
WinWidgets version 2.0
The WinWidgets are a set of custom controls for use with C/C++, Visual Basic and other
Windows development tools.    For an introduction to the WinWidgets, see Welcome to the
WinWidgets.    For step-by-step instructions from installation through execution, see the
How do I... guide.    For detailed information about each tool, press the buttons in the
Contents section below.
There are also Quick Reference buttons located in the toolbar to provide fast access to
definitions and constants in C and C++.    Within Visual Basic, press the F1 key while
editing a property for context-sensitive help.    For more information on using the
documentation, see Using the Manual.
Before using the WinWidgets, be sure to read the License and Copyright information.

Contents
How do I...? Edit Control ToolBar

DataEngine Grid Frequently asked
questions

Button Controls ListBox

ComboBox Static Controls

Welcome to WinWidgets Version 2.0!
Welcome to WinWidgets v2.0, which now supports Visual Basic, C and C++.   
With vVersion 2.0, we have adopted all-electronic documentation, so if you're wondering,
"Where's my manual?" the answer is "It's right here!"    This help file contains everything
the printed documentation did plus a slew of extras.    To get the most out of this
documentation, see Using the Manual.
To print all or part of this document from electronic form, choose File, Print Manual....   
Select from the list of chapters and chapter sections those you want to have on paper.   
Then press Print.    You may cancel the process at any time by pressing Cancel.
For a quick introduction to the WinWidgets, see the Overview.    The features new to
Version 2.0 and the changes from previous versions are described in the Version Notes
section.   
If you would like help using the WinWidgets, see the How do I... guide for step-by-step
instructions from installation through execution.
To get started, press one of the buttons below:
      Table of Contents
      Overview of the WinWidgets
      Using the Manual
      Version 2.0 Notes
      "How do I...?" Guide

Version Notes

Version 2.01

New Features/Bug Fixes

Discontiguous selection in the grid
HGrid now supports the selection of discontiguous ranges of rows in WholeRows mode.   
When the control key is depressed, additional rows or ranges can be selected by clicking or
dragging with the mouse without deselecting previously selected rows.    See the Whole
Rows attribute documentation in the help file for a description of    the new API for getting
and setting discontiguous selections through code.   
Discontiguous selection is now the default for Whole Rows mode in the Grid.

Null data support in all controls
Explicit support for NULL data has been added to the Edit Control, CheckBox and Grid.   
The List and ComboBox already support NULL data by allowing no items to be selected (by
setting the current selection to -1).
The format string for the edit control can now be extended with an additional semicolon to
include a programmer-defined string that can be displayed when the data is NULL.    The
default is an empty string.    For example, the format string "###-####;No Value"
displays a telephone number when the data is valid and displays the string "No Value"
when the data is NULL.    The control will not leave the NULL state until the user enters
valid data or the programmer resets the data.
The CheckBox displays a gray square when the data is NULL.
Any cell in the grid can be set to the NULL state and will format its data according to the
NULL data formats of its child controls.    The grid, itself cannot be put into a NULL state in
the sense that there must always be at least one cell selected.

Setting the NULL State Testing for the NULL State
CheckBox SetData with NULL pointer GetData returns NULL
Edit Control SetData with NULL pointer GetData returns NULL
Grid Cell HGSetCellData with NULL pointer HGGetCellData return NULL

Grid Buffer Procedures and the NULL state:
NULL Cells are tracked by extending the record structure to include an array of WORDs for
each field in the record.      This array can be accessed in a buffer procedure or HGridBuffer-
derived object member function by offsetting the lpData pointer by the size of the record
data.    Individual elements of the WORD array should be bitwise OR'ed with HGCF_NULL to
set the appropriate cells to NULL.

Two examples follow:

C Example:
A RECTSTRUCT is a programmer-defined record structure.    For further information, see
HGrid Record Structures.

BUFFERPROC MyBufferProc (HWND hwndGrid,
 WORD wAction,
 LONG lRecNum,
 RECSTRUCT FAR *lpRecData)
{

int i, iFields;
WORD FAR *lpFlags;

iFields =(int)SendMessage(hwndGrid, HGM_GETCOLCOUNT, 0, 0);

switch(wAction)
{
case HGB_RETREIVE: //Set the entire record to NULL state

lpFlags = (LPBYTE)lpRectData + sizeof(RECTSTRUCT);
for (i=0; i<iFields, I++)
lpFlags[i] |= HGCF_NULL;
break;

}
}

C++ Example:
BOOL CMyGridBuffer::OnRetreive(LONG lRecNum, LPVOID lpData)
{

int iFields = m_pGrid->GetColCount();;
RECSTRUCT FAR *lpRecData = (RECSTRUCT FAR *)lpData;
WORD FAR *lpFlags = (LPBYTE)lpRecData + sizeof(RECSTUCT);

//Set the entire record to NULL state
for (int i=0; i<iFields; i++)

lpFlags[i] |= HGCF_NULL;
}

C++ front end is now compiled for MSVC 1.5/MFC 2.5

Dropdown box width can be set in the ComboBox
Use HCM_GETDROPWIDTH and HCM_SETDROPHEIGHT.    These can be called in response to
the CBN_DROPDOWN notification command.

Annoying brackets in read-only field titles removed
GRS files created prior to version 2.01 will still have brackets.    To change these, simply
load in HGEEDIT.EXE and resave.    If you are one of the few who miss the brackets, you can
add them to the column title through the API's, HGFM_SETNAME.

Changing marker during HGN_SELCHANGING/HGN_SELEXTENDING bug fix
Several users have been trying to validate cell data by responding to HGN_SELCHANGING
and setting the Marker to the SelectionExtent in case of invalid data, which should return
selection to the invalid cell.    The bug was that when    selection was changed with the
mouse, the range between the old Marker and the new Marker was being selected.    This
has been fixed.

Final hidden row copy bug fix
When copying a whole row of data to the clipboard, it was impossible to paste back into a
whole row if the last field was hidden.    This has been fixed.

Quotes around copied fields removed from clipboard text

Pasting and the selection in the Grid
Pasting now puts the selection anchor at the lower right corner of the affected range and
the extent at the upper left, instead of vice-versa.

Memory leaks with bound VBX controls
The List, ComboBox and Grid no longer leak memory when bound to the data control.    The
problem only occurred in the List and ComboBox when Codes were used.

Documentation Changes
For the latest documentation, consult the on-line manual.   
The documentation neglects to mention that the source code and resources required to
produce the demo application are contained in the self-extracting compressed file,
HDEMOSRC.EXE.    Simply type:     

HDEMOSRC /d
at the DOS command prompt and the file will decompress.

Additional notes on validation procedures
HEdit data validation callback procedures, described in the Properties section of the HEdit
documentation, offer a way to perform application specific checking of values entered by
the user over and above that provided by the Data Engine (eg. restricting numerical values
to a range).    Programmers wishing to make use of validation procedures should be aware,
however, that using the multiple procedures in a single dialog can result in unexpected
behavior.   
A control's validation procedure is called when that control loses focus, which means that
some other control already has focus.    It is only when the callback returns TRUE that focus
is returned to the original control.    If the control that gains focus also has a validation
procedure installed, this procedure will be called when the first control restores focus to
itself, and so on ad infinitum... If you use multiple validation procedures in a single dialog,
these procedures must be aware of the execution status of all other validation procedures
and return FALSE if another validation procedure is currently executing.

Planned Product Releases
Simple Software is currently re-developing C++ wrapper classes to provide compatibility
with Borland's Object Windows Library (OWL) version 2.0.    We are also adding support for
ODBC in MFC via the CRecordSet class.    Future controls include a Tabbed-Dialog control,
Spin Control, Progress Meter, and a Full-Functioned SpreadSheet Control.    Also OwnerDraw
support will added to the List and ComboBox controls.    We plan to release WinWidgets

version 3.0 in early June, 1994.

Version 2.0

New!
Version 2.0 of the WinWidgets adds a wide range of new features including Visual Basic
support and C++ classes that are compatible with Borland's OWL and the Microsoft
Foundation Classes.
With this version we are adopting all-electronic documentation, which may come as a
shock to some.    Nonetheless, we feel this decision is essential to the progress of our tools,
and we hope that our new version and completely redesigned manual lead you to agree.

Compatibility Issues
Filter procedures have been removed almost as quickly as they were added.    After a little
research, we discovered a better way to subclass individual windows that has been a part
of the SDK since version 2.0.    The basic procedure is to retrieve the control's window
procedure using GetWindowLong() and replace it with a custom window procedure; c, call
the original procedure for any unaltered messages.    We have incapsulated this procedure
in the SubclassWW() function.    See subclassing the WinWidgets.
Starting with this version of the Grid control, we make a distinction between records and
rows, and between fields and columns.    Records are numbered starting from zero at the
beginning of the data table up to a maximum of 2.1 billion.    Rows are numbered from zero
at the beginning of the data buffer to a maximum of 32,676 at the end of the buffer.    A
row index of -1 refers to the row of column buttons along the top of the Grid.
The distinction between fields and columns is necessitated by the drag-and-drop feature of
the Grid.    If drag-and-drop is not enabled, no distinction is necessary.    Fields are
numbered according to the position of their data in the record.    Columns are numbered in
the order in which they are displayed.    A column index of -1 refers to the column of row
buttons along the left side of the Grid.    Hidden and non-scrolling fields maintain their field
and column indices.

Fixes
Yes, there have been a few...

Using the Manual
To print all or part of this document from electronic form, choose File, Print Manual....   
Select from the list of chapters and chapter sections those you want to have on paper.   
Then press Print.    You may cancel the process at any time by pressing Cancel.

A Few Conventions...
Throughout this manual you will see buttons like and
 that can be pressed for further information.    Go ahead, try it!    Other Help features to be

aware of are the tool bar buttons --- press the buttons below for a description of their
purposes:

Help also allows you to annotate the help file, add bookmarks, and to copy text from the
manual to your application.    To annotate a topic, choose Edit, Annotate..., type in your
note and press Save.    A green paperclip will appear at the beginning of the topic;      press it
to view or edit your annotation.   
To mark your place in the manual, choose Bookmark, Define... and enter a bookmark
name.    The name will appear in the Bookmark menu and connect you with the marked topic
until you delete the bookmark.

To copy text from the manual, choose Edit, Copy...    In the edit box that pops up you can
select all or part of the topic text and copy it to the clipboard by pressing Copy.

Need a Guide?
If you are using the WinWidgets or custom controls for the first time, use the How do I...
guide for step-by-step instructions from installation through execution of an application.   
To use the guide, press the button next to the How do I... label on the Contents page.   
The guide appears within a secondary window that can be left open as you select topics
from the guide's instructions.

Manual Organization
This manual documents the WinWidgets in three programming languages:      - Visual Basic,
C and C++.    Despite their differences, all three languages treat the WinWidgets as objects
that have attributes (e.g. Font, TextColor, Text, etc.), methods (things they can do, such as
Clear, Update, etc.), and events (things that happen during their use, such as DblClick,
SetFocus, etc.).   
The manual is organized to exploit the language independence of objects;:    it contains
one chapter for each of the WinWidgets, and one topic in a chapter for each attribute,
method and event.    Only within topics are the distinctions in language implementation
expanded.
Note:    Standard Visual Basic properties are not documented in this manual;      refer
instead to the Visual Basic documentation.
For programmers using C and C++ who already know the language implementation, but
need more details, we provide two Quick References.    The Quick References offer brief
descriptions of the window style bits, message constants, member functions, notification
codes and window text for each control.    They also connect these topics with the
corresponding attributes, methods and events in the main documentation.
The manual begins with the Table of Contents, followed by this introduction, then the
WinWidgets Guide.    The rest of the documentation is divided by chapters, including one
chapter for the DataEngine and one for each of the controls.    The DataEngine chapter has
topics for each class of data supported by the WinWidgets.    The control chapters contain
complete descriptions of eachthe control's attributes, methods, events and any other

topics unique to that tool.    Each control's chapter begins with an introduction page that
looks like this:

HButt, The WinWidgets Button Control
      Attributes
      Events

HButt is an -all-purpose button control.    Use it as a pushbutton,
radiobutton, checkbox, or multiple-state button.    It displays multiple
lines of text and/or bitmaps and icons.    It supports mnemonics and the
default pushbutton style.    It even plays sound resources.    As a
checkbox or radiobutton, HButt can be Hot-Linked to a data source that
is automatically updated whenever the button changes state.    All of the
standard button types have a 3D appearance by default, but HButt can
be easily tailored with custom images, styles and formatting.

Additional Topics
      Using custom pictures and sounds

      Hot-Linking a button to your data
      Using HButt with the Visual Basic Data Control
      Displaying 256-color bitmaps

For information on the control's attributes (fonts, colors, text, etc.), press the button next
to Attributes.    This brings up the attribute list from which you select the attribute you
want.    The manual will move to the topic that discusses that attribute.    You can use the
same technique to learn about Methods and Events, although some of the controls may
not have any methods or events.   
Tips

· To return to the control's introduction page from an attribute topic,
press the Up button in the toolbar.   

· To browse through a control's attributes in alphabetical order, go to
the first attribute topic, then use the browse buttons (labeled << and
>>) in the toolbar.

Takes you to the Table of Contents page, which has links to each of the WinWidgets'
chapters, the DataEngine, and the How do I... guide.

Brings up the Search dialog, in which you can search for topics by keyword.

Takes you to the most recently viewed topic.

Brings up a list of the most recently viewed topics, from which you can select one to view.

Takes you "up" in the manual's topic hierarchy.    From an attribute, method or event topic, it
will take you to the control's introduction page,;    from there it conntects you to the Table of
Contents.

Takes you to the preceding topic in alphabetical order.    It is useful for browsing through a
number of attributes, methods or events.

Takes you to the next topic in alphabetical order.    It is useful for browsing through a number
of attributes, methods or events.

Opens the C language Quick Reference in a secondary window.

Opens the C++ language Quick Reference in a secondary window.

Overview
The WinWidgets toolset includes a complete set of custom controls and a central
DataEngine that accelerate the development of business and science applications.    The
DataEngine is the brain behind the WinWidgets;      it understands many types of data used
in business and the sciences.    Employing the DataEngine, the WinWidgets simplify the
display of information and collection of user input.    They also improve your program's
usability with behavior and formatting options appropriate to each class of data.
The WinWidgets can be integrated with many popular design tools, including Microsoft
Visual Basic, the AppStudio and ClassWizard, Borland's Resource Workshop and the SDK
Dialog Editor.    Within these tools, the WinWidgets provide interactive screen design, from
the layout, text and background colors down to the data type and format specifications.
Often, the only coding required is the connection between the WinWidgets and your data.   
Our unique Hot-Linking feature can reduce your work to a single command for each
control.    When the user enters information into a Hot-Linked WinWidgets, the control
updates the linked variable in your program automatically.    Hot-Linking eliminates the
need to poll the control every time its data is needed elsewhere;    with Hot-Linking,
program variables are always up-to-date.
Despite their advanced features, the WinWidgets remain extremely efficient by using an
object-oriented class design to maximize the utility of code.    This design is easily
extendable, particularly when using the WinWidgets source code as a reference and
baseline.    Unlike other custom controls, the WinWidgets were written from scratch, not
subclassed, so all of the source code is available.    This makes the WinWidgets an excellent
base for subclassing because there is no black box hiding their behavior.
The toolset contains the following controls:
HStat, the Static Control -- ideal for enhancing the appearance of screens and dialogs.    It
can be used as a simple panel or group box with easily selectable background colors and
3D border styles.      HStat also displays bitmaps, icons and multiple lines of text.    The
WinWidgets design-time extensions allow easy customization of features, including:

· multiple lines of text with hard carriage returns and/or word wrapping
· left, right and center justification
· indented (3D) text
· text and background colors
· partially transparent bitmaps and transparent backgrounds

HButt, the Button Control -- the do-it-all button control, with pushbutton, default
pushbutton, radiobutton, checkbox and three3-state styles.    As a checkbox or radiobutton,
the button's state can be Hot-Linked to a program variable.    HButt can display text and/or
icons and bitmaps.    It allows complete customization of appearance and behavior through
a simple design-time interface.    Its features include:

· groupable pushbuttons that can be grouped to providewith radio button
behavior
· "no-focus" buttons that are perfect for toolbars
· multiple lines of button text with left, right or center justification
· colored and/or indented (3D) text
· predefined 3D radio button and checkbox bitmaps, or looks created by youor
you can create your own look
· simple, flexible alignment of text and bitmaps.

HEdit, the Edit Control -- an ideal tool for data entry, it employs the WinWidgets' built-in
DataEngine and offers the WinWidgets' unique Hot-Linking feature.    Combined, these
abilities can reduce your interface code to a single line per control -- simply connect the
edit control to your data, and it does the rest.    Other features include:

· spreadsheet-style data formatting, such as "Mmm d, yyyy" or "$#,##0.00"
· utilization of international settings for dates, times and numbers
· customizable validation routines
· 3D or plain appearance
· smart formatting with color - "$#,##0.00 ;[RED]($#,##0.00)"

HList, the List Control -- another improvement on the standard Windows control, HList
employs the WinWidgets DataEngine and offers Hot-Linking to the current selection.    It
also allows non-displayed data, called codes, to be associated with each list item.    Items
can be selected and sorted by their displayed data or codes.    Other features include:

· spreadsheet-style data formatting, such as "Mmm d, yyyy" or "$#,##0.00"
· add arrays of items added with a single command
· 3D or plain appearance
· single, multiple and extended selection modes
· single or multiple column display

HComb, the ComboBox Control -- includes all the features of the HEdit and HList controls,
including use of the WinWidgets DataEngine and Hot-Linking feature.    HComb has simple ,
drop-down and drop-down list styles.

HTool, the Toolbar/Palette Control -- makes building toolbars, status bars and floating
palettes as easy as designing a dialog box.    In fact, the procedure is the same.    Simply
design the toolbar in a dialog editor and call HToolCreate, specifying the name of the
dialog template, the window, and the side of the window to which it will be attached.   
HTool relays control notifications to your application, becoming invisible to your program.   
It's that easy!

HGrid, the Grid/Database Table Control -- designed specifically to make displaying
database tables for browsing and editing as quick and painless as possible.    HGrid
employs the other WinWidgets, utilizing their 3D appearance and data manipulation
capabilities to create a control that is easy and familiar to users and programmers alike.   
To the user, it presents a flexible, attractive interface, featuring:

· resizeable rows and columns
· drag-and-drop positioning of columns
· non-scrolling columns
· ability to copy and paste to spreadsheet or word processor
· editing in-place or spreadsheet-style, in the toolbar

HGrid's programming interface simplifies the manipulation of data and the control of user
input.    HGrid supports:

· edit, list, combobox and checkbox fields
· child, MDI child and pop-up implementations
· browse-only mode that can be set for the entire grid or individual fields or
records
· addition, deletione and insertion of entire records in a single statement

· full support for record buffering through a simple callback procedure
The following chapters describe each of the WinWidgets in detail, including their attributes,
methods, events and coding examples.    The DataEngine chapter describes the data types
supported by the WinWidgets, along with their formatting options and formatting
examples.

How do I... ?
      use this Manual?
      install the WinWidgets?
      use the WinWidgets with Visual C++?
      use the MFC Class Wrappers?
      use a VBX control in MFC?
      use the WinWidgets with my Design Tools?
      control the WinWidgets at Run-time?
      connect the WinWidgets to my Data?
      respond to Events?
      use my own Resources?
      subclass the WinWidgets?
      get Technical Support?

Controlling the WinWidgets at Run-time
Once a form or dialog box has been designed using the procedures described in
Integration, Layout and Design, there are just a few steps necessary to get up and
running:

1) Initialize the WinWidgets library by calling the WidgetsInit() function.   
WidgetsInit() registers the WinWidgets class names with Windows, allowing the
controls to be instantiated.    This step is not required when using the VBX
versions of the controls.

2) Initialize the run-time properties of individual controls when the form or dialog is
loaded.    The location of control-initialization code depends on the programming
environment:   

C API
Initialize controls in response to the WM_INITDIALOG message within a dialog
procedure.    At this point the controls have been created, but not displayed.

MFC
Initialize controls by overriding the CDialog::OnInitDialog() member function.   
This function is called in response to the WM_INITDIALOG message.

OWL
Initialize controls by overriding the TDialog::WMInitDialog() member function.   
This function is called in response to the WM_INITDIALOG message.

Visual Basic
Initialize controls in the form's Load procedure, Sub Form_Load().

Initialization of a control often involves moving data to the control from
application variables or a database.    There are several approaches to this
process, which we discuss in Connecting the WinWidgets to Data.

3) Respond to control events to interact with the user dynamically.    All of the
controls except the Static and Toolbar controls can trigger events in response to
user actions.    For instance, when a user changes the selection in a Grid control, a
SelChange event is triggered.    The list of events for each control can be seen by
pressing the button next to the word Events on the control's introductory page.   
General procedures for handling events in various programming environments are
discussed in the Handling Events topic.

4) Retrieve information from the controls upon closing the form or dialog with an OK
button or other positive response.    This step can be avoided in C/C++ if the data
is Hot-Linked to application variables.    As with Step #2, there are several
approaches to this process, which we discuss in Connecting the WinWidgets to
Data.

Connecting the WinWidgets to Data
Each of the WinWidgets controls provides convenient methods for data-related tasks.   
Some of the more common tasks are listed below.    Press the buttons to see the related
topics:
      getting and setting the data from a CheckBox or RadioButton
      getting and setting the data from an Edit control
      adding, inserting, deleting and selecting items in a ListBox or ComboBox

When using the ListBox or ComboBox, remember that they both support non-
displayed data associated with list items.    See Using Codes in the ListBox and ComboBox for
details.

      adding, inserting and deleting records in the Grid
      adding, inserting and deleting fields in the Grid
      implementing a record buffer in the Grid

In addition, the WinWidgets provide solutions that are tailored to the development
environment whereever possible.    For instance, in Visual Basic 3.0, the WinWidgets can be
connected to a data control for automatic initialization and retrieval of user input.    These
tailored solutions are listed below:

C API
The WinWidgets C language API allows the controls to be "Hot-Linked" to application
variables, which are automatically updated in response to user input.    See Hot-Linking the
WinWidgets for more details.

MFC
When using MFC, the best method for connecting the WinWidgets to your data depends on
the control interface you have chosen -, either the WinWidgets as Visual Basic controls
(VBX's) or as old- style custom controls.    As VBX controls, the WinWidgets support the
DDX/DDV services provided by MFC through the ClassWizard.    For more information about
using DDX/DDV with VBX controls, consult the MFC documentation and MFC Tech Note
#26.
As non-VBX custom controls, the WinWidgets' MFC Class Wrappers encapsulate the data
connectivity provided through the C language API.    The MFC Class Wrappers also support
Hot-Linking the WinWidgets to application variables.

OWL
Our OWL Wrappers support the use of Transfer Buffers through data transfer routines
similar to those used in other OWL    control classes.    The use of Transfer Buffers is
covered in the Object Windows Users Guide.    The sample application in the SSTRANS.EXE
provided with WinWidgets is an example of WinWidgets used with a Transfer Buffer.
The OWL Class Wrappers also encapsulate the data connectivity provided through the C
language API, including Hot-Linking the WinWidgets to application variables.

Visual Basic
In Visual Basic version 3.0, the WinWidgets can be connected to the Visual Basic Data
Control, which can, in turn, be connected to a variety of databases.    The WinWidgets can
be used to display values from a single field of a single database record (Edit and
CheckBox), multiple records from a single field (ListBox and ComboBox), or entire database
tables (the Grid).    For more details about using the WinWidgets in Visual Basic version 3.0,
see WinWidgets and the Visual Basic Data Control.

The WinWidgets DataEngine
The DataEngine is used by the WinWidgets to convert between illegible binary data and
text.    The methods used in these conversions depend on the data's classification, or the
data class.    Data are grouped into classes based on their meaning in the real world.    For
example, Dates, Times, Numbers, and Strings are data classes.
Within a data class, there are common formats used to present the data for viewing and
editing.    For Dates, these formats include "m/d/yy" and "Mmm d, yyyy."    Typically, as in
these examples, the format is defined as a character string.   
There are also common ways to store data of a particular class.    For instance, Dates can
be stored as three integers representing the year, month and day, or as a long integer
representing the number of days from an arbitrary starting date.    These different binary
representations of data are called data types.
The following sections describe the formats and data types for each data class:

Contents
Data Class
Overview

Numbers and Currency

Booleans Strings

Dates and Times Color Indicators

Masked Strings

Data Classes
The WinWidgets use a single character code to identify each data class, and each data
type within the class.    When developing an application, each control's data class, type and
format can be selected at design time.    First, the data class is selected from the available
list, then the acceptable data types and sample formats are displayed.    The character
codes for the data class and type and the format string are concatenated and stored as
the window text of the control.

Class ID Indicator Description
HC_BOOL b Binary choices (true/false, male/female,

on/off)
HC_CHAR h single character
HC_CLOCK k system date and/or system time, updated

automatically
HC_CURRENCY c monetary value
HC_DATE d date (year, month, day)
HC_DATETIME a date and time (year, month, day, hour,

minute, second, millisecond)
HC_MASK m character string with an edit mask
HC_NUMBER n numerical value
HC_STRING s NULL-terminated character string

HC_TIME t time (hour, minute, second, millisecond)

Data Types

Type ID Indicat
or

Description

HT_CHAR h char (8 bit integer)
HT_BYTE b unsigned char
HT_SHORT s short int (16 bit integer)
HT_WORD w unsigned short int
HT_INT i int
HT_UINT u usigned int
HT_LONG l long (32 bit integer)
HT_DWORD W unsigned long
HT_FLOAT f float (32 bit floating point)
HT_DOUBLE d double (64 bit floating point)
HT_BIGMONEY g 64 bit signed integer, used by

SQL, a value of 1 represents
1/10,000 of a currency unit.

HT_STRING s NULL-terminated character string
HT_DATETIME D used by the DataEngine
HT_ODBCTIMESTAMP s ODBC-defined date/time struct   
HT_SQLDATETIME4 q 4 byte date/time fr SQL/Server
HT_SQLDATETIME Q 8 byte date/time fr SQL/Server
HT_TM m date/time struct fr <time.h>
HT_TIME_T T 32 bit date/time fr <time.h>
HT_DOUBLEDATE u 64 bit date/time used by Excel
HT_ODBCDATE d ODBC-defined date struct
HT_DOSDATE a DOS system date struct
HT_DOSFILEDATE A DOS file date struct
HT_LONGDATE l 32 bit date value
HT_ODBCTIME t ODBC-defined time struct
HT_DOSTIME i DOS system time struct
HT_DOSFILETIME I DOS file time struct

Color Formatting
One formatting option that is common across all data classes is the inclusion of text color
indicators.    Color indicators are enclosed in braces [], and should appear at the beginning
of the format string.    The sixteen recognized color names are listed below.    Case is not
important.    A color indicator may also be an RGB triple such as [0, 255, 255], in which the
red, green and blue components of the color are given as integers between 0 and 255.

Indicator Color Indicator Color
black black gray dark gray
white white ltgray light gray
red red dkred dark red
green green dkgreen dark green
blue blue dkblue dark blue
yellow yellow olive olive
magenta magenta purple purple
cyan cyan drab dark cyan

The Boolean Data Class
Boolean type formatting provides an informative and attractive interface to a simple yes or
no choice.    The Format string contains substrings for the TRUE and FALSE conditions,
separated by a semicolon.    The keyboard interface allows the user to select true by typing
the first letter of the TRUE substring, select false with the first letter of the FALSE
substring, or toggle between states with the space bar.
The data types supported by the HC_BOOL class are listed below.    A zero data value is
interpretted as false, any other is true.   

Data Types

Type ID Indicat
or

Description

HT_CHAR h char (8 bit integer)
HT_BYTE b unsigned char
HT_SHORT s short int (16 bit integer)
HT_WORD w unsigned short int
HT_INT i int
HT_UINT u usigned int
HT_LONG l long (32 bit integer)
HT_DWORD W unsigned long

Examples

Format Data Formatted Text
True;False 1 True
Male;Female 0 Female
Yes:[red]No! 0 No!

The Number and Currency Data Classes
For numerical and monetary types, the DataEngine uses token replacement to create the
formatted Text.    Tokens are symbolic placeholders that are replaced by digits or other
characters when the number is formatted as text.    The tokens and their replacements are

described below.   
The thousands separator and decimal indicator are obtained from the Win.ini file and can
be edited using the Windows Control Panel.   
Any non-token characters in the format string are copied literally into the Text.    If no
format string is specified, the string "*0.*" is used.

Data Types

Type ID Indicat
or

Description

HT_CHAR h char (8 bit integer)
HT_BYTE b unsigned char
HT_SHORT s short int (16 bit integer)
HT_WORD w unsigned short int
HT_INT i int
HT_UINT u usigned int
HT_LONG l long (32 bit integer)
HT_DWORD W unsigned long
HT_FLOAT f float (32 bit floating point)
HT_DOUBLE d double (64 bit floating point)
HT_BIGMONEY g 64 bit signed integer, used by SQL, a

value of 1 represents 1/10,000 of a
currency unit.

Tokens

Code Description
,    (comma) Inserts the International Thousands Separator every

three places to the left of the decimal.
.    (period) Is replaced with the current International Decimal

Indicator.
; (semi-colon) Separates formats for positive and negative numbers.
Is replaced by no digits or one digit.
* Is replaced by zero or more digits.
0 (zero) Is replaced by one digit or a "0" (zero).
\ Causes the next character to be treated as a literal.
[] Used to enclose a color indicator.

Examples

Data Format Formatted Text
1001.536 $#,##0;[RED]($#,##0) $1,002
-1001.536 $#,##0;[BLUE]($#,##0) ($1,002)
-0.2 0.00 -0.20
123 00000 00123
104 ->*<- ->104<-

30.2500 *0.* 30.25
12 +*0.00;-*0.00 +12.00

The Date, Time, DateTime and Clock Data Classes
For date, time and date/time types, the DataEngine uses token replacement to create the
formatted Text.    The tokens and their replacements are described below.    In Edit mode,
dates and times are displayed using the International ShortDate and Time formats listed in
the Win.ini file and edited through the Windows Control Panel.    In Display mode, the
Format string is parsed for tokens.    Any non-token characters are copied literally into the
Text.    Some of the tokens are case sensitive, such as mmm, and others are affected by
the Windows international settings, such as "/" and ":".    If no Format string is specified,
the International ShortDate and Time formats are used in Display mode as well.    The
acceptable data types for the date/time classes are:

Data Types

Type ID Indicat
or

Description

HT_DATETIME D used by the DataEngine
HT_ODBCTIMESTAMP s ODBC-defined date/time struct   
HT_SQLDATETIME4 q 4 byte date/time fr SQL/Server
HT_SQLDATETIME Q 8 byte date/time fr SQL/Server
HT_TM m date/time struct fr <time.h>
HT_TIME_T T 32 bit date/time fr <time.h>
HT_DOUBLEDATE u 64 bit date/time used by Excel
HT_ODBCDATE d ODBC-defined date struct
HT_DOSDATE a DOS system date struct
HT_DOSFILEDATE A DOS file date struct
HT_LONGDATE l 32 bit date value
HT_ODBCTIME t ODBC-defined time struct
HT_DOSTIME i DOS system time struct
HT_DOSFILETIME I DOS file time struct

Tokens

Token Sample Description
m 12 month (1 - 12)
mm 07 month (01 - 12)
mmm Feb month (Jan - Dec)
mmmm February month (January - December)
d 31 day (1 - 31)
dd 03 day (01 - 31)
ddd Fri day-of-week (Sun - Sat)
dddd Friday day-of-week (Sunday - Saturday)
yy 91 year (00 - 99)

yyyy 1991 year (1700 - 2900)
/ / International Date Separator
h 10 hour (0-23) or (1-12) if AP or ap is used
hh 01 hour (00-23) or (1-12) if AP or ap is used
mm 02 minute (00-59), only after h or hh
ss 01 seconds (00-59)
fff 001 milliseconds (000-999)
ap am am or pm (or international equivalent)
: (colon) : International Time Separator
\ The next character is treated as a literal.

Examples

Data Format Formatted Text

 9/22/92 14:05
Ddd - Mmm d,
yyyy

Tue - Sep 22, 1992

9/22/92 14:05 m/d/yy    h:mm AP 9/22/92 2:05 PM
9/22/92 14:05 Mmm d - h:mm ap Sep 9 - 2:05 pm

The Mask Data Class
Mask formatting provides a powerful way to control user input with character strings.    The
format string may be a combination of literal characters, which appear as themselves, and
tokens, which appear as blanks (or zeros for digits) and may be replaced by appropriate
user-input.      The tokens and their permissible replacements are listed below.    The logic
for creating the Text string from the Data string is as follows:    For each format character, if
the character is a token, copy the next acceptable Data character to the Text string.    If
there are no more acceptable Data characters, use a blank or zero.    If the format
character is not a token copy it to the Text string, and if the Data character matches the
format character move to the next Data character.

Data Types

Type ID Indicator Description
HT_STRING s NULL-terminated character string

Tokens

Token Permissible Replacements
Any numeric digit (0-9).
@ Any alphabetic character (a-z, A-Z)
! Any punctuation character
* Any single printable character.
\ Causes the next character to be treated as a literal.

Examples

Data Format Formatted Text

 "012345678"
###-##-#### 012-34-5678

"012-34-5678" ###-##-#### 012-34-5678
"2125551212" (###) ###-

####
(212) 555-1212

"212-555-1212" (###)
###*####

(212) 555-1212

"Feb-1992" @@@, #### Feb, 1992

The String Data Class
The string class uses the format string to set a maximum text length for edit mode and/or
to initialize the control's Text.    After initialization, the format string serves no purpose.

Data Types

Type ID Indicator Description
HT_STRING s NULL-terminated character string

Examples

Format Data Formatted Text Text Limit
[magenta]Text none Text none
[magenta]Text New text. New text. none
%5Text none Text 5

typedef struct tagDATETIME
    {
    short      year;          //    (i.e. 1970)
    BYTE        month;        //    1-12
    BYTE        day;            //    1-31
    BYTE        hour;          //    0-23
    BYTE        minute;      //    0-59
    BYTE        second;      //    0-59
    WORD        msec;          //    0-999
    }
    DATETIME,
    far *LPDATETIME;

typedef struct tagODBCDATE
    {
    short      year;
    WORD        month;
    WORD        day;
    }
    ODBCDATE,
    far *LPODBCDATE;

typedef struct tagODBCTIME
    {
    WORD        hour;
    WORD        minute;
    WORD        second;
    }
    ODBCTIME,
    far *LPODBCTIME;

typedef struct tagODBCTIMESTAMP
    {
    short      year;
    WORD        month;
    WORD        day;
    WORD        hour;
    WORD        minute;
    WORD        second;
    DWORD      fraction;
    }
    ODBCTIMESTAMP,
    far *LPODBCTIMESTAMP;

typedef struct tagSQLDATETIME4
    {
    WORD      days;    //Julian days from 1/1/1900 to 6/6/2079
    WORD      time;    //seconds since midnight
    }
    SQLDATETIME4,
    far *LPSQLDATETIME4;

typedef struct tagSQLDATETIME
    {
    long        days;    //Jul days since 1/1/1900 from
                                      1/1/1753-12/31/9999
    long        time;    //milliseconds since midnight
    }
    SQLDATETIME,
    far *LPSQLDATETIME;

typedef long TIME_T,    // seconds since Jan 1, 1970
                far *LPTIME_T; // at 00:00:00

typedef struct tagTM
    {
    short      tm_sec;          //seconds after the minute (0-61?)
    short      tm_min;          //minutes after the hour (0-59)
    short      tm_hour;        //hours since midnight (0-23)
    short      tm_mday;        //day of the month (1-31)
    short      tm_mon;          //months since January (0-11)
    short      tm_year;        //years since 1900
    short      tm_wday;        //days since Sunday (0-6)
    short      tm_yday;        //days since January 1 (0-365)
    short      tm_isdst;      //Daylight Saving Time, >0 if DST
    }
    TM,
    far * LPTM;

typedef struct tagDOSDATE
    {
    BYTE        day;                // 1-31
    BYTE        month;            // 1-12
    WORD        year;              // 1980-2099
    BYTE        dayofweek;    // 0-6, 0=Sunday
    }
    DOSDATE,
    far * LPDOSDATE;

typedef struct tagDOSTIME
    {
    BYTE        hour;              // 0-23
    BYTE        minute;          // 0-59
    BYTE        second;          // 0-59
    BYTE        hsecond;        // 0-99
    }
    DOSTIME,
    far * LPDOSTIME;

typedef struct tagDOSFILEDATE
    {
    WORD        Year    : 7;    // years since 1980
    WORD        Month : 4;    // month (1-12)
    WORD        Day      : 5;    // day (1-31)
    }
    DOSFILEDATE,
    far * LPDOSFILEDATE;

typedef struct tagDOSFILETIME
    {
    WORD        Hour    : 5;    // hour (0-23)
    WORD        Min      : 6;    // minutes (0-59)
    WORD        Sec      : 5;    // secs/2 (10 here means 20)
    }
    DOSFILETIME,
    far * LPDOSFILETIME;

typedef double    DOUBLEDATE, // real number of days since
                far * LPDOUBLEDATE; // midnt, December 30, 1899*

// Excel, and perhaps other spreadsheets, claim that
// their date represents the number of days from
// December 31, 1899 - making January 1, 1900
// day 1.    However, they neglect the fact that 1900 was
// NOT a leap year!    There was no 2/29/1900, which is a
// valid date in Excel.    In addition, SQL uses the
// number of days SINCE January 1, 1900 - making
// 1/1/1900 day 0.    The net effect is that the integral
// portion of a DOUBLEDATE will be 2 greater than the
// days element of the SQL types.

typedef long LONGDATE,      // year*10000 + month*100 + day
                far *LPLONGDATE; // e.g. 12/30/1968 -> 19681230

typedef struct
    {
    DWORD    bm[2];      // bm[0] is the more significant DWORD
    }
    BIGMONEY,
    far * LPBIGMONEY;

typedef struct
    {
    WORD bmw[4];        // bmw[3] is the most significant WORD
    }
    BMWORDS,
    far *LPBMWORDS;

The HC_CLOCK data class sets a one-second timer if the format string contains a time,
otherwise it sets a one-minute timer.    With each timer message the control updates its
data based on the system time and redisplays the text.    The HC_CLOCK class makes it
extremely easy to incorporate a clock or calendar in an application's status bar or ribbon.

Case Sensitive Tokens
These tokens are case sensitive.    The DataEngine interprets the token's capitalization as
all capitals, all lowercase, or first letter capitalized.

Frequently Asked Questions

General
      Where is my manual?!
      Why won't my dialog with WinWidgets controls come up?
      Do the WinWidgets respond to the same messages as the built-in Windows controls?
      Is there any way to avoid resdistributing WIDGETS.DLL with my application?
      Why do static controls paint over other controls in a dialog?
      Bitmaps and Icons appear in buttons and static controls in my design environment but

are missing at run-time.    Why?
      Why is there no Toolbar control button in the Resource Workshop/Dialog

Editor/AppStudio?
      How do I get rid of the "Control Style Expected" warning message in Borland's Resource

Workshop?
      How do I prevent infinite loops when I respond to events?

Visual Basic
      Why is there no Data property in the VBX WinWidgets?

C++
      When I link my MFC application I get a bunch of the following error message: "error

L2044: : symbol multiply defined, use /NOE".    What is going on?
      When I link my MFC application I get the following error message for every function in

the library: "error L2029: ... : unresolved external".    What is going on?

