simply "GO SWREG". My registration ID is 3081.

b. If you send it in cash, you do it at your own risk.
c. If you TT it, please send to this account,

Account name: ka iok tong
Account number: 012-045167-389
Bank address: Hongkong Bank of Australia

China Town Branch
728 George Street
Sydney NSW 2000
Australia

All payments must be made in US$, Australian$, or HK$. If it is in Australian$ or HK$, you
can use your local US$--Australian$ or US$--HK$ exchange rate to do the conversion.

What can I do if I regret getting registered?
You can get a 100% refund (excluding shipping & handling) if you destroy the registered
version you received before distributing it.
How to contact me?
All queries, bug reports, suggestions, and payments are welcome (especially the last ones)
and should be directed to,

ka iok tong (kent)
Mail Box 20
Wentworth Building
University of Sydney
Sydney NSW 2006
Australia
Internet email: tongk@archsci.arch.su.edu.au
CompuServe email: 100351,3364
ph & fax: (61) (2) 2116314