Edit Control
      How do I limit the number of characters in an edit control?
      Why don't Insert and Delete work in masked edit fields?

Grid Control
      I add/insert/delete records in the Grid and nothing happens. What is going on?
      Why does my grid come up in my application without any fields?
      Why does my grid come up in my application without any records?
      The Grid appears with data in the wrong column or garbage in some columns.    Why?
      Is it possible to get rid of the scroll bars in the Grid?
      How do I get rid of the white space on the right-hand side of the Grid?

Where Is My Manual?
To print all or part of this document from electronic form, choose File, Print Manual....   
Select from the list of chapters and chapter sections those you want to have on paper.   
Then press Print.    You may cancel the process at any time by pressing Cancel.
Without the trials of producing a printed manual, we've had time to make vast
improvements to the WinWidgets' documentation and the tools themselves.    The current
release offers many new features, more explanations and more examples.    Our new on-
line manual is designed for easy use as both a quick-reference and a general guide.   
Unlike a printed document, the on-line manual can be easily updated and expanded, it
contains extensive cross-referencing and search capabilities, and it doesn't take any space
on your desk.
If you've never used an on-line manual in the Windows Help System, we're glad to finally
introduce you.    Among other features, Windows Help provides:

· hyperlinks between related topics
· alphabetic topic searches (use the Search button to type in keywords, then double-

click on a word or press the Show Topics button, select a topic and press Go To.
· colored text and pictures
· pop-up definitions of important words and constants
· bookmarking and annotation that won't wear out the pages (check out the

Bookmark and Edit menus)
· copy and paste example text from the manual directly to your programs

If that's not enough, Windows Help allows us to integrate the manual with your design
tools so that when you design screens with the WinWidgets, context-sensitive help is only
an F1 click away.    For more information on using these features, see Using the Manual.

Why won't my dialog with WinWidgets controls even come
up?

This is usually caused because the WinWidgets window classes have not been properly
registered.    Make sure you are calling WidgetsInit() at the beginning of your application.

Do the WinWidgets respond to the same messages as the
built-in Windows controls?

WinWidgets controls are not subclassed from standard Windows controls; we wrote them
all from scratch.    Therefore, they do not default to the standard Windows controls
processing for the standard control messages (i.e. BM_xxxx, EM_xxxx, LBM_xxxx).   
WinWidgets also do quite a bit more than the standard Windows controls and require a
larger message interface.    They do respond to certain Windows messages, such as
WM_SETTEXT, WM_CUT, WM_COPY and WM_UNDO.    These cases are documented in this
manual.

Is there any way to avoid resdistributing WIDGETS.DLL
with my application?

Yes.    If you have purchased the WinWidgets source code, we will provide a makefile for
compiling a static version of the library, which you can link directly into your .EXE file.   
The advantages to static linking are that you don't link the entire content of WIDGETS.DLL
into your app, only the code that you actually use.      Another advantage is that your
application will be immune to the effects of other applications installing different versions
of WIDGETS.DLL in a common directory.

Why do static controls paint over other controls in a
dialog?

Windows paints controls in a dialog box according to the order in which they appear in the
dialog resource.    This order can be set in most design environments, so you don't have to
be that careful about the order in which you include the controls initially.    Just make sure
that when you save the resource, any static controls appear after any other controls that
should appear over them.

Bitmaps and icons appear in buttons and static controls in
my design environment but are missing at run-time.   
Why?

Make sure that your bitmaps and icons are compiled as resources in your application or
reside in the current working directory.    The working directory may be different at run-
time than at design-time, which is why bitmaps can appear properly in one instance and
not another.    The resource editors do not load a copy of your application and thus can
only get bitmaps and icons from files in the working directory.

Why is there no Toolbar control button in the Resource
Workshop/Dialog Editor/AppStudio?

The Toolbar is not strictly a control, rather it is a modeless dialog containing other controls. 
Create a toolbar by designing the dialog in your favorite resource editor and passing the
dialog resource to the Toolbar's Create method.

How do I get rid of the "Control Style Expected" warning
message in Borland's Resource Workshop?

The Resource Workshop is looking for the numerical values of WinWidgets' constants,
which are located in the WinWidgets header, WIDGETS.H.    To prevent the message, add
WIDGETS.H to your project by choosing File, Add to Project...    You may also need to
modify the Resource Workshop's include path under File, Preferences when all projects
are closed.

How do I prevent infinite loops when I respond to events?
Occasionally, responding to an event can produce the same event, which initiates an
infinite loop.    To avoid the recursion tell the control to be quiet (suppress events) while
you are responding to the event.    All of the WinWidgets have a Quiet attribute that can be
set to TRUE at the beginning of your procedure and FALSE at the end.

Why is there no Data property in the VBX WinWidgets?
Unlike C and C++, Visual Basic is not a strongly-typed language.    Visual Basic
programmers can assign text strings to binary data types and rely on the language to do
the conversion for them.    Furthermore, Visual Basic does not support most of the data
types supported by WinWidgets.    For these reasons, our VBX interface does not provide
access to the Data attribute of the controls.    We do, however, provide access to the
DataType attribute through the VBX interface so that C++ programmers designing in
AppStudio can have control over the data types their controls use.    The C++ classes we
wrote do not rely on the VBX interface and thus do provide full access to the controls'
Data.   
If all of this makes you wonder why Microsoft thinks C++ programmers will feel more
comfortable programming with VBX controls, you're not the only one.

When I link my MFC application I get a bunch of the
following error message: "error L2044: : symbol
multiply defined, use /NOE".    What is going on?

This is probably caused by compiling a debugging version of your app with the version of
the Wrapper libraries supplied on our distribution disks, which are release versions.    You
must recompile these libraries for debugging with the makefiles we supply.

When I link my MFC application I get the following error
message for every function in the library: "error
L2029: ... : unresolved external".    What is going on?

This is probably caused by a mismatch between the memory model of your application
and the Wrapper library.    MFCWDGSL.LIB is a large model library; MFCWDGSM.LIB is a
medium model library.

How do I limit the number of characters in an edit control?
The best way to set a maximum text length for a string in an edit control is to set the
MaxTextLen attribute for the control.    Some users have attempted to limit the number of
characters by employing a masked edit with a mask of the maximum length.    We do not
recommend this approach because masked edit controls behave in ways that are generally
undesirable for generic strings.    Masks are better used for enforcing some unsusual string
syntax, not for simply setting a maximum length.

Why don't Insert and Delete work in masked edit fields?
Masked edit fields are typically used to enforce a strict string syntax that is inconvenient
for the user to remember each time he or she types, such as the pattern of hyphens and
parentheses in a phone number.    For this reason, hiliting text and deleting in a masked
edit field actually replaces non-masked positions with whitespace and leaves masked
positions untouched.    Similarly inserting one character into a mask where three
characters have been hilited will replace the first of the three characters with the inserted
character and the remaining two with whitespace.    This behavior is appropriate because it
enables the user to see what parts of the string have been deleted or altered, while still
preserving the string syntax.    This is why using a mask to simply limit string length is a
bad idea.

I add/insert/delete records in the Grid and nothing
happens. What is going on?

This problem is usually caused by failing update the Grid.    Changes in the Grid are not
reflected in the display until the Grid is updated.

Why does my grid come up in my application without any
fields?

This usually means the WinWidgets cannot find the Grid resource in your application
or .GRS file in the working directory.    If you have compiled a GRS file as a resource and
this problem persists, make sure that you have not used a "#define" directive for the
resource name.    It should be used as a string, not as an integer.

Why does my grid come up in my application without any
records?

The Dialog Editor, Resource Workshop, and AppStudio add records to the Grid in their
design environments for the purpose of testing.    These records are not added to the Grid
by default at run-time.    You must add records explicitly.

Why is data in the Grid appearing in the wrong column or
otherwise appearing corrupted?

Applications using the Grid must be compiled with Single Byte Alignment.    This problem
typically occurs when Double Byte Alignment is set and one of the fields is defined with an
odd byte size.    See HGrid Record Structures for more details.

Is it possible to get rid of the scroll bars in the Grid?
Yes.    The Grid responds to the standard Windows WS_HSCROLL and WS_VSCROLL styles,
which you can set at design time.    Grids designed using previous versions WinWidgets will
have these styles set by default, but can be resaved as version 2.0 grids with these styles
turned off.

How do I get rid of the white space on the right-hand side
of the Grid?

To have a Grid completely fill its window without showing empty space, make sure the
fields are sized appropriately so that they combine to fill the window's client area.    If a
vertical scroll bar is enabled, leave room for the scroll bar at the right and make sure the
DisableNoScroll style is set to prevent the scroll bar from disappearing when it is not
needed.

HButt, The WinWidgets Button Control
      Attributes
      Events
HButt is an-all-purpose button control.    Use it as a pushbutton, radiobutton, checkbox, or
multiple-state button.    It displays multiple lines of text and/or bitmaps and icons.    It
supports mnemonics and the default pushbutton style.    It even plays sound resources.   
As a checkbox or radiobutton, HButt can be Hot-Linked to a data source that is
automatically updated whenever the button changes state.    All of the standard button
types have a 3D appearance by default, but HButt can be easily tailored with custom
images, styles and formatting.

Additional Topics
      Using custom pictures and sounds
      Hot-Linking a button to your data
      Using HButt with the Visual Basic Data Control
      Displaying 256-color bitmaps

HButt Attributes
AutoAdvance MaskColor SoundMode
Background NoButton Squared
BtnType NoFocus State
Count Palette Text
Data PicAlign TextAlign
DataLink Picture TextColor
DataType Pressed TextIndent
DownPics Quiet TextJustify
Font RelAlign Transparency
LastInGroup Sound

AutoAdvance Attribute
When set, the button advances one State in its state cycle each time it is pressed.

Usage

C/C++
Window Style: HBS_AUTOADVANCE

VBX
[form.][control.]AutoAdvance

Remarks
The AutoAdvance attribute does not apply to PushButtons.    This attribute is read-
only at run time.

Background Attribute
The color or pattern used to paint the background of checkboxes and radio buttons and
the corners of pushbuttons

Usage

C
hbrBkgnd = (HBRUSH)SendMessage(hWnd, HBM_GETBKGNDBRUSH, 0, 0L);
hbrOldBkgnd = (HBRUSH)SendMessage(hWnd, HBM_SETBKGNDBRUSH,
(WPARAM)hNewBrush, 0L);

C++
OWL
hbrBkgnd = [THButtObj.]GetBkgndBrush(void);
hbrOldBkgnd = [THButtObj.]SetBkgndBrush(hbrNewBrush);
MFC
pBkgnd = [CHButtObj.]GetBkgndBrush(void);
pOldBkgnd = [CHButtObj.]SetBkgndBrush(pNewBrush);

VBX
[form.][control.]BackColor[= color]
See Visual Basic Language Reference, "BackColor, ForeColor Properties"

Arguments/Parameters
HBRUSH hbrNewBrush Handle of a new brush to be set as the

background brush
CBrush pNewBrush Pointer to a CBrush object containing the new

background brush handle

Return values
HBRUSH hbrBkgnd Handle to the current background brush
HBRUSH hbrOldBkgnd Handle to the previous background brush
CBrush *pBkgnd Pointer to a CBrush object containing the current

background brush handle
CBrush *pOldBkgnd Pointer to a CBrush object containing the previous

background brush handle

Remarks
C and C++ applications are responsible for destroying any brushes they create.   
HButt also supports WM_CTLCOLOR processing; see the Windows SDK documentation
for details

BtnType Attribute
Determines the type of button (i.e pushbutton, radio, checkbox, defpushbutton, etc.)

Usage

C/C++
Window Styles:
HBS_PUSHBUTTON
HBS_DEFPUSHBUTTON
HBS_CHECKBOX
HBS_RADIOBUTTON
HBS_3STATE
HBS_GROUPPUSH

VBX
Not Used.    The various button types are implemented as separate controls in Visual
Basic.

Remarks
The BtnType attribute is read-only at run time.

Count Attribute
The total number of Pictures (including the "pressed" pictures if the DownPics attribute is
on) displayed by the button in a complete cycle

Usage

C
iCount = (int)SendMessage(hWnd, HBM_GETCOUNT, 0, 0L);

C++
iCount = [CHButtObj.]GetCount();

VBX
Not Used.    The number of pictures is determined by the type of button and the
setting of the DownPics attribute.

Return values
int iCount The number of pictures stored by the button

Remarks
The Count attribute is read-only.

Data Attribute
The native (binary) data displayed by a checkbox, of a type support by the boolean data
class as defined in the DataEngine chapter.    States are numbered starting at zero for
unchecked, one for checked, two for greyed (in a 3-State button), etc.    For two state
buttons, any non-zero data values correspond to a checked state.

Usage

C
lBytesCopied = SendMessage(hWnd, HBM_GETDATA, (WPARAM)iMaxBytes,
(LPARAM)lpData);
lBytesCopied = SendMessage(hWnd, HBM_SETDATA, 0, (LPARAM)lpData);
iSize = (int)SendMessage(hWnd, HBM_GETDATASIZE, 0, 0L);

C++
lBytesCopied = [CHBCheckObj/CHRadioObj.]GetData(lpData [, iMaxBytes = 0]);
lBytesCopied = [CHBCheckObj/CHRadioObj.]SetData(lpData);
iSize = [CHBCheckObj/CHRadioObj.]GetDataSize();

VBX
Not Used.    In Visual Basic 3.0 the checkbox and radiobutton can be connected
directly to a DataSource and DataField.    See Data-Awareness.

Arguments/Parameters
void FAR *lpData Pointer to data
int iMaxBytes Maximum number of bytes to copy (used only for

strings)

Return values
LONG lBytesCopied Number of bytes actually copied to or from the

control
int iSize The size of the Data

See Also
DataLink, State

DataLink Attribute
A pointer to the variable or buffer that is updated automatically when the user changes
the Data attribute of a checkbox, or the State of a radiobutton

Usage

C
lpLink = (void FAR *)SendMessage(hWnd, HBM_GETDATALINK, 0, 0L);
lBytesCopied = (LONG)SendMessage(hWnd, HBM_SETDATALINK, bUseIndex,
(LPARAM) (LPVOID) lpBuf);

C++
lpLink = [CHBCheckObj/CHBRadioObj/CHB3StateObj.]GetDataLink();
lBytesCopied =
[CHBCheckObj/CHBRadioObj/CHB3StateObj.]SetDataLink([bUseIndex=FALSE][,
lpBuf=NULL]);

VBX
Not Used.    In Visual Basic 3.0 the checkbox and radiobutton can be connected
directly to a DataSource and DataField.    See Hot-Linking

Arguments/Parameters
void FAR *lpBuf Pointer to application data buffer that is to be

updated with a checkbox's Data or a
radiobutton's ID or index in a group.

BOOL bUseIndex For radiobuttons, this flag determines the
DataLink is updated with the control ID (FALSE),
or the control index in the radiobutton group
(TRUE).

Return values
void FAR *lpLink Pointer to the current data link.    NULL if no

DataLink has been set.
LONG lBytesCopied Contains the number of bytes copied from lpBuf

Remarks
For checkboxes, the button's Data will be set to the contents of lpBuf, which should
contain a zero value for unchecked or a non-zero value for checked.    For
radiobuttons, the DataLink attribute need only be set for the first button in a group.   
HButt will check the radiobutton in the group corresponding to the ID or group index
passed in lpBuf, depending on the value of bUseIndex.

See Also
Data, State, Hot-Linking, Data-Awareness

DataType Attribute
For checkboxes, one of the data types defined in the DataEngine chapter for the Boolean
data class.    Otherwise, not used.

Usage

C
cDataType = (char)SendMessage(hWnd, HBM_GETDATATYPE, 0, 0L);

C++
cDataType = [CHBCheckObj.]GetDataType();

VBX
Not Used.

Return values
char cDataType One of the data type character codes

Remarks
The DataType attribute is read-only at run time.    Control over this attribute is
provided by the control design dialogs in Dialog Editor and Resource Workshop.   
When creating windows dynamically in C and C++, the DataType is included in the
WindowText.

See Also
Data

DownPics
When set, there are two Pictures for each State, one for when the button is Pressed and
one for unpressed.

Usage

C/C++
Window Style: HBS_DOWNPICS

VBX
[form.][control.]DownPics

See Also
Pressed, State, Picture, Count

Font Attribute
The font used by the control

Usage

C
hfFont = (HFONT)SendMessage(hWnd, HBM_GETFONT, 0, 0L);
hfOldFont = SendMessage(hWnd, HBM_SETFONT, (WPARAM)hfNewFont,
(LPARAM)bRedraw);

C++
OWL
hfFont = [THButtObj.]GetFont();
hfOldFont[THButtObj.]SetFont(hfNewFont [, bRedraw = TRUE]);
MFC
pFont = [CHButtObj.]GetFont();
pOldFont[CHButtObj.]SetFont(pNewFont [, bRedraw = TRUE]);

VBX
[form.][control.]FontBold[= boolean]
[form.][control.]FontItalic[= boolean]
[form.][control.]FontName[= font]
[form.][control.]FontSize[= points]
[form.][control.]FontStrikethru[= boolean]
[form.][control.]FontUnderline[= boolean]
See Visual Basic Language Reference, "FontName Property"

Arguments/Parameters
HFONT hfNewFont Handle of the font to be set
CFont *pFont Pointer to a CFont object containing the handle to

the font to be set
BOOL bRedraw A value of TRUE causes the control to repaint

immediately

Return values
HFONT hfFont Handle to the control's current font
HFONT hfOldFont Handle to the control's previous font
CFont *hfFont Pointer to a CFont object containing the handle to

the control's current font
CFont *fOldFont Pointer to a CFont object containing the handle to

the control's previous font

Remarks
C and C++ applications are responsible for destroying any fonts they create.

LastInGroup Attribute
Determines if a radio button is the last in a group delineated by the WS_GROUP style in a
dialog template

Usage

C
bResult = (BOOL)SendMessage(hWnd, HBM_ISLASTINGROUP, 0, 0L);

C++
bResult = [CHBRadioObj.]IsLastInGroup()

VBX
Not Used

Return values
BOOL bResult TRUE if the button preceeds another control with

WS_GROUP

MaskColor Attribute
A color value used to indicate transparency in bitmaps

Usage

C
crMask = SendMessage(hWnd, HBM_GETMASKCOLOR, 0, 0L);
SendMessage(hWnd, HBM_SETMASKCOLOR, 0, (LPARAM)crNewMask);

C++
crMask = [CHButtObj.]GetMaskColor();
[CHButtObj.]SetMaskColor(crNewMask);

VBX
[form.][control.]MaskColor[= color]

Arguments/Parameters
COLORREF crNewMask The new MaskColor value

Return values
COLORREF crMask The current MaskColor value

Remarks
The MaskColor attribute is set by default to be light green, RGB (0, 255, 0).    Masking
causes a background color to show through portions of a bitmap, allowing non-
rectangular bitmap images in the same manner as Windows icons.

NoButton Attribute
When the NoButton attribute is set, the button is not drawn as a pushbutton, leaving the
background as the system window color.

Usage

C/C++
Window Style: HBS_NOBUTTON

VBX
Not Used

NoFocus Attribute
When set, the button will not receive the input focus upon being pressed.

Usage

C/C++
Window Style: HBS_NOFOCUS

VBX
[form.][control.]NoFocus

Remarks
This attribute is read-only at run time.

Palette Attribute
A handle to a 256-color palette for a DIB-type Picture

Usage

C
hpPalette = SendMessage(hWnd, HBM_GETPALETTE, 0, 0L);

C++
OWL
hpPalette = [CHButtObj.]GetPalette();
MFC
pPalette = [CHButtObj.]GetPalette();

VBX
VBX buttons are "palette aware"; they automatically realize their own palettes.

Return values
HPALETTE hpPalette A handle to a logical palette for the control
CPalette *pPalette A pointer to a CPalette object containing the

handle to control's logical palette

Remarks
Typically, an application that displays 256-color images will select and realize the
control's palette in response to WM_PALETTECHANGED and WM_QUERYNEWPALETTE
messages.    For additional information see the example below and Microsoft's Palette
Self-Study Module, available through the Microsoft Developer Network.

Examples

Palette Attribute Example (C API)
case WM_PALETTECHANGED:
      if (hWndThis == (HWND) wParam)
            break;
      else    //Another palette is being used
          // fall through to WM_QUERYNEWPALETTE

case WM_QUERYNEWPALETTE:
{
      HDC                    hDC;
      HPALETTE          hOldPal, hControlPalette;
      int                    nChanged;

      hDC                = GetDC (hWndChild);

      //Get the palette from the button control
      hControlPalette = (HPALETTE)SendDlgItemMessage(hWndThis,
  101,
  HBM_GETPALETTE,
  0,
  0);
      //Select the control's palette into the device context
      hOldPal        = SelectPalette (hDC, hControlPalette,
  (msg == WM_QUERYNEWPALETTE) ?
  FALSE : TRUE);
      //Realize the palette
      nChanged = RealizePalette (hDC);
      //Select the old palette
      SelectPalette (hDC, hOldPal, TRUE);
      ReleaseDC          (hWndChild, hDC);

      //Repaint if necessary
      if (nChanged)
            InvalidateRect (hWndChild, NULL, TRUE);

      return nChanged;
}

PicAlign Attribute
An alignment code representing the position of the Picture within the button's client area

Usage

C
iPAlign = (int)SendMessage(hWnd, HBM_GETPALIGN, 0, 0L);
SendMessage(hWnd, HBM_SETPALIGN, (WPARAM)iNewRAlign, 0L);

C++
iPAlign = [CHButtObj.]GetPAlign();
[CHButtObj.]SetPAlign(iNewPAlign);

VBX
[form.][control.]AlignPicture[= integer]

Arguments/Parameters
int iNewPAlign The new alignment code

Return values
int iPAlign The current alignment code

Remarks
Alignment Codes
At design time, the PicAlign attribute can be set from within the Dialog Editor,
Resource Workshop, or Visual Basic, or can be specified in the WindowText directly.

Picture Attribute
The bitmap(s) or icon(s) displayed by the button

Usage

C
hPic = (HANDLE)SendMessage(hWnd, HBM_GETPIC, (WPARAM)iIndex, 0L);
hOldPic = (HANDLE)SendMessage(hWnd, HBM_SETPIC, (WPARAM)iIndex,
(LPARAM)MAKELONG(hNewPic, wType));

C++
hPic = [CHButtObj.]GetPic([iIndex = 0]);
hOldPic = [CHButtObj.]SetPic(hNewPic, wType [, iIndex = 0]);

VBX
[pushbutton.]Pic[= picture]
[pushbutton.]Pic_Pressed[= picture]
[checkbox/radio/grouppush]Pic_OFF[= picture]
[checkbox/radio/grouppush]Pic_OFF_Pressed[= picture]
[checkbox/radio/grouppush]Pic_ON[= picture]
[checkbox/radio/grouppush]Pic_ON_Pressed[= picture]
Note that Picture properties with names ending "_Pressed" are only used if the
DownPics attribute is true.

Arguments/Parameters
int iIndex The index (starting from 0) of the picture
HBITMAP/HICON hNewPic A handle to the new picture
WORD wType Indicates the type of picture.    Can be one of the

three PictureType values

Return values
HBITMAP/HICON hPic The handle of the requested picture
HBITMAP/HICON hOldPic The handle of the previously set picture

Remarks
C and C++ applications are responsible for destroying any pictures they add at run
time.
At design time, the Picture attribute can be set from within the Dialog Editor,
Resource Workshop, or Visual Basic, or picture resources can be specified in the
WindowText directly.

See Also
AutoAdvance, DownPics, Palette

Alignment Codes
The Alignment codes are as follows:

Code Position in Client Area
0 Top Left
1 Top Center
2 Top Right
3 Center Left
4 Center
5 Center Right
6 Bottom Left
7 Bottom Center
8 Bottom Right

Relative Alignment Codes
The Relative Alignment codes are as follows:

Code Picture Relative to Text
0 Above Left
1 Above Center
2 Above Right
3 Left
4 On Top
5 Right
6 Below Left
7 Below Center
8 Below Right

Picture Types

Code Meaning
HP_BITMAP 16 Color Bitmap
HP_DIB 256 Color Bitmap
HP_ICON Icon

Pressed Attribute
This attribute is set to TRUE while a button is depressed by the user pressing the mouse
button or space bar.    Setting this attribute displays the button as pressed or unpressed.

Usage

C
bIsPressed = SendMessage(hWnd, HBM_ISPRESSED, 0, 0L);
SendMessage(hWnd, HBM_PRESS, (WPARAM)bPress, 0L);

C++
bIsPressed = [CHButtObj.]IsPressed();
[CHButtObj.]Press(bPress);

VBX
Not Used

Arguments/Parameters
BOOL bPressed TRUE displays the button as pressed; FALSE, as

unpressed

Return values
BOOL bIsPressed TRUE if button is being depressed

Remarks
IsPressed returns TRUE only in the interval after the mouse has been clicked on a
button but before it has been either released or moved from over the button.    This
attribute should not be used to test whether radiobuttons or checkboxes have been
checked.    To make these determinations, check the value of the State attribute.

Quiet Attribute
When the control is in Quiet mode, it does not send notification messages to its parent.   
VBX controls will not fire events in Quiet mode.

Usage

C
SendMessage(hWnd, HBM_BEQUIET, bValue, 0L);
bQuiet = (BOOL)SendMessage(hWnd, HBM_ISQUIET, 0, 0L);

C++
[CHButtObj.]BeQuiet(bValue);
bQuiet = [CHButtObj.]IsQuiet();

VBX
SendMessage(control.hWnd, HBM_BEQUIET, bValue, 0L)
bQuiet = SendMessage(control.hWnd, HBM_ISQUIET, 0, 0L)
See VBX Advanced Topics

Arguments/Parameters
BOOL bValue TRUE turns on Quiet mode, FALSE turns it off

Return values
BOOL bIsQuiet TRUE if the control is in Quiet mode

RelAlign Attribute
A relative alignment code representing the alignment of the control's Picture with respect
to its Text

Usage

C
iRAlign = (int)SendMessage(hWnd, HBM_GETRALIGN, 0, 0L);
SendMessage(hWnd, HBM_SETRALIGN, (WPARAM)iNewRAlign, 0L);

C++
iRAlign = [CHButtObj.]GetRAlign();
[CHButtObj.]SetRAlign(iNewRAlign);

VBX
[form.][control.]AlignPicToText[= integer]

Arguments/Parameters
int iNewRAlign The new relative alignment code

Return values
int iRAlign The current relative alignment code

Remarks
The value of the RelAlign attribute is only used when PicAlign and TextAlign share the
same value.
Relative Alignment Codes
At design time, the RelAlign attribute can be set from within the Dialog Editor,
Resource Workshop, or Visual Basic, or can be specified in the WindowText directly.

See Also
PicAlign, TextAlign

Sound Attribute
The handle or filename of a sound resource that is played whenever the button is pressed. 
The SoundMode attribute determines whether the sound is played synchronously or
asynchronously.

Usage

C
hSound = (HANDLE)SendMessage(hWnd, HBM_GETSOUND, 0, 0L);
SendMessage(hWnd,HBM_SETSOUND, (WPARAM)hNewSound, 0L);

C++
hSound = [CHButtObj.]GetSound();
[CHButtObj.]SetSound(hNewSound);

VBX
[form.][control.]SoundFile[= filename]

Arguments/Parameters
HANDLE hNewSound The content of the handle depends on the setting

of the sound mode.    If the SoundMode is set to
asynchronous, the handle must be a handle to
a .WAV resource.    Otherwise, it must be a
resource information handle, as returned by
FindResource.

Return values
HANDLE hSound The return value depends on the setting of the

SoundMode.    If the sound mode is set to
asynchronous, the returned handle is the actual
handle to a .WAV resource.    Otherwise, it is a
resource information handle, as returned by
FindResource.    To obtain the actual resource, call
LoadResource.

Remarks
The SoundFile property of the VBX button must always be set to a .WAV file name
regardless of the SoundMode setting.

SoundMode Attribute
Determines whether the sound is played synchronously -- regular execution is suspended
until the sound terminates -- or asynchronously.

Usage

C/C++
Window Style: HBS_ASYNCSets the sound mode to asynchronous

VBX
[form.][control.]SoundMode

Remarks
The SoundMode property is read-only at run time.

Squared Attribute
When set, the corners of a pushbutton are drawn square as opposed to rounded.

Usage

C/C++
Window Style: HBS_SQUARED

VBX
[form.][control.]Squared

Remarks
This property is read-only at run time.

State Attribute
The current state of the button in the sequence of conditions through which it cycles in its
operation (e.g. "unchecked" and "checked" are States 0 and 1, respectively).

Usage

C
iState = (int)SendMessage(hWnd, HBM_GETSTATE, 0, 0L);
SendMessage(hWnd, HBM_SETSTATE, (WPARAM)iNewState, (LPARAM)bRedraw);
iStateCount = (int)SendMessage(hWnd, HBM_GETSTATECOUNT, 0, 0L);

C++
iState = [CHButtObj.]GetState();
[CHButtObj.]SetState(iState[, bRedraw = TRUE]);
iStateCount = [CHButtObj.]GetStateCount();

VBX
[form.][control.]State[= iNewState]

Arguments/Parameters
int iNewState The new State value
BOOL bRedraw TRUE forces immediate redraw

Return values
int iState The current State value
int iStateCount The number of button states

Remarks
For a button without the DownPics attribute set, the number of states is equal to the
number of Pictures (Count attribute), or half this number if DownPics is set.

See Also
AutoAdvance, Count, DownPics

Text Attribute
A character string displayed on the button control.    Line breaks can be inserted in the text
using the ^ (carat) character.    The button control will replace all carats with new line
characters (\n).

Usage

C
lBytesCopied = SendMessage(hWnd, HBM_GETTEXT, (WPARAM)iMaxBytes,
(LPARAM)lpBuf);
SendMessage(hWnd, HBM_SETTEXT, 0, (LPARAM)lpBuf);

C++
lBytesCopied = [CHButtObj.]GetText(lpBuf [, iMaxBytes =-1]);
[CHButtObj.]SetText(lpBuf);

VBX
[form.][control.]Text[= stringexpression]

Arguments/Parameters
LPSTR lpBuf A buffer for the control Text
int iMaxBytes The maximum number of bytes to copy to lpBuf

Return values
LONG lBytesCopied The number of bytes actually copied to lpBuf

See Also
TextAlign

TextAlign Attribute
An alignment code representing the position of the Text within the button's client area

Usage

C
iTAlign = (int)SendMessage(hWnd, HBM_GETTALIGN, 0, 0L);
SendMessage(hWnd, HBM_SETTALIGN, (WPARAM)iNewTAlign, 0L);

C++
iTAlign = [CHButtObj.]GetTAlign();
[CHButtObj.]SetTAlign(iNewTAlign);

VBX
[form.][control.]AlignText[= integer]

Arguments/Parameters
int iNewPAlign The new alignment code

Return values
int iPAlign The current alignment code

Remarks
Alignment Codes

At design time, the TextAlign attribute can be set from within the Dialog Editor,
Resource Workshop, or Visual Basic, or can be specified in the WindowText directly.

TextColor Attribute
The color of the control's Text.

Usage

C
crTextColor = (COLORREF)SendMessage(hWnd, HBM_GETTEXTCOLOR, 0, 0L);
SendMessage(hWnd, HBM_SETTEXTCOLOR, 0, crNewColor);

C++
crTextColor = [CHButtObj.]GetTextColor();
[CHButtObj.]SetTextColor(crNewText);

VBX
[form.][control.]TextColor[= color]

Arguments/Parameters
COLORREF crNewText The new TextColor value

Return values
COLORREF crTextColor The current TextColor value

Remarks
At design time, the TextColor attribute can be set from within the Dialog Editor,
Resource Workshop, or Visual Basic, or can be specified in the WindowText directly.

TextIndent Attribute
When set, the button's Text is displayed with a white highlight to the lower left of each
character, giving the text an indented appearance

Usage

C/C++
Window Style: HBS_TEXTINDENT

VBX
[form.][control.]TextIndent

Remarks
This property is read-only at run time.

TextJustify Attribute
Determines the justification of the button's Text if the text spans multiple lines.    Text can
be left, right or center (default) justified.

Usage

C/C++
Window Styles:
HBS_LJUST
HBS_RJUST

VBX
[form.][control.]TextJustify

Remarks
This property is read-only at run time.

Transparency Attribute
The button does not erase its background, allowing whatever is behind it to show through.

Usage

C/C++
Window Style: HBS_TRANSPARENT

VBX
[form.][control.]Transparent

Remarks
When combined with the NoButton attribute, only the Picture and Text will appear,
but the button will send Click and DblClick events for mouse clicks anywhere in its
client area.

HButt Events
Click DblClick

Click Event
Occurs whenever the user depresses a button using the mouse or space bar, or activates
the button using a mnemonic, or activates a default pushbutton with the ENTER or ESCAPE
keys.

Usage

C/C++
Notification code: HBN_CLICK

VBX
Sub ctlname_Click (Index As Integer)

Return Value
Not Used

DblClick Event
Occurs whenever the user double-clicks on a button using the mouse.

Usage

C/C++
Notification code: HBN_DBLCLICK

VBX
Sub ctlname_DblClick (Index As Integer)

Return Value
Not Used

      HButt Window Text
This sample window text string is expanded below to show the meaning of each
component:

441w;[DkBlue]OK;[0,255,0]OK1:OK2;Chimes

4 The TextAlign alignment code.
4 The PicAlign alignment code.
1 The RelAlign relative alignment code is only used if the Text alignment

and Picture alignment are the same.
w The DataType indicator is only used for CheckBox buttons.
[DkBlue] The Text color in which the Text will be drawn.
OK The Text that will appear on the button.
[0,255,0] The Mask color can be used to make portions of a bitmap transparent.
OK1:OK2 Picture resource names must be separated by colons.
Chimes Sound resource name or .WAV file name that will be played whenever

the button is pressed.
This is the result:

HComb, The WinWidgets ComboBox
      Attributes
      Methods
      Events
The HComb control is an aggregation of the HEdit and HList controls, providing a
combination of their attributes, methods and events.    Its purpose is to allow the user to
select a choice from a list or type in a selection that is not listed.    Common applications of
the control include user extendible lists and filtered lists, in which the edit control's text is
used to filter the list contents (e.g. the File Open dialog).    The HComb Type, DropDownList,
simply requires less screen space than a standard listbox.
A complete set of methods makes appending, inserting, deleting, selecting and retrieving
items from the list as easy as possible.
HComb supports tab-expanded display, and sorting by Data or Codes.    HComb has
standard and 3D border styles and the ability to highlight itself upon gaining focus, helping
users track their position on forms.

Additional Topics
      Hot-Linking the ComboBox to your data
      Using HComb with the Visual Basic Data Control
      Using Codes in the ComboBox

HComb Attributes
Background DataType NonIntHeight
BorderStyle DropHeight Overwrite
Changed EditData Quiet
Code EditMaxTextLen Selection
CodeClass EditScrollPos SortMode
CodeLink EditSelection TabStops
CodeSize EditText Text
CodeType EditTextLen TextColor
Count Font TextLen
Data Format TopIndex
DataClass HiliteBrush Type
DataLink HiliteOnFocus
DataSize Hunger

Background Attribute
The color or pattern used to paint the background of the edit control

Usage

C
hbrBkgnd = (HBRUSH)SendMessage(hWnd, HCM_GETBKGNDBRUSH, 0, 0L);
hbrOldBkgnd = (HBRUSH)SendMessage(hWnd, HCM_SETBKGNDBRUSH,
(WPARAM)hNewBrush, 0L);

C++
OWL
hbrBkgnd = [THCombObj.]GetBkgndBrush(void);
hbrOldBkgnd = [THCombObj.]SetBkgndBrush(hbrNewBrush);
MFC
pBkgnd = [CHCombObj.]GetBkgndBrush(void);
pOldBkgnd = [CHCombObj.]SetBkgndBrush(pNewBrush);

VBX
[form.][control.]BackColor[= color]
See Visual Basic Language Reference, "BackColor, ForeColor Properties"

Arguments/Parameters
HBRUSH hbrNewBrush Handle of a new brush to be set as the

background brush
CBrush pNewBrush Pointer to a CBrush object containing the new

background brush handle

Return values
HBRUSH hbrBkgnd Handle to the current background brush
HBRUSH hbrOldBkgnd Handle to the previous background brush
CBrush *pBkgnd Pointer to a CBrush object containing the current

background brush handle
CBrush *pOldBkgnd Pointer to a CBrush object containing the previous

background brush handle

Remarks
C and C++ applications are responsible for destroying any brush they create.

BorderStyle Attribute

Usage

C/C++
Window Styles:   
HCS_BORDER3D
HCS_INDENT
HCS_EXTRUDE

VBX
[form.][control.]BorderStyle[= None/Standard/Indented/Bump]

Remarks
BorderStyle can only be set at design time.

Changed Attribute
A Boolean value indicating if the Data has been changed since it was last set

Usage

C
bChanged = (BOOL)SendMessage(hWnd, HCM_HASCHANGED, 0, 0L);
SendMessage(hWnd, HCM_SETCHANGED, bVal, 0L);

C++
bChanged = [CHCombObj.]HasChanged();
[CHCombObj.]SetChanged(bVal);

VBX
Not Used

Arguments/Parameters
BOOL bVal The new value for the Changed attribute

Return Value
BOOL bChanged TRUE if the Data has been changed since it was

last set

See Also
Change event

Code Attribute
The native (binary) data maintained but not displayed by the control for each item in the
List.

Usage

C
bSuccess = SendMessage(hWnd, HCM_GETCODE, (WPARAM)iIndex,
(LPARAM)lpCode);
bSuccess = HCGetCode(hWnd, iIndex, lpCode);
bSuccess = SendMessage(hWnd, HCM_SETCODE, (WPARAM)iIndex,
(LPARAM)lpCode);
bSuccess = HCSetCode(hWnd, iIndex, lpCode);
Get the code of item for the current Selection
iResult = (int)SendMessage(hWnd, HCM_GETCURCODE, wSize, (LPARAM)lpBuf);

C++
bSuccess = [CHCombObj.]GetCode(iIndex, lpCode);
bSuccess = [CHCombObj.]SetCode(iIndex, lpCode);
Get the code of item for the current Selection
iResult = [CHCombObj.]GetCurCode(lpBuf [, wSize = -1]);

VBX
[form.][control.]Code(iIndex)[= stringexpression]
The Code attribute is a string array; iIndex is a required parameter

Arguments/Parameters
int iIndex The index of the item
void FAR *lpCode Pointer to a buffer for the code
WORD wSize Maximum number of bytes to copy (used only for

strings).

Return values
BOOL bSuccess TRUE if the operation is a success
int iBytesCopied Number of bytes copied.

Remarks
The code for an item cannot be set for a list that is sorted by codes.
Combo boxes with associated edit controls cannot have codes.

See Also
CodeClass, CodeLink, CodeSize, CodeType, Data

CodeClass Attribute
One of the data classes defined in the Data Engine chapter.

Usage

C
cCodeClass = (char)SendMessage(hWnd, HCM_GETCODECLASS, 0, 0L);

C++
cCodeClass = [CHCombObj.]GetCodeClass();

VBX
[form.][control.]CodeClass

Return values
char cCodeClass One of the data class character codes

Remarks
The CodeClass attribute can only be set at design time.    Control over this attribute is
provided by the control design dialogs in Dialog Editor and Resource Workshop, and
by the Properties dialog in Visual Basic.    When creating windows dynamically in C
and C++, the DataClass is included in the WindowText.

See Also
Code, CodeType

CodeLink Attribute
A pointer to the variable or buffer that will be updated with the new item's code when the
Selection changed

Usage

C
lpCodeLink = (void FAR *)SendMessage(hWnd, HCM_GETCODELINK, 0, 0L);
lBytesCopied = (LONG)SendMessage(hWnd, HCM_SETCODELINK, (WPARAM)bSelect,
(LPARAM)(LPVOID)lpNewLink);
HCSetCodeLink(hWnd, lpCode, bSelect);

C++
lpCodeLink = [CHCombObj.]GetCodeLink();
bSuccess = [CHCombObj.]SetCodeLink(lpNewLink [, bSelect = TRUE]);

VBX
Not Used

Arguments/Parameters
void FAR *lpNewLink Pointer to program data
BOOL bSelect If TRUE, selection will be set to match the

contents of lpNewLink

Return values
void FAR *lpCodeLink Pointer to the current CodeLink.    NULL if no

CodeLink has been set.
BOOL bSuccess TRUE if CodeLink was set successfully
LONG lBytesCopied Number of bytes copied.

See Also
Code

CodeSize Attribute
The size of each item's Code in bytes.

Usage

C
iCodeSize = SendMessage(hWnd, HCM_GETCODESIZE, (WPARAM)iIndex, 0L);

C++
iCodeSize = [CHCombObj.]GetCodeSize([iIndex = -1]);

VBX
Not Used

Arguments/Parameters
int iIndex The index of an item--only necessary with

character string CodeTypes.

Return values
int iCodeSize The size of the Code

Remarks
CodeSize may be variable only for NULL-terminated strings.

See Also
CodeType

CodeType Attribute
One of the data types defined in the DataEngine chapter.

Usage

C
cCodeType = (char)SendMessage(hWnd, HCM_GETCODETYPE, 0, 0L);

C++
cCodeType = [CHCombObj.]GetCodeType();

VBX
[form.][control.]CodeType

Return values
char cCodeType One of the data type character codes

See Also
Code, CodeClass, CodeSize

Count Attribute
The number of items in the List

Usage

C
iCount = SendMessage(hWnd, HCM_GETCOUNT, 0, 0L);

C++
iCount = [CHCombObj.]GetCount();

VBX
[form.][control.]Count

Return values
int iCount The current number of items in the list

Data Attribute
The native (binary) data maintained and displayed by the control for each item in the List.

Usage

C
bSuccess = SendMessage(hWnd, HCM_GETDATA, (WPARAM)iIndex,
(LPARAM)lpData);
bSuccess = HCGetData(hWnd, iIndex, lpData);
To get the data of the currently selected item:
iBytesCopied = (int)SendMessage(hWnd, HCM_GETCURDATA, wSize,
(LPARAM)lpBuf);

C++
bSuccess = [CHCombObj.]GetData(iIndex, lpData);
To get the data of the currently selected item:
iBytesCopied = [CHCombObj.]GetCurData(lpBuf [, wSize = -1]);

VBX
[form.][control.]Data(iIndex)
The Data attribute is a string array; iIndex is a required parameter

Arguments/Parameters
int iIndex The index of the item
void FAR *lpData Pointer to a buffer for the Data
WORD wSize Maximum number of bytes to copy (used only for

strings).

Return values
BOOL bSuccess TRUE if the operation is a success
int iBytesCopied Number of bytes copied.

See Also
Code, DataClass, DataLink, DataSize, DataType

DataClass Attribute
One of the data classes defined in the Data Engine chapter.

Usage

C
cDataClass = (char)SendMessage(hWnd, HCM_GETDATACLASS, 0, 0L);

C++
cDataClass = [CHCombObj.]GetDataClass();

VBX
[form.][control.]DataClass

Return values
char cDataClass One of the data class character codes

Remarks
The DataClass attribute can only be set at design time.    Control over this attribute is
provided by the control design dialogs in Dialog Editor and Resource Workshop, and
by the Properties dialog in Visual Basic.    When creating windows dynamically in C
and C++, the DataClass is included in the WindowText.

See Also
Data, DataType

DataLink Attribute
A pointer to the variable or buffer that will be updated with the new item's Data when the
Selection changed

Usage

C
lpDataLink = (void FAR *)SendMessage(hWnd, HCM_GETDATALINK, 0, 0L);
lBytesCopied = (LONG)SendMessage(hWnd, HCM_SETDATALINK, (WPARAM)bSelect,
(LPARAM)(LPVOID)lpNewLink);
HCSetDataLink(hWnd, lpData, bSelect);

C++
lpDataLink = [CHCombObj.]GetDataLink();
bSuccess = [CHCombObj.]SetDataLink(lpNewLink [, bSelect = TRUE]);

VBX
Not Used

Arguments/Parameters
void FAR *lpNewLink Pointer to program data
BOOL bSelect If TRUE, selection will be set to match the

contents of lpNewLink

Return values
void FAR *lpDataLink Pointer to the current DataLink.    NULL if no

DataLink has been set.
BOOL bSuccess TRUE if DataLink was set successfully

Remarks

See Also
Data

DataSize Attribute
The size of each item's Data in bytes.

Usage

C
iDataSize = SendMessage(hWnd, HCM_GETDATASIZE, (WPARAM)iIndex, 0L);

C++
iDataSize = [CHCombObj.]GetDataSize([iIndex = -1]);

VBX
Not Used

Arguments/Parameters
int iIndex The index of an item--only necessary with

character string DataTypes.

Return values
int iDataSize The size of the Data

Remarks
DataSize may be variable only for NULL-terminated strings.

See Also
DataType

DataType Attribute
One of the data types defined in the DataEngine chapter.

Usage

C
cDataType = (char)SendMessage(hWnd, HCM_GETDATATYPE, 0, 0L);

C++
cDataType = [CHCombObj.]GetDataType();

VBX
[form.][control.]DataType

Return values
char cDataType One of the data type character codes

See Also
Data, DataClass, DataSize

DropHeight Attribute
The height of the drop-down portion of a combobox.

Usage

C
iDropHeight = (int)SendMessage(hWnd, HCM_GETDROPHEIGHT, 0, 0L);
bSuccess = (BOOL)SendMessage(hWnd, HCM_SETDROPHEIGHT,
(WPARAM)iNewHeight, 0L);

C++
iDropHeight = [CHCombObj.]GetDropHeight();
bSuccess = [CHCombObj.]SetDropHeight(iNewHeight);

VBX
[form.][control.]DropHeight[= integer]

Arguments/Parameters
int iNewHeight The new DropHeight

Return values
int iDropHeight The current DropHeight value

EditData Attribute
The native (binary) data displayed by the control's edit box, of a type defined in the Data
Engine chapter of this manual.

Usage

C
lBytesCopied = SendMessage(hWnd, HCM_GETEDITDATA, (WPARAM)iMaxBytes,
(LPARAM)lpData);
lBytesCopied = SendMessage(hWnd, HCM_SETEDITDATA, 0, (LPARAM)lpData);

C++
int iBytesCopied = [CHCombObj.]GetEditData(lpData [, iMaxBytes = 0]);
int iBytesCopied = [CHCombObj.]SetEditData(lpData);

VBX
Not Used

Arguments/Parameters
void FAR *lpData Pointer to data
int iMaxBytes Maximum number of bytes to copy (used only for

strings)

Return values
LONG lBytesCopied Number of bytes actually copied to or from the

control

Remarks
Due to Visual Basic's flexible type handling, control data for VBX controls can be set
and retrieved via the EditText property.
Drop-down list boxes have no edit control associated with them and thus do not have
an EditData attribute

See Also
DataClassHComb_Attr_DataClass, DataLinkHComb_Attr_DataLink,
DataTypeHComb_Attr_DataType

EditMaxTextLen Attribute
The maximum number of characters that can be entered into the edit box of a control with
the HC_STRING DataClass

Usage

C
iMaxLen = (int)SendMessage(hWnd, HCM_GETEDITMAXTEXTLEN, 0, OL);
SendMessage(hWnd, HCM_SETEDITMAXTEXTLEN, (WPARAM)iLen, 0L);

C++
iMaxLen = [CHCombObj.]GetMaxTextLen();
[CHCombObj.]SetMaxTextLen(iLen);

VBX
[form.][control.]EditMaxText[= iLen]

Arguments/Parameters
int iLen New maximum length.    A value of -1 removes

the maximum text length

Return values
int iMaxLen The currently set maximum text length.

Remarks
The MaximumTextLength can only be set for the HC_STRING DataClass.    Maximum
lengths for other classes are determined by their Format strings.

EditScrollPos Attribute
The number of characters that have been scrolled out of the control's edit boxes client
area

Usage

C
iScrollPos = (int)SendMessage(hWnd, HCM_GETEDITSCROLLPOS, 0, 0L);
iScrollPos = SendMessage(hWnd, HCM_SETEDITSCROLLPOS, (WPARAM)iScroll,
(LPARAM)bRedraw);

C++
iScrollPos = [CHCombObj.]GetEditScrollPos();
iScrollPos = [CHCombObj.]SetEditScrollPos(iScroll [, bRedraw = TRUE]);

VBX
Not Used

Arguments/Parameters
int iScroll The number of characters to scroll off the left side

for left justified text and off the right side for right
justified text

BOOL bRedraw A value of TRUE causes the control to repaint
itself immediately

Return values
int iScrollPos The number of characters scrolled off the left side

for left justified text and off the right side for right
justified text

EditSelection Attribute
The text within the control's edit box that is currently selected

Usage

C
lSel = SendMessage(hWnd, HCM_GETEDITSEL, 0, 0L);
SendMessage(hWnd, HCM_SETEDITSEL, 0, (LPARAM)lNewSel);

C++
lSel = [CHCombObj.]GetEditSel();
[CHCombObj.]SetEditSel(lNewSel);

VBX
[form.][control.]EditSelLen[= length]
[form.][control.]EditSelStart [= index]
[form.][control.]EditSelText [= stringexpression]
See Visual Basic Language Reference, "SelLength, SelStart, SelText Properties"

Arguments/Parameters
LONG lNewSel Contains the starting position in the low-order

word and the character position of the first non-
selected character after the selection in the high-
order word

Return values
LONG lSel Contains the starting position in the low-order

word and the character position of the first non-
selected character after the selection in the high-
order word

Remarks
Visual Basic programmers can replace the EditSelection by assigning a new value to
the EditSelText property

EditText Attribute
A character string representing formatted EditData

Usage

C
lBytesCopied = SendMessage(hWnd, HCM_GETEDITTEXT, (WPARAM)iMaxBytes,
(LPARAM)lpBuf);

C++
lBytesCopied = [CHCombObj.]GetEditText(lpBuf [, iMaxBytes = -1]);

VBX
[form.][control.]Text

Arguments/Parameters
LPSTR lpBuf A buffer for the control Text
int iMaxBytes The maximum number of bytes to copy to lpBuf

Return values
LONG lBytesCopied The number of bytes actually copied to lpBuf

Remarks
Drop-down list comboboxes have no edit control associated with them and thus do
not have an EditText attribute

See Also
EditTextLength

EditTextLength Attribute
The length in characters of the editable Text in the combobox

Usage

C
iEditTextLen = SendMessage(hWnd, HCM_GETEDITTEXTLEN, 0, 0L);

C++
iEditTextLen = GetEditTextLen();

VBX
Len([control.]Text)

Return values
int iEditTextLen The current EditTextLength

See Also
EditMaxTextLen, EditText

Font Attribute
The font used by the control

Usage

C
hfFont = (HFONT)SendMessage(hWnd, HCM_GETFONT, 0, 0L);
hfOldFont = SendMessage(hWnd, HCM_SETFONT, (WPARAM)hfNewFont,
(LPARAM)bRedraw);

C++
OWL
hfFont = [THCombObj.]GetFont();
hfOldFont[THCombObj.]SetFont(hfNewFont [, bRedraw = TRUE]);
MFC
pFont = [CHCombObj.]GetFont();
pOldFont[CHCombObj.]SetFont(pNewFont [, bRedraw = TRUE]);

VBX
[form.][control.]FontBold[= boolean]
[form.][control.]FontItalic[= boolean]
[form.][control.]FontName[= font]
[form.][control.]FontSize[= points]
[form.][control.]FontStrikethru[= boolean]
[form.][control.]FontUnderline[= boolean]
See Visual Basic Language Reference, "FontName Property"

Arguments/Parameters
HFONT hfNewFont Handle of the font to be set
CFont *pFont Pointer to a CFont object containing the handle to

the font to be set
BOOL bRedraw A value of TRUE causes the control to repaint

immediately

Return values
HFONT hfFont Handle to the control's current font
HFONT hfOldFont Handle to the control's previous font
CFont *hfFont Pointer to a CFont object containing the handle to

the control's current font
CFont *fOldFont Pointer to a CFont object containing the handle to

the control's previous font

Remarks
C and C++ applications are responsible for destroying any fonts they create.

Format Attribute
A NULL-terminated character string that describes the way the Data is to be displayed

Usage

C
lBytesCopied = SendMessage(hWnd, HCM_GETFORMAT, (WPARAM)iMaxBytes,
(LPARAM)lpstrBuf);
lBytesCopied = SendMessage(hWnd, HCM_SETFORMAT, (WPARAM)bRedraw,
(LPARAM)lpstrBuf);

C++
lBytesCopied = [CHCombObj.]GetFormat(lpstrBuf [, iMaxBytes = -1]);
lBytesCopied = [CHCombObj.]SetFormat(lpstrBuf [, bRedraw = TRUE]);

VBX
[form.][control.]FormatString[= string]

Arguments/Parameters
LPSTR lpstrBuf Buffer that contains a new format string or will

receive the existing one
int iMaxBytes The maximum bytes to copy to the buffer.    A

value of -1 copies the entire format string.
BOOL bRedraw A value of TRUE causes the control to redraw

immediately.

Return values
LONG lBytesCopied The number of bytes actually copied to or from

the buffer

Remarks
An initial format string is contained in the WindowText when a control is created.

HiliteBrush Attribute
The color or pattern used to paint the background when the control receives focus

Usage

C
hbrHilite = SendMessage(hWnd, HCM_GETHILITEBRUSH, 0, 0L);
hbrOldHilite = SendMessage(hWnd, HCM_SETHILITEBRUSH,
(WPARAM)hbrNewHilite, 0L);

C++
OWL
hbrHilite = [THCombObj.]GetHiliteBrush();
hbrOldHilite = [THCombObj.]SetHiliteBrush(hbrNewHilite);
MFC
pHilite = [CHCombObj.]GetHiliteBrush();
pOldHilite = [CHCombObj.]SetHiliteBrush(pNewHilite);

VBX
[form.][control.]HiliteColor[= color]

Arguments/Parameters
HBRUSH hbrNewHilite Handle of the new brush
CBrush *pNewHilite Pointer to a CBrush object containing the handle

of the new brush

Return values
HBRUSH hbrHilite Handle of the control's current brush
HBRUSH hbrOldHilite Handle of the control's previous brush
CBrush *pHilite Pointer to a CBrush object containing the handle

of the current brush
CBrush *pOldHilite Pointer to a CBrush object containing the handle

of the previous brush

Remarks

HiliteOnFocus Attribute
When set, the HiliteBrush is used to paint the background when the control receives input
focus.    If no HiliteBrush is selected, the control uses a white brush.

Usage

C/C++
Window Style:    HCS_HILITE

VBX
[form.][control.]HiliteOnFocus

Remarks
HiliteOnFocus is read-only at run time

Hunger Attribute
When set, the control swallows Enter and Esc keyboard messages and notifies its parent.

Usage

C/C++
Window Style:    HCS_HUNGER

VBX   
[form.][control.]Hunger

Remarks
The Hunger attribute is obsolete and is included here for backward compatibility.    We
recommend that C and C++ programmers use a Filter Procedure or Dynamic
Subclassing, respectively, to implement this functionality. Hunger is read-only at run
time.

NonIntHeight Attribute
When set, the control can display a partial item at the bottom of the list.

Usage

C/C++
Window Style:    HCS_NONINTHEIGHT

VBX
[form.][control.]NonIntHeight

Remarks
NonIntHeight can only be set at design time

Overwrite Attribute
Determines whether text overwrites existing text    or is inserted as it is input into a control
of the HC_STRING DataClass.

Usage

C
bOverwrite = (BOOL)SendMessage(hWnd, HCM_GETOVERWRITEMODE, 0, 0L);
SendMessage(hWnd, HCM_SETOVERWRITEMODE, (WPARAM)bMode, 0L);

C++
bOverwrite = [CHCombObj.]GetOverwriteMode();
[CHCombObj.]SetOverwriteMode([bMode = TRUE]);

VBX
[form.][control.]OverwriteMode[= bMode]

Arguments/Parameters
BOOL bMode TRUE for overwrite, FALSE for insert

Return values
BOOL bOverwrite Current mode of the control, TRUE for overwrite,

FALSE for insert

Remarks
Overwrite mode is only used with the HC_STRING DataClass.    Other DataClasses
insert or overwrite characters based on the position of the caret in the editing
template.

Quiet Attribute
When the control is in Quiet mode, it does not send notification messages to its parent.   
VBX controls will not fire events in Quiet mode.

Usage

C
SendMessage(hWnd, HCM_BEQUIET, bValue, 0L);
bQuiet = (BOOL)SendMessage(hWnd, HCM_ISQUIET, 0, 0L);

C++
[CHCombObj.]BeQuiet(bValue);
bQuiet = [CHCombObj.]IsQuiet();

VBX
SendMessage(control.hWnd, HCM_BEQUIET, bValue, 0L)
bQuiet = SendMessage(control.hWnd, HCM_ISQUIET, 0, 0L)
See VBX Advanced Topics

Arguments/Parameters
BOOL bValue TRUE turns on Quiet mode, FALSE turns it off

Return Value
BOOL bQuiet TRUE if control is in Quiet Mode

Selection Attribute
The index of the currently selected item

Usage

C
iCurSel = (int)SendMessage(hWnd, HCM_GETCURSEL, 0, 0L);
iResult = (int)SendMessage(hWnd, HCM_SETCURSEL, (WPARAM)iIndex, 0L);

C++
iCurSel = [CHCombObj.]GetCurSel();
iResult = [CHCombObj.]SetCurSel(iIndex);
bSelected = [CHCombObj.]IsSelected(iIndex);

VBX
[form.][control.]Selection[= index]

Arguments/Parameters
int iIndex The index of the item to Select

Return values
int iCurSel The index of the current Selection
int iResult HLERR_NOTFOUND if Selection cannot be set.
BOOL bSelected TRUE if the item at iIndex is selected

See Also
Code, Data

SortMode Attribute
Determines how items in the control's list are to be sorted

Usage

C/C++
Window Styles:   
HCS_SORTBYDATA
HCS_SORTBYCODE

VBX
[form.][control.]SortMode[= None/ByData/ByCodes]

Remarks
Sort can only be set at design time.

TabStops Attribute
An array of integer tabstops representing spacing in characters

Usage

C
Window Style:    HCS_USETABS
bSuccess = (BOOL)SendMessage(hWnd, HCM_SETTABSTOPS, (WPARAM)iNumber,
(LPARAM)lpTabs);

C++
Window Style:    HCS_USETABS
bSuccess = [CHCombObj.]SetTabStops(iNumber, lpTabs);

VBX
Not Used

Arguments/Parameters
int iNumber The number of tab stops to set
int far *lpTabs An array of integer TabStops in dialog units

Return values
BOOL bSuccess TRUE if TabStops were set correctly

Remarks
If iNumber is zero and lParam is NULL, the default tab stop is eight dialog units.
If iNumber is 1, the TabStops are spaced evenly based on the first value pointed to by
the lParam.
To set and display tabs, the HCS_USETABS style or UseTabs property must be set at
design time.

Text Attribute
A character string representing the formatted data for each item

Usage

C
lBytesCopied = SendMessage(hWnd, HCM_GETTEXT, iIndex, lpBuf);

C++
lBytesCopied = [CHCombObj.]GetText(lpBuf, iIndex);

VBX
[form.][control.]Text

Arguments/Parameters
int iIndex The index of an item in the List
LPSTR lpBuf A buffer for the Text

Return values
lBytesCopied The actual number of bytes copied to lpBuf

See Also
TextColor, TextLen

TextColor Attribute
The    color used when painting the Text

Usage

C
crTextColor = (COLORREF)SendMessage(hWnd, HCM_GETTEXTCOLOR, bNegative,
0L);
SendMessage(hWnd, HCM_SETTEXTCOLOR, bNegative, crNewColor);

C++
crTextColor = [CHCombObj.]GetTextColor([bNegative = FALSE]);
[CHCombObj.]SetTextColor(crNewColor [, bNegative = FALSE]);

VBX
[form.][control.]TextColor[= color]
[form.][control.]TextColor_Neg[= color]

Arguments/Parameters
BOOL bNegative If TRUE, the TextColor for negative numbers is

gotten or set.
COLORREF crNewColor The new TextColor

Return values
COLORREF crTextColor The current TextColor

Remarks
The TextColor for can be set at design time or as part of the WindowText

See Also
Text, Format

TextLen Attribute
The length of the Text in characters

Usage

C
iTextLen = SendMessage(hWnd, HCM_GETTEXTLEN, (WPARAM)iIndex, 0L);

C++
iTextLen = [CHCombObj.]GetTextLen(iIndex);

VBX
Len([control.]Text)

Arguments/Parameters
int iIndex The index of an item in the List

Return values
int iTextLen The TextLength for item iIndex

See Also
Text

TopIndex Attribute
The index of the item displayed at the top of the List

Usage

C
iTop = (int)SendMessage(hWnd, HCM_GETTOPINDEX, 0, 0L);
iTop = (int)SendMessage(hWnd, HCM_SETTOPINDEX, (WPARAM)iIndex, 0L);

C++
iTop = [CHCombObj.]GetTopIndex();
iTop = [CHCombObj.]SetTopIndex(iIndex);

VBX
[form.][control.]TopIndex[= index]

Arguments/Parameters
int iIndex The index of the new top item

Return values
int iTop The index of the top item

Type Attribute
The type of combobox.    The Simple ComboBox is an edit control above a listbox.    A
DropDown ComboBox is an edit control with an arrow button that pops up a listbox when
pressed.    A DropList ComboBox is a single-line listbox with an arrow button that pops up a
multi-line listbox when pressed.

Usage

C/C++
Window Styles:   
HCS_HASEDIT
HCS_DROPDOWN

VBX
[form.][control.]Type[= Simple/DropList/DropDown]

Remarks
Type can only be set at design time

HComb Methods
Add Insert SelectString
Delete Reset
FindCode Retrieve
FindData SelectCode
FindString SelectData

Add Method
Adds an item or items to a List.    If the list is unsorted, addition occurs at the end of the
list.

Usage

C
Add a single item
iNewIndex = HCAddItem(hWnd, lpData);
Add a single item with code
iNewIndex = HCAddItemEx(hWnd, lpData, lpCode);
Add multiple items
iNumber = HCAddItems(hWnd, iCount, lpData);
Add multiple items with codes
iNumber = HCAddItemsEx(hWnd, iCount, lpData, lpCode);

C++
Add a single item
iNewIndex = [CHCombObj.]AddItem(lpData);
Add a single item with code
iNewIndex = [CHCombObj.]AddItemEx(lpData, lpCode);
Add multiple items
iNumber = [CHCombObj.]AddItems(iCount, lpData);
Add multiple items with codes
iNumber = [CHCombObj.]AddItemsEx(iCount, lpData, lpCode);

VBX
Add a single item
[form.][control.]AddItem strData
Add a single item with code
iNewIndex = VCAddItemEx(control.hWnd, strData, strCode)

Arguments/Parameters
int iCount The number of items to add
void FAR *lpData A pointer to the Data item (single) or array

(multiple)

strData A string representing the Data to add
void FAR *lpCode A pointer to the Code item (single) or array

(multiple)
strCode A string representing the Code to add

Return values
int iNewIndex The index at which an item was added or an error

code
int iNumber The number of items successfully added or an

error code

See Also
Insert

Delete Method
Deletes an item or items from the List

Usage

C
Delete a single item
bSuccess = (BOOL)SendMessage(hWnd, HCM_DELETEITEM, (WPARAM)iIndex, 0L);
Delete multiple items
iNumber = HCDeleteItems(hWnd, wSearchCat, iCount, lpSearchInfo);

C++
Delete a single item
bSuccess = [CHCombObj.]DeleteItem(iIndex);
Delete multiple items
iNumber = [CHCombObj.]DeleteItems(wSearchCat, iCount, lpSearchInfo);

VBX
[form.][control.]RemoveItem iIndex

Arguments/Parameters
int iIndex The index of an item in the List
WORD wSearchCat A search category
int iCount The number of items to find and delete
void far *lpSearchInfo A pointer to an array of Data items, Codes, or

Indices depending on the value of wSearchCat

Return values
BOOL bSuccess TRUE if the item was deleted successfully
int iNumber The number of items successfully deleted

See Also
Add, Insert

FindCode Method
Gets the index of an item given its code

Usage

C
iIndex = (int)SendMessage(hWnd, HCM_FINDCODE, (WPARAM)iStart,
(LPARAM)lpCode);

C++
iIndex = [CHCombObj.]FindCode(iStart, lpCode);

VBX
iIndex = VCFindCode(control.hWnd, iStart, strCode)

Arguments/Parameters
int iStart The index at which to begin searching
void FAR *lpCode A pointer to the Code to search for
strCode A string representing the Code to search for

Return values
int iIndex The index of the item or HCERR_NOTFOUND if no

match was found

See Also
FindData, FindString

FindData Method
Gets the index of an item given its Data

Usage

C
iIndex = (int)SendMessage(hWnd, HCM_FINDDATA, (WPARAM)iStart,
(LPARAM)lpData);

C++
iIndex = [CHCombObj.]FindData(iStart, lpData);

VBX
iIndex = VCFindData (control.hWnd, iStart, strData)

Arguments/Parameters
int iStart The index at which to begin searching
void FAR *lpData A pointer to the Data to search for
strData A string representing the Data to search for

Return values
int iIndex The index of the item or HCERR_NOTFOUND if no

match was found

See Also
FindCode, FindString

FindString Method
Returns the index of an item given some or all of its Text.    FindString is not case-sensitive.

Usage

C
iIndex = (int)SendMessage(hWnd, HCM_FINDSTRING, (WPARAM)iStart,
(LPARAM)lpText);

C++
iIndex = [CHCombObj.]FindString(iStart, lpText);

VBX
iIndex = VCFindString (control.hWnd, iStart, strText)

Arguments/Parameters
int iStart The index at which to begin searching
void FAR *lpText A pointer to the Text to search for
strText A string representing the Text to search for

Return values
int iIndex The index of the item or HCERR_NOTFOUND if no

match was found

Remarks
FindString will attempt to find the closest match when passed a partial string.

See Also
FindCode, FindData

Insert Method
Inserts an item or items into an unsorted List

Usage

C
Insert a single item
iNewIndex = HCInsertItem(hWnd, iPos, lpData);
Insert a single item with code
iNewIndex = HCInsertItemEx(hWnd, iPos, lpData, lpCode);
Insert multiple items
iNumber = HCInsertItems(hWnd, iPos, iCount, lpData);
Insert multiple items with codes
iNumber = HCInsertItemsEx(hWnd, iPos, iCount, lpData, lpCode);

C++
Insert a single item
iNewIndex = [CHCombObj.]InsertItem(iPos, lpData);
Insert a single item with code
iNewIndex = [CHCombObj.]InsertItemEx(iPos, lpData, lpCode);
Insert multiple items
iNumber = [CHCombObj.]InsertItems(iPos, iCount, lpData);
Insert multiple items with codes
iNumber = [CHCombObj.]InsertItemsEx(iPos, iCount, lpData, lpCode);

VBX
Insert a single item
[form.][control.]AddItem strData, iPos
Insert a single item with code
iNewIndex = VCInsertItemEx(control.hWnd, iPos, strData, strCode)

Arguments/Parameters
int iPos The index at which to insert
int iCount The number of items to insert
void FAR *lpData A pointer to the Data item (single) or array

(multiple)
strData A string representing the Data to insert
void FAR *lpCode A pointer to the Code item (single) or array

(multiple)
strCode A string representing the Code to insert

Return values
int iNewIndex The index at which an item was inserted or an

error code
int iNumber The number of items successfully inserted or an

error code

See Also
Add

Reset Method
Removes all items from the List

Usage

C
SendMessage(hWnd, HCM_RESETCONTENT, 0, 0L);
bSuccess = HCEmptyList(hWnd);

C++
bSuccess = [CHCombObj.]EmptyList();

VBX
[form.][control.]Clear

Return values
BOOL bSuccess TRUE if the List was emptied successfully

Retrieve Method
Gets the Data items, Codes, or indices based on a search criterion

Usage

C
iNumber = HCGetItems(hWnd, iCount, wReturnCat, lpReturnInfo, wSearchCat,
lpSearchInfo)

C++
iNumber = [CHCombObj.]GetItems(iCount, wReturnCat, lpReturnInfo,
wSearchCat, lpSearchInfo)

VBX
Not Used

Arguments/Parameters
int iCount The maximum number of items to find and return
WORD wReturnCat A return category
void FAR *lpReturnInfo A pointer to an array of Data items, Codes or

Indices, depending on the wReturnCategory to
receive the returned data.

WORD wSearchCat A search category
void FAR *lpSearchInfo A pointer to an array of Data items, Codes or

Indices, depending on the wSearchCategory.

Return values
int iNumber The actual number of items returned

See Also
Selection

SelectCode Method
Selects an item based on its Code and performs an action

Usage

C
bSuccess = SendMessage(hWnd, HCM_SELECTCODE, wAction, (LPARAM)lpCode);
HCSelectCode(wAction, lpCode);

C++
bSuccess = [CHCombObj.]SelectCode(lpCode, wAction);

VBX
[form.][control.]SelectedCode[= strCode]

Arguments/Parameters
WORD wAction An action code
void FAR *lpCode A pointer to the Code to match
strCode A string representing the Code to match

Return Value
BOOL bSuccess TRUE if selection is successful

See Also
Selection, SelectData, SelectString

SelectData Method
Selects an item based on its Data and performs an action

Usage

C
bSuccess = SendMessage(hWnd, HCM_SELECTDATA, wAction, (LPARAM)lpData);
HCSelectData(wAction, lpData);

C++
bSuccess = [CHCombObj.]SelectData(lpData, wAction);

VBX
[form.][control.]SelectedData[= strData]

Arguments/Parameters
WORD wAction An action code
void FAR *lpData A pointer to the Data to match
strData A string representing the Data to match

Return Value
BOOL bSuccess TRUE if selection is successful

See Also
SelectCode, Selection, SelectString

SelectString Method
Selects an item based on some or all of its Text

Usage

C
bSuccess = SendMessage(hWnd, HCM_SELECTSTRING, (WPARAM)iStart,
(LPARAM)lpText);

C++
bSuccess = [CHCombObj.]SelectString(iStart, lpText);

VBX
bSuccess = VCSelectString(control.hWnd, iStart, lpText);

Arguments/Parameters
int iStart The index at which to start searching
LPSTR lpText Complete or partial Text of the item to select

Return Value
BOOL bSuccess TRUE if selection is successful

See Also
SelectCode, SelectData, Selection

HComb Events
DoubleClick SelectChange SpaceError
KillFocus SetFocus

DoubleClick Event
Occurs whenever the user has double-clicks on an item using the mouse

Usage

C/C++
Notification code: HCN_DBLCLICK

VBX
Sub ctlname_DblClick

Return Value
Not Used

KillFocus Event
Occurs whenever the control loses input focus

Usage

C/C++
Notification code: HCN_KILLFOCUS

VBX
Sub ctlname_KillFocus

Return Value
Not Used

SelectChange Event
Occurs whenever the Selection has changed

Usage

C/C++
Notification code: HCN_SELCHANGE

VBX
Sub ctlname_Change

Return Value
Not Used

SetFocus Event
Occurs whenever the control gains input focus

Usage

C/C++
Notification code: HCN_SETFOCUS

VBX
Sub ctlname_SetFocus

Return Value
Not Used

SpaceError Event
The control is unable to perform an operation because of memory constraints

Usage

C/C++
Notification code: HCN_ERRSPACE

VBX
Sub ctlname_ErrSpace

Return Value
Not Used

      HComb Window Text
This sample window text string is expanded below to show the meaning of each
component:

%132%ms%ni###-####

% Required placeholder.
132 The DropHeight in pixels.
% Required placeholder.
ms The DataClass and DataType indicators -- in this case, HC_MASK and

HT_STRING.
% Optional placeholder.    Use if the list contains Codes.
ni The CodeClass and CodeType indicators -- in this case, HC_NUMBER and

HT_INTEGER.    Optional.    Use if the list contains Codes
###-#### The Format string -- in this case, a seven-digit telephone number.

HEdit, The WinWidgets Edit Control
      Attributes
      Methods
      Events
HEdit is a two-mode edit control, designed to display, edit and validate all of the data
types supported by the DataEngine.    Upon receiving focus, the control enters Edit mode.   
Edit mode employs standard display formats derived from the Windows International
Settings, and provides smart templates for editing.    Upon losing focus, the control parses
its Text to update its Data and switches to Display mode.      Display mode is non-
interactive and provides extensive formatting options for dates, times and numbers.    The
user may also toggle between Edit and Display modes with the preview key, F2.
To send or retrieve data from the HEdit control, use the Data or Text property.    The control
can be Hot-Linked to a variable within your program, allowing the control to update the
variable automatically whenever it parses its Text.
HEdit has standard and 3D border styles and the ability to highlight itself upon gaining
focus, helping users track their position on forms.    The keyboard interface is identical to
the standard Windows edit control, supporting both the new commands (Ctl-X, Ctl-C, Ctl-V
and Ctl-Z) and old commands (Shift-Del, Ctl-Ins, Shift-Ins and Ctl-Del) for cut, copy, paste
and clear.    HEdit also provides an overwrite mode for String data types that can be
toggled on and off with the Insert key.

Additional Topics
      Hot-Linking HEdit to your data
      Data-Awareness in VB 3.0
      Data Validation

Data Validation with HEdit
The HEdit control provides the ability to validate user input using a validation callback
procedure.    The control will call this procedure with the new Data it has parsed from its
Text.    An application may modify the data to restrict it to a particular range, or provide the
user with a warning message or beep.    By returning TRUE from the procedure, the
application may force the focus to return to the HEdit control, though this is not a
recommended application design.
A validation procedure should be declared as follows:
BOOL FAR PASCAL __export MyProc(HWND hwnd, UINT id, LPVOID lpData);
When the procedure is called, hwnd contains the handle of the HEdit control, id is the
control's ID and lpData is a pointer to the parsed Data, of the DataClass and DataType that
were specified for the control.    The procedure should return FALSE unless the control is to
retain the input focus.
For more information about installing a validation procedure see the ValidateProc attribute. 
To force the control to validate, use the Validate method.

HEdit Attributes
AutoHScroll DisplayAlign Password
Background EditAlign PasswordChar
BorderStyle Font Quiet
Case Format ScrollPos
Changed HiliteBrush Selection
Data HiliteOnFocus State
DataClass Hunger Text
DataLink MaxTextLen TextColor
DataSize NoHideSel TextLength
DataType OverwriteMode ValidateProc

AutoHScroll Attribute
When set, the Text automatically scrolls horizontally when the caret nears either end of the
window.

Usage

C/C++
Window Style:    HES_AUTOHSCROLL

VBX
[form.][control.]AutoHScroll

Background Attribute
The color or pattern used to paint the background of the edit control

Usage

C
hbrBkgnd = (HBRUSH)SendMessage(hWnd, HEM_GETBKGNDBRUSH, 0, 0L);
hbrOldBkgnd = (HBRUSH)SendMessage(hWnd, HEM_SETBKGNDBRUSH,
(WPARAM)hNewBrush, 0L);

C++
OWL
hbrBkgnd = [THEditObj.]GetBkgndBrush(void);
hbrOldBkgnd = [THEditObj.]SetBkgndBrush(hbrNewBrush);
MFC
pBkgnd = [CHEditObj.]GetBkgndBrush(void);
pOldBkgnd = [CHEditObj.]SetBkgndBrush(pNewBrush);

VBX
[form.][control.]BackColor[= color]
See Visual Basic Language Reference, "BackColor, ForeColor Properties"

Arguments/Parameters
HBRUSH hbrNewBrush Handle of a new brush to be set as the

background brush
CBrush pNewBrush Pointer to a CBrush object containing the new

background brush handle

Return values
HBRUSH hbrBkgnd Handle to the current background brush
HBRUSH hbrOldBkgnd Handle to the previous background brush
CBrush *pBkgnd Pointer to a CBrush object containing the current

background brush handle
CBrush *pOldBkgnd Pointer to a CBrush object containing the previous

background brush handle

Remarks
C and C++ applications are responsible for destroying any brushes they create.

BorderStyle Attribute
HEdit supports four different border styles: none, standard, indented and bump.

Usage

C/C++
Window Styles:   
HES_BORDER3D
HES_EXTRUDE

VBX
[form.][control.]BorderStyle[= None/Standard/Indented/Bump]

Remarks
The BorderStyle attribute is read-only at run time.

Case Attribute
When set, Text can be converted to all upper-case or all lower-case.

Usage

C/C++
Window Styles:   
HES_LOWERCASE
HES_UPPERCASE

VBX
[form.][control.]Case

Remarks
The Case attribute is read-only at run time.

Changed Attribute
A Boolean value indicating if the Data has been changed since it was last set

Usage

C
bChanged = (BOOL)SendMessage(hWnd, HEM_HASCHANGED, 0, 0L);
SendMessage(hWnd, HEM_SETCHANGED, bVal, 0L);

C++
bChanged = [CHEditObj.]HasChanged();
[CHEditObj.]SetChanged(bVal);

VBX
Not Used

Arguments/Parameters
BOOL bVal The new value for the Changed attribute

Return Value
BOOL bChanged TRUE if the Data has been changed since it was

last set

See Also
Change event

Data Attribute
The native (binary) data displayed by the control, of a type defined in the Data Engine
chapter of this manual

Usage

C
lBytesCopied = SendMessage(hWnd, HEM_GETDATA, (WPARAM)iMaxBytes,
(LPARAM)lpData);
lBytesCopied = SendMessage(hWnd, HEM_SETDATA, 0, (LPARAM)lpData);

C++
LONG lBytesCopied = [CHEditObj.]GetData(lpData [, iMaxBytes = 0]);
LONG lBytesCopied = [CHEditObj.]SetData(lpData);

VBX
[form.][control.]Data [= string]

Arguments/Parameters
void FAR *lpData Pointer to data
int iMaxBytes Maximum number of bytes to copy (used only for

strings)

Return values
LONG lBytesCopied Number of bytes actually copied to or from the

control

Remarks
In Visual Basic, both the Data and Text properties are strings.    The Data property is
generally in a 'bare' format, while the Text property is formatted according to the
Format string.    For instance, a date control may have a Data property of "12/15/93"
and a Text property of "Dec 15, 1993."    This difference also applies to the Mask,
Currency and Number DataClasses.    For Masks, the Data property strips literals.

See Also
DataClassHEdit_Attr_DataClass, DataLinkHEdit_Attr_DataLink,
DataTypeHEdit_Attr_DataType, Text

DataClass Attribute
One of the data classes defined in the Data Engine chapter.

Usage

C
cDataClass = (char)SendMessage(hWnd, HEM_GETDATACLASS, 0, 0L);

C++
cDataClass = [CHEditObj.]GetDataClass();

VBX
[form.][control.]DataClass

Return values
char cDataClass One of the data class character codes

Remarks
The DataClass attribute is read-only at run time.    Control over this attribute is
provided by the control design dialogs in Dialog Editor and Resource Workshop, and
by the Properties dialog in Visual Basic.    When creating windows dynamically in C
and C++, the DataClass is included in the WindowText.

See Also
Data, DataType, Text

DataLink Attribute
A pointer to the variable or buffer that will be updated when the Data is changed

Usage

C
lpLink = (void FAR *)SendMessage(hWnd, HEM_GETDATALINK, 0, 0L);
lBytesCopied = (LONG)SendMessage(hWnd, HEM_SETDATALINK,
(WPARAM)bSetData, (LPARAM)(LPVOID) lpBuf);

C++
lpLink = [CHEditObj.]GetDataLink();
lBytesCopied = [CHEditObj.]SetDataLink(lpBuf[, bSetData = TRUE]);

VBX
Not Used

Arguments/Parameters
void FAR *lpBuf Pointer to program data
BOOL bSetData If TRUE, the control initializes the Data to the

contents of lpBuf.    If FALSE lpBuf is updated to
the current Data.

Return values
void FAR *lpLink Pointer to the current data link.    NULL if no

DataLink has been set.
LONG lBytesCopied Contains the number of bytes copied from lpBuf

Remarks
Data in the edit control will be set to the contents of lpBuf.

See Also
Data, Data Types, Update

DataSize Attribute
The size of the Data in bytes

Usage

C
iSize = (int)SendMessage(hWnd, HEM_GETDATASIZE, 0, 0L);

C++
iSize = [CHEditObj.]GetDataSize();

VBX
[form.][control.]DataSize

Return values
int iSize The size of the data in bytes.

Remarks
The DataSize property in Visual Basic is read-only and run-time-only.

DataType Attribute
One of the data types defined in the DataEngine chapter.

Usage

C
cDataType = (char)SendMessage(hWnd, HEM_GETDATATYPE, 0, 0L);

C++
cDataType = [CHEditObj.]GetDataType();

VBX
[form.][control.]DataType

Return values
char cDataType One of the data type character codes

Remarks
The DataType attribute is read-only at run time.    Control over this attribute is
provided by the control design dialogs in Dialog Editor and Resource Workshop, and
by the Properties dialog in Visual Basic.    When creating windows dynamically in C
and C++, the DataType is included in the WindowText.

See Also
Data, DataClass

Display-Mode Alignment Attribute
The justification of the Text in display mode

Usage

C/C++
Window Styles:   
HES_DISPLAYLEFT
HES_DISPLAYCENTER
HES_DISPLAYRIGHT

VBX
[form.][control.]AlignDisplay

Remarks
The Display-Mode Alignment attribute is read-only at run time.

See Also
Edit-Mode Alignment

Edit-Mode Alignment Attribute
The justification of the Text in display mode

Usage

C/C++
Window Styles:   
HES_EDITLEFT
HES_EDITRIGHT

VBX
[form.][control.]AlignEdit

Remarks
The Edit-Mode Alignment attribute is read-only at run time.

See Also
Display-Mode Alignment

Font Attribute
The font used by the control

Usage

C
hfFont = (HFONT)SendMessage(hWnd, HEM_GETFONT, 0, 0L);
hfOldFont = SendMessage(hWnd, HEM_SETFONT, (WPARAM)hfNewFont,
(LPARAM)bRedraw);

C++
OWL
hfFont = [THEditObj.]GetFont();
hfOldFont[THEditObj.]SetFont(hfNewFont [, bRedraw = TRUE]);
MFC
pFont = [CHEditObj.]GetFont();
pOldFont[CHEditObj.]SetFont(pNewFont [, bRedraw = TRUE]);

VBX
[form.][control.]FontBold[= Boolean]
[form.][control.]FontItalic[= Boolean]
[form.][control.]FontName[= font]
[form.][control.]FontSize[= points]
[form.][control.]FontStrikethru[= Boolean]
[form.][control.]FontUnderline[= Boolean]
See Visual Basic Language Reference, "FontName Property"

Arguments/Parameters
HFONT hfNewFont Handle of the font to be set
CFont *pFont Pointer to a CFont object containing the handle to

the font to be set

BOOL bRedraw A value of TRUE causes the control to repaint
immediately

Return values
HFONT hfFont Handle to the control's current font
HFONT hfOldFont Handle to the control's previous font
CFont *hfFont Pointer to a CFont object containing the handle to

the control's current font
CFont *fOldFont Pointer to a CFont object containing the handle to

the control's previous font

Remarks
C and C++ applications are responsible for destroying any fonts they create.

Format Attribute
A NULL-terminated character string that describes the way the Data is to be displayed

Usage

C
lBytesCopied = SendMessage(hWnd, HEM_GETFORMAT, (WPARAM)iMaxBytes,
(LPARAM)lpstrBuf);
lBytesCopied = SendMessage(hWnd, HEM_GETFORMAT, (WPARAM)bRedraw,
(LPARAM)lpstrBuf);

C++
lBytesCopied = [CHEditObj.]GetFormat(lpstrBuf [, iMaxBytes = -1]);
lBytesCopied = [CHEditObj.]SetFormat(lpstrBuf [, bRedraw = TRUE]);

VBX
[form.][control.]Format[= string]

Arguments/Parameters
LPSTR lpstrBuf Buffer that contains a new format string or will

receive the existing one
int iMaxBytes The maximum bytes to copy to the buffer.    A

value of -1 copies the entire format string.
BOOL bRedraw A value of TRUE causes the control to redraw

immediately.

Return values
LONG lBytesCopied The number of bytes actually copied to or from

the buffer

Remarks
An initial format string is contained in the WindowText when a control is created.

See Also
Text

HiliteOnFocus Attribute
When set, the HiliteBrush is used to paint the background when the control receives input
focus.    If no HiliteBrush is selected, the control uses a white brush.

Usage

C/C++
Window Style:    HES_HILITE

VBX
[form.][control.]HiliteOnFocus

Remarks
The HiliteOnFocus attribute is read-only at run time.

HiliteBrush Attribute
The color or pattern used to paint the background when the control receives focus and the
HiliteOnFocus property is TRUE

Usage

C
hbrHilite = SendMessage(hWnd, HEM_GETHILITEBRUSH, 0, 0L);
hbrOldHilite = SendMessage(hWnd, HEM_SETHILITEBRUSH,
(WPARAM)hbrNewHilite, 0L);

C++
OWL
hbrHilite = [THEditObj.]GetHiliteBrush();
hbrOldHilite = [THEditObj.]SetHiliteBrush(hbrNewHilite);
MFC
pHilite = [CHEditObj.]GetHiliteBrush();
pOldHilite = [CHEditObj.]SetHiliteBrush(pNewHilite);

VBX
[form.][control.]HiliteColor[= color]

Arguments/Parameters
HBRUSH hbrNewHilite Handle of the new brush
CBrush *pNewHilite Pointer to a CBrush object containing the handle

of the new brush

Return values
HBRUSH hbrHilite Handle of the control's current brush
HBRUSH hbrOldHilite Handle of the control's previous brush
CBrush *pHilite Pointer to a CBrush object containing the handle

of the current brush
CBrush *pOldHilite Pointer to a CBrush object containing the handle

of the previous brush

Remarks
C and C++ applications are responsible for destroying any brushes they create.

Hunger Attribute
When set, the control swallows Enter and Esc keyboard messages and notifies its parent.

Usage

C/C++
Window Style:    HES_HUNGER

VBX   
[form.][control.]Hunger

Remarks
The Hunger attribute is obsolete and is included here for backward compatibility.    We
recommend that C and C++ programmers use a Filter Procedure or Dynamic
Subclassing, respectively, to implement this functionality. Hunger is read-only at run
time.

MaxTextLen Attribute
The maximum number of characters that can be entered into the edit box with the
HC_STRING DataClass

Usage

C
iMaxLen = (int)SendMessage(hWnd, HEM_GETMAXTEXTLEN, 0, OL);
SendMessage(hWnd, HEM_SETMAXTEXTLEN, (WPARAM)iLen, 0L);

C++
iMaxLen = [CHEditObj.]GetMaxTextLen();
[CHEditObj.]SetMaxTextLen(iLen);

VBX
[form.][control.]MaxTextLen[= iLen]

Arguments/Parameters
int iLen New maximum length.    A value of -1 removes

the maximum text length

Return values
int iMaxLen The currently set maximum text length.

Remarks
The MaxTextLen can only be set for the HC_STRING DataClass.    Maximum lengths for
other classes are determined by their Format strings.

NoHideSel Attribute
When set, the control hides the Selection on losing input focus and redisplays the previous
Selection on regaining focus.

Usage

C/C++
Window Style:    HES_NOHIDESEL

VBX
[form.][control.]NoHideSel

Remarks
NoHideSel is read-only at run time.

OverwriteMode Attribute
Determines whether text overwrites existing text or is inserted as it is input into a control
of the HC_STRING DataClass.

Usage

C
bOverwrite = (BOOL)SendMessage(hWnd, HEM_GETOVERWRITEMODE, 0, 0L);
SendMessage(hWnd, HEM_SETOVERWRITEMODE, (WPARAM)bMode, 0L);

C++
bOverwrite = [CHEditObj.]GetOverwriteMode();
[CHEditObj.]SetOverwriteMode([bMode = TRUE]);

VBX
[form.][control.]OverwriteMode[= bMode]

Arguments/Parameters
BOOL bMode TRUE for overwrite, FALSE for insert

Return values
BOOL bOverwrite Current mode of the control, TRUE for overwrite,

FALSE for insert

Remarks
Overwrite mode is only used with the HC_STRING DataClass.    Other DataClasses
insert or overwrite characters based on the position of the caret in the editing
template.

Password Attribute
When set, all characters input are displayed as the character specified by the
PasswordChar attribute.

Usage

C/C++
Window Style:    HES_PASSWORD

VBX
[form.][control.]Password

Remarks
Password is read-only at run time.

PasswordChar Attribute
A character which will appear in the control's display when any character is input if the
control's Password attribute is also set.

Usage

C
cPwdChar = (char)SendMessage(hWnd, HEM_GETPASSWORDCHAR, 0, 0L);
SendMessage(hWnd, HEM_SETPASSWORDCHAR, (WPARAM)cChar, 0L);

C++
cPwdChar = [CHEditObj.]GetPasswordChar();
[CHEditObj.]SetPasswordChar(cChar);

VBX
[form.][control.]PasswordChar[= cChar]

Arguments/Parameters
char cChar The character that appear in the display

Return values
char cPwdChar The currently set PasswordChar

Quiet Attribute
When the control is in Quiet mode, it does not send notification messages to its parent.   
VBX controls will not fire events in Quiet mode.

Usage

C
bIsQuiet = SendMessage(hWnd, HEM_ISQUIET, 0, 0L);
SendMessage(hWnd, HEM_BEQUIET, bValue, 0L);

C++
bIsQuiet = [CHEditObj.]IsQuiet
[CHEditObj.]BeQuiet(bValue);

VBX
bIsQuiet = SendMessage(control.hWnd, HEM_ISQUIET, 0, 0L);
SendMessage(control.hWnd, HEM_BEQUIET, bValue, 0L)
See VBX Advanced Topics

Arguments/Parameters
BOOL bValue TRUE turns on Quiet mode, FALSE turns it off

Return values
BOOL bIsQuiet TRUE if the control is in Quiet mode

ScrollPos Attribute
The number of characters that have been scrolled out of the control's client area

Usage

C
iScrollPos = (int)SendMessage(hWnd, HEM_GETSCROLLPOS, 0, 0L);
iScrollPos = SendMessage(hWnd, HEM_SETSCROLLPOS, (WPARAM)iScroll,
(LPARAM)bRedraw);

C++
iScrollPos = [CHEditObj.]GetScrollPos();
iScrollPos = [CHEditObj.]SetScrollPos(iScroll [, bRedraw = TRUE]);

VBX
[form.][control.]ScrollPos[= iScroll]

Arguments/Parameters
int iScroll The number of characters to scroll off the left side

for left justified text and off the right side for right
justified text

BOOL bRedraw A value of TRUE causes the control to repaint
itself immediately

Return values
int iScrollPos The number of characters scrolled off the left side

for left justified text and off the right side for right
justified text

Selection Attribute
The text within the control that is currently selected (hilited)

Usage

C
lSel = SendMessage(hWnd, HEM_GETSEL, 0, 0L);
SendMessage(hWnd, HEM_GETSELTEXT, (WPARAM)iMaxBytes,
(LPARAM)lpstrSelText);
SendMessage(hWnd, HEM_SETSEL, 0, (LPARAM)lNewSel);
SendMessage(hWnd, HEM_REPLACESEL, 0, (LPARAM)lpStr);

C++
lSel = [CHEditObj.]GetSel();
[CHEditObj.]GetSelText(lpstrSelText[, iMaxBytes = -1]);
[CHEditObj.]SetSel(lNewSel);
[CHEditObj.]ReplaceSel(lpStr);

VBX
[form.][control.]SelLength[= length]
[form.][control.]SelStart[= index]
[form.][control.]SelText[= stringexpression]
See Visual Basic Language Reference, "SelLength, SelStart, SelText Properties"

Arguments/Parameters
LPSTR lpstrSelText Buffer to receive selected text
int iMaxBytes Maximum number of characters to copy into

lpstrSelText
LONG lNewSel Contains the starting position in the low-order

word and the character position of the first non-
selected character after the selection in the high-
order word

LPSTR lpStr String to replace selected Text

Return values
LONG lSel Contains the starting position in the low-order

word and the character position of the first non-
selected character after the selection in the high-
order word

Remarks
Visual Basic programmers can replace the Selection by assigning a new value to the
SelText property.

State Attribute
A collection of flags describing the state of the control

Usage

C
lState = SendMessage(hWnd, HEM_GETSTATE, 0, 0L);

C++
lState = [CHEditObj.]GetState();

VBX
Not Used

Return values
LONG lState A long value representing the control's state

Remarks
The State property is obsolete.    It is included here for backwards compatibility

See Also
Changed

HEdit State Flags
Constant Value Meaning
HEF_DISPLAYMODE 0x0002 Control is in Display mode
HEF_RIGHT 0x0004 Text is right justified in current mode
HEF_CENTER 0x0008 Text is centered in the current mode
HEF_CHANGED 0x0080 Data has changed since last

HEM_SETDATA

Text Attribute
A character string representing formatted data.    When the Text is set, the control will first
parse the text to set its Data, then format the Data according to the Format.

Usage

C
lBytesCopied = SendMessage(hWnd, HEM_GETTEXT, (WPARAM)iMaxBytes,
(LPARAM)lpBuf);
bResult = SendMessage(hWnd, HEM_SETTEXT, 0, (LPARAM)lpBuf);

C++
lBytesCopied = [CHEditObj.]GetText(lpBuf [, iMaxBytes = -1]);
bResult = [CHEditObj.]SetText(lpBuf);

VBX
[form.][control.]Text[= stringexpression]
See Visual Basic Language Reference, "Text Property"

Arguments/Parameters
LPSTR lpBuf A buffer for the control Text
int iMaxBytes The maximum number of bytes to copy to lpBuf

Return values
LONG lBytesCopied The number of bytes actually copied to lpBuf
BOOL bResult TRUE if Text has been set successfully

Remarks
The Text of the control should not be confused with the caption or "window text".   
The edit control's window text contains DataType and DataClass information and the
Format string.    The window text is only used at the time of creation and is not
updated if this information changes.    The standard windows messages,
WM_GETTEXT and WM_SETTEXT are processed by HEdit to return and set the Text,
not the window text.

See Also

Format, TextColor, TextLength

TextColor Attribute
A color used to paint the Text

Usage

C
crTextColor = SendMessage(hWnd, HEM_GETTEXTCOLOR, (WPARAM)bNeg, 0L);
SendMessage(hWnd, HEM_SETTEXTCOLOR, (WPARAM)bNeg, crColor);

C++
crTextColor = [CHEditObj.]GetTextColor([bNeg = FALSE]);
[CHEditObj.]GetTextColor(crColor [, bNeg = FALSE]);

VBX
[form.][control.]TextColor[= color]
[form.][control.]TextColor_Neg[= color]

Arguments/Parameters
BOOL bNeg TRUE specifies the TextColor for negative

numbers, which can be set independently of the
TextColor for positive numbers

COLORREF crColor Specifies the new color

Return values
COLORREF crTextColor Contains the TextColor specified by bNeg

See Also
Format, Text

TextLength Attribute
The length of Text in characters, excluding the terminating NULL character

Usage

C
lTextLen = SendMessage(hWnd, HEM_GETTEXTLEN, 0, 0L);

C++
lTextLen = [CHEditObj.]GetTextLen();

VBX
Len([control.]Text)

Return values
LONG lTextLen The length of the Text in characters

See Also
Text

ValidateProc Attribute
A validation callback procedure that can be installed to validate user-input.    The
procedure is called whenever the control parses its Text into Data, normally on losing
focus.    It is also called in response to the Validate method.   

Usage

C
lpfnValProc = SendMessage(hWnd, HEM_GETVALIDATE, 0, 0L);
SendMessage(hWnd, HEM_SETVALIDATE, 0, (LPARAM)lpfnNewValProc);

C++
pfnValProc = [CHEditObj].GetValidate();
[CHEditObj].SetValidate(lpfnNewValProc);

VBX
Not Used

Arguments/Parameters
FARPROC lpfnNewValProc A pointer to the validation procedure to install, or

NULL to uninstall a validation procedure.

Return values
FARPROC lpfnValProc A pointer to the currently installed validation

procedure

Remarks
C++ applications requiring data validation should prepare a Validation Procedure in C
or as a static member of a CHEdit-derived class.    Ordinary member functions cannot
be used as callback procedures.

Examples

See Also
Using a Data Validation Procedure

HEdit Methods
Clear Paste Validate
Copy Undo
Cut Update

Clear Method
Removes selected Text

Usage

C
SendMessage(hWnd, WM_CLEAR, 0, 0L);

C++
[CHEditObj.]Clear();

VBX
SendMessage(control.hWnd, WM_CLEAR, 0, 0L)
See VBX Advanced Topics

See Also
Copy, Cut, Paste, Undo

Copy Method
Copies selected Text to the clipboard

Usage

C
SendMessage(hWnd, WM_COPY, 0, 0L);

C++
[CHEditObj.]Copy();

VBX
SendMessage(control.hWnd, WM_COPY, 0, 0L);
See VBX Advanced Topics

See Also
Clear, Cut, Paste, Undo

Cut Method
Removes selected Text and copies it to the Clipboard

Usage

C
SendMessage(hWnd, WM_CUT, 0, 0L);

C++
[CHEditObj.]Cut();

VBX
SendMessage(control.hWnd, WM_CUT, 0, 0L);
See VBX Advanced Topics

See Also
Clear, Copy, Paste, Undo

Paste Method
Copies from the clipboard to the control's current caret position

Usage

C
SendMessage(hWnd, WM_PASTE, 0, 0L);

C++
[CHEditObj.]Paste();

VBX
SendMessage(control.hWnd, WM_PASTE, 0, 0L)
See VBX Advanced Topics

See Also
Clear, Copy, Cut, Undo

Undo Method
Redisplays Text to reflect Data

Usage

C
SendMessage(hWnd, EM_UNDO, 0, 0L);

C++
[CHEditObj.]Undo();

VBX
SendMessage(control.hWnd, EM_UNDO, 0, 0L);
See VBX Advanced Topics

See Also
Clear, Copy, Cut, Paste

Update Method
Causes the control to update its Text and Data

Usage

C
SendMessage(hWnd, HEM_UPDATE, (WPARAM)bParseText, (LPARAM)bUpdateText);

C++
[CHEditObj.]Update([bParseText = FALSE [, bUpdateText = TRUE]]);

VBX
HEUpdate(control.hWnd, bParseText, bUpdateText)

Arguments/Parameters
BOOL bParseText
bParseText% TRUE causes Data to be updated based on

current Text.
BOOL bUpdateText
bUpdateText% TRUE causes Text to be updated to reflect current

Data.    If bParseText is also TRUE, the Text will be
parsed first.

Remarks
This message is typically sent with bParseText=FALSE, bUpdateText=TRUE when the
application has changed the Data and wants the control to reflect the change, and
bParseText=TRUE when the control has focus and the application wants the control to
parse its Text before the application uses the Data.

See Also
Data, Text

Validate Method
Calls a previously set validation callback procedure

Usage

C
iResult = (int)SendMessage(hWnd, HEM_VALIDATE, 0, 0L);

C++
iResult = Validate();

VBX
Not Used

Return values
int iResult The value returned by the validation procedure or

-1 if no validation procedure has been installed

See Also
Using a Data Validation Procedure, ValidateProc attribute

HEdit Events
Change KillFocus SpaceError
HScroll MaxText Update
Invalid SetFocus

Change Event
The control's Text has been altered by user input.

Usage

C/C++
Notification code: HEN_CHANGE

VBX
Sub ctlname_Change (Index As Integer)

Return Value
Not Used

HScroll Event
The user clicked the horizontal scroll bar.

Usage

C/C++
Notification code: HEN_HSCROLL

VBX
Sub ctlname_HScroll (Index As Integer)

Return Value
Not Used

Invalid Event
The user has entered an invalid date or other data item

Usage

C/C++
Notification code: HEN_INVALID

VBX
Sub ctlname_Invalid (Index As Integer)

Return Value
Returning TRUE prevents the control from losing focus.

Remarks
This event only occurs for very general formatting errors (e.g. typing 13/32/93 in a
date field).    Range checking and other application-specific error checking must be
done in a ValidateProc.

KillFocus Event
The control has lost input focus.

Usage

C/C++
Notification code: HEN_KILLFOCUS

VBX
Sub ctlname_KillFocus (Index As Integer)

Return Value
Not Used

MaxText Event
The Text has reached the MaxTextLen.

Usage

C/C++
Notification code: HEN_MAXTEXT

VBX
Sub ctlname_MaxText (Index As Integer)

Return Value
Not Used

SetFocus Event
The control has gained input focus.

Usage

C/C++
Notification code: HEN_SETFOCUS

VBX
Sub ctlname_SetFocus (Index As Integer)

Return Value
Not Used

SpaceError Event
The control was unable to allocate memory.

Usage

C/C++
Notification code: HEN_ERRSPACE

VBX
Sub ctlname_ErrSpace (Index As Integer)

Return Value
Not Used

Update Event
The control is about to display altered Text.

Usage

C/C++
Notification code: HEN_UPDATE

VBX
Sub ctlname_Update (Index As Integer)

Return Value
Not Used

      HEdit Window Text
This sample window text string is expanded below to show the meaning of each
component:

%ms###-####

% Required placeholder.
ms The DataClass and DataType indicators -- in this case, HC_MASK and

HT_STRING.
###-#### The Format string -- in this case, a seven-digit telephone number.

HGrid, The WinWidgets Grid Control
      Attributes
      Methods
      Events
The HGrid control simplifies the browsing and editing of data tables for both the user and
programmer.    The HGrid presents data tables in a spreadsheet-like format with each
column corresponding to a field in the table and each row to a record.    To provide custom
display and editing for each field in the table, each column is assigned one of the other
WinWidgets, either an Edit control, ListBox, ComboBox or CheckBox.    For a more details,
see An Introduction to the HGrid, or any of the topics listed below.

Additional Topics
      Creating and using HGrid resources
      HGrid Record Structures
      Using a Record Buffer
      Initializing the Grid's child controls
      Hot-Linking a variable to the current record
      Data Validation in the Grid
      Custom cursor/selection behavior
      Using HGrid with MFC's CView class

An Introduction to the HGrid
The HGrid control provides a flexible, capable tool for browsing and editing tabular data
that reduces the requisite programming to a minimum.    The HGrid uses tables like those
found in databases.    A table can contain multiple fields of information for each of many
records.    A sample table, which might be used in a personnel system, has a record for
each employee that contains the fields "Name," "Position," "Date of Birth," "Date of Hire,"
and "Salary."
The definition of an HGrid table begins with the list of fields it contains.    For each field, the
HGrid employs a separate control to display and edit the field's data.    In the table
described above, the "Position" field might use an HComb control to allow selection from a
pre-defined list of employee positions, while the others would use HEdit controls.
Once the type of control for a field is determined, the field control is prepared as it would
be for use in a standard dialog box.    For instance, an HEdit control must know the field's
data class, type and format, and its display alignment.    The HGrid's dialog editor
extensions provide an easy way to prepare the HGrid and its field controls.    For more
details on this process, see the section Creating and Using HGrid Resources.
The HGrid control supports all of the data types supported by the HEdit, HList and HComb
controls.    It can also be "hot-linked" to a data structure that will be updated with the
contents of the current record as the user moves within a table.    The control provides
notification to its parent whenever the user edits a record, moves to a different record or a
different field, or tries to scroll past the first or last record in the table.    It also maintains a
flag for each record that indicates whether the record has been edited.
The user interface of the HGrid control is extremely flexible and familiar to spreadsheet
users.    Tables can be displayed in Edit or Browse mode and as overlapped, popup, child or
MDI child windows.    Rows and columns are resizeable, and the grid lines can be toggled
on and off.    Editing can be in-place or in the toolbar, spreadsheet style.    The user may
also copy and paste from an HGrid control to a spreadsheet.

Creating and Using HGrid Resources
In setting up an HGrid control, more information must be provided than for the other
WinWidgets.    Each field's definition is comparable to the definition of an HEdit or HList
control.    As the number of fields increases, the amount of information describing the table
quickly exceeds the amount that can be stored in the control's window text (the
conventional place to store control descriptions).    To store its defining information, the
HGrid uses a custom resource file format with the extension .GRS and stores only the
name of the HGRID resource in the control's window text.    To include an HGrid control in
an application, a statement should be included in the application's resource (.RC) file
similar to the following:

MyGrid    RT_HGRID    "MyGrid.GRS"
When the HGrid control is created, it reads the HGRID resource name fr om its window text
and attempts to load the grid from the application's instance.    If the control is unable to
find the resource, as will occur in a resource editor (which does not load the application),
the control looks for the resource as a .GRS file.    An application may also direct the control
to look for resources in other instances using the HM_GETINSTANCE message (see Using
Custom Resources).

Using HGrid in a Resource Editor
All preparation of the HGrid control can be accomplished through a resource editor, by
following these steps:

1. Open the HGrid Styles dialog box by double-clicking on the control.
2. Enter the control's style options, ID, title and resource name.
3. Open the Field Control Styles dialog box by choosing the Fields menu.
4. Use the Field menu to browse among fields and the Edit menu to insert, delete and

copy fields.
5. Press OK to accept any changes to the field information, or Cancel to disregard the

changes.    The Field Control Styles dialog box will close.
6. Choose File, Save and save the HGrid information to a file with the same name

entered in the Resource Name edit box.
7. Press OK to accept any changes to the table, or Cancel to disregard the changes.    The

HGrid Styles dialog box will close.

Using a Record Buffer
Record buffering allows the HGrid to browse and edit large tables of information without
having all of the information in memory.    To the user, it appears that the control contains
the entire table, but the HGrid is really only requesting and storing data as needed, using
the installed BufferProc.    The BufferProc is an application-defined callback procedure that
the HGrid calls when records are removed from the buffer (by either deletion or
displacement caused by newly added records), when new records are needed in the buffer,
and when the contents of a record in the buffer have changed.

Once a BufferProc that performs these actions is installed, no other interaction is required
to send and retrieve data from the HGrid.    There are, however, other aspects of a
buffering HGrid control that an application can control to customize or optimize behavior.   
The picture above shows the attributes of the HGrid control pertinent to record buffering.   
BaseRec is a long value that marks the starting position of the record buffer in the table.   
It is the first record of the table that is currently in memory.    BaseRec should not be
adjusted by an application; use the FirstRec instead.
MaxRec is a long value representing the total number of records in the table.    If MaxRec is
set by an application the HGrid will provide a virtual scroll range from zero to MaxRec.    If
MaxRec is not set, it will grow automatically when records are added and/or the BaseRec
changes.   
BufferSize is an integer value representing the total number of records that the HGrid
keeps in memory.    The BufferSize can be set by an application in order to optimize
performance.    However, a minimum BufferSize of twice the number of visible records will
always be maintained.
FirstRec is a long value that marks the first record of the table to be displayed in the HGrid.
An application can manipulate the viewport by setting the FirstRec.    If the FirstRec is set to
a position outside the current buffer, the buffer moves automatically by adjusting the
BaseRec.

Notes:
The fact that the HGrid properties FirstRec and MaxRec are both long values allows a
buffered HGrid control to handle tables containing millions of records.    However, for

practical reasons, the HGrid is limited to 32,767 records at a time (the maximum integer
value).    In fact, for performance reasons it is wise to maintain a BufferSize of a few
hundred or less.    The optimal buffer size will depend on a balance of the HGrid's
performance and that of the application's data source.   
Because the HGrid never contains more than 32,767 records, all record-related attributes
of HGrid control, such as the current Anchor and Extent positions, are stored as integer
offsets from the BaseRec.    This makes it easier to set and retrieve cell positions, which are
comprised of two integers rather than an integer for the Field and a long for the Record,
but requires the programmer to remember that the record values are not necessarily the
absolute positions within the data table.
Another implication of buffering is that selection ranges are always clipped to the current
buffer, although this may not be readily apparent to the user.

See Also
Record Buffering in C, Record Buffering in C++, Record Buffering in Visual Basic

Record Buffering in C
The BufferProc is an application-defined callback procedure, with the following declaration: 

BUFFERPROC _export MyBufferProc (HWND hwndGrid, WORD wAction, LONG
lRecNum, LP[MYRECTYPE]lpRecData);

The first argument to the BufferProc is the window handle of the grid control, in case the
procedure needs to send or retrieve additional information from the HGrid.    The second
parameter, wAction specifies the action that the BufferProc should take.    Possible values
for wAction and their meanings are:

HGB_RETRIEVE This message requests the contents of a record
from the application.    lRecNum is the requested
record number.    lpRecData points to an empty
data buffer that should be filled by the application. 
The application must return TRUE to add the record
to the HGrid.

HGB_UPDATE This message notifies the application that a
modified record is being removed from the record
buffer.    The application should use this opportunity
to update the record in its data source.

HGB_INSERT This message informs the application that the user
is attempting to insert a new record.    lRecNum is
the position of the insertion.    lpRecData points to
an empty data buffer that can be filled by the
application if the record needs to be initialized.   
The application should also use this opportunity to
insert the record into its data source.    The
application must return TRUE to insert the record
into the HGrid's record buffer.

HGB_DELETE This message informs the application that the user
is attempting to delete a record.    lRecNum is the
position of the deletion.    lpRecData points to a
copy of the record's contents.    The application
should use this opportunity to delete the record
from its data source.    The application must return
TRUE to delete the record from the HGrid's record
buffer.

HGB_CHANGE This message notifies the application that a record
has been modified.    The application can use this
opportunity to update the record in its data source,
or the application can wait for a HGB_UPDATE
message.    If the application processes this
message it should return TRUE to reset the record's
CHANGED flag.

HGB_VALIDATE This message notifies the application that the user
is attempting to leave a changed cell.    The
application can use this opportunity to validate the
cell's new data.    lRecNum actually contains an
integer column index in the LOWORD and an
integer row index in the HIWORD.    lpRecData

points to the cell's changed data.    If the
application processes this message it should return
TRUE if the cell's data is invalid and the selection
will remain at that cell.

Record Buffering in C++
Since WIDGETS.DLL is written in C, it cannot use member functions of C++ classes with
mangled names as callback functions.    To provide record buffering capability in our C++
classes we have created a special class, CHGridBuffer (THGridBuffer in OWL), which is
subclassed by the application.    CHGridBuffer contains a public member function,

BOOL AttachBuffer(CHGrid *pGrid);
which registers the subclassed buffer object and the CHGrid object to which it is attached
with a buffer manager.    The buffer manager, in turn, registers a static callback function
with the HGrid wrapped by the CHGrid object.    When the HGrid calls this callback function,
the buffer manager calls one of five virtual functions in the appropriate CHGridBuffer
object.    These virtual functions must be overridden by the application to perform the
storage and retrieval of records to and from the data source.

virtual BOOL OnRetrieve(LONG lRecNum, LPVOID lpRecData);
virtual BOOL OnUpdate(LONG lRecNum, LPVOID lpRecData);
virtual BOOL OnInsert(LONG lRecNum, LPVOID lpRecData);
virtual BOOL OnDelete(LONG lRecNum, LPVOID lpRecData);
virtual BOOL OnChange(LONG lRecNum, LPVOID lpRecData);
virtual BOOL OnValidate(int iCol, int iRow, LPVOID lpCellData);

Their arguments and return values are interpreted as follows:

OnRetrieve This function requests the contents of a record from
the application.    lRecNum is the requested record
number.    lpRecData points to an empty data buffer
that should be filled by the application.    The
application must return TRUE to add the record to the
HGrid.

OnUpdate This function notifies the application that a modified
record is being removed from the record buffer.    The
application should use this opportunity to update the
record in its data source.

OnInsert This function informs the application that the user is
attempting to insert a new record.    lRecNum is the
position of the insertion.    lpRecData points to an
empty data buffer that can be filled by the application
if the record needs to be initialized.    The application
should also use this opportunity to insert the record
into its data source.    The application must return
TRUE to insert the record into the HGrid's record
buffer.

OnDelete This function informs the application that the user is
attempting to delete a record.    lRecNum is the
position of the deletion.    lpRecData points to a copy of

the record's contents.    The application should use this
opportunity to delete the record from its data source.   
The application must return TRUE to delete the record
from the HGrid's record buffer.

OnChange This function notifies the application that a record has
been modified.    The application can use this
opportunity to update the record in its data source, or
can wait for the OnUpdate function to be called.    If the
application processes this message it should return
TRUE to reset the record's CHANGED flag.

OnValidate This function notifies the application that the user is
attempting to leave a changed cell.    The application
can use this opportunity to validate the cell's new
data. iCol and iRow contain the coordinates of the cell.
lpCellData points to the cell's changed data. If the
application processes this message it should return
TRUE if the cell's data is invalid and the selection will
remain at that cell.

The CHGridBuffer object is automatically detached from the CHGrid object when the HGrid
is destroyed.

Record Buffering in Visual Basic
Users of Visual Basic 3.0 may take advantage of the VBX Grid's Data Awareness features,
which include automatic record buffering.

HGrid Record Structures
The HGrid stores data in a list of records, each of which is a contiguous block of memory.   
Several of the control's methods, such as AddRec, expect the application to provide or
receive a record's data in this format.    Often, it is possible to define a structured type
using typdef that matches the HGrid's record structure exactly, making it very easy to
move information back and forth from the control.
The structure of the record block depends on the fields that are defined for the table.   
Each field is allotted a fixed-length section of the record block at a fixed offset from the
block start.   
The length of a field's section is determined by the type of data contained in the field.    For
instance, a double is allocated eight bytes and a short int is allocated two.    String types
are allocated the number of bytes specified by the iSize parameter of the FieldCreate()
method, or the String Length entry of the Field Control Styles dialog.    Note that both of
these values must include space for the NULL terminator.
The offset of a field's section is simply the sum of the sizes of the fields preceding it in the
record.    It is important to remember that the HGrid expects and allows no padding
between fields.    Therefore, it is necessary to compile record structures with single byte
alignment.    If that is not possible, simply make sure that there are no odd-byte sized fields
in the record structure.
Example
A table contains three fields:    a string, a double and long date.    The string has a
maximum length of 20 characters, including a NULL terminator.    The application declares
a structure to match the Grid's record structure as follows:

typedef struct
{

 char Name[20];
double Amount;
LONGDATE Date;
}
MYREC,
FAR * LPMYREC;

Note that the structure allocates the maximum amount of space that the Name field may
use.    When the Grid copies information to or from a record structure it uses a single
memcpy() of the entire record.    To initialize a single cell's data without employing a record
structure, see the CellData and CellText attributes.
To add records to the Grid using the AddRec method, declare a variable of type MYREC,
initialize it, then pass a pointer to the structure to the Grid through the AddRec method:

{
MYREC MyRec; // Declare

memset (MyRec, 0, sizeof(MYREC)); // Initialize
strcpy (MyRec.Name, "Dr. Dada");
MyRec.Amount = 4550.32;
MyRec.Date = 19921001;

// Send to Grid
SendMessage (hwndGrid, HGM_ADDREC, 0, (DWORD)MyRec);
}

Non-initialized (zero-filled) records can be added by passing NULL in place of the record
structure pointer.

Initializing the Grid's Child Controls
The HGrid control employs the other WinWidgets to display and edit each cell's data.    A
separate child control is created for each field in the Grid, and is then called upon
whenever a cell within that field needs to be displayed or edited.   
When it is necessary for an application to deal with the child controls directly, such as the
initialization of a ComboBox field, a handle to the child control can be accessed through
the FldWindow property.    The application may then set the attributes and use the methods
defined for that type of control.    However, certain attributes should not be used, such as
the ValidateProc attribute of the edit control, because they interfere with the Grid's use of
controls.
To initialize a ListBox or ComboBox within the Grid, first get a handle to the FldWindow,
then use the Add and Insert methods to fill the list.    Do not adjust the control's Selection;
the Grid sets the Selection based on the each cell's data (see the CellData attribute).

HGrid Data Validation
The HGrid control provides two means of validating user input.    The first and preferable
method is through the HGB_VALIDATE action code sent to a C buffer procedure, or through
the OnValidate buffer method in C++.    This method provides the row and column indices
of the altered cell as well as a pointer to the new CellData.    The data can easily be
modified or trigger a warning message, etc.    Returning TRUE prevents the Grid from
altering the cell's data.
The second method is to use the RecChanged event, which occurs after after the cell's
data is changed.    When a RecChanged event occurs, the Marker is set to the row and
column of the altered cell.    If an application chooses to reset the selection to the altered
cell in response to invalid data, it must post an HGM_SETSELEXTENT message to the
control with the coordinates retrieved from the Marker.

HGrid Attributes
Grid Attributes

AutoExtend DisableNoScroll Marker Selection
Background DragCols MaxRec SingleSelect
BaseRec EditInPlace MDIChild State
Browse FirstCol NoHideSel Style
BtnHeight FirstRec NoLines Title
BtnWidth Font Quiet VScroll
BufferProc FrozenCols ResizeCols VScrollPos
BufferSize HScroll ResizeRows WholeRows
ColButtons HScrollPos RowBtns
ColCount KbdDelIns RowCount
ColMap LeaveOnTab RowHeight
Field Attributes

FldBrowse FldCtlStyle FldFormat FldOffset
FldCodeClass FldDataClass FldFormatLen FldWindow
FldCodeType FldDataSize FldHidden
FldColWidth FldDataType FldName
FldCtlType FldDropHeight FldNameLen
Record Attributes

RecBrowse RecData RecNew
RecChanged RecLink RecSize
Cell Attributes

CellData CellText

AutoExtend Attribute
When set, the Grid functions in a data-entry mode, with a blank record at the bottom.

Usage

C/C++
Window Style:    HGS_AUTOEXTEND

VBX
[form.][control.]AutoExtend[= True/False]

Remarks
AutoExtend can only be set at design time.   
The RecNew attribute, for the blank record will remain set until its contents have
been edited.    In buffered grids, the blank record at the bottom will only be updated if
its contents have been edited.

See Also
Bottom Event

Background Attribute
The color or pattern used to paint the background of the grid control

Usage

C
hbrBkgnd = (HBRUSH)SendMessage(hWnd, HGM_GETBKGNDBRUSH, 0, 0L);
hbrOldBkgnd = (HBRUSH)SendMessage(hWnd, HGM_SETBKGNDBRUSH,
(WPARAM)hbrNewBrush, 0L);

C++
OWL
hbrBkgnd = [THGridObj.]GetBkgndBrush(void);
hbrOldBkgnd = [THGridObj.]SetBkgndBrush(hbrNewBrush);
MFC
pBkgnd = [CHGridObj.]GetBkgndBrush(void);
pOldBkgnd = [CHGridObj.]SetBkgndBrush(pNewBrush);

VBX
[form.][control.]BackColor[= color]
See Visual Basic Language Reference, "BackColor, ForeColor Properties"

Arguments/Parameters
HBRUSH hbrNewBrush Handle of a new brush to be set as the

background brush
CBrush pNewBrush Pointer to a CBrush object containing the new

background brush handle

Return values
HBRUSH hbrBkgnd Handle to the current background brush
HBRUSH hbrOldBkgnd Handle to the previous background brush
CBrush *pBkgnd Pointer to a CBrush object containing the current

background brush handle
CBrush *pOldBkgnd Pointer to a CBrush object containing the previous

background brush handle

Remarks
C and C++ applications are responsible for destroying any brushes they create.

BaseRec Attribute
A long value that marks the starting position of the record buffer in the table.    It is the first
record of the table that is currently in memory.

Usage

C
lBaseRec = SendMessage(hWnd, HGM_GETBASEREC, 0, 0L);

C++
lBaseRec = [CHGridObj.]GetBaseRec();

VBX
[form.][control.]BaseRec

Return values
LONG lBaseRec The current BaseRec value

Remarks
For Grids with no record buffer, BaseRec is always 0 since all records are in memory.
The BaseRec value can be added to a row index to obtain a record index.    In fact, the
RowToRec method does exactly this.
BaseRec should not be adjusted by an application; use the FirstRec instead.

Browse Attribute
When Browse is set, the Grid displays data, but will not allow editing.

Usage

C/C++
Window Style:    HGS_BROWSE

VBX
[form.][control.]Browse[= True/False]

Remarks
Browse can only be set at design time.

BtnHeight Attribute
The height, in pixels, of the ColButtons displayed along the top of the Grid

Usage

C
wBtnHeight = (WORD)SendMessage(hWnd, HGM_GETBTNHEIGHT, 0, 0L);
SendMessage(hWnd, HGM_SETBTNHEIGHT, wNewHeight, (LPARAM)bRedraw);

C++
wBtnHeight = [CHGridObj.]GetBtnHeight();
[CHGridObj.]SetBtnHeight(wNewHeight[, bRedraw = TRUE]);

VBX
[form.][control.]ButtonHeight[= integer]

Arguments/Parameters
WORD wNewHeight The new ButtonHeight value
BOOL bRedraw TRUE forces the control to redraw immediately

Return values
WORD wBtnHeight The current ButtonHeight value

BtnWidth Attribute
The width of the grids RowBtns

Usage

C
iBtnWidth = (int)SendMessage(hWnd, HGM_GETBTNWIDTH, 0, 0L);
SendMessage(hWnd, HGM_SETBTNWIDTH, wNewWidth, (LPARAM)bRedraw);

C++
iBtnWidth = [CHGridObj.]GetBtnWidth();
[CHGridObj.]SetBtnWidth(wNewWidth [, bRedraw = TRUE]);

VBX
[form.][control.]BtnWidth[= integer]

Arguments/Parameters
WORD wNewWidth The new ButtonWidth value
BOOL bRedraw TRUE forces the control to redraw immediately

Return values
int iBtnWidth The current ButtonWidth value

See Also
BtnHeight

BufferProc Attribute
A callback procedure(s) that is (are) responsible for retrieving records for a record buffer
from a data source and maintaining data integrity at the data source.

Usage

C
lpfnBufferProc = SendMessage(hWnd, HGM_GETBUFFERPROC, 0, 0L);
lpfnOldBufferProc = SendMessage(hWnd, HGM_SETBUFFERPROC, 0,
lpfnNewBufferProc);

C++
[CHGridBufferObj].AttachBuffer(lpGridObj);

VBX
Not Used
Users of Visual Basic 3.0 may take advantage of the Data Awareness of the VBX Grid,
which includes automatic record buffering.

Arguments/Parameters
BUFFERPROC lpfnNewBufferProc A pointer to an application-defined record

buffering callback procedure
[CHGridObj] FAR *lpGridObj A pointer to a C++ Grid or Grid-derived object

Return values
BUFFERPROC lpfnBufferProc A pointer to the current record buffering callback

procedure or NULL if no procedure is installed
BUFFERPROC lpfnOldBufferProc A pointer to a previously installed record buffering

callback procedure or NULL

Remarks
For a complete discussion of record buffering in the Grid, see the section titled Using
a Record Buffer.

BufferSize Attribute
An integer value representing the total number of records that the HGrid keeps in memory

Usage

C
iBufSize = (int)SendMessage(hWnd, HGM_GETBUFFERSIZE, 0, 0L);
iBufSize = (int)SendMessage(hWnd, HGM_SETBUFFERSIZE, 0,
(LPARAM)iNewBufSize);

C++
iBufSize =[CHGridObj.]GetBufferSize();
iBufSize =[CHGridObj.]SetBufferSize(iNewBufSize);

VBX
[form.][control.]BufferSize[= integer]

Arguments/Parameters
int iNewBufSize A new value for BufferSize

Return values
int iBufSize The current value for BufferSize or zero if the Grid

is non-buffering

Remarks
The BufferSize attribute can be set by an application in order to optimize
performance.    However, a minimum BufferSize of twice the number of visible records
will always be maintained.

See Also
Using a Grid Buffer

ColButtons Attribute
When set, the Grid will display buttons containing field names at the top of each column.

Usage

C/C++
Window Style:    HGS_COLBUTTONS

VBX
[form.][control.]ColButtons[= True/False]

Arguments/Parameters

Return values

Remarks
The ColButtons attribute can only be set at design time.

See Also
RowBtns

ColCount Attribute
The number of columns in the Grid

Usage

C
wColCount = SendMessage(hWnd, HGM_GETCOLCOUNT, 0, 0L);

C++
wColCount = [CHGridObj.]GetColCount();

VBX
[form.][control.]ColCount

Return values
WORD wColCount The current number of columns in the Grid

Remarks
The value of the ColCount attribute includes hidden columns.

ColMap Attribute
An array of integers showing the relationship between Field indices and Column indices,
which may differ if DragCols is enabled

Usage

C
SendMessage(hWnd, HGM_GETCOLMAP, 0, (LPARAM)lpMap);
SendMessage(hWnd, HGM_SETCOLMAP, 0, (LPARAM)lpMap);

C++
[CHGridObj.]GetColMap(lpMap);
[CHGridObj.]SetColMap(lpMap);

VBX
ReDim iaMap(Grid1.ColCount - 1) As Integer
VGGetColMap([control.]hWnd, iaMap)
VGSetColMap([control.]hWnd, iaMap)
iaMap MUST contain exactly one value for every field

Arguments/Parameters
int FAR *lpMap A pointer to an array of integers to be copied or

filled by the control.    The array MUST have space
for one integer per field.    Storing the MAP allows
you to create custom configurations.

Remarks
A sample ColMap is shown below:
Your Record:    Field0    Field1    Field2    Field3    Field4    Field5    Field6    Field7    Field8
ColMap:    0    3    4    2    7    6    8    1    5
Grid Display:    Field0    Field7    Field3    Field1    Field2    Field8    Field5    Field4    Field6
The ColMap contains an integer column index for each field in the record.    The
column index is the position of the field as displayed in the Grid, the field index is the
position of the field in the data source for the control.
The user can select a column(s) then with the Shift key pressed, drag the column(s)
to a new position.    The current drop position is displayed as a thick column line.   
This does not affect the order of the data in the records.    However, you will have to
be aware that the columns may have moved when you go to select a cell or range of
cells.    Positions for selection are given by column index, not field index.    Positions
for setting Field attributes are still specified by field index.
If you insert a field using the InsertFld method, insert it at the column index equal to
its field index then use the MoveFld method to reposition it within the Grid.    When
deleting a field, use the column index.

See Also
ColToFld, FldToCol

DisableNoScroll Attribute
When DisableNoScroll is set, which it is by default, the vertical scroll bar is disabled but not
hidden when its scroll range is empty.

Usage

C/C++
Window Style:    HGS_DISABLENOSCROLL

VBX
[form.][control.]DisableNoScroll[= TRUE/FALSE]

Remarks
The DisableNoScroll attribute can only be set at design time.

See Also
VScroll, VScrollPos

DragCols Attribute
When this attribute is set, the user can drag non-frozen columns to other locations in the
Grid

Usage

C/C++
Window Style:    HGS_DRAGCOLS

VBX
[form.][control.]DragCols[= TRUE/FALSE]

Remarks
A user can move a column by clicking on its ColButton with the Shift key depressed
and holding the mouse button down while dragging to the new location.

See Also
ColMap

Remarks
The DragCols attribute can only be set at design time.

EditInPlace Attribute
When the EditInPlace attribute is set, user editing of Grid data occurs at each cell location
rather than in a toolbar at the top of the grid.

Usage

C/C++
Window Style:    HGS_INPLACE

VBX
[form.][control.]EditInPlace[= TRUE/FALSE]

Remarks
The EditInPlace attribute can only be set at design time.

FirstCol Attribute
The index of the first visible, non-frozen Column

Usage

C
wFirstCol = (WORD)SendMessage(hWnd, HGM_GETFIRSTCOL, 0, 0L);
SendMessage(hWnd, HGM_SETFIRSTCOL, iCol, 0L);

C++
wFirstCol = [CHGridObj.]GetFirstCol();
[CHGridObj.]SetFirstCol(iCol)

VBX
[form.][control.]FirstCol[= integer]

Arguments/Parameters
int iCol The index of the new FirstCol

Return values
WORD wFirstCol The index of the current FirstCol

Remarks
Setting the value of the FirstCol attribute scrolls the table horizontally to bring the
new column into the leftmost position in the Grid but to the right of any FrozenCols.

See Also
FirstRec, HScrollPos, FrozenCols

FirstRec Attribute
A long value that marks the first record of the table to be displayed in the HGrid

Usage

C
lFirstRec = SendMessage(hWnd, HGM_GETFIRSTREC, 0, 0L);
lFirstRec = SendMessage(hWnd, HGM_SETFIRSTREC, 0, lNewFirstRec);

C++
lFirstRec = [CHGridObj.]GetFirstRec();
lFirstRec = [CHGridObj.]SetFirstRec(lNewFirstRec);

VBX
[form.][control.]FirstRec[= long]

Arguments/Parameters
LONG lNewFirstRec The new FirstRec value.

Return values
LONG lFirstRec The sum of BaseRec and the row index of the first

visible record.   

Remarks
An application can manipulate the viewport by setting the FirstRec attribute.    If the
FirstRec attribute is set to a position outside the current buffer, the buffer moves
automatically by adjusting the BaseRec.

See Also
BaseRec

Font Attribute
The font used by the control

Usage

C
hfFont = (HFONT)SendMessage(hWnd, HGM_GETFONT, 0, 0L);
hfOldFont = SendMessage(hWnd, HGM_SETFONT, (WPARAM)hfNewFont,
(LPARAM)bRedraw);

C++
OWL
hfFont = [THGridObj.]GetFont();
hfOldFont[THGridObj.]SetFont(hfNewFont [, bRedraw = TRUE]);
MFC
pFont = [CHGridObj.]GetFont();
pOldFont[CHGridObj.]SetFont(pNewFont [, bRedraw = TRUE]);

VBX
[form.][control.]FontBold[= boolean]
[form.][control.]FontItalic[= boolean]
[form.][control.]FontName[= font]
[form.][control.]FontSize[= points]
[form.][control.]FontStrikethru[= boolean]
[form.][control.]FontUnderline[= boolean]
See Visual Basic Language Reference, "FontName Property"

Arguments/Parameters
HFONT hfNewFont Handle of the font to be set
BOOL bRedraw A value of TRUE causes the control to repaint

immediately
CFont *pFont Pointer to a CFont object containing the handle to

the font to be set

Return values
HFONT hfFont Handle to the control's current font
HFONT hfOldFont Handle to the control's previous font
CFont *hfFont Pointer to a CFont object containing the handle to

the control's current font
CFont *fOldFont Pointer to a CFont object containing the handle to

the control's previous font

Remarks
C and C++ applications are responsible for destroying any fonts they create.

FrozenCols Attribute
The number of columns on the left side of the Grid that do not scroll horizontally

Usage

C
wFrozenFlds = (WORD)SendMessage(hWnd, HGM_GETFROZENCOLS, 0, 0L);
SendMessage(hWnd, HGM_SETFROZENCOLS, wNumFrozen, 0L);

C++
wFrozenFlds = [CHGridObj.]GetFrozenCols();
[CHGridObj.]SetFrozenCols(wNumFrozen);

VBX
[form.][control.]FrozenCols[= integer]

Arguments/Parameters
WORD wNumFrozen The new number of frozen fields

Return values
WORD wFrozenFlds The current number of frozen fields

HScroll Attribute
When HScroll is set, which it is by default, a horizontal scrollbar will appear whenever the
total width of the columns exceeds that of the Grid's display area.

Usage

C/C++
Window Style:    WS_HSCROLL

VBX
[form.][control.]HScroll[= TRUE/FALSE]

Remarks
The HScroll attribute can only be set at design time.

HScrollPos Attribute
The horizontal scroll position of the Grid within its scroll range.    The range is equal to the
number of non-frozen columns that must be scrolled off the display area in order to make
the rightmost column completely visible.

Usage

C
iHScroll = (int)SendMessage(hWnd, HGM_GETHSCROLLPOS, 0, 0L);
SendMessage(hWnd, HGM_SETHSCROLLPOS, iNewHScroll, 0L);

C++
iHScroll = [CHGridObj.]GetHScrollPos();
[CHGridObj.]SetHScrollPos(iNewHScroll);

VBX
[form.][control.]HScrollPos[= iNewHScroll]

Arguments/Parameters
int iNewHScroll The new horizontal scroll position

Return values
int iHScroll The current horizontal scroll position

KbdDelIns Attribute
When KbdDelIns is set, users can delete and insert records using the Delete and Insert
keys at run time.

Usage

C/C++
Window Style:    HGS_KBDDELINS

VBX
[form.][control.]KbdDelIns[= TRUE/FALSE]

Remarks
The KbdDelIns attribute can only be set at design time.

LeaveOnTab Attribute
When LeaveOnTab is set, the Grid loses focus when the Tab key is pressed

Usage

C/C++
Window Style:    HGS_LEAVEONTAB

VBX
[form.][control.]LeaveOnTab

Remarks
The LeaveOnTab attribute can only be set at design time.

Marker Attribute
Temporary Row and Column coordinates maintained by the Grid for the purpose of
communicating cell locations between the application and the control.

Usage

C
lMarker = SendMessage(hWnd, HGM_GETMARKER, 0, 0L);
SendMessage(hWnd, HGM_SETMARKER, 0, MAKELONG(iCol, iRow));

C++
lMarker = [CHGridObj.]GetMarker();
[CHGridObj.]SetMarker(iCol, iRow);

VBX
[form.][control.]Col[= iCol]
[form.][control.]Row[= iRow]

Arguments/Parameters
int iCol The column index of the cell
int iRow The row index of the cell

Return Value
LONG lMarker Contains an integer column index in the LOWORD

and an integer row index in the HIWORD

Remarks
The Marker is set by the Grid to the new coordinates prior to a SelChanging or
SelExtending event.    Changing the Marker in response to these notifications changes
the resulting selection.    In the VBX Grid, the Marker must be set by the application
prior to setting the CellData property in order to specify which cell's data to set.

MaxRec Attribute
Long value representing the total number of records in the table

Usage

C
lMaxRec = SendMessage(hWnd, HGM_GETMAXREC, 0, 0L);
bSuccess = (BOOL)SendMessage(hWnd, HGM_SETMAXREC, 0, lNewMaxRec);

C++
lMaxRec = [CHGridObj.]GetMaxRec();
bSuccess = [CHGridObj.]SetMaxRec(lNewMaxRec);

VBX
[form.][control.]MaxRec[= long]

Arguments/Parameters
LONG lNewMaxRec The new value for MaxRec

Return values
LONG lMaxRec The current value for MaxRec
BOOL bSuccess TRUE if a new MaxRec value was set successfully

Remarks
The MaxRec attribute is typically used for Grids with record buffers, where the entire
record space is not present in the control's memory at any given time.    If MaxRec is
set by an application, the HGrid will provide a virtual scroll range from zero to
MaxRec.    If MaxRec is not set, it will grow automatically when records are added
and/or the BaseRec changes.    If the Grid has the AutoExtend attribute set, no new
records will be added beyond MaxRec

See Also
Using a Grid Buffer

MDIChild Attribute
When set, the control will be created as an MDI child window

Usage

C/C++
Window Style:    HGS_MDICHILD

VBX
[form.][control.]MDIChild[= True/False]

Remarks
C++ developers using the MFC wrapper classes should use the CHGridView class to
create MDI applications with Grid windows.
The MDIChild attribute can only be set at design time.

NoHideSel Attribute
When NoHideSel is set, the Grid continues to display the current Selection after losing
focus

Usage

C/C++
Window Style:    HGS_NOHIDESEL

VBX
[form.][control.]NoHideSel[= TRUE/FALSE]

Remarks
The NoHideSel attribute can only be set at design time.

NoLines Attribute
When NoLines is set, the Grid is displayed without lines separating cells

Usage

C/C++
Window Style:    HGS_NOLINES

VBX
[form.][control.]NoLines

Remarks
The NoLines attribute can only be set at design time.

Quiet Attribute
When the control is in Quiet mode, it does not send notification messages to its parent.   
VBX controls will not fire events in Quiet mode.

Usage

C
bIsQuiet = SendMessage(hWnd, HGM_ISQUIET, 0, 0L);
SendMessage(hWnd, HGM_BEQUIET, bValue, 0L);

C++
bIsQuiet = [CHGridObj.]IsQuiet
[CHGridObj.]BeQuiet(bValue);

VBX
bIsQuiet = SendMessage(control.hWnd, HGM_ISQUIET, 0, 0L);
SendMessage(control.hWnd, HGM_BEQUIET, bValue, 0L)
See VBX Advanced Topics

Arguments/Parameters
BOOL bValue TRUE turns on Quiet mode, FALSE turns it off

Return values
BOOL bIsQuiet TRUE if the control is in Quiet mode

ResizeCols Attribute
When ResizeCols is set, columns can be resized horizontally by the user at runtime

Usage

C/C++
Window Style:    HGS_RESIZECOLS

VBX
[form.][control.]ResizeCols[= TRUE/FALSE]

Remarks
The ResizeCols attribute can only be set at design time.

ResizeRows Attribute
When set, the rows of the grid can be resized by the user at run time.

Usage

C/C++
Window Style:    HGS_RESIZEROWS

VBX
[form.][control.]ResizeRows[= True/False]

Remarks
The ResizeRows attribute can only be set at design time.

RowBtns Attribute
When the RowBtns attribute is set, the control displays buttons to the left of each row.

Usage

C/C++
Window Style:    HGS_ROWBTNS

VBX
[form.][control.]RowBtns

Remarks
The number displayed in a row button is the record index plus one.    If a record buffer
is used, record indices should not be confused with row indices.    Record indices
range from zero to the value of MaxRec minus one, whereas row indices range from
zero to the value of BufferSize minus one.    If no buffer is used, row index and record
index are the same.

See Also
ColButtons

RowCount Attribute
The number of rows in the Grid.

Usage

C
iRowCount = SendMessage(hWnd, HGM_GETROWCOUNT, 0, 0L);

C++
iRowCount = [CHGridObj.]GetRowCount();

VBX
[form.][control.]RowCount[= iRowCount]

Return values
int iRowCount The current number of rows in the Grid

Remarks
If a record buffer is used, RowCount refers to the number of records in the buffer.   
RowCount is equal to BufferSize if the buffer is full.

RowHeight Attribute
The height, in pixels, of the rows in the Grid

Usage

C
wRowHeight = SendMessage(hWnd, HGM_GETROWHEIGHT, 0, 0L);
SendMessage(hWnd, HGM_SETROWHEIGHT, wNewHeight, (LPARAM)bRedraw);

C++
wRowHeight = [CHGridObj.]GetRowHeight();
[CHGridObj.]SetRowHeight(wNewHeight[, bRedraw = TRUE]);

VBX
[form.][control.]RowHeight[= integer]

Arguments/Parameters
WORD wNewHeight The new RowHeight value
BOOL bRedraw TRUE forces the control to redraw immediately

Return values
WORD wRowHeight The current RowHeight value

Remarks
All rows in the Grid have the same height.

Selection Attribute
Row and column indices that define the range of selected cells in the Grid

Usage

C
lCell = SendMessage(hWnd, HGM_GETSELANCHOR, 0, lpCell);
lCell = SendMessage(hWnd, HGM_GETSELEXTENT, 0, lpCell);
SendMessage(hWnd, HGM_SETSELEXTENT, (WPARAM)bExtend, MAKELONG(iCol,
iRow));

C++
lCell = [CHGridObj.]GetSelAnchor([lpCell = NULL]);
[CHGridObj.]SetSelAnchor(iCol, iRow);
lCell = [CHGridObj.]GetSelExtent([lpCell = NULL]);
[CHGridObj.]SetSelExtent(bExtend, iCol, iRow);

VBX
The following properties are read-only:
[form.][control.]SelStartCol
[form.][control.]SelStartRow
[form.][control.]SelEndCol
[form.][control.]SelEndRow
Use these methods to set the selection:
VGSelectCell([control.]hWnd, iCol, iRow)
VGSelectRange([control.]hWnd, iCol1, iRow1, iCol2, iRow2)

Arguments/Parameters
LONG FAR *lpCell A pointer to a long integer that will receive a

coloumn index in the LOWORD and a row index in
the HIWORD.    lpCell can be NULL.

int iCol A column index
int iRow A row index
BOOL bExtend TRUE extends the selection from the Anchor;

FALSE sets both Anchor and Extent to (iCol, iRow).

Return values
LONG lCell Used as an altermative to lpCell.    A long value

having a column index in the LOWORD and a row
index in the HIWORD.   

Remarks
The Selection Anchor is the cell at which a selection was begun; the Selection Extent
is the cell at which a selection ends.    The cell indicated by the Selection Extent is
also the location of the cursor.    If a single cell is selected by setting the Extent with
bExtend = FALSE.   

RowButtons on the left of the Grid have a column index of -1.    If the column index in
the LOWORD of Selection Extent is -1, then the entire row given by the row index is
selected.    Column Buttons along the top of the Grid have a row index of -1.    If the
row index in the HIWORD of Selection Extent is -1, then the entire row given by the
row index is selected.
A Selection Extent of (-1, -1) is the button in the top left-hand corner of the Grid.   
Setting Selection Extent to    (-1, -1) selects the entire grid.

See Also
ColToFld, RowToRec

SingleSelect Attribute
When SingleSelect is set, the user may select only individual cells, not ranges.

Usage

C/C++
Window Style:    HGS_SINGLESELECT

VBX
[form.][control.]SingleSelect

See Also
WholeRows

State Attribute
A collection of flags describing the state of the control

Usage

C
lState = SendMessage(hWnd, HGM_GETSTATE, 0, 0L);
SendMessage(hWnd, HGM_SETSTATE, (WPARAM)bValue, (LPARAM)wStateFlag);

C++
lState = [CHGridObj.]GetState();
[CHGridObj.]SetState(bValue, wStateFlag);

VBX
[form.][control.]Changed[= boolean]

Arguments/Parameters
BOOL bValue The value to set for the flag indicated by

wStateFlag
WORD wStateFlag One of the Grid state flag constants

Return values
LONG lState The current State flags.    Individual flag settings

can be obtained by AND'ing lState with a state
flag constant

Style Attribute
A collection of bits used to determine various Grid attributes.

Usage

C
lStyle = SendMessage(hWnd, HGM_GETSTYLE, 0, 0L);
SendMessage(hWnd, HGM_SETSTYLE, bValue, (LPARAM)lFlag);

C++
lStyle = [CHGridObj.]GetStyle();
[CHGridObj.]SetStyle(bValue, lFlag);

VBX
Not Used

Arguments/Parameters
LONG lStyle The current style bits for the Grid.    This can be

bitwise-and'ed with a particular Grid Style Flag to
determine that flags setting.

BOOL bValue The new value for a particular style bit
LONG lFlag One of the Grid Style Flags.

Title Attribute
A character string to be used in the Grid window caption if it is displayed

Usage

C
SendMessage(hWnd, HGM_GETTITLE, wCount, (LPARAM)lpBuf);
SendMessage(hWnd, HGM_SETTITLE, 0, (LPARAM)lpTitle);

C++
[CHGridObj.]GetTitle(wCount, lpBuf);
[CHGridObj.]SetTitle(lpTitle);

VBX
[form.][control.]Caption[= stringexpression]
See Visual Basic Language Reference, "Caption Property"

Arguments/Parameters
WORD wCount The number of characters to copy to or from lpBuf
LPSTR lpBuf A buffer to hold the Title
LPSTR lpTitle The new Title string

VScroll Attribute
When VScroll is set, which it is by default, a vertical scrollbar will appear whenever the
total height of the records exceeds that of the Grid's display area.

Usage

C/C++
Window Style:    WS_VSCROLL

VBX
[form.][control.]VScroll[= TRUE/FALSE]

Remarks
The VScroll attribute can only be set at design time.

VScrollPos Attribute
The vertical scroll position of the Grid within its scroll range.    The range is equal to the
number of records that must be scrolled off the display area in order to make the bottom
record completely visible.

Usage

C
iVScroll = (int)SendMessage(hWnd, HGM_GETVSCROLLPOS, 0, 0L);
SendMessage(hWnd, HGM_SETVSCROLLPOS, 0, (LPARAM)iNewVScroll);

C++
iVScroll = [CHGridObj.]GetVScrollPos();
[CHGridObj.]SetVScrollPos(iNewVScroll);

VBX
[form.][control.]VScrollPos[= iNewVScroll]

Arguments/Parameters
int iNewVScroll The new vertical scroll position

Return values
int iVScroll The current vertical scroll position

WholeRows Attribute
When WholeRows is set, selecting an individual cell sets the selection to the entire row.

Usage

C
Window Style:    HGS_WHOLEROWS
iSelected = SendMessage(hWnd, HGM_GETSELCOUNT, 0, 0L);
SendMessage(hWnd, HGM_GETSELROWS,iBufSize, lpBuffer);
SendMessage(hWnd, HGRM_ISSELECTED, iRow, 0L);
SendMessage(hWnd, HGM_SELECTROW, iRow, 0L);

C++
Window Style:    HGS_WHOLEROWS
iSelected = [CHGridObj.]GetSelCount();
[CHGridObj.]GetSelRows(iBufSize, lpBuffer);
[CHGridObj.]IsSelected(iRow);
[CHGridObj.]SelectRow(iRow);

VBX
[form.][control.]WholeRows
[form.][control.]RowSelected(iRow)[= boolean]

Arguments/Parameters
int iBufSize The size in bytes of lpBuffer
int far *lpBuffer An array of integers to hold selected row

information.
int iRow The row index.

Return values
int iSelected The number of selected rows.

Remarks
WholeRow selection mode also supports selection of discontiguous ranges of rows.
Holding down the Ctrl key while clicking or dragging with the mouse selects
additional rows or ranges of rows without deselecting previously selected ones. Note: 
This feature is new as of version 2.01.    Old applications using WholeRows selection
can no longer use the selection anchor and selection extent to determine the
currently selected rows.    This will now only return the last contiguous range
selected.    The messages and methods listed in this topic will allow the selection to
be checked and changed

See Also
SingleSelect

FldCodeClass Attribute
One of the data classes defined in the Data Engine chapter

Usage

C
cCodeClass = (char)SendMessage(hWnd, HGFM_GETCODECLASS, iFld, 0L);

C++
cCodeClass = [CHGridObj.]GetCodeClass(iFld);

VBX
[form.][control.]FldCodeClass(iFld)

Arguments/Parameters
int iFld The field index

Return values
char cCodeClass One of the data class character codes

Remarks
The FldCodeClass attribute can only be set at design time.    Control over this attribute is provided
by the control design dialogs in Dialog Editor and Resource Workshop, HGEdit, and the
Properties dialog in Visual Basic.    When creating fields dynamically in C and C++ using the
CreateField method, the DataClass is included as an argument.

See Also
FldCodeType

FldCodeType Attribute
One of the data types defined in the DataEngine chapter.

Usage

C
cCodeType = (char)SendMessage(hWnd, HGFM_GETCODETYPE, iFld, 0L);

C++
cCodeType = [CHGridObj.]GetCodeType(iFld);

VBX
[form.][control.]FldCodeType(iFld)

Arguments/Parameters
int iFld The field index

Return values
char cCodeType One of the data type character codes

See Also
FldCodeClass, FldDataSize

FldColWidth Attribute
The width of the field column in the Grid

Usage

C
iWidth = (int)SendMessage(hWnd, HGFM_GETCOLWIDTH, (WPARAM)iFld, 0L);
SendMessage(hWnd, HGFM_SETCOLWIDTH, (WPARAM)iFld, (LPARAM)iNewWidth);

C++
iWidth = [CHGridObj.]GetColWidth(iFld);
[CHGridObj.]SetColWidth(iFld, iNewWidth);

VBX
[form.][control.]FldColWidth(iFld)[= iWidth]

Arguments/Parameters
int iFld The field index
int iNewWidth The new FldColWidth value

Return values
int iWidth The current FldColWidth value

See Also
FldDropHeight

FldCtlStyle Attribute
The style bits for a given field's control

Usage

C
lCtlStyle = SendMessage(hWnd, HGFM_GETCTLSTYLE, (WPARAM)iFld, 0L);

C++
lCtlStyle = [CHGridObj.]GetCtlStyle(iFld)

VBX
Not Used

Arguments/Parameters
int iFld The field index of the field

Return values
LONG lCtlStyle The style bits set for

See Also
CreateField

FldCtlType Attribute
The type of control (Edit, List, etc.) responsible for handling interaction for a given field

Usage

C
cCtlType = SendMessage(hWnd, HGFM_GETCTLTYPE, (WPARAM)iFld, 0L);

C++
cCtlType = [CHGridObj.]GetCtlType(iFld)

VBX
[CHGridObj.]FldCtlType

Arguments/Parameters
int iFld The field index of the field

Return values
char cCtlType One of the control type constants

See Also
CreateField

FldDataClass Attribute
One of the data classes defined in the Data Engine chapter.

Usage

C
cFldDataClass = (char)SendMessage(hWnd, HGFM_GETDATACLASS, iFld, 0L);

C++
cFldDataClass = [CHGridObj.]GetDataClass(iFld);

VBX
[form.][control.]DataClass

Arguments/Parameters
int iFld The field index of the field

Return values
char cDataClass One of the data class character codes

Remarks
The FldDataClass attribute is read-only at run time.    Control over this attribute is
provided by the control design dialogs in Dialog Editor and Resource Workshop,
HGEdit, and by the Properties dialog in Visual Basic.    When creating fields
dynamically in C and C++ using the CreateField method, the DataClass is included as
and argument.

See Also
FldDataType

FldDataSize Attribute
The size of the data for a field in bytes.    This is may be the size of the Codes for a ListBox
or DropList field that employs Codes.

Usage

C
iSize = (int)SendMessage(hWnd, HGFM_GETDATASIZE, iFld, 0L);

C++
iSize = [CHGridObj.]GetDataSize(iFld);

VBX
[form.][control.]FldDataSize(iFld)

Arguments/Parameters
int iFld The field index of the field

Return values
int iSize The size of the data in bytes.

FldDataType Attribute
One of the data types defined in the DataEngine chapter.

Usage

C
cDataType = (char)SendMessage(hWnd, HGFM_GETDATATYPE, iFld, 0L);

C++
cDataType = [CHGridObj.]GetDataType(iFld);

VBX
[form.][control.]FldDataType(iFld)

Arguments/Parameters
int iFld The field index

Return values
char cDataType One of the data type character codes

See Also
FldDataClass, FldDataSize

FldDropHeight Attribute
The height of a ComboBox field's drop-down list box

Usage

C
wHeight = (WORD)SendMessage(hWnd, HGFM_GETDROPHEIGHT, iFld, 0L);
SendMessage(hWnd, HGFM_SETDROPHEIGHT, iFld, (LPARAM)wNewHeight);

C++
wHeight = [CHGridObj.]GetDropHeight(iFld);
[CHGridObj.]SetDropHeight(iFld);

VBX
[form.][control.]FldDropHeight(iFld)

Arguments/Parameters
int iFld The field index of the field
WORD wNewHeight The new value for FldDropHeight

Return values
WORD wHeight The current FldDropHeight value

See Also
FldCtlType

FldFormat Attribute
A NULL-terminated character string that describes the way the Data is to be displayed

Usage

C
lBytesCopied = SendMessage(hWnd, HGFM_GETFORMAT, (WPARAM)iFld,
(LPARAM)lpszFormat);

C++
lBytesCopied = [CHGridObj.]GetFormat(iFld, lpszFormat);

VBX
[form.][control.]FldFormat[= iFld]

Arguments/Parameters
int iFld The field index
LPSTR lpszFormat A pointer to a buffer for the FldFormat string

Return values
int iCopied The number of bytes actually copied to or from the buffer

Remarks
An initial format string for fields created dynamically using CreateField is passed as an argument.

FldFormatLen Attribute
The length in characters of a Field's format string

Usage

C
wFormatLen = (WORD)SendMessage(hWnd, HGFM_GETFORMATLEN, iFld, 0L);

C++
wFormatLen = [CHGridObj.]GetFormatLen(iFld);

VBX
Len([form.][control.]FldFormat(iFld))

Arguments/Parameters
int iFld The field index of the field

Return values
WORD wFormatLen The value of FldFormatLen at iFld

See Also
FldFormat

FldName Attribute
A character string associated with a field that is displayed in a ColButton and can be used
to locate a field in the Grid

Usage

C
bSuccess = (int)SendMessage(hWnd, HGFM_GETNAME, iFld, lpszName);
bSuccess = (int)SendMessage(hWnd, HGFM_SETNAME, iFld, lpszName);

C++
bSuccess = [CHGridObj.]GetName(iFld, lpszName);
bSuccess = [CHGridObj.]SetName(iFld, lpszName);

VBX
[form.][control.]FldName(iFld) [= lpszName]

Arguments/Parameters
int iFld The field index of the field
LPSTR lpszName A pointer to a buffer to hold the field name, or a

pointer to the buffer that contains the new field
name.

Return values
BOOL bSuccess TRUE if name of iFld was retrieved or set

successfully.

See Also
FldNameLen, FindFld

FldNameLen Attribute
The length, in characters, of a field's FldName attribute

Usage

C
iNameLen = SendMessage(hWnd, HGFM_GETNAMELEN, (WPARAM)iFld, 0L);

C++
iNameLen = [CHGridObj.]GetNameLen(iFld)

VBX
Len ([form.][control.]FldName(iFld))

Arguments/Parameters
int iFld The field index

Return values
int iNameLen The length of FldName for iFld

See Also
FldName

FldOffset Attribute
The byte offset into the record data structure for a field's data

Usage

C
iOffset = SendMessage(hWnd, HGFM_GETOFFSET, (WPARAM)iFld, 0L);

C++
iOffset = [CHGridObj.]GetOffset(iFld);

VBX
Not Used

Arguments/Parameters
int iFld The field index of the field

Return values
int iOffset The value of FldOffset for iFld

FldState Attribute
A collection of flags describing the state of each field

Usage

C
wState = SendMessage(hWnd, HGFM_GETSTATE, iFld, 0L);
SendMessage(hWnd, HGFM_SETSTATE, iFld, MAKELONG(bValue, wStateFlag));

C++
wState = [CHGridObj.]GetFldState(iFld);
[CHGridObj.]SetFldState(iFld, wStateFlag, bValue);

VBX
[form.][control.]FldBrowse(iFld)[= boolean]
[form.][control.]FldHidden(iFld)[= boolean]

Arguments/Parameters
int iFld The field index
BOOL bValue The value to set for the flag indicated by

wStateFlag
WORD wStateFlag On of the Field state flag constants

Return values
WORD wState The current State flags.    Individual flag settings

can be obtained by AND'ing lState with a state
flag constant

FldWindow Attribute
The window handle of an Edit Control, List, Combo Box, or Check Box that is responsible
for handling user interaction and displaying data within a given Grid field

Usage

C
hwControl = (HWND)SendMessage(hWnd, HGFM_GETHCTL, iFld, 0L);

C++
OWL
hwControl = [CHGridObj.]GetHCtl(iFld);
MFC
pControl = [CHGridObj.]GetHCtl(iFld);

VBX
[form.][control.]FldHWnd(iFld)

Arguments/Parameters
int iFld A field index

Return values
HWND hwControl A window handle for the field's control
CWnd *pControl Pointer to a temporary CWnd-derived object

corresponding to the field control type.    Must be
cast to the correct object class

Remarks
Applications can often implement customized Grid behavior by sending messages
directly to field controls.

RecData Attribute
A Record data structure with an element for each field

Usage

C
bSuccess = SendMessage(hWnd, HGRM_GETDATA, wRowIndex,
(LPARAM)lpRecStruct);
bSuccess = SendMessage(hWnd, HGRM_SETDATA, wRowIndex,
(LPARAM)lpRecStruct);

C++
bSuccess = [CHGridObj.]GetData(wRowIndex, lpRecStruct);
bSuccess = [CHGridObj.]SetData(wRowIndex, lpRecStruct);

VBX
Not Used - see CellData

Arguments/Parameters
WORD wRowIndex The row at which to set the RecData
void FAR *lpRecStruct A pointer to a record data structure

Return values
BOOL bSuccess TRUE if the RecodData was retrieved or set

successfully.

Remarks
The Visual Basic interface does not allow access to the RecData attribute directly.   
Users of the VBX WinWidgets can get and set data at individual cells by setting the
CurrentRow and CurrentColumn and getting or setting the Text property.    Users of
Visual Basic 3.0 can alternately make use of the Grid's data awareness features to
get and set data.

See Also
RecLink

RecLink Attribute
A pointer to a buffer which will be updated with the current contents of the currently
selected record

Usage

C
lpLink = (void FAR *)SendMessage(hWnd, HGRM_GETLINK, 0, 0L);
bSucess = (BOOL)SendMessage(hWnd, HGRM_SETLINK, 0, (LPARAM)lpBuf);

C++
lpLink = [CHGridObj.]GetRecLink();
bSucess = [CHGridObj.]SetRecLink(lpBuf);

VBX
Not Used

Arguments/Parameters
void FAR *lpBuf A pointer to a buffer to which the control will copy

the contents of the currently selected Record, or
NULL to break an existing RecordLink.

Return values
void FAR *lpLink The current RecordLink or NULL if no link exists
BOOL bSuccess TRUE if the RecordLink was installed successfully

See Also
RecData, RecordStructures

RecSize Attribute
The size in bytes of a record data structure.

Usage

C
wRecSize = (WORD)SendMessage(hWnd, HGRM_GETSIZE, 0, 0L);

C++
wRecSize = [CHGridObj.]GetRecSize();

VBX
Not Used

Return values
WORD wRecSize The current RecSize value

RecState Attribute
A collection of flags describing the state of each record

Usage

C
wState = SendMessage(hWnd, HGRM_GETSTATE, wRowIndex, 0L);
SendMessage(hWnd, HGRM_SETSTATE, wRowIndex, MAKELONG(bValue,
wStateFlag));

C++
wState = [CHGridObj.]GetRecState(wRowIndex);
[CHGridObj.]SetRecState(wRowIndex, wStateFlag, bValue);

VBX
[form.][control.]RecChanged(iRow)[= boolean]
indicates that some portion of the record's data has been altered
[form.][control.]RecBrowse(iRow)[= boolean]
indicates that the record may not be edited by the user
[form.][control.]RecNew(iRow)[= boolean]
indicates that the record was added via the keyboard insertion or via auto-extension

Arguments/Parameters
WORD wIndex The row index of the record
BOOL bValue The value to set for the flag indicated by

wStateFlag
WORD wStateFlag One of the Record state flag constants

Return values
WORD wState The current State flags.    Individual flag settings

can be obtained by AND'ing lState with a state
flag constant

CellData Attribute
Data associated with a given cell of the Grid of a type defined in the DataEngine chapter

Usage

C
bSuccess = HGGetCellData(hWnd, iCol, iRow, lpData);
bSuccess = HGSetCellData(hWnd, iCol, iRow, lpData);
bSuccess = HGSetCellString(hWnd, iCol, iRow,
lpszStr);

C++
bSuccess = GetCellData(iCol, iRow, lpData);
bSuccess = SetCellData(iCol, iRow, lpData);
bSuccess = SetCellString(iCol, iRow, lpszStr);

VBX
[form.][control.]Data[= lpszStr]

Arguments/Parameters
int iCol The column index of the cell
int iRow The row index of the cell
void FAR *lpData A pointer to the data
LPSTR lpszStr A pointer to a string used to be copied to a string

field cell.

Return values
BOOL bSuccess TRUE if the CellData was retrieved or set correctly

Remarks
The SetCellString methods set the data for a cell in a string field, using a null-
terminated strcpy() rather than the fixed-length memcpy() of HGSetCellData.
The Col and Row properties in the VBX grid are used to select Grid coordinates at
which the CellText attribute is to be set.

See Also
RecData

CellText Attribute
The formatted text for a given cell of the Grid

Usage

C
bSuccess = HGGetCellText(hWnd, iCol, iRow, lpText, iMax);

C++
bSuccess = GetCellText(iCol, iRow, lpText, iMax);

VBX
Not Used

Arguments/Parameters
int iCol The Col index of the cell
int iRow The row index of the cell
LPSTR lpText A pointer to a buffer for the CellText
int iMax The maximum number of characters to copy to

lpText

Return values
BOOL bSuccess TRUE if the CellData was retrieved correctly

See Also
CellData

HGrid Methods
AddFld FindFld MoveRec
AddRec FldToCol OffsetPtr
ColToFld GetCurRec RecToRow
CreateField InsertFld Reset
DeleteFld InsertRec RowToRec
DeleteRec Invalidate Update
DestroyField MoveCol

HGrid Record Management
AddRec MoveRec
DeleteRec RecToRow
GetCurRec Reset
InsertRec RowToRec
Invalidate Update

HGrid Field Management
AddFld FindFld
ColToFld FldToCol
CreateField InsertFld
DeleteFld MoveCol
DestroyField

AddFld Method
Appends a new Field to the Grid

Usage

C
iFld = (int)SendMessage(hWnd, HGM_ADDFLD, 0, hFld);

C++
iFld = [CHGridObj.]AddFld(hFld);

VBX
iFld = VGAddFld([control.]hWnd, hFld)

Arguments/Parameters
HFLD hFld The 32-bit handle of a field structure returned by

the CreateField method

Return values

Remarks
A field must be created with the CreateField method. Once added, however, the Field
will be destroyed automatically by the control.

Examples

See Also
DeleteFld, CreateField, InsertFld

AddRec Method
Appends a new Record to the Grid's RecordList, allocates space for the RecData and,
optionally, sets the Record's data.

Usage

C
iRows = (int)SendMessage(hWnd, HGM_ADDREC, 0, lpRecData);

C++
iRows = [CHGridObj.]AddRec([lpRecData = NULL])

VBX
[form.][control.]Records[= iRecords]

Arguments/Parameters
void FAR *lpRecData A pointer to a filled record data structure for

initializing the new record or NULL
int iRecords The desired number of rows in the grid; rows will

be appended or deleted as necessary

Return values
int iRows The number of rows in the Grid

Remarks
After adding records to the Grid, it is necessary to call the Update method to properly
update the display and scroll ranges.
Adding records in Visual Basic only add a blank record, which can then be initialized
by setting the Data property.

See Also
DeleteRec, InsertRec

ColToFld Method
Translates from Column index to Field index, which can be different if a ColMap is used

Usage

C
iField = HGColToFld(hWnd, iCol);

C++
iField = [CHGridObj.]ColToFld(iCol);

VBX
iField = VGColToFld([control.]hWnd, iCol);

Arguments/Parameters
int iCol The column index to be converted

Return values
int iField The converted field index

Remarks
Column indices are positions in the displayed grid; Field indices are positions in the
Grid data structure.    Hidden columns retain a column index indicating the position
they at which they would appear if shown.

See Also
ColMap, FldToCol, RecToRow, RowToRec

CreateField Method
Creates a new Field dynamically, which must be added or inserted into the Grid

Usage

C
hFld = HGFieldCreate(lpName, wState, iColWidth, iDropHeight, cDataClass,
cDataType, cCodeClass, cCodeType, iSize, cCtlType, lCtlStyle, lpFmt);

C++
[CHGridObj.]FieldCreate(lpName, wState, iColWidth, iDropHeight,
cDataClass, cDataType, cCodeClass, cCodeType, iSize, cCtlType,
lCtlStyle, lpFmt);

VBX
hFld = VGFieldCreate(lpName, wState, iColWidth, iDropHeight, iDataClass,
iDataType, iCodeClass, iCodeType, iSize, iCtlType, lCtlStyle, lpFmt)

Arguments/Parameters
LPSTR lpName The FldName of the field to be created
WORD wState The FldState of the field to be created
int iColWidth The ColWidth of the field to be created
int iDropHeight The DropHeight of the field if it is a DropDown or

ComboBox field
char cDataClass One of the data class character codes
char cDataType One of the data type character codes
char cCodeClass One of the data class character codes (ListBox and

DropDown fields only)
char cCodeType One of the data type character codes (ListBox and

DropDown fields only)
int iSize The size in bytes of the Data stored in the grid for

each cell in this Field.    This parameter is only
used for string types; for other types, the size is
predefined.    For list Fields that use Codes to
determine the list selection, the iSize is the size
of each Code item.

char cCtlType One of the control type constants
LONG lCtlStyle A collection of valid style flags for the fields

control type.
LPSTR lpFmt A FldFormat for the field to be created

Return values
HFLD hFld A 32-bit handle to a field data structure or NULL if

the field could not be created

Remarks
Creating fields dynamically is used when field attributes can only be determined at
run time.    If the programmer wishes to conditionally display one or more of a fixed

set of fields with known attributes, it may be easier to specify all of the fields in the
Grid Resource and hide the ones that are not to be displayed.
Dynamically created fields must be explicitly added or inserted into the Grid.    They
must also be destroyed by the programmer using the DestroyField method.

DeleteFld Method
Deletes a Field from the Grid

Usage

C
bSuccess = (BOOL)SendMessage(hWnd, HGM_DELETEFLD, iCol, 0L);

C++
bSuccess = [CHGridObj.]DeleteFld(iCol);

VBX
bSuccess = VGDeleteFld([control.]hWnd, iCol)

Arguments/Parameters
int iCol The column index of the field to delete

Return values
BOOL bSuccess TRUE if the field was deleted successfully

See Also
AddFld, InsertFld

DeleteRec Method
Removes a record from the Grid

Usage

C
bSuccess = (BOOL)SendMessage(hWnd, HGM_DELETEREC, (WPARAM)iRow, 0L);

C++
bSuccess = [CHGridObj.]DeleteRec(iRow);

VBX
bSuccess = VGDeleteRec([control.]hWnd, iRow)

Arguments/Parameters
int iRow The row index of the record to be deleted

Return values
BOOL bSuccess TRUE if the record was deleted successfully

Remarks
After removing records from the Grid, it is necessary to call the Update method to
properly update the display and scroll ranges.

See Also
AddRec, InsertRec

DestroyField Method
Destroys a field created with the CreateField method

Usage

C
bSuccess = HGFieldDestroy(hFld);

C++
bSuccess = FieldDestroy(hFld);

VBX
bSuccess = VGFieldDestroy(hFld)

Arguments/Parameters
HFLD hFld The 32-bit handle of a field structure returned by

the CreateField method

Return values
BOOL bSuccess TRUE if the field has been destroyed successfully

Remarks
Programmers should only destroy fields that are
1) created dynamically using the CreateField method.   
and
2) not present in the Grid when it is destroyed.
Field's that are specified in the Grid Resource are created automatically when the
Grid is initialized, these fields will be destroyed automatically when the Grid is
destroyed.    Fields created with CreateField that are inserted or added into the grid
will also be automatically destroyed when the Grid is destroyed.

See Also
CreateField

FindFld Method
Gets the column position of a field given the FldName

Usage

C
iCol = (int)SendMessage(hWnd, HGM_FINDFLD, 0, (DWORD)lpFldName);

C++
iCol = FindFld(lpFldName);

VBX
iCol = VGFindFld([control.]hWnd, lpFldName)

Arguments/Parameters
LPSTR lpFldName The FldName text string of the field to be located

Return values
int iCol The column index of the field or

HGERR_NOTFOUND

FldToCol Method
Translates from Field index to Column index, which can be different if a ColMap is used

Usage

C
iCol = HGFldToCol(hWnd, iField);

C++
iCol = [CHGridObj.]FldToCol(iField);

VBX
iCol = VGFldToCol([control.]hWnd, iField)

Arguments/Parameters
int iField The column index to be converted

Return values
int iCol The converted field index

Remarks
Column indices are positions in the displayed grid; Field indices are positions in the
Grid data structure.    Hidden columns retain a column index indicating the position
they at which they would appear if shown.

See Also
ColMap, ColToFld, RecToRow, RowToRec

GetCurRec Method
Retrieves the RecData of the currently selected record

Usage

C
bSuccess = (BOOL)SendMessage(hWnd, HGM_GETCURREC, 0, lpRecData);

C++
bSuccess = [CHGridObj.]GetCurRec(lpRecData);

VBX
Not Used

Arguments/Parameters
void FAR *lpRecData A pointer to a record data structure to which the

records data will be copied

Return values
BOOL bSuccess TRUE if the RecData was retrieved successfully

InsertFld Method
Inserts a field at a given position in the Grid

Usage

C
iFld = (int)SendMessage(hWnd, HGM_INSERTFLD, iAtIndex, hFld);

C++
iFld = [CHGridObj.]InsertFld(iAtIndex, hFld);

VBX
iFld = VGInsertFld([control.]hWnd, iAtIndex, hFld)

Arguments/Parameters
int iAtIndex The field index at which to insert the field
HFLD hFld The 32-bit handle of a field structure returned by

the CreateField method

Return values
int iFld The column index of the inserted field

Remarks
Programmers using the DragCols attribute should be aware of the differences
between field index and column index when inserting fields, as discussed in the
ColMap attribute section.    The field is inserted at a column index equal to iAtIndex
and must be moved to a desired column position using the MoveCol method.

InsertRec Method
Inserts a new Record into the Grid's RecordList, allocates space for the RecData and,
optionally, sets the RecData

Usage

C
iRow = (int)SendMessage(hWnd, HGM_INSERTREC, (WPARAM)iAtRow,
(LPARAM)lpRecData);

C++
iRow = [CHGridObj.]InsertRec(iAtRow[, lpRecData = NULL]);

VBX
iRow = VGInsertRec([control.]hWnd, iAtRow)

Arguments/Parameters
int iAtRow The row index at which to insert a record
void FAR *lpRecData A pointer to a filled record data structure for

initializing the new record or NULL

Return values
int iRow The row index of the inserted record

Remarks
After adding records to the Grid, it is necessary to call the Update method to properly
update the display and scroll ranges.
The Visual Basic method, HGInsertRec, can only insert a blank record that can then
be initialized by setting the Data property.

See Also
AddRec, DeleteRec

Invalidate Method
Invalidates individual cells or a range of cells in the Grid

Usage

C
bSuccess = HGridInvalidateCell(hWnd, iCol1, iRow1);
bSuccess = HGridInvalidateRange(hWnd, iCol1, iRow1, iCol2, iRow2);

C++
bSuccess = [CHGridObj.]InvalidateCell (iCol1, iRow1);
bSuccess = [CHGridObj.]InvalidateRange(iCol1, iRow1, iCol2, iRow);

VBX
bSuccess = VGInvalidateCell ([control.]hWnd, iCol1, iRow1)
bSuccess = VGInvalidateRange(hWnd, iCol1, iRow1, iCol2, iRow)

Arguments/Parameters
int iCol1, iRow1, iCol2, iRow2 Specify a cell's coordinates or a range of

cells bordered by two sets of corrdinates

Return values
BOOL bSuccess TRUE if the region was invalidated correctly

Remarks
The invalidated region is repainted when the Grid recieves a WM_PAINT message.

MoveCol Method
Moves a column to a different position in the Grid

Usage

C
iNewIndex = (int)SendMessage(hWnd, HGM_MOVECOL, (WPARAM)iFrom,
(LPARAM)iTo);

C++
iNewIndex = [CHGridObj.]MoveCol(iFrom, iTo);

VBX
iNewIndex = VGMoveCol([control.]hWnd, iFrom, iTo)

Arguments/Parameters
int iFrom The column index of the field to be moved
int iTo The desired destination column index

Return values
int iNewIndex The actual column index of the moved field

Remarks
If the DragCols attribute is set, moving a field only affects its column position, not its
data's position in the record data structure.    Otherwise, the data is move within the
record to match the displayed field order.

MoveRow Method
Moves a record to a different row in the Grid

Usage

C
iRow = (int)SendMessage(hWnd, HGM_MOVEROW, (WPARAM)iFrom, (LPARAM)iTo);

C++
iRow = [CHGridObj.]MoveRow(iFrom, iTo);

VBX
iRow = VGMoveRow([control.]hWnd, iFrom, iTo)

Arguments/Parameters
int iFrom The row index of the record to be moved
int iTo The desired destination row index

Return values
iRow The row index of the moved record

Remarks
Other records will be shifted either up or down by this action depending on the
relationship between the original and new record positions.

OffsetPtr Method
Obtains a pointer into the record data structure for a field in a record data structure, given
a column index

Usage

C
lpCellData = HGOffsetPtr(hWnd, iCol, lpRecData)

C++
lpCellData = [CHGridObj.]OffsetPtr(iCol, lpRecData)

VBX
Not Used

Arguments/Parameters
int iCol The column index of the field
void FAR *lpRecData A pointer to a record data strucure

Return values
void FAR *lpCellData A pointer to a field within the record data

structure

See Also
ColToFld, RecData

RecToRow Method
Returns a Row index given a record number

Usage

C
iRow = HGRecToRow(hWnd, lRecNum);

C++
iRow = [CHGridObj.]RecToRow(lRecNum);

VBX
iRow = VGRecToRow([control.]hWnd, lRecNum)

Arguments/Parameters
long lRecNum The record number to be converted

Return values
int iRow The converted row index or -1 if the record is not

currently in the buffer.

Remarks
Row indices are row positions in the displayed grid, ranging from 0 to BufferSize if
buffering is used.    Record numbers are positions in the entire virtual record space.   
They range from 0 to MaxRec.

See Also
ColMap, ColToFld, FldToCol, RowToRec

Reset Method
Empties the Grid of all RecData

Usage

C
SendMessage(hWnd, HGM_RESETCONTENT, (WPARAM)bRedraw, 0L);

C++
[CHGridObj.]ResetContent([bRedraw = TRUE]);

VBX
[control.]Clear

Arguments/Parameters
BOOL bRedraw TRUE forces an immediate update

Remarks
The field/column structure of the Grid is preserved by this operaton.

RowToRec Method
Returns a record number given a Row Index

Usage

C
lRecNum = HGRowToRec(hWnd, iRow);

C++
lRecNum = [CHGridObj.]RowToRec(iRow);

VBX
lRecNum = VGRowToRec([control.]hWnd, iRow)

Arguments/Parameters
int iRow The converted row index or -1 if the record is not

currently in the buffer.

Return values
long lRecNum The record number to be converted

Remarks
Row indices are row positions in the displayed grid, ranging from 0 to BufferSize if
buffering is used.    Record numbers are positions in the entire virtual record space.   
They range from 0 to MaxRec.

See Also
ColMap, ColToFld, FldToCol, RecToRow

Update Method
Forces the Grid to redraw itself based on changed data, updating scrollbars, column widths
and row height

Usage

C
SendMessage(hWnd, HGM_UPDATE, (WPARAM)bErase, 0L);

C++
[CHGridObj.]Update(bErase);

VBX
[control.]Refresh

Arguments/Parameters
BOOL bErase TRUE causes the Grid to erase its background

before repainting.

Remarks
In the experience of our technical support staff, failure to update a grid is one of the
most common sources of confusion.    When adding records to the grid using the
AddRec method, for example, a vertical scrollbar will not automatically appear when
there are more records than the Grid can display.    Calling Update in this case will
force the Grid to recalculate its display settings and create the scroll bar if it is
needed.    In general, whenever the Grid's structure is modified through code (as
opposed to user interaction), the Update method should be called to ensure that the
displayed Grid accurately reflects the changes.    The Grid does not update
automatically when modified through code, which allows the programmer to make
many modifications and have them take effect in a single repainting of the Grid.

HGrid Events
Bottom KillFocus SelChanging
ColMoved RecChanged SelExtending
ColSized RecDelete SetFocus
Destroy RecNew SpaceError
DoubleClick RecSwitch Top
HScroll RowSized VScroll
Initialize SelChange

Bottom Event
The user has attempted to scroll off the bottom of the table.

Usage

C/C++
Notification code: HGN_BOTTOM

VBX
Sub ctlname_Bottom()

ColMoved Event
The user has dragged a column in the Grid to a new location

Usage

C/C++
Notification code: HGN_COLMOVED

VBX
Sub ctlname_ColMoved()

ColSized Event
The user has resized a column in the Grid

Usage

C/C++
Notification code: HGN_COLSIZED

VBX
Sub ctlname_ColSized()

Destroy Event
The control is about to be destroyed

Usage

C/C++
Notification code: HGN_DESTROY

VBX
Sub ctlname_Destroy()

DoubleClick Event
The user has double-clicked on an cell

Usage

C/C++
Notification code: HGN_DBLCLK

VBX
Sub ctlname_DblClick()

HScroll Event
The user has scrolled the grid horizontally

Usage

C/C++
Notification code: HGN_HSCROLL

VBX
Sub ctlname_HScroll()

Initialize Event
Occurs just prior to the control loading data from the DataSource, if one is specified.   
Allows fields to be initialized before the data is loaded.

Usage

C/C++
Not used.

VBX
Sub ctlname_Initialize()

KillFocus Event
The control has lost input focus

Usage

C/C++
Notification code: HGN_KILLFOCUS

VBX
Sub ctlname_KillFocus()

RecChanged Event
The contents of a record have changed

Usage

C/C++
Notification code: HGN_RECCHANGED

VBX
Sub ctlname_RecChanged()

Remarks
The SelectionExtent gives the row index of the record

RecDelete Event
A record is about to be deleted

Usage

C/C++
Notification code: HGN_RECDELETE

VBX
Sub ctlname_RecDelete()

Remarks
The SelectionExtent gives the row index of the record to be deleted

RecNew Event
A new record was inserted

Usage

C/C++
Notification code: HGN_RECNEW

VBX
Sub ctlname_RecNew()

Remarks
The SelectionExtent gives the row index of the new record

RecSwitch Event
The selection has been moved to a different record.

Usage

C/C++
Notification code: HGN_RECSWITCH

VBX
Sub ctlname_RecSwitch()

Remarks
The SelectionExtent gives the row index of the new record

RowSized Event
The user has resized the rows of the Grid

Usage

C/C++
Notification code: HGN_ROWSIZED

VBX
Sub ctlname_RowSized()

SelChange Event
The Selection has changed.

Usage

C/C++
Notification code: HGN_SELCHANGE

VBX
Sub ctlname_SelChange()

SelChanging Event
The user is attempting to move the input focus to another cell location.   

Usage

C/C++
Notification code: HGN_SELCHANGING

VBX
Sub ctlname_SelChanging()

Remarks
The Grid sends this notification before the selection is actually changed.    The Marker
attribute contains the row and column index of the desired new cell location.    The
application can prevent the selection from moving by resetting the Marker while
processing this notification.    The SelectionExtent gives the location of the current
selection.   

See Also
SelExtending

SelExtending Event
The user is attempting to extend the selection.   

Usage

C/C++
Notification code: HGN_SELEXTENDING

VBX
Sub ctlname_SelExtending()

Remarks
The Grid sends this notification before the selection is actually changed.    The Marker
attribute contains the row and column index of the desired new selection extent.   
The application can prevent the selection from moving by resetting the Marker while
processing this notification.    The SelectionExtent gives the location of the current
selection.   

See Also
SelChanging

SetFocus Event
The control has gained the input focus.

Usage

C/C++
Notification code: HGN_SETFOCUS

VBX
Sub ctlname_SetFocus()

SpaceError Event
The control is unable to perform an operation because of memory constraints

Usage

C/C++
Notification code: HGN_ERRSPACE

VBX
Sub ctlname_ErrSpace()

Top Event
The user has attempted to scroll off the top of the table.

Usage

C/C++
Notification code: HGN_TOP

VBX
Sub ctlname_Top()

VScroll Event
The user has scrolled the grid vertically

Usage

C/C++
Notification code: HGN_VSCROLL

VBX
Sub ctlname_VScroll()

Control Type Constants

Control Constant Type of Control
HGCTL_COMBO Combo Box
HGCTL_EDIT Edit Control
HGCTL_LIST List Box
HGCTL_DROP Drop-down List Box
HGCTL_CHECK Check Box

HGrid Field State Flags

Flag Constant Meaning of TRUE value
HGFF_HIDDEN The field is not visible
HGFF_BROWSE The field is not editable
HGFF_USECODE The cell Data corresponds

HGrid State Flags

Flag Constant Meaning of TRUE value
HGF_CHANGED The contents of the

control have been
changed

HGrid Record State Flags

Flag Constant Meaning of TRUE value
HGRF_CHANGED The record was edited
HGRF_NEW The record is user-added

      HGrid Window Text
This sample window text string is expanded below to show the meaning of each
component:

MyGrid

MyGrid The name of the Grid resource (of the type RT_HGRID) from which to
construct the control, or blank to start with an empty Grid.

Field Type Cast CWnd * to
CheckBox CHBCheck *
Combo Box CHComb *
Drop-Down
List

CHComb *

Edit Control CHEdit *
List Box CHList *

HList, The WinWidgets ListBox
      Attributes
      Methods
      Events
HList is a listbox control that displays lists of any type of data supported by the
DataEngine.    Each item in the list may also have an associated Code, which is not
displayed but can be used to select or sort items in the list.    Codes are also a convenient
place to store a pointer to addition item information.
A complete set of methods makes appending, inserting, deleting, selecting and retrieving
items from the list as easy as possible.
HList supports single, multiple and extended selection modes, multiple-column and tab-
expanded display, and sorting by Data or Codes.    HList has standard and 3D border styles
and the ability to highlight itself upon gaining focus, helping users track their position on
forms.

Additional Topics
      Hot-Linking the ListBox to your data
      Using HList with the Visual Basic Data Control
      Using Codes in the ListBox

HList Attributes
Background DataLink SelCount
BorderStyle DataSize Selection
Changed DataType SelectionState
Code Font SelectMode
CodeClass Format SelItems
CodeLink HiliteBrush SortMode
CodeSize HiliteOnFocus State
CodeType Hunger TabStops
ColWidth MultiCol Text
Count NonIntHeight TextColor
Data Quiet TextLen
DataClass RedrawMode TopIndex

Background Attribute
The color or pattern used to paint the background of the edit control

Usage

C
hbrBkgnd = (HBRUSH)SendMessage(hWnd, HLM_GETBKGNDBRUSH, 0, 0L);
hbrOldBkgnd = (HBRUSH)SendMessage(hWnd, HLM_SETBKGNDBRUSH,
(WPARAM)hbrNewBrush, 0L);

C++
OWL
hbrBkgnd = [THListObj.]GetBkgndBrush(void);
hbrOldBkgnd = [THListObj.]SetBkgndBrush(hbrNewBrush);
MFC
pBkgnd = [CHListObj.]GetBkgndBrush(void);
pOldBkgnd = [CHListObj.]SetBkgndBrush(pNewBrush);

VBX
[form.][control.]BackColor[= color]
See Visual Basic Language Reference, "BackColor, ForeColor Properties"

Arguments/Parameters
HBRUSH hbrNewBrush Handle of a new brush to be set as the

background brush
CBrush pNewBrush Pointer to a CBrush object containing the new

background brush handle

Return values

HBRUSH hbrBkgnd Handle to the current background brush
HBRUSH hbrOldBkgnd Handle to the previous background brush
CBrush *pBkgnd Pointer to a CBrush object containing the current

background brush handle
CBrush *pOldBkgnd Pointer to a CBrush object containing the previous

background brush handle

Remarks
C and C++ applications are responsible for destroying any brushes they create.

BorderStyle Attribute
HList supports four different border styles: none, standard, indented and extruded.

Usage

C/C++
Window Styles:
HLS_BORDER3D
HLS_INDENT
HLS_EXTRUDE

VBX
[form.][control.]BorderStyle[= None/Standard/Indented/Bump]

Remarks
The BorderStyle attribute can only be set at design time.

Changed Attribute
A boolean value indicating if the Data has been changed since it was last set

Usage

C
bChanged = (BOOL)SendMessage(hWnd, HLM_HASCHANGED, 0, 0L);
SendMessage(hWnd, HLM_SETCHANGED, bVal, 0L);

C++
bChanged = [CHListObj.]HasChanged();
[CHListObj.]SetChanged(bVal);

VBX
Not Used

Agruments/Parameters
BOOL bVal The new value for the Changed attribute

Return Value
BOOL bChanged TRUE if the Data has been changed since it was

last set

See Also
Change event

Code Attribute
The native (binary) data maintained but not displayed by the control for each item in the
List

Usage

C
bSuccess = SendMessage(hWnd, HLM_GETCODE, (WPARAM)iIndex,
(LPARAM)lpCode);
bSuccess = HLGetCode(hWnd, iIndex, lpCode);
bSuccess = SendMessage(hWnd, HLM_SETCODE, (WPARAM)iIndex,
(LPARAM)lpCode);
bSuccess = HLSetCode(hWnd, iIndex, lpCode);
Get the code of item for the current Selection
iBytesCopied = (int)SendMessage(hWnd, HLM_GETCURCODE, wSize,
(LPARAM)lpBuf);

C++
bSuccess = [CHListObj.]GetCode(iIndex, lpCode);
bSuccess = [CHListObj.]SetCode(iIndex, lpCode);
Get the code of item for the current Selection
iBytesCopied = [CHListObj.]GetCurCode(lpBuf [, wSize = -1]);

VBX
[form.][control.]Code(iIndex)[= stringexpression]
The Code attribute is a string array; iIndex is a required parameter

Arguments/Parameters
int iIndex The index of the item
void FAR *lpCode Pointer to a buffer for the code
WORD wSize Maximum number of bytes to copy (used only for

strings).

Return values
BOOL bSuccess TRUE if the operation is a success
int iBytesCopied Number of bytes copied.

Remarks
The Code attribute for an item cannot be set for a list that is sorted by codes.

See Also
CodeClass, CodeLink, CodeSize, CodeType, Data

CodeClass Attribute
One of the data classes defined in the Data Engine chapter

Usage

C
cCodeClass = (char)SendMessage(hWnd, HLM_GETCODECLASS, 0, 0L);

C++
cCodeClass = [CHListObj.]GetCodeClass();

VBX
[form.][control.]CodeClass

Return values
char cCodeClass One of the data class character codes

Remarks
The CodeClass attribute can only be set at design time.    Control over this attribute is
provided by the control design dialogs in Dialog Editor and Resource Workshop, and
by the Properties dialog in Visual Basic.    When creating windows dynamically in C
and C++, the DataClass is included in the WindowText.

See Also
Code, CodeType

CodeLink Attribute
A pointer to the variable or buffer that will be updated with the new item's code when the
Selection is changed

Usage

C
lpCodeLink = (void FAR *)SendMessage(hWnd, HLM_GETCODELINK, 0, 0L);
lBytesCopied = (LONG)SendMessage(hWnd, HLM_SETCODELINK, (WPARAM)bSelect,
(LPARAM)(LPVOID)lpNewLink);
HLSetCodeLink(hWnd, lpCode, bSelect);

C++
lpCodeLink = [CHListObj.]GetCodeLink();
bSuccess = [CHListObj.]SetCodeLink(lpNewLink [, bSelect = TRUE]);

VBX
Not Used

Arguments/Parameters
void FAR *lpNewLink Pointer to program data
BOOL bSelect If TRUE, selection will be set to match the

contents of lpNewLink

Return values
void FAR *lpCodeLink Pointer to the current CodeLink.    NULL if no

CodeLink has been set.
BOOL bSuccess TRUE if CodeLink was set successfully
LONG lBytesCopied Number of bytes copied.

See Also
Code

CodeSize Attribute
The size of each item's Code in bytes

Usage

C
iCodeSize = SendMessage(hWnd, HLM_GETCODESIZE, (WPARAM)iIndex, 0L);

C++
iCodeSize = [CHListObj.]GetCodeSize([iIndex = -1]);

VBX
Not Used

Arguments/Parameters
int iIndex The index of an item--only necessary with

character string CodeTypes.

Return values
int iCodeSize The size of the Code

Remarks
The CodeSize attribute may be variable only for NULL-terminated strings.

See Also
CodeType

CodeType Attribute
One of the data types defined in the DataEngine chapter

Usage

`C
cCodeType = (char)SendMessage(hWnd, HLM_GETCODETYPE, 0, 0L);

C++
cCodeType = [CHListObj.]GetCodeType();

VBX
[form.][control.]CodeType

Return values
char cCodeType One of the data type character codes

See Also
Code, CodeClass, CodeSize

ColWidth Attribute
The width of columns in a MultiColumn listbox

Usage

C
bSuccess = (BOOL)SendMessage(hWnd, HLM_SETCOLUMNWIDTH, (WPARAM)iWidth,
0L);

C++
bSuccess = [CHListObj.]SetColumnWidth(iWidth);

VBX
[form.][control.]ColumnWidth[= integer]

Arguments/Parameters
int iWidth The new ColumnWidth value

Return values
BOOL bSuccess TRUE if the ColumnWidth was set successfullly

Count Attribute
The number of items in the List

Usage

C
iCount = SendMessage(hWnd, HLM_GETCOUNT, 0, 0L);

C++
iCount = [CHListObj.]GetCount();

VBX
[form.][control.]Count

Return values
int iCount The current number of items in the List

Data Attribute
The native (binary) data maintained and displayed by the control for each item in the List

Usage

C
bSuccess = SendMessage(hWnd, HLM_GETDATA, (WPARAM)iIndex,
(LPARAM)lpData);
bSuccess = HLGetData(hWnd, iIndex, lpData);
Get the data of item at CursorPosition:
iBytesCopied = (int)SendMessage(hWnd, HLM_GETCURDATA, wSize,
(LPARAM)lpBuf);

C++
bSuccess = [CHListObj.]GetData(iIndex, lpData);
Get the data of item at CursorPosition
iBytesCopied = [CHListObj.]GetCurData(lpBuf [, wSize = -1]);

VBX
[form.][control.]Data(iIndex)
The Data attribute is a string array; iIndex is a required parameter

Arguments/Parameters
int iIndex The index of the item
void FAR *lpData Pointer to a buffer for the Data
WORD wSize Maximum number of bytes to copy (used only for

strings).

Return values
BOOL bSuccess TRUE if the operation is a success
int iBytesCopied Number of bytes copied.

See Also
Code, DataClass, DataLink, DataSize, DataType

DataClass Attribute
One of the data classes defined in the Data Engine chapter

Usage

C
cDataClass = (char)SendMessage(hWnd, HLM_GETDATACLASS, 0, 0L);

C++
cDataClass = [CHListObj.]GetDataClass();

VBX
[form.][control.]DataClass

Return values
char cDataClass One of the data class character codes

Remarks
The DataClass attribute can only be set at design time.    Control over this attribute is
provided by the control design dialogs in Dialog Editor and Resource Workshop, and
by the Properties dialog in Visual Basic.    When creating windows dynamically in C
and C++, the DataClass is included in the WindowText.

See Also
Data, DataType

DataLink Attribute
A pointer to the variable or buffer that will be updated with the new item's Data when the
CursorPosition is changed

Usage

C
lpDataLink = (void FAR *)SendMessage(hWnd, HLM_GETDATALINK, 0, 0L);
lBytesCopied = (LONG)SendMessage(hWnd, HLM_SETDATALINK, (WPARAM)bSelect,
(LPARAM)(LPVOID)lpNewLink);
HLSetDataLink(hWnd, lpData, bSelect);

C++
lpDataLink = [CHListObj.]GetDataLink();
bSuccess = [CHListObj.]SetDataLink(lpNewLink [, bSelect = TRUE]);

VBX
Not Used

Arguments/Parameters
void FAR *lpNewLink Pointer to program data
BOOL bSelect If TRUE, selection will be set to match the

contents of lpNewLink

Return values
void FAR *lpDataLink Pointer to the current DataLink.    NULL if no

DataLink has been set.
BOOL bSuccess TRUE if DataLink was set successfully
LONG lBytesCopied Number of bytes copied.

See Also
Data

DataSize Attribute
The size of each item's Data in bytes

Usage

C
iDataSize = SendMessage(hWnd, HLM_GETDATASIZE, (WPARAM)iIndex, 0L);

C++
iDataSize = [CHListObj.]GetDataSize([iIndex = -1]);

VBX
Not Used

Arguments/Parameters
int iIndex The index of an item, only necessary with

character string DataTypes.

Return values
int iDataSize The size of the Data

Remarks
The DataSize attribute may be variable only for NULL-terminated strings.

See Also
DataType

DataType Attribute
One of the data types defined in the DataEngine chapter

Usage

C
cDataType = (char)SendMessage(hWnd, HLM_GETDATATYPE, 0, 0L);

C++
cDataType = [CHListObj.]GetDataType();

VBX
[form.][control.]DataType

Return values
char cDataType One of the data type character codes

See Also
Data, DataClass, DataSize

Font Attribute
The font used by the control

Usage

C
hfFont = (HFONT)SendMessage(hWnd, HLM_GETFONT, 0, 0L);
hfOldFont = SendMessage(hWnd, HLM_SETFONT, (WPARAM)hfNewFont,
(LPARAM)bRedraw);

C++
OWL
hfFont = [THListObj.]GetFont();
hfOldFont[THListObj.]SetFont(hfNewFont [, bRedraw = TRUE]);
MFC
pFont = [CHListObj.]GetFont();
pOldFont[CHListObj.]SetFont(pNewFont [, bRedraw = TRUE]);

VBX
[form.][control.]FontBold[= boolean]
[form.][control.]FontItalic[= boolean]
[form.][control.]FontName[= font]
[form.][control.]FontSize[= points]
[form.][control.]FontStrikethru[= boolean]
[form.][control.]FontUnderline[= boolean]
See Visual Basic Language Reference, "FontName Property"

Arguments/Parameters
HFONT hfNewFont Handle of the font to be set
CFont *pFont Pointer to a CFont object containing the handle to

the font to be set
BOOL bRedraw A value of TRUE causes the control to repaint

immediately

Return values
HFONT hfFont Handle to the control's current font
HFONT hfOldFont Handle to the control's previous font
CFont *hfFont Pointer to a CFont object containing the handle to

the control's current font
CFont *fOldFont Pointer to a CFont object containing the handle to

the control's previous font

Remarks
C and C++ applications are responsible for destroying any fonts they create.

Format Attribute
A NULL-terminated character string that describes the way the Data is to be displayed

Usage

C
lBytesCopied = SendMessage(hWnd, HLM_GETFORMAT, (WPARAM)iMaxBytes,
(LPARAM)lpstrBuf);
lBytesCopied = SendMessage(hWnd, HLM_SETFORMAT, (WPARAM)bRedraw,
(LPARAM)lpstrBuf);

C++
lBytesCopied = [CHListObj.]GetFormat(lpstrBuf [, iMaxBytes = -1]);
lBytesCopied = [CHListObj.]SetFormat(lpstrBuf [, bRedraw = TRUE]);

VBX
[form.][control.]FormatString[= string]

Arguments/Parameters
LPSTR lpstrBuf Buffer that contains a new format string or will

recieve the existing one
int iMaxBytes The maximum bytes to copy to the buffer.    A

value of -1 copies the entire format string.
BOOL bRedraw A value of TRUE causes the control to redraw

immediately.

Return values
LONG lBytesCopied The number of bytes actually copied to or from

the buffer

Remarks
An initial format string is contained in the WindowText when a control is created.

HiliteBrush Attribute
The color or pattern used to paint the background when the control receives focus

Usage

C
hbrHilite = SendMessage(hWnd, HLM_GETHILITEBRUSH, 0, 0L);
hbrOldHilite = SendMessage(hWnd, HLM_SETHILITEBRUSH,
(WPARAM)hbrNewHilite, 0L);

C++
OWL
hbrHilite = [THListObj.]GetHiliteBrush();
hbrOldHilite = [THListObj.]SetHiliteBrush(hbrNewHilite);
MFC
pHilite = [CHListObj.]GetHiliteBrush();
pOldHilite = [CHListObj.]SetHiliteBrush(pNewHilite);

VBX
[form.][control.]HiliteColor[= color]

Arguments/Parameters
HBRUSH hbrNewHilite Handle of the new brush
CBrush *pNewHilite Pointer to a CBrush object containing the handle

of the new brush

Return values
HBRUSH hbrHilite Handle of the control's current brush
HBRUSH hbrOldHilite Handle of the control's previous brush
CBrush *pHilite Pointer to a CBrush object containing the handle

of the current brush
CBrush *pOldHilite Pointer to a CBrush object containing the handle

of the previous brush

Remarks
C and C++ applications are responsible for destroying any brushes they create.

HiliteOnFocus Attribute
When set, the HiliteBrush is used to paint the background when the control receives input
focus.    If no HiliteBrush is selected, the control uses a white brush.

Usage

C/C++
Window Style: HLS_HILITE

VBX
[form.][control.]HiliteOnFocus

Remarks
The HiliteOnFocus attribute is read-only at run time

Hunger Attribute
When set, the control swallows Enter and Esc keyboard messages and notifies its parent.

Usage

C/C++
Window Style:    HLS_HUNGER

VBX   
[form.][control.]Hunger

Remarks
The Hunger attribute is obsolete and is included here for backward compatibility.    We
recommend that C and C++ programmers use a Filter Procedure or Dynamic
Subclassing, respectively, to implement this functionality. Hunger is read-only at run
time.

MultiCol Attribute
When set, the items will be wrappes in newspaper-style columns.

Usage

C/C++
Window Style: HLS_MULTICOL

VBX
[form.][control.]MultiColumn[= True/False]

Remarks
The List presents a horizontal scroll bar if all items do not fit in the window.    The
MultiCol attribute can only be set at design time.

NonIntHeight Attribute
When set, the control can display a partial item at the bottom of the List.

Usage

C/C++
Window Style: HLS_NONINTHEIGHT

VBX
[form.][control.]NonIntHeight

Remarks
The NonIntHeight attribute can only be set at design time.

Quiet Attribute
When the control is in Quiet mode, it does not send notification messages to its parent.   
VBX controls will not fire events in Quiet mode.

Usage

C
SendMessage(hWnd, HLM_BEQUIET, bValue, 0L);
bQuiet = (BOOL)SendMessage(hWnd, HLM_ISQUIET, 0, 0L);

C++
[CHListObj.]BeQuiet(bValue);
bQuiet = [CHListObj.]IsQuiet();

VBX
SendMessage(control.hWnd, HLM_BEQUIET, bValue, 0L)
bQuiet = SendMessage(control.hWnd, HLM_ISQUIET, 0, 0L)
See VBX Advanced Topics

Arguments/Parameters
BOOL bValue TRUE turns on Quiet mode, FALSE turns it off

Return Value
BOOL bQuiet TRUE if control is in Quiet Mode

RedrawMode Attribute
When the RedrawMode is FALSE, the control will not repaint.

Usage

C
SendMessage(hWnd, HLM_SETREDRAW, (WPARAM)bSetting, (LPARAM)bRedrawNow);

C++
[CHListObj.]SetRedraw(bSetting, bRedrawNow);

VBX
[form.][control.]RedrawMode[= boolean]

Arguments/Parameters
BOOL bSetting TRUE turn on redrawing, FALSE turns it off
BOOL bRedrawNow If bSetting is TRUE, a TRUE value for bRedrawNow

will force an immediate update.

SelItems Attribute
An array of selected items in the List

Usage

C
iCopied = (int)SendMessage(hWnd, HLM_GETSELITEMS, (WPARAM)iMaxItems,
(LPARAM)lpBuf);

C++
iCopied = [CHListObj.]GetSelItems(lpBuf, iMaxItems);

VBX
[form.][control.]SelectedItems(index)
An array of indices of selected items.    The SelectionCount property gives the size of
this array.

Arguments/Parameters
int iMaxItems The maximum number of indices to copied to

lpBuf
int FAR *lpBuf A pointer to an array of integers

Return values
int iCopied The number of items actually copied to lpBuf

See Also
SelectionState, SelCount

SelCount Attribute
The number of selected items in the List

Usage

C
iCount = (int)SendMessage(hWnd, HLM_GETSELCOUNT, 0, 0L);

C++
iCount = [CHListObj.]GetSelCount();

VBX
[CHListObj.]SelCount

Return values
int iCount The current value of SelCount

Remarks
For lists in single selection mode, the SelCount attribute can only be 0 or 1.

See Also
SelItems, SelectionState

Selection Attribute
The index of the current selection of a single-selection list or the index of the
CursorPosition in a multiple-selection list

Usage

C
iCurSel = (int)SendMessage(hWnd, HLM_GETCURSEL, 0, 0L);
iResult = (int)SendMessage(hWnd, HLM_SETCURSEL, (WPARAM)iIndex, 0L);

C++
iCurSel = [CHListObj.]GetCurSel();
iResult = [CHListObj.]SetCurSel(iIndex);

VBX
[form.][control.]Selection[= index]

Arguments/Parameters
int iIndex The index of the item at which to set

CursorPosition

Return values
int iCurSel The index of the current CursorPosition
int iResult HLERR_NOTFOUND if CursorPosition cannot be set

to the requested value

See Also
Code, Data, SelectionState, SelItems

SelectionState Attribute
The selection status (i.e. selected or unselected) for each item in the List

Usage

C
bSelected = (BOOL)SendMessage(hWnd, HLM_GETSEL, (WPARAM)iIndex, 0L);
bSuccess = (BOOL)SendMessage(hWnd, HLM_SETSEL, (WPARAM)iAction,
(LPARAM)iIndex);

C++
bSelected = [CHListObj.]GetSel(iIndex);
bSuccess = [CHListObj.]SetSel(iAction, iIndex);

VBX
[form.][control.]SelectionState(index)[= boolean]

Arguments/Parameters
int iIndex The index of an item in the List
int iAction One of three action codes

Return values
bSelected TRUE if the item at iIndex is selected
bSuccess TRUE if the action indicated by iAction was

succssful

See Also
SelectCode, SelectData, SelectItem, SelectString

SelectMode Attribute
When set to Single, the user may select only one item at a time.    When set to Multiple or
Extended, the user may select more than one item.    Extended selection allows the user to
select blocks of items simply by dragging the mouse.

Usage

C/C++
Window Styles:
HLS_MULTISEL
HLS_EXTENDEDSEL

VBX
[form.][control.]SelectMode[= Single/Multiple/Extended]

Remarks
The SelectMode attribute can only be set at design time.

SortMode Attribute
Determines how items in the List are to be sorted

Usage

C/C++
Window Styles:
HLS_SORTBYDATA
HLS_SORTBYCODE

VBX
[form.][control.]SortMode[= None/ByData/ByCodes]

Remarks
The SortMode attribute can only be set at design time.

State Attribute
A collection of flags describing the state of the control

Usage

C
wState = (WORD)SendMessage(hWnd, HLM_GETSTATE, 0, 0L);
wNewState = (WORD)SendMessage(hWnd, HLM_SETSTATE, (WPARAM)wFlag,
(LPARAM)bSetting);

C++
wState = [CHListObj.]GetState();
wNewState = [CHListObj.]SetState(wFlag, bSetting);

VBX
Not Used

Arguments/Paameters
WORD wFlag One of the state flags to set
BOOL bSetting New value for the selected state flag

Return values
WORD wState Contains the current state flag values.    An

individual flag value can be determined by
bitwise AND'ing this value with the flag, itself.

WORD wNewState The new state flag values after setting

TabStops Attribute
An array of integer tabstops representing spacing in characters

Usage

C
Window Style: HLS_USETABS
bSuccess = (BOOL)SendMessage(hWnd, HLM_SETTABSTOPS, (WPARAM)iNumber,
(LPARAM)lpTabs);

C++
Window Style: HLS_USETABS
bSuccess = [CHListObj.]SetTabstops(iNumber, lpTabs);

VBX
Not Used

Arguments/Parameters
int iNumber The number of tab stops to set
int far *lpTabs An array of integer TabStops in dialog units

Return values
BOOL bSuccess TRUE if TabStops were set correctly

Remarks
If iNumber is zero and lParam is NULL, the default tab stop is eight dialog units.
If iNumber is 1, the TabStops are spaced evenly based on the first value pointed to by
the lParam.
To set and display tabs, the HLS_USETABS style or UseTabs property must be set at
design time.

Text Attribute
A character string representing the formatted data for each item

Usage

C
lBytesCopied = SendMessage(hWnd, HLM_GETTEXT, iIndex, lpBuf);

C++
lBytesCopied = [CHListObj.]GetText(lpBuf, iIndex);

VBX
[form.][control.]Text

Arguments/Parameters
int iIndex The index of an item in the List
LPSTR lpBuf A buffer for the Text

Return values
lBytesCopied The actual number of bytes copied to lpBuf

See Also
TextColor, TextLen

TextColor Attribute
The    color used when painting the Text

Usage

C
crTextColor = (COLORREF)SendMessage(hWnd, HLM_GETTEXTCOLOR, bNegative,
0L);
SendMessage(hWnd, HLM_SETTEXTCOLOR, bNegative, crNewColor);

C++
crTextColor = [CHListObj.]GetTextColor([bNegative = FALSE]);
[CHListObj.]SetTextColor(crNewColor [, bNegative = FALSE]);

VBX
[form.][control.]TextColor[= color]
[form.][control.]TextColor_Neg[= color]

Arguments/Parameters
BOOL bNegative If TRUE, the TextColor for negative numbers is

gotten or set.
COLORREF crNewColor The new TextColor

Return values
COLORREF crTextColor The current TextColor

Remarks
The TextColor attribute can be set at design time or as part of the WindowText.

See Also
Text, Format

TextLen Attribute
The length of the Text in characters

Usage

C
iTextLen = SendMessage(hWnd, HLM_GETTEXTLEN, (WPARAM)iIndex, 0L);

C++
iTextLen = [CHListObj.]GetTextLen(iIndex);

VBX
Len([control.]Text)

Arguments/Parameters
int iIndex The index of an item in the List

Return values
int iTextLen The TextLen for item iIndex

See Also
Text

TopIndex Attribute
The index of the item displayed at the top of the List

Usage

C
iTop = (int)SendMessage(hWnd, HLM_GETTOPINDEX, 0, 0L);
iTop = (int)SendMessage(hWnd, HLM_SETTOPINDEX, (WPARAM)iIndex, 0L);

C++
iTop = [CHListObj.]GetTopIndex();
iTop = [CHListObj.]SetTopIndex(iIndex);

VBX
[form.][control.]TopIndex[= index]

Arguments/Parameters
int iIndex The index of the new top item

Return values
int iTop The index of the top item

HList Methods
Add Insert SelectItem
Delete Reset SelectString
FindCode Retrieve
FindData SelectCode
FindString SelectData

ListBox and ComboBox Methods
ListBox ComboBox
Add Add
Delete Delete
Insert Insert
Reset Reset
Retrieve Retrieve
SelectItem Selection

Add Method
Adds an item or items to a list.    If the list is unsorted, addition occurs at the end of the list.

Usage

C
Add a single item
iNewIndex = HLAddItem(hWnd, lpData);
Add a single item with code
iNewIndex = HLAddItemEx(hWnd, lpData, lpCode);
Add multiple items
iNumber = HLAddItems(hWnd, iCount, lpData);
Add multiple items with codes
iNumber = HLAddItemsEx(hWnd, iCount, lpData, lpCode);

C++
Add a single item
iNewIndex = [CHListObj.]AddItem(lpData);
Add a single item with code
iNewIndex = [CHListObj.]AddItemEx(lpData, lpCode);
Add multiple items
iNumber = [CHListObj.]AddItems(iCount, lpData);
Add multiple items with codes
iNumber = [CHListObj.]AddItemsEx(iCount, lpData, lpCode);

VBX
Add a single item
[form.][control.]AddItem strData
Add a single item with code
iNewIndex = VLAddItemEx(control.hWnd, strData, strCode)

Arguments/Parameters
int iCount The number of items to add
void FAR *lpData A pointer to the Data item (single) or array

(multiple)
strData A string representing the Data to add
void FAR *lpCode A pointer to the Code item (single) or array

(multiple)
strCode A string representing the Code to add

Return values
int iNewIndex The index at which an item was added, or an

error code
int iNumber The number of items successfully added, or an

error code

See Also
Insert

Delete Method
Deletes an item or items from the List

Usage

C
Delete a single item
bSuccess = (BOOL)SendMessage(hWnd, HLM_DELETEITEM, (WPARAM)iIndex, 0L);
Delete multiple items
iNumber = HLDeleteItems(hWnd, wSearchCat, iCount, lpSearchInfo);

C++
Delete a single item
bSuccess = [CHListObj.]DeleteItem(iIndex);
Delete multiple items
iNumber = [CHListObj.]DeleteItems(wSearchCat, iCount, lpSearchInfo);

VBX
[form.][control.]RemoveItem iIndex

Arguments/Parameters
int iIndex The index of an item in the List
WORD wSearchCat A search category
int iCount The number of items to find and delete
void far *lpSearchInfo A pointer to an array of Data items, Codes, or

Indices depending on the value of wSearchCat

Return values
BOOL bSuccess TRUE if the item was deleted successfully
int iNumber The number of items successfully deleted

See Also
Add, Insert

FindCode Method
Gets the index of an item given its Code

Usage

C
iIndex = (int)SendMessage(hWnd, HLM_FINDCODE, (WPARAM)iStart,
(LPARAM)lpCode);

C++
iIndex = [CHListObj.]FindCode(iStart, lpCode);

VBX
VLFindCode(control.hWnd, iStart, strCode)

Arguments/Parameters
int iStart The index at which to begin searching
void FAR *lpCode A pointer to the Code to search for
strCode A string representing the Code to search for

Return values
int iIndex The index of the item or HLERR_NOTFOUND if no

match was found

See Also
FindData, FindString

FindData Method
Gets the index of an item given its Data

Usage

C
iIndex = (int)SendMessage(hWnd, HLM_FINDDATA, (WPARAM)iStart,
(LPARAM)lpData);

C++
iIndex = [CHListObj.]FindData(iStart, lpData);

VBX
VLFindData (control.hWnd, iStart, strData)

Arguments/Parameters
int iStart The index at which to begin searching
void FAR *lpData A pointer to the Data to search for
strData A string representing the Data to search for

Return values
int iIndex The index of the item or HLERR_NOTFOUND if no

match was found

See Also
FindCode, FindString

FindString Method
Gets the index of an item given some or all of its Text

Usage

C
iIndex = (int)SendMessage(hWnd, HLM_FINDSTRING, (WPARAM)iStart,
(LPARAM)lpText);

C++
iIndex = [CHListObj.]FindString(iStart, lpText);

VBX
VLFindString (control.hWnd, iStart, strText)

Arguments/Parameters
int iStart The index at which to begin searching
void FAR *lpText A pointer to the Text to search for
strText A string representing the Text to search for

Return values
int iIndex The index of the item or HLERR_NOTFOUND if no

match was found

Remarks
The FindString attribute will attempt to find the closest match when passed a partial
string.

See Also
FindCode, FindData

Insert Method
Inserts an item or items into an unsorted List

Usage

C
Insert a single item
iNewIndex = HLInsertItem(hWnd, iPos, lpData);
Insert a single item with code
iNewIndex = HLInsertItemEx(hWnd, iPos, lpData, lpCode);
Insert multiple items
iNumber = HLInsertItems(hWnd, iPos, iCount, lpData);
Insert multiple items with codes
iNumber = HLInsertItemsEx(hWnd, iPos, iCount, lpData, lpCode);

C++
Insert a single item
iNewIndex = [CHListObj.]InsertItem(iPos, lpData);
Insert a single item with code
iNewIndex = [CHListObj.]InsertItemEx(iPos, lpData, lpCode);
Insert multiple items
iNumber = [CHListObj.]InsertItems(iPos, iCount, lpData);
Insert multiple items with codes
iNumber = [CHListObj.]InsertItemsEx(iPos, iCount, lpData, lpCode);

VBX
Insert a single item
[form.][control.]AddItem strData, iPos
Insert a single item with code
iNewIndex = VLInsertItemEx(control.hWnd, iPos, strData, strCode)

Arguments/Parameters
int iPos The index at which to insert
int iCount The number of items to insert
void FAR *lpData A pointer to the Data item (single) or array

(multiple)
strData A string representing the Data to insert
void FAR *lpCode A pointer to the Code item (single) or array

(multiple)
strCode A string representing the Code to insert

Return values
int iNewIndex The index at which an item was inserted, or an

error code
int iNumber The number of items successfully inserted, or an

error code

See Also
Add

Reset Method
Removes all items from the List

Usage

C
SendMessage(hWnd, HLM_RESETCONTENT, 0, 0L);
bSuccess = HLEmptyList(hWnd);

C++
bSuccess = [CHListObj.]EmptyList();

VBX
[form.][control.]Clear

Return values
BOOL bSuccess TRUE if the List was emptied successfully

Retrieve Method
Gets the Data items, Codes, or indices based on a search criterion

Usage

C
iNumber = HLGetItems(hWnd, iCount, wReturnCat, lpReturnInfo, wSearchCat,
lpSearchInfo)

C++
iNumber = [CHListObj.]GetItems(iCount, wReturnCat, lpReturnInfo,
wSearchCat, lpSearchInfo)

VBX
Not Used

Arguments/Parameters
int iCount The maximum number of items to find and return
WORD wReturnCat A return category
void FAR *lpReturnInfo A pointer to an array of Data items, Codes or

Indices, depending on the wReturnCategory to
receive the returned data.

WORD wSearchCat A search category
void FAR *lpSearchInfo A pointer to an array of Data items, Codes or

Indices, depending on the wSearchCategory.

Return values
int iNumber The actual number of items returned

See Also
Selection, SelectionState

SelectCode Method
Selects an item based on its Code

Usage

C
bSuccess = SendMessage(hWnd, HLM_SELECTCODE, wAction, (LPARAM)lpCode);
HLSelectCode(wAction, lpCode);

C++
bSuccess = [CHListObj.]SelectCode(lpCode, wAction);

VBX
[form.][control.]SelectedCode[= strCode]

Arguments/Parameters
WORD wAction An action code
void FAR *lpCode A pointer to the Code to match
strCode A string representing the Code to match

Return Value
BOOL bSuccess TRUE if selection is successful

See Also
SelectData, SelectionState, SelectItem, SelectString

SelectData Method
Selects an item based on its Data

Usage

C
bSuccess = SendMessage(hWnd, HLM_SELECTDATA, wAction, (LPARAM)lpData);
HLSelectData(wAction, lpData);

C++
bSuccess = [CHListObj.]SelectData(lpData, wAction);

VBX
[form.][control.]SelectedData[= strData]

Arguments/Parameters
WORD wAction An action code
void FAR *lpData A pointer to the Data to match
strData A string representing the Data to match

Return Value
BOOL bSuccess TRUE if selection is successful

See Also
SelectCode, SelectionState, SelectItem, SelectString

SelectItem Method
Selects an item based on its index

Usage

C
bSuccess = SendMessage(hWnd, HLM_SELECTITEM, wAction, (LPARAM)iIndex);
bSuccess = HLSelectItem(hWnd, wAction, iIndex);
iNumber = SendMessage(hWnd, HLM_SELECTRANGE, wAction, MAKELONG(iStart,
iEnd));
iNumber = HLSelectItems(hWnd, wAction, wSearchCat, iCount,
lpSearchInfo);

C++
bSuccess = [CHListObj.]SelectItem(iIndex, wAction);
iNumber =[CHListObj.]SelectItems(wAction, wSearchCat, iCount,
lpSearchInfo);

VBX
bSuccess = VLSelectItem(control.hWnd, iIndex, iAction);

Arguments/Parameters
WORD wAction An action code
int iIndex The index of the item to select
WORD wSearchCat A search category
iCount The maximum number of items to select
void FAR *lpSearchInfo A pointer to an array of Data items, Codes or

Indices, depending on the wSearchCategory.

Return Value
BOOL bSuccess TRUE if selection is successful
iNumber The actual number of items selected

See Also
SelectCode, SelectData, SelectionState, SelectString

SelectString Method
Selects an item based on some or all of its Text

Usage

C
bSuccess = SendMessage(hWnd, HLM_SELECTSTRING, (WPARAM)iStart,
(LPARAM)lpText);

C++
bSuccess = [CHListObj.]SelectString(iStart, lpText);

VBX
bSuccess = VLSelectString(control.hWnd, iStart, lpText);

Arguments/Parameters
int iStart The index at which to start searching
LPSTR lpText Complete or partial Text of the item to select

Return Value
BOOL bSuccess TRUE if selection is successful

See Also
SelectCode, SelectData, SelectionState, SelectItem

HList Events
DoubleClick SelectChange SpaceError
KillFocus SetFocus

DoubleClick Event
The user has double-clicked on an item.

Usage

C/C++
Notification code: HLN_DBLCLICK

VBX
Sub ctlname_DblClick

Return Value
Not Used

KillFocus Event
The control has lost input focus.

Usage

C/C++
Notification code: HLN_KILLFOCUS

VBX
Sub ctlname_KillFocus

Return Value
Not Used

SelectChange Event
The Selection has changed.

Usage

C/C++
Notification code: HLN_SELCHANGE

VBX
Sub ctlname_SelChange

Return Value
Not Used

SetFocus Event
The control has gained input focus.

Usage

C/C++
Notification code: HLN_SETFOCUS

VBX
Sub ctlname_SetFocus

Return Value
Not Used

SpaceError Event
The control is unable to perform an operation because of memory constraints.

Usage

C/C++
Notification code: HLN_ERRSPACE

VBX
Sub ctlname_ErrSpace

Return Value
Not Used

HList Error Codes

Code Description
HLERR_GENERAL A general error occurred.
HLERR_SPACE The control was unable to allocate memory.
HLERR_EMPTY There is no selection.
HLERR_BADVAL A value was not in the expected group or

range.
HLERR_BADPTR A pointer was found to be NULL unexpectedly.
HLERR_NOCODES The List does not contain Codes.
HLERR_NOTFOUND The item was not found.

HList State Flags

Flag Meaning when set
HLF_HASCODES The control is maintaining a list of codes as well

as data for each item
HLF_CHANGED The selection has changed since it was last set

Selection Action Codes

Flag Action
HL_SELECT Selects the item
HL_DESELECT Unselects the item
HL_TOGGLE Toggles selection state

HList Search Categories

Code Description
HL_DATA The method searches for Data in the List

matching those sent to the method.
HL_CODE The method searches for Codes in the List

matching those sent to the method.
HL_INDEX The method searches for the List items

matching the integer indices sent to the
method.

HL_ALL All items are matched.
HL_SELECTED All selected items are matched.
HL_UNSELECTED All unselected items are matched.

HList Return Categories

Code Description
HL_DATA The method returns the items' Data.
HL_CODE The method returns the items' Codes.
HL_INDEX The method returns the items' Indices.

      HList Window Text
This sample window text string is expanded below to show the meaning of each
component:

%ms%ni###-####

% Required placeholder.
ms The DataClass and DataType indicators -- in this case, HC_MASK and

HT_STRING.
% Optional placeholder.    Use if the list contains Codes.
ni The CodeClass and CodeType indicators -- in this case, HC_NUMBER and

HT_INTEGER.      Optional.    Use if the list contains Codes.
###-#### The Format string -- in this case, a seven-digit telephone number.

HStat, the WinWidgets Static Control
      Attributes
The HStat control is a simple, capable tool for presenting text, bitmaps, icons, and solid
and transparent frames.    Thoughtful use of HStat controls improves the usability and
appearance of the user interface by distinguishing screen components and otherwise
decorating bland forms.

Additional Topics
Using custom resources
Displaying 256-color bitmaps

HStat Attributes
Alignment Foreground Text
Background Palette Transparency
Border Picture Type

Alignment Attribute
Determines the alignment of the Text or Picture on the face of the control.    Alignment may
be left, right or center (the default).

Usage

C/C++
Window Styles:   
HSS_LEFT
HSS_RIGHT
VBX
[form.][control.]Alignment[= Left/Right/Center]

Background Attribute
The color used to paint the background of an HStat control

Usage

C
crBkgnd = (COLORREF)SendMessage(hWnd, HSM_GETBKGNDCOLOR, 0, 0L);
SendMessage(hWnd, HSM_SETBKGNDCOLOR, 0, crNewColor);

C++
crBkgnd = [CHStatObj.]GetBkgndColor(void);
[CHStatObj.]SetBkgndColor(crNewColor);
VBX
[form.][control.]BackColor[= color]
See Visual Basic Language Reference, "BackColor, ForeColor Properties"

Arguments/Parameters
COLORREF crNewColor New background color

Return values
COLORREF crBkgnd Current background color

Remarks
HStat also supports WM_CTLCOLOR processing; see the Windows SDK documentation

BorderStyle Attribute
HStat supports four different border styles: none, standard, indented, extruded and bump.

Usage

C/C++
Window Styles:   
HSS_BORDER3D
HSS_BUMP
HSS_INDENT
HSS_EXTRUDE
VBX
[form.][control.]BorderStyle[= None/Standard/Indent/Extrude/Bump]

Remarks
The BorderStyle attribute is read-only at run time.

Foreground Attribute
A color value used to indicate transparency in bitmaps, or the text color

Usage

C
crFrgnd = SendMessage(hWnd, HSM_GETFRGNDCOLOR, 0, 0L);
SendMessage(hWnd, HSM_SETFRGNDCOLOR, 0, (LPARAM)crNewFrgnd);
C++
crFrgnd = [CHStatObj.]GetFrgndColor();
[CHStatObj.]SetFrgndColor(crNewFrgnd);
VBX
[form.][control.]MaskColor[= color]
[form.][control.]TextColor[= color]

Arguments/Parameters
COLORREF crNewFrgnd The new foreground color

Return values
COLORREF crFrgnd The current foreground color

Remarks
For HStat controls displaying bitmaps, the Foreground attribute is used to mask
portions of the bitmap and is set by default to light green, RGB (0, 255, 0).    Masking
causes a background color to show through portions of the bitmap, allowing non-
rectangular bitmap images in the same manner as Windows icons.

Palette Attribute
A handle to a 256-color palette for a DIB-type Picture

Usage

C
hpPalette = SendMessage(hWnd, HSM_GETPALETTE, 0, 0L);
C++
OWL
hpPalette = [CHStatObj.]GetPalette();
MFC
pPalette = [CHStatObj.]GetPalette();
VBX
VBX static controls are "palette aware"; they automatically realize their own palettes.

Return values
HPALETTE hpPalette A handle to a logical palette for the control
CPalette *pPalette A pointer to a CPalette object containing the

handle to control's logical palette

Remarks
Typically, an application that displays 256-color images will select and realize the
control's palette in response to WM_PALETTECHANGED and WM_QUERYNEWPALETTE
messages.    For additional information see the example below and Microsoft's Palette
Self-Study Module, available through the Microsoft Developer Network.

Examples

Picture Attribute
The bitmap or icon displayed by the control

Usage

C
hPic = (HANDLE)SendMessage(hWnd, HSM_GETPIC, 0, 0L);
hOldPic = (HANDLE)SendMessage(hWnd, HSM_SETPIC, 0,
(LPARAM)MAKELONG(hNewPic, wType));

C++
hPic = [CHStatObj.]GetPic();
hOldPic = [CHStatObj.]SetPic(hNewPic, wType);
VBX
[control.]Picture[= picture]

Arguments/Parameters
HBITMAP/HICON hNewPic A handle to the new picture
WORD wType Indicates the type of picture.    Can be one of the

three PictureType values

Return values
HBITMAP/HICON hPic The handle of the requested picture
HBITMAP/HICON hOldPic The handle of the previously set picture

Remarks
C and C++ applications are responsible for destroying any pictures they add at run
time.
At design time, the Picture attribute can be set from within the Dialog Editor,
Resource Workshop, or Visual Basic, or picture resources can be specified in the
WindowText directly.

See Also
Palette

Text Attribute
A character string displayed by a static text control.    Line breaks can be inserted in the
text using the ^ (carat) character.    HStat will replace all carats with new line characters (\
n).

Usage

C
lBytesCopied = SendMessage(hWnd, HSM_GETTEXT, (WPARAM)iMaxBytes,
(LPARAM)lpBuf);
SendMessage(hWnd, HSM_SETTEXT, 0, (LPARAM)lpBuf);
C++
lBytesCopied = [CHStatObj.]GetText(lpBuf [, iMaxBytes =-1]);
[CHStatObj.]SetText(lpBuf);
VBX
[form.][control.]Text[= stringexpression]

Arguments/Parameters
LPSTR lpBuf A buffer for the control Text
int iMaxBytes The maximum number of bytes to copy to lpBuf

Return values
LONG lBytesCopied The number of bytes actually copied to lpBuf

TextIndent Attribute
When set, the static control's Text is displayed with a white highlight to the lower left of
each character, giving the text an indented appearance

Usage

C/C++
Window Style: HSS_TEXTINDENT
VBX
[form.][control.]TextIndent

Remarks
This property is read-only at run time.

Transparency Attribute
The static control does not erase its background, allowing whatever is behind the Text or
Picture to show through.

Usage

C/C++
Window Style: HSS_TRANSPARENT
VBX
Not Used

Type Attribute
Determines the type of static control (i.e. text, groupbox, frame, picture, etc.)

Usage

C/C++
Window Styles:
HSS_TEXT
HSS_GROUP
HSS_FRAME
HSS_PIC
HSS_HLINE
HSS_VLINE
VBX
Not Used.    The various static types are implemented as separate controls in Visual
Basic.

Remarks
The Type attribute is read-only at run time.

      HStat Window Text
This sample window text string is expanded below to show the meaning of each
component:

[gray];[white];winlogo

[gray] The Foreground color, which is used to paint the text or, in this case, to
specifiy transparent portions of a bitmap.

; A required separator.

[white] The Background color, which is used to paint the background of the
control, including the transparent portions of the bitmap resulting from
the Foreground color.

winlogo The Picture resource name.

This is the result:

HTool, The WinWidgets Toolbar
      Attributes
      Methods
HTool provides a quick and easy way to create the ribbons, status bars and floating tool
palettes that are so popular in today's Windows applications.    The toolbar can be designed
in a dialog editor like any dialog box, then instantiated using the Create method.
An HTool toolbar can be attached to any side of its parent window or it can float above as a
separate window.    If the toolbar is attached, the Update method automatically resizes the
toolbar to fit its parent.    Update is usually called whenever the parent receives a WM_SIZE
message.
The toolbar relays all of the notification messages and WM_CTLCOLOR messages that it
receives from its child controls to its parent window, or to the NotifyWindow if one is
specified.    In this way, the toolbar is largely transparent to the programmer; its child
controls behave like children of the window it notifies.

HTool Attibutes
Alignment NoStretch Thickness
Background NotifyWindow Type
Caption Quiet

Alignment Attribute
Determines the side of the parent window to which the toolbar is attached.    Alignment
does not apply to floating palette toolbars.

Usage

C/C++
Window Styles:   
HTS_BOTTOM
HTS_LEFT
HTS_RIGHT
HTS_TOP
VBX
[form.][control.]Alignment

Remarks
The Alignment attribute is read-only at run time.

Background Attribute
The color or pattern used to paint the background of floating palette toolbars; attached
toolbars are painted with the Windows button-face color.

Usage

C
hbrBkgnd = (HBRUSH)SendMessage(hWnd, HTM_GETBRUSH, 0, 0L);
hbrOldBkgnd = (HBRUSH)SendMessage(hWnd, HBM_SETBRUSH,
(WPARAM)hNewBrush, 0L);

C++
OWL
hbrBkgnd = [THButtObj.]GetBrush(void);
hbrOldBkgnd = [THButtObj.]SetBrush(hbrNewBrush);
MFC
pBkgnd = [CHButtObj.]GetBrush(void);
pOldBkgnd = [CHButtObj.]SetBrush(pNewBrush);
VBX
[form.][control.]BackColor[= color]
See Visual Basic Language Reference, "BackColor, ForeColor Properties"

Arguments/Parameters
HBRUSH hbrNewBrush Handle of a new brush to be set as the

background brush
CBrush pNewBrush Pointer to a CBrush object containing the new

background brush handle

Return values
HBRUSH hbrBkgnd Handle to the current background brush
HBRUSH hbrOldBkgnd Handle to the previous background brush
CBrush *pBkgnd Pointer to a CBrush object containing the current

background brush handle
CBrush *pOldBkgnd Pointer to a CBrush object containing the previous

background brush handle

Remarks
C and C++ applications are responsible for destroying any brushes they create.   
HTool relays all WM_CTLCOLOR messages received from its child controls to its parent
for processing; see the Windows SDK documentation for details

Caption Attribute
A character string displayed in the title bar of floating palette toolbars

Usage

C
SendMessage(hWnd, HTM_GETCAPTION, wCount, (LPARAM)lpBuf);
SendMessage(hWnd, HTM_SETCAPTION, 0, (LPARAM)lpTitle);
C++
[CHGridObj.]GetCaption(wCount, lpBuf);
[CHGridObj.]SetCaption(lpTitle);
VBX
[form.][control.]Caption[= stringexpression]
See Visual Basic Language Reference, "Caption Property"

Arguments/Parameters
WORD wCount The number of characters to copy to or from lpBuf
LPSTR lpBuf A buffer to hold the Title
LPSTR lpTitle The new Title string

NoStretch Attribute
When set, an attached toolbar is not be elongated to fill the entire side of its parent
window

Usage

C/C++
Window Styles:   
HTS_NOSTRETCH
VBX
[form.][control.]NoStretch

Remarks
The NoStretch attribute is read-only at run time.

NotifyWindow Attribute
The handle of the window to which HTool relays child control notifications.    By default, the
NotifyWindow is the parent of the toolbar.

Usage

C
hwndNotify = (HWND)SendMessage(hWnd, HTM_GETNOTIFY, 0, 0L);
SendMessage(hWnd, HTM_SETNOTIFY, (WPARAM)hwndNew, 0L);
C++
hwndNotify = [CHGridObj.]GetNotify();
[CHGridObj.]SetNotify(hwndNew);
VBX
[form.][control.]Notify[= hwndNew]

Arguments/Parameters
HWND hwndNew Handle of a new NotifyWindow

Return values
HWND hwndNotify Handle of the current NotifyWindow

Quiet Attribute
When the control is in Quiet mode, it does not relay notification messages to its parent or
the NotifyWindow.

Usage

C
SendMessage(hWnd, HTM_BEQUIET, bValue, 0L);
bQuiet = (BOOL)SendMessage(hWnd, HTM_ISQUIET, 0, 0L);
C++
[CHToolObj.]BeQuiet(bValue);
bQuiet = [CHToolObj.]IsQuiet();
VBX
SendMessage(control.hWnd, HTM_BEQUIET, bValue, 0L)
bQuiet = SendMessage(control.hWnd, HTM_ISQUIET, 0, 0L)
See VBX Advanced Topics

Arguments/Parameters
BOOL bValue TRUE turns on Quiet mode, FALSE turns it off

Return values
BOOL bIsQuiet TRUE if the control is in Quiet mode

Thickness Attribute
The width in pixels of an attached toolbar perpendicular to the side to which it is attached

Usage

C
iThickness = (int)SendMessage(hWnd, HTM_GETTHICK, 0, 0L);
SendMessage(hWnd, HTM_SETTHICK, (WPARAM)hwndNew, 0L);
C++
iThickness = [CHGridObj.]GetThick();
[CHToolObj.]SetThick(iNewThickness);
VBX
[form.][control.]Thickness[= iNewThickness]

Arguments/Parameters
int iNewThickness The new toolbar Thickness in pixels

Return values
int iThickness The current toolbar Thickness in pixels

Type Attribute
Determines the type of toolbar as either attached or floating

Usage

C/C++
Window Styles:   
HTS_FLOAT
VBX
[form.][control.]Type

Remarks
The Type attribute is read-only at run time.

HTool Methods
Create Update

Create Method
Creates an instance of the HTool control based on dialog template and style

Usage

C
hwndToolBar = HToolCreate (hInst, lpTemplate, hwndParent, hwndNotify,

dwStyle, wID, iX, iY);

C++
OWL
new THTool(AParent, lpTemplate, dwStyle, wId, AModule)
[THToolObj.]Create()
[THToolObj.]Create(iX, iY)

MFC
bCreated = [CHToolObj.]Create(lpTemplate, pParent, pNotify=NULL,

dwStyle=HTS_TOP, wID=-1, iX=0, iY=0);

VBX
Not Used

Arguments/Parameters
LPCSTR lpTemplate A character string containing the name of the

toolbar's dialog template resource
HINSTANCE hInst The handle of the instance containing the

toolbar's dialog template resource
CWnd* pParent The toolbar's parent window
CWnd* pNotify The toolbar's NotifyWindow
DWORD dwStyle The toolbar's window style, including the Type,

Alignment, NoStretch and Visible attributes
UINT wID The ID of the toolbar
UINT iX The initial horizontal location of a floating palette
UINT iY The initial vertical location of a floating palette
PTWindowsObject AParent The toolbar's parent window
PTModule AModule The module containing the toolbar's dialog

template resource

Return values
HWND hwndToolbar The handle of the toolbar window
BOOL bCreated A non-zero value if the toolbar was successfully

instantiated

Update Method
Resizes or repositions an attached toolbar to fill the side of its parent to which it is aligned

Usage

C
HToolUpdate (hwndToolBar);
C++
[CHToolObj.]Update()
VBX
Not Used

Arguments/Parameters
HWND hwndToolbar The handle of the toolbar window

      HTool Window Text
This sample window text string is expanded below to show the meaning of each
component:

MyToolbar

MyToolbar The name of the dialog template resource from
which to construct the toolbar

Borland's Object Windows Library (OWL)
OWL is an extensive C++ class library from Borland that encapsulates most of the
Windows API.    The WinWidgets Professional Edition includes OWL-compatible classes that
encapsulate the WinWidgets' functionality.

Microsoft's Foundation Classes (MFC)
MFC is an extensive C++ class library from Microsoft that encapsulates the Windows API,
and provides significant extensions.    The WinWidgets Professional Edition includes MFC-
compatible classes that encapsulate the WinWidgets' functionality.

Custom Controls
Controls are the components used to create a user interface, such as buttons, scroll bars
and list boxes.    Custom controls are extensions to the set of standard controls provided by
Windows.    Their purpose is enhance the behavior, appearance or capabilities of the
standard controls, or to provide new abilities not addressed by the standard controls.

The Windows Application Programming Interface (API)
The messages and functions defined and provided by the Windows environment and
accessible to application programmers.

Event Procedures and Nofication Codes
The WinWidgets use event procedures and notification codes to tell an application about
user actions, such as pressing a button or editing a cell within the Grid.    When these
events occur, the WinWidgets send notification codes to their parent window through the
WM_COMMAND message.    In Visual Basic, OWL and MFC, the notification codes in turn
trigger event procedures.    Event procedures can be customized by the programmer to
provide the desired behavior for the application.    See also:    Handling Events

Messages
Messages are the most basic means for an application to communicate with the
WinWidgets.    Each control has a message handling procedure that reads messages from
the application message queue.    Messages are added to the queue using the
SendMessage() and PostMessage() functions from the Windows API.    Each message is
simply a predefined constant that causes the control to take a particular action.    A
message may have associated parameters.

Instance
In order to load a resource, the WinWidgets need a handle to an Instance.    Typically, an
Instance is an executeable (.EXE) or a DLL, and the handle to the Instance is provided
through WinMain() or LibMain().

Data Tables
Data tables consist of records (or rows), each of which contains data for a number of fields
(columns).    A sample table, from a hypothetical personnel system, has a record for each
employee that contains a data entry for the fields "ID," "Name," "Position," "Date of Birth,"
"Date of Hire," and "Salary."

Callback Procedures
A callback procedure is a function that is implemented in a DLL or executeable and
exported so that it may be called from another DLL or executeable.    A function is exported
using the __export keyword or by declaring the function in the EXPORTS section of the
module definition (.DEF) file.

Windows International Settings
Windows provides the ability for users to customize their work environment to suit regional
conventions or personal tastes.    The properties that can be customized include date, time
and currency formats (such as "mm/dd/yyyy") and date, time and numeric separators.

Buffer Procedure Definition
A BUFFERPROC is declared as follows:

BOOL FAR PASCAL MyBuffer(HWND, WORD, LONG, LPVOID);

Popup Topics
The button pops up a window with additional information or selection options for a topic. 
It has the same effect as green text with a dashed underline.

This page intentionally left blank

Jump Buttons
The button switches to a related topic.    It has the same effect as green text with a solid
underline.    To go back to the previous topic press the Back button or the History button.

The DataEngine
The DataEngine is a set of routines used by the WinWidgets to convert between illegible
binary data and text.    The methods used in these conversions depend on the data's
classification, or the data class.    Data are grouped into classes based on their meaning in
the real world.    For example, Dates, Times, Numbers, and Strings are data classes.

Helpful Tips
The following topics contain general information on using the WinWidgets.    We hope you
find them helpful.

Technical Support
We at Simple Software work hard to provide prompt and accurate responses to questions
and problems concerning the WinWidgets.    However, we will not support non-registered
users or multiple users at the same site who do not hold individual licenses.    It is also not
possible for us to provide advice or guidance in areas not directly related to the
WinWidgets.    For information on Windows programming, we recommend the following
resources:

Microsoft Developer's Network CD
Windows Tech Journal
Microsoft Sytems Journal
Programming Windows, Charles Petzold
Power Programming Techniques, Peter Norton & Paul Yao
Advanced Windows Programming, Martin Heller

If a problem or question does not require immediate attention, please send a fax or e-mail
rather than calling, including readily-compilable code if possible.    To date, we have
provided excellent technical support and with your respect for these guidelines we will
continue to do so.    Without it, we will be forced to introduce WinWidgets Phone Help,
"...for information about the Grid, please press 22..."
Simple Software can be reached via:

fax: (718) 965-1740
phone: (718) 965-1710 (1p.m. to 6 p.m. EST - Do not call our sales line)
CompuServe: 71542,1502
mail: 543 3rd Street

Brooklyn, NY 11215

Please consult the Frequently Asked Questions section of this manual before you call for
technical support.    We will periodically add to this list and post updated manuals to
CompuServe in the Windows SDK forum (GO WINSDK) in the Public Utilities section.    Look
for the file WDGHLP.ZIP.

Handling Events
The Windows API, MFC, OWL and Visual Basic each provide a different means of processing
events.    The following code samples for the HEdit Change notification provide an outline
for handling events in each environment.    For more information, consult the
documentation for the appropriate development environment.

C API
A WM_COMMAND message is sent to the parent of the control.    The wParam contains
the control ID; lParam contains the control window handle in the LOWORD; and
notification code in the HIWORD.
case WM_COMMAND:

if (HIWORD(lParam) = HEN_CHANGE)
{

//Process Change Event
}

MFC
An ON_CONTROL statement is placed in the message map specifying a member
function to be called for a given notification code from a specific control.
BEGIN_MESSAGE_MAP(ClassName, BaseClassName)

.

.

.

ON_CONTROL(HLN_CHANGE, ID_EDIT, OnChange)
END_MESSAGE_MAP()

.

.

.

afx_msg void ClassName::OnChange()
{

//Process Change Event
}

OWL
A member function is declared as below for processing all notification codes for a
given control.    The LP.Hi member of the function's TMessage argument contains the
notification code.
virtual void EditNotifyProc(TMessage& Msg) = [ID_FIRST + Control ID];

.

.

.

void EditNotifyProc(TMessage& Msg)
{

switch(Msg.LP.Hi)
{

.

.

.

case HEN_CHANGE:
 //Process Change Event

}

}

Visual Basic
In Visual Basic, events trigger control procedures that are declared as shown below
(though the arguments will vary for different events):
Sub ctlname_Change (Index As Integer)

 'Process Change Event
.
.
.

End Sub

WinWidgets and the Visual Basic Data Control
In Visual Basic 3.0, the WinWidgets are "Data-Aware."    This means the WinWidgets can be
connected to a data source that will provide them with data and which they can update, all
without any coding.    The data source can be any database format supported by the Visual
Basic Data Control.    Currently, these include Microsoft Access, Btrieve, dBASE, FoxPro,
Oracle, Paradox, and Microsoft SQL Server.

The Edit and Button Controls
Each of the WinWidgets employs the Data Control in its own way.    The CheckBox,
RadioButton and Edit control are designed to connect to a single database field, and to
display and allow editing of the current record's data for that field.    Simply specify the
control's DataSource (a Data Control) and its DataField (a field in the Data Control's
Dynaset).    No data will appear at design time.

The ListBox and ComboBox
Unlike the Edit and Button controls, the ListBox and CheckBox do not modify their data
source automatically.    They are used to display, but not edit, all of the data for a particular
field within a table.    Starting with the first record in the table, these controls extract the
data from the desired field, add it to their lists, and proceed to the next record.    To fill a
ListBox or ComboBox in this way, specify the control's DataSource (a Data Control) and its
DataField (a field in the Data Control's Dynaset).
This process leaves a conspicuous gap in the "Data-Awareness" of the ListBox and
ComboBox.    Really, these controls have two sources of data:    one to populate their lists
and one to set the selection.    In order to implement the second data source it is necessary
to use a dummy edit control to store the selection.    To do this, link a hidden edit control to
the "selecting field."    Then, whenever the Data Control moves to a new record, use the
edit control's new data to select the appropriate list item.    Also, whenever the selection in
the list changes, update the edit control, which will in turn update the database.
It is also possible to use the Codes feature of the ListBox and ComboBox with the Data
Control.    Simply specify the name of the field from the data source in the CodeField
property of the control.    This name must be entered manually;    unlike the DataField
property, editing the CodeField property will not present a list of appropriate field names.

The Grid
The Grid is used to display and edit complete database tables, or subsets of tables.    The
easiest way to fill a Grid control is to specify its DataSource (a Data Control), which should
be connected to a database table or the result of an SQL query.    The Fields property of the
Grid need not be set.    At run-time, the Grid determines the number and type of fields in its
DataSource and creates appropriate columns.    Whenever the user edits data, the Grid
updates its DataSource.    When connected to the Data Control, the Grid implements a
record buffer automatically so that only a portion of the entire table is displayed at once.
Alternatively, the Fields property can be initialized at design time if the default behavior is
not suitable.    If the Fields are initialized, they must be designed to match the DataSource
both in number and data type.    Typical customizations include the Field's control type,
format string, hidden and browse properties.
Tip:    To control the selection of fields from a table, enter an SQL Select statement in the
Data Control's RecordSource property, such as "SELECT EmpID, LastName, FirstName
FROM Employee."
The Grid also provides an elegant way to join tables, using the Codes feature of the ListBox
and ComboBox controls.    It is common in relational database design to store objects of a

common type in one table, giving each a unique ID.    Then, wherever an object of that type
is referenced elsewhere, only the ID needs to be stored.    Here is an example of how to
exploit this common design in the Grid:
Assume a database of publications has tables for Titles, Authors and Publishers, and each
record in the Titles table has the ID of an Author and a Publisher.    To present the table of
Titles in a Grid, assign DropList controls (a non-editable ComboBox) to the AuthorID and
PublisherID columns.    Upon initialization, fill the DropList controls with Author and
Publisher names from their respective tables and store the ID's for each name as Codes*.   
Also, specify in the Fields Property dialog that these fields are SelectByCodes.    When the
Grid loads a record from the Titles table, it will match the entry in the AuthorID field to a
code in that field's DropList, causing the author's name to be displayed in the cell.    If the
user has editing privileges, selecting a different Authors name from the list will change the
ID stored in the record and cause the Titles table to be updated.
* To initialize list fields in the Grid from a separate query, create a "dummy" ListBox on
your form.    Connect the dummy control to the DataControl that contains the auxiliary
query (i.e. "Select AuthorName, AuthorID from Authors") and specify both the DataField
and CodeField.    When the dummy control triggers a Filled event, indicating that it has
loaded all of the data, use the VCCopyList() function to transfer the list into the Grid's field
control.    See the Grid form in the VBDemo application for the complete syntax.

Using Codes in the ListBox and ComboBox
The WinWidgets ComboBox and ListBox controls both allow non-displayed data to be
associated with each item in their lists.    The non-displayed data are called codes
throughout this documentation.    Like the displayed list items, the codes may be of any
data class and data type supported by the DataEngine.    The ListBox and ComboBox
maintain the code information using the WinWidgets' memory manager, so it is
unnecessary for the application to keep its own copy.    In both controls, the codes can be
used to order the list (see the SortMode attribute), or to select, delete or retrieve
information from the list.
In the HGrid control, a field can be assigned a ListBox or ComboBox to present and edit the
data of cells in that field.    Using the codes feature of the ListBox and ComboBox, records
in the Grid can store code information (such as an ID), while the field control presents the
user with a more intelligible list (such as a list of names).   
For example, a well-designed database might contain two tables: one of Products, each
with a ProductName and a unique ProductID, and the other of Orders, each with an
OrderDate, a ProductID and an OrderID.    To construct a Grid to edit the Orders table, a
ComboBox can be assigned to the ProductID field.    The ComboBox is filled from the
Products table, using the ProductNames as the displayed data and the ProductID's as the
hidden codes.    The Grid automatically matches the ProductID from each Order record with
the appropriate ProductName, which is displayed.

Hot-Linking the WinWidgets to Data
The WinWidgets' Button, Edit, ListBox, ComboBox and Grid controls can each be connected
to a variable in an application that they update automatically in response to user actions.   
Hot-Linking avoids the need to poll the controls for their current data or states because
that information is updated immediately when it changes.    This is particularly useful when
elements of a form or dialog are interdependent.    Hot-Linking is generally not applicable
to Visual Basic programs.
The CheckBox can be linked to any data type supported by the Boolean data class.
The RadioButton can be linked to a WORD variable that will be updated with either the ID
of the control or its index in the radiobutton group.
The Edit control can be linked to any data type supported by the DataEngine.    It is
important to note that when the Edit control is Hot-Linked, the linked variable is not
updated until the control parses its text -- normally upon losing focus.    When used in a
dialog with default pushbuttons or menus, the user can initiate actions after editing but
without the control losing focus.    In such situations, it is wise to set the focus to another
control or update the Edit control before using the linked variable.
The ListBox and ComboBox can be linked to any data type supported by the DataEngine.   
Both controls support links to the Data and/or Code attributes.    The links are updated with
the Data or Code for the current HList, Selection and HComb, Selection.
The Grid supports Hot-Linking to a record buffer.    The record buffer is updated with the
active record (see Selection).

Using Custom Resources
Several of the WinWidgets load resources while they are being created.    For example, the
CheckBox loads two bitmaps for each of its two states, and the Grid loads a grid-definition
resource.    There are several places the WinWidgets look to load a resource, and the
search list is ordered as follows:

1) [NOT YET IMPLEMENTED] The parent window of the control receives a
HM_GETINSTANCE message from the WinWidgets, which should return a valid
instance handle if the resource is to be loaded from an instance other than the
executable creating the control.    Otherwise, the parent must return NULL.    The
WinWidgets attempt to load the resource from the returned instance if it is not
NULL.

2) If the resource was not loaded as a result of Step #1, the WinWidgets attempt to
load it from the executable that created the control.

3) If not successful, the WinWidgets attempt to load it from WIDGETS.DLL.
4) If not successful, the WinWidgets look for a file with the same name as the

resource, using a default extension (.BMP, .ICO, etc.) if necessary.
5) A default resource or no resource will be used, as appropriate.

HM_GETINSTANCE
The HM_GETINSTANCE message is used to retrieve a handle to an instance from which the
WinWidgets will attempt to load a resource.

C API
An HM_GETINSTANCE message is sent to the parent of the control.    The wParam
contains the control ID; lParam contains the control window handle in the LOWORD;
and a resource-type code in the HIWORD.
case HM_GETINSTANCE:

switch (wParam) // Control ID
{

case ID_MYBUTTON:
if (HIWORD(lParam) == RT_BITMAP ||

 HIWORD(lParam) == RT_ICON)
{

// Return hInstance for Resource DLL
return hinstResDLL;

}
break;

}
return NULL;

MFC

OWL

Visual Basic

Advanced Visual Basic
Although Visual Basic does not provide direct support for the entire Windows programming
interface, many additional functions can be accessed simply by declaring their syntax
appropriately and the DLL in which they are contained.    One of the most important
Windows functions is SendMessage(), which is widely used by C/C++ programmers to
communicate with controls and other windows.    SendMessage is declared in Visual Basic
as follows:
Declare Function SendMessage Lib "User" (ByVal hWnd As Integer, ByVal wMsg As Integer,

ByVal wParam As Integer, lParam As Any) As Long

This declaration and many others are included in WIN30API.TXT, which is provided with the
Visual Basic Professional Edition.    Once SendMessage() is defined, VB programmers can
access much of the WinWidgets programming interface in the same way C/C++
programmers do.    For more information about matching argument types in calls to
Windows API functions, see the Calling Procedures in DLL's chapter of the Visual Basic
Programmer's Guide.

Using the WinWidgets in Visual C++

Definition of terms
VBX Controls:    Controls that conform to the Visual Basic specification for custom controls
at run-time and in the design environment.    Microsoft Foundation Classes only support the
Visual Basic Version 1.0 standard;    Visual Basic, itself, is now in version 3.0.      Since VBX is
a standard for Visual Basic, VBX controls cannot provide the low-level access to data and
callback procedures to which C and C++ programmers are accustomed.
Old Style Controls:    The controls that conform to the old standard for custom controls.   
These custom controls do not work in the Visual Basic design environment, but do work
well in the old SDK dialog editor and Borland's Resource Workshop.    Since this standard is
based directly on the Windows API, old style controls provide full access to data and
callback procedures.
Wrapper Classes:    A set of C++ classes compatible with the Microsoft Foundation Class
library (MFC) provided by Simple Software for use with WinWidgets.    These classes
encapsulate the functionality of WinWidgets at the level of the Windows API.    These
classes function similarly to the MFC classes that encapsulate the standard Windows edit
control, button, listbox, and combobox.
CVBControl:    A C++ class provided by Microsoft as part of MFC that encapsulates any
VBX control at the level of the VBX standard.    In order to use this class with a VBX control,
you must know how VBX controls work in general and how the particular control you are
using functions within the VBX standard.

The Problem
Microsoft Visual C++ is accompanied by two capable, though flawed, resource tools -- the
AppStudio and ClassWizard.    These tools are interesting because they support Visual Basic
(VBX) controls and provide a means of linking controls to application procedures and
variables.    They are flawed because they provide extremely limited support for old style
custom controls, and further because they only support VBX version 1.0 controls, while
Visual Basic is in release 3.0.    Also, because the VBX standard was developed for Visual
Basic, most VBX controls do not provide the low-level control familiar to C and C++
programmers.   
As the developer, you must make a choice when you begin designing your application
whether to use VBX controls and, if so, to what extent.    If you choose not to use VBX
controls at all, you should not use AppStudio to design your forms.    Instead, use one of
the other resource editors that support old style custom controls fully.    These include
Borland's Resource Workshop (our recommendation), or the old SDK Dialog Editor (though
not the QuickC version).    The rest of this topic summarizes your options for using
WinWidgets with Visual C++.

Solutions
C++ developers can use WinWidgets under Visual C++ in one of three ways.
1.    Use VBX versions of WinWidgets in AppStudio and use the CVBControl class
in the application code to communicate with the controls and to respond to
control events.    If you choose this option, you should look at the sections of this
manual labeled "VBX" in each topic for information about control properties and
events.    For more general information about using VBX controls in MFC, see the
topic in this manual, "Using VBX Controls in MFC: A General Discussion."
Advantages

VBX controls are fully compatible with AppStudio, Class Wizard, and Visual C++ so they
can be used with all three tools.

Disadvantages
You must redistribute both WIDGETS.DLL and WIDGEVB.VBX with your application.
VBX controls do not allow access to certain low-level features of WinWidgets, such as
Data Validation Procedures, Hot Linking of program data with the control, and Record
buffering in the grid.    If you wish to use any of these features, you cannot use VBX
controls.

2.    Use VBX versions of WinWidgets in AppStudio but connect them to the MFC
Class Wrappers in the application code.    If you choose this option, you should
look at the sections of this manual labeled "C++" in each topic for information
about the Wrapper member functions and control events.    You must attach the
Wrapper classes to the controls by using theirAttachToVBX() member functions
and detach them by using the overloaded Detach() member functions.   
Advantages:

You can design with VBX controls in AppStudio and retain low-level access to the
controls by using the Wrapper classes.

Disadvantages:
You must redistribute both WIDGETS.DLL and WIDGEVB.VBX with your application.
Class Wizard does not work with the Wrapper Classes.    It cannot add instances of
these classes to your code and it cannot set up DDX/DDV routines for data associated
with them.
AttachToVBX() is a hack.    When you attach a CWnd-derived Wrapper object to a control
using this function, you can use all of the Wrapper object's member functions
documented in this manual.    You cannot, however, use this object to call CWnd
member functions (other than Detach()).    This is because AttachToVBX(), unlike
Attach(), does not allow MFC to make an entry in its permanent lookup table.    The MFC
function CWnd::FromHandlePermanent() will not return a pointer to the Wrapper object.

3.    Use the the old SDK Dialog Editor or Borland's Resource Workshop to design
your forms and connect the controls to MFC Class Wrappers in the application
code.    If you choose this option, you should look at the sections of this manual
labeled "C++" in each topic for information about the Wrapper member
functions and control events.    Attach the Wrapper classes to the controls by
using their Attach() member functions and detach them by using Detach().    If
you create controls dynamically by calling a Wrapper object's Create() member
function, an old style custom control will be created.
Advantages:

Your Wrapper objects can be treated as full-fledged CWnd objects.    That is, they will be
registered in MFC's permanent object lookup table and can call any CWnd member
function without unfortunate results.
Your application will not have the overhead associated with MFC's VBX interface.
You do not have to redistribute WIDGEVB.VBX with your application, just WIDGETS.DLL.

Disadvantages:
You cannot use AppStudio/ClassWizard as a design tool for your forms.    (Some would
argue that this is not really a disadvantage.)
You cannot use DDX/DDV routines.    Try Hot-Linking instead.

Which one of the three solutions you choose will depend on your own personal preferences
and the needs of your application.    The sample projects in the SAMPLES\MFCGUIDE
subdirectory demonstrate each ot the three methods.

C programmers using VC++ will find the lack of support for custom controls in AppStudio
particularly frustrating, because they will be unable to use VBX controls at all.    In this
case, we recommend using DLGEDIT.EXE, which is distributed with the SDK, or purchasing
Borland's Resource Workshop (for about $50).    Otherwise, the descriptions of the Window
Text syntax and the hexadecimal values of style flags for each of the WinWidgets make it
possible to design in AppStudio, though the controls will not appear or behave as they do
in an application.   

Using the MFC Wrapper Classes
When an application's needs outstrip the capabilities of the VBX interface, the WinWidgets
allow complete and direct access to the controls' attributes and methods through tailored
C++ classes.    These classes are called MFC Wrappers because they are fully compatible
with the Microsoft Foundation Classes (MFC), and they completely encapsulate the
WinWidgets API.    The Wrappers are contained in two statically linkable libraries
MFCWDGSM.LIB and MFCWDGSL.LIB for medium and large model, respectively.
When writing and compiling code using the MFC class wrappers, it is important to
remember the following:
1.    The class wrapper libraries (MFCWDGSL and MFCWDGSM) are not a substitute for
WIDGETS.DLL.    The libraries only contain the wrapper code around the basic Widgets
functionality implemented in WIDGETS.DLL.    You must call WidgetsInit() when you
initialize your application, you must link to WIDGETS.LIB, and you must also redistribute
WIDGETS.DLL with your application.
2.    The libraries MFCWDGSL.LIB and MFCWDGSM.LIB installed by our set-up utility are
release versions and do not contain debugging information.    We did this to conserve space
on distribution disks.    We have provided makefiles so that you can recompile these
libraries with debugging information as needed.
3.    Class definitions for the Wrappers are contained in MFCWIDG.H, which you must
include in your source.

How To Use the Wrapper Classes
The MFC Wrappers are an efficient alternative to the generic VBX control interface
provided by Microsoft (see the MFC documentation of CVBControl for a complete
discussion).    We recommend that developers who wish to use the Wrappers continue to
make use of the VBX implementation in AppStudio when designing dialog boxes, but make
limited use of the ClassWizard's "Edit Variables" feature.    Within the application code
itself, instances of CVBControl are unnecessary;    instances of our classes and their
derivatives can be declared and connected to the dialog items via the AttachToVBX()
member function.    When creating controls dynamically, simply declare an instance of the
Wrapper and call the Create() member function.

The following is a list of the classes defined in MFCWIDG.H:

Class Name Description WinWidget Derived From
CHButt Generic

Pushbutton
HButt CWnd

CHBCheck CheckBox HButt CHButt
CHB3State 3 State Button HButt CHButt
CHBDefault Defpushbutton HButt CHButt
CHBRadio Radio Button HButt CHBCheck
CHComb ComboBox HComb CWnd
CHEdit Edit control HEdit CWnd
CHGrid Grid control child HGrid CWnd

CHGridView Grid control view HGrid CView
CHGridBuffer Grid buffer object N/A CObject
CBufferManag
er

Manages buffer
support for all
grids

N/A CObject

CHList List control HList CWnd
CHStat Static control HStat CWnd
CHTool Toolbar HTool CDialog

CWnd-derived Controls
WinWidgets custom controls can be created directly from the MFC objects using the Create
member function or can be attached to an object using the Attach() or AttachToVBX()
member functions.    Note that we have added additional Attach functions taking a parent
window and a control ID for use with dialog templates.    Messages that can be sent to the
controls are encapsulated in member functions.    Notifications from the controls can be
processed by including ON_CONTROL statements in a message map, specifying the control
ID and the notification to process.    The list and combobox classes, CHList and CHComb are
designed to be subclassed by the application.    Both classes contain a virtual function,

void Initialize(void).

This function is called automatically within the Create member function of the class and
can be called at other times.    It should be overridden to initialize the list elements.    In the
CPPDEMO project, MYCOMBO.CPP and MYCOMBO.H are an example of a subclassed combo
box.    LISTFORM.CPP provides an example of using a CHList object without subclassing.
WARNING:    While AttachToVBX() is required to attach an instance of our Wrapper classes
to a VBX control, it will not create an entry in MFC's permanent lookup table.    Objects
attached using AttachToVBX() should only be used to call the WinWidgets message
wrappers.    These objects will not function correctly as CWnd-derived objects.      Wrapper
objects attached to non-VBX custom controls using the Attach() member function,
however, will function normally as CWnd-derived objects.

Grids
Because of the unusual nature of the grid control, we have provided both a CWnd-derived
class (CHGrid) for managing child windows and a CView-derived class (CHGridView) for use
with MDI, splitter windows, etc.    Like CHList and CHComb,CHGrid contains a virtual
Initialize() function that can be overridden to initialize the grid data.    Note that when using
a grid buffer (described below), initialization of the grid's data will be handled by the buffer
procedures, although any list data for drop-down list or combobox fields must be set in
Initialize().
The CHGridView class contains a pointer to a grid (m_pGrid) through which the CHGrid
member functions can be called.    The CView-derived class also has virtual functions for
processing all HGrid notification messages.    These functions can be overridden when
CHGridView is subclassed in an application.    The CHGridView class cannot be attached to
an existing grid control.    CHGridView contains a virtual function OnPrepareGridName(),
which should return the name of a grid resource.    CHGridView will use this resource to
create the grid dynamically.
In addition to these two classes, we have provided the CHGridBuffer, which should be

subclassed to provide access to HGrid's buffering capabilities.

Using VBX Controls in MFC:    A General Discussion
VBX controls have "properties," which identify their attributes.    In this manual, we use the
word "attribute" to refer to the characteristics of any control, not just a VBX control.    For a
VBX control, however, property and attribute are synonymous.    Each type of control has
its own unique set of properties.    Property values are stored for each control that is
created.
Most properties can be set at any time during program execution, although some can only
be set at design-time, as a means of initializing the state of the control.    Properties of a
control can be set in AppStudio when designing forms.    Public member functions in the
MFC class, CVBControl are used to get and set properties at run-time.    Refer to the MFC
documentation for more help on CVBControl, and the VBCIRCLE sample application in the
MFC samples directory.
VBX controls also generate "events," which is the control's way of notifying the application
about changes in its state.    Each type of control has a unique set of events that it is
capable of generating.    In MFC, an application must register all control events that it
wishes to process.    Registration is done by calling AfxRegisterVBEvent().    Events can be
registered through ClassWizard, and member functions can be created to handle them.   
Refer to the MFC documentation for more help on AfxRegisterVBEvent(), and the VBCIRCLE
sample application in the MFC samples directory.
In order to use VBX controls, your application must call CWinApp::EnableVBX in the
InitInstance() of your application object.    Using AppWizard with the "Custom VBX Controls"
box checked will add this code.    VBX controls can be created dynamically by calling the
Create() member function for CVBControl, or can be added to dialog templates in
AppStudio.   

Subclassing the WinWidgets
Any of the WinWidgets can be easily subclassed to provide custom behavior in a single
control or throughout an application.    To subclass an individual control, use the
SubclassWW() procedure, which is exported from WIDGETS.DLL.    This procedure replaces
the window procedure of a specific control with one provided by the application.    It returns
the address of the control's current window procedure, which should be called for any
messages the new procedure does not fully replace.    SubclassWW() does not affect any
controls other than the one specified.    The following code subclasses an edit control in a
dialog box:

WNDPROC DefHEditProc;

LRESULT FAR PASCAL MyFilter (HWND hwnd, UINT msg, WPARAM wp, LPARAM lp)
{
switch (msg)

{
case WM_KEYDOWN:

if (wp == VK_F1)
WinHelp (...);

break;
}

return DefHEditProc (hwnd, msg, wp, lp)
}

BOOL FAR PASCAL MyDialog (HWND hDlg, UINT msg, WPARAM wp, LPARAM lp)
{
static WNDPROC lpfnMyFilter;
HWND hwndEdit;
switch (msg)

{
case WM_INITDIALOG:

{
hwndEdit = GetDlgItem (hDlg, IDC_EDIT1);
lpfnMyFilter = MakeProcInstance (MyFilter, hInstance);
DefHEditProc = SubclassWW (hwndEdit, lpfnMyFilter);
break;
}

case WM_DESTROY:
FreeProcInstance (lpfnMyFilter);
DefHEditProc = NULL;
break;

}
}

To alter the behavior of all controls of a particular type (e.g. all buttons) it is more efficient
to create a new window class than to subclass each control individually.    To create a new
class based on one of the WinWidgets, use the following procedure:

1) Call WidgetsInit() so that all of the WinWidgets are registered.
2) Get the class information for the WinWidgets control using GetClassInfo() and

GetWidgetsInst().
3) Store the window procedure for the WinWidgets control, then replace it in the

WNDCLASS structure, along with the class name.
4)    Register the new class with RegisterClass();

The difficulty with this method is that none of the resource editors will know about the new
class, making it necessary to replace the control class names in dialog resources after they
are designed, or to create all controls explicitly using CreateWindow().   

Window Styles
A window style is a long integer value containing up to 32 behavior and appearance flags
for the window.    The highest 16 bits are standard Windows styles, such as WS_POPUP for
pop-up windows and WS_CHILD for child windows;    the meaning of the lower 16 bits
depends on the type of control.
The window style is stored along with the window's text and positioning information in a
dialog resource.    Normally, the style value is expanded to show each bit that is set as a
text constant, such as HLS_MULTICOL.    The window style is also a parameter of the
CreateWindow() procedure, which can be called directly to create windows that are not a
part of a dialog.
The WinWidgets use the window style that is passed with the WM_NCCREATE message to
initialize various attributes.    After initialization, the window style is not referenced, so calls
to SetWindowLong (..., GWL_STYLE, ...) will have no effect.

C Quick Reference
Button Controls

The ComboBox

The Edit Control

The Grid

The List Control

Static Controls

The ToolBar

Styles
Messages
Notifications
WindowText

Styles
Messages
Methods
Notifications
WindowText

Styles
Messages
Notifications
WindowText

Styles
Messages
Methods
Notifications
WindowText

Styles
Messages
Methods
Notifications
WindowText

Styles
Messages
WindowText

Styles
Messages
Methods
WindowText

    HEdit Messages
Message wParam lParam Return Value
HEM_BEQUIET bQuiet 0L Not Used
HEM_GETBKGNDBRUSH 0 0L hBrush
HEM_GETDATA iMaxBytes lpData lBytesCopied
HEM_GETDATACLASS 0 0L cDataClass
HEM_GETDATALINK 0 0L lpLink
HEM_GETDATASIZE 0 0L iSize
HEM_GETDATATYPE 0 0L cDataType
HEM_GETFONT 0 0L hfFont
HEM_GETFORMAT iMaxBytes lpstrBuf lBytesCopied
HEM_GETHILITEBRUSH 0 0L hbHilite
HEM_GETMAXTEXTLEN 0 0L iMaxLen
HEM_GETOVERWRITEMODE 0 0L bOverwrite
HEM_GETPASSWORDCHAR 0 0L cPwdChar
HEM_GETSCROLLPOS 0 0L iScrollPos
HEM_GETSEL 0 0L lSel
HEM_GETSELTEXT iMaxBytes lpstrSelText Not Used
HEM_GETSTATE 0 0L lState
HEM_GETTEXT iMaxBytes lpBuf lBytesCopied
HEM_GETTEXTCOLOR bNeg 0L crTextColor
HEM_GETTEXTLEN 0 0L lTextLen
HEM_GETVALIDATE 0 0L lpfnValProc
HEM_HASCHANGED 0 0L bChanged
HEM_ISQUIET 0 0L bQuiet
HEM_REPLACESEL 0 lpStr Not Used
HEM_SETBKGNDBRUSH hbrNewBrus

h
0L hbrOldBkgnd

HEM_SETCHANGED bVal 0L Not Used
HEM_SETDATA 0 lpData lBytesCopied
HEM_SETDATALINK 0 lpBuf lBytesCopied
HEM_SETFONT hfFont bRedraw hfOldFont
HEM_SETFORMAT bRedraw lpstrBuf lBytesCopied
HEM_SETHILITEBRUSH hbrNewHilit

e
0L hbrOldHilite

HEM_SETMAXTEXTLEN iLen 0L Not Used
HEM_SETOVERWRITEMODE bMode 0L Not Used
HEM_SETPASSWORDCHAR cChar 0L Not Used
HEM_SETSCROLLPOS iScroll bRedraw iScrollPos
HEM_SETSEL 0 lNewSel Not Used
HEM_SETTEXT 0 lpBuf bResult
HEM_SETTEXTCOLOR bNeg crTextColor Not Used
HEM_SETVALIDATE 0 lpfnNewValProc Not Used

HEM_UPDATE bParseText bUpdateText Not Used
HEM_VALIDATE 0 0L iResult
WM_CLEAR* 0 0L Not Used
WM_COPY* 0 0L Not Used
WM_CUT* 0 0L Not Used
WM_PASTE* 0 0L Not Used
WM_UNDO* 0 0L Not Used

* Standard Windows messages

    HButt Messages
Message wParam lParam Return Value
HBM_GETBKGNDBRUSH 0 0L hBrush
HBM_GETCOUNT 0 0L iCount
HBM_GETDATA 0 lpData lBytesCopied
HBM_GETDATALINK 0 0L lpLink
HBM_GETDATASIZE 0 0L iSize
HBM_GETFONT 0 0L hFont
HBM_GETMASKCOLOR 0 0L crMaskColor
HBM_GETPALETTE 0 0L hPalette
HBM_GETPALIGN 0 0L iAlign
HBM_GETPIC iIndex 0L hPic
HBM_GETRALIGN 0 0L iRelAlign
HBM_GETSOUND 0 0L hSound
HBM_GETSTATE 0 0L iState
HBM_GETSTATECOUNT 0 0L iStateCount
HBM_GETTALIGN 0 0L iAlign
HBM_GETTEXT iMaxBytes lpText lBytesCopied
HBM_GETTEXTCOLOR 0 0L crTextColor
HBM_SETBKGNDBRUSH hNewBrush 0L hPreviousBrush
HBM_SETDATA 0 lpData lBytesCopied
HBM_SETDATALINK 0 lpLink lBytesCopied
HBM_SETFONT hNewFont 0L hPreviousFont
HBM_SETMASKCOLOR 0 crMaskColor Not Used
HBM_SETPALIGN iAlign 0L Not Used
HBM_SETPIC iIndex (hNewPic, wType) hPreviousPic
HBM_SETRALIGN 0 iRelAlign Not Used
HBM_SETSOUND hNewSound 0L Not Used
HBM_SETSTATE iNewState bRedraw Not Used
HBM_SETTALIGN 0 iAlign Not Used
HBM_SETTEXT 0 lpText Not Used
HBM_SETTEXTCOLOR 0 crColor Not Used

    HButt Styles

Constant Value Description
HBS_PUSHBUTTON 0x00L Appears and behaves as a push

button.
HBS_DEFPUSHBUTTO
N

0x01L Appears and behaves as default
button.

HBS_CHECKBOX 0x02L Appears and behaves as a two
state check box.

HBS_RADIOBUTTON 0x03L Appears and behaves as a radio

button.
HBS_3STATE 0x04L Appears and behaves as a three

state check box.
HBS_OWNERDRAW 0x05L Appears and behaves as a push

button.
HBS_GROUPPUSH 0x06L Appears as a push button; behaves

as a radio button.
HBS_TRANSPARENT 0x0010L The button does not erase its

background, allowing whatever is
behind it to show through.

HBS_LJUST 0x0020L The button's Text is left justified.   
(Only significant with multi-line
Text)

HBS_RJUST 0x0040L The button's Text is right justified.   
(Only significant with multi-line
Text)

HBS_NOFOCUS 0x0080L The button does not take the input
focus when pressed with the
mouse.    Also removes the
WS_TABSTOP style.

HBS_DOWNPICS 0x0400L There are two pictures for each
state, one for pressed and one for
unpressed.

HBS_AUTOADVANCE 0x0800L The button advances one state in
its state cycle each time it is
pressed.

HBS_NOBUTTON 0x1000L The button is not drawn as a
pushbutton, leaving the
background as the system
COLOR_WINDOW.

HBS_TEXTINDENT 0x2000L The Text is painted to give the
impression of three dimensions.

HBS_SQUARED 0x4000L The corners of the button are
drawn square rather than rounded.

HBS_ASYNC 0x8000L Any Sound associated with the
button is played asynchronously.

    HEdit Styles

Constant Value Description
HES_DISPLAYLEFT 0x0000L Text is left justified in Display mode

[Default].
HES_EDITLEFT 0x0000L Text is left justified in Edit mode

[Default].
HES_DISPLAYCENTER 0x0001L Text is centered in Display mode.
HES_DISPLAYRIGHT 0x0002L Text is right justified in Display

mode.
HES_UPPERCASE 0x0008L All text is converted to uppercase.

HES_LOWERCASE 0x0010L All text is converted to lowercase.
HES_PASSWORD 0x0020L All characters appear as the

password character.
HES_AUTOHSCROLL 0x0080L Text scrolls horizontally

automatically when the caret nears
either end of the window.

HES_NOHIDESEL 0x0100L The selection remains displayed
when the control loses input focus

HES_BORDER3D 0x0200L The border is displayed with a 3D
style.    If the WS_BORDER bit is set,
the control is extruded like a
button, otherwise it is indented.

HES_HILITE 0x0400L The HiliteBrush is used to paint the
background when the control
receives the input focus.    If the
HiliteBrush is not set, a white brush
is used.

HES_EDITRIGHT 0x0800L Text is right justified in Edit mode.
HES_HUNGRY 0x1000L The control swallows Enter and Esc

keyboard messages and notifies its
parent.

    HList Styles

Constant Value Description
HLS_SORTBYDATA 0x0002L The list is sorted by the Data.
HLS_SORTBYCODE 0x0004L The list is sorted by the

Codes.
HLS_MULTISEL 0x0008L Multiple items may be

selected concurrently.
HLS_BORDER3D 0x0010L The list is drawn with a 3D

border, either indented or
extruded depending on the
setting of the WS_BORDER
flag.

HLS_EXTRUDE (HLS_BORDER3D
| WS_BORDER)

The list is shown with a 3D
extruded border.

HLS_HILITE 0x0020L The background color is
changed to the HiliteColor
when the control receives the
input focus.

HLS_USETABS 0x0080L Tabs are expanded in text
strings.

HLS_NONINTHEIGHT 0x0100L A partial item can be
displayed at the bottom of the
list.

HLS_MULTICOL 0x0200L Items are wrapped in
newspaper style columns; a
horizontal scrollbar is used if

all the items do not fit in the
window.

HLS_EXTENDEDSEL 0x0800L Multiple items may be
selected concurrently; the
mouse selects by dragging.

HLS_HUNGRY 0x1000L The control swallows Enter
and Esc keyboard messages
and notifies its parent.

HLS_NOSCROLL 0x4000L Scrollbars are not added
automatically when the list
cannot be displayed in full

    HComb Styles

Constant Value Description
HCS_BORDER3D 0x0010L The list is drawn with a 3D

border, either indented or
extruded depending on the
setting of the WS_BORDER
flag.

HCS_EXTRUDE (HCS_BORDER3D |
WS_BORDER)

The control is shown with a
3D extruded border.

HCS_HILITE 0x0020L The background color is
painted with the HiliteBrush
when the control receives
the input focus.

HCS_SORTBYCODE 0x0004L The list is sorted by the
Codes.

HCS_SORTBYDATA 0x0002L The list is sorted by the
Data.

HCS_DROPDOWN 0x0001L The control displays its list
in a drop-down box

HCS_HASEDIT 0x0008L The control accepts input in
an edit box

HCS_NONINTHEIGHT 0x0100L A partial item can be
displayed at the bottom of
the list.

HCS_USETABS 0x0080L Tabs are expanded in text
strings.

    HGrid Styles

Constant Value Description
HGS_BROWSE 0x0001L The control will not allow editing.
HGS_NOLINES 0x0002L No grid lines will be displayed.
HGS_MDICHILD 0x0004L The control is an MDI Child

window.
HGS_INPLACE 0x0008L Editing is done at the cell

location.
HGS_AUTOEXTEND 0x0010L New records are added to the

bottom of the grid as the user
scrolls down

HGS_RESIZEROWS 0x0020L Rows are resizeable.
HGS_RESIZECOLS 0x0040L Columns are resizeable
HGS_ROWBUTTONS 0x0080L Numbered buttons appear at the

beginning of each row.
HGS_COLBUTTONS 0x0100L Buttons containing the field

names appear at the top of each
column.

HGS_KEYBDDELINS 0x0200L The keyboard Ins and Del keys
can be used to insert and delete
records.

HGS_LEAVEONTAB 0x0400L Hitting the Tab key causes the
grid to lose input focus

HGS_NOHIDESEL 0x0800L The selection remains displayed
when the control loses input
focus

HGS_DRAGCOLS 0x1000L Grid columns can be
repositioned by the user
dynamically

HGS_WHOLEROWS 0x2000L Clicking on a cell selects the
entire record

HGS_SINGLESELECT 0x4000L Ranges of cells cannot be
selected

HGS_DISABLENOSCROLL 0x8000L Vertical scrollbar is disabled (not
hidden) when it is not needed

WS_HSCROLL 0x00100000L Horizontal scrollbar is shown
when needed

WS_VSCROLL 0x00200000L Vertical scrollbar is shown when
needed

    HTool Styles

Constant Value Description
HTS_BOTTOM 0x0001L Creates a tool bar at the bottom

of the parent window
HTS_FLOAT WS_POPUP Creates a floating tool pallete
HTS_LEFT 0x0002L Creates a tool along the left-hand

side of the parent window
HTS_NOSTRETCH 0x0010L The tool bar is not automatically

elongated
HTS_RIGHT 0x0004L Creates a tool along the right-

hand side of the parent window
HTS_TOP 0x0000L Creates a tool bar at the top of

the parent window

HTS_RIBBON (WS_CHILD |
WS_VISIBLE)

HTS_STATUS (WS_CHILD |
WS_VISIBLE |
HTS_BOTTOM)

HTS_PALETTE (HTS_FLOAT |
WS_CAPTION |
WS_VISIBLE)

    HStat Styles

Constant Value Description
HSS_BORDER3D 0x0010L The control's border has a

shaded,three-diminsional
appearance

HSS_BUMP 0x0020L The control's border has a raised
appearance

HSS_EXTRUDE (HSS_BORDER3D |
WS_BORDER)

The control's border has an
extruded appearance

HSS_FRAME 0x0002L The control appears as a frame
HSS_GROUP 0x0001L The control appears as a group box
HSS_HLINE 0x0004L The control appears as a horizontal

line
bmc
btn.bmp
}

HSS_INDENT (HSS_BORDER3D) The control's border has an
indented appearance

HSS_LEFT 0x0040L The control's text is left justified
HSS_PIC 0x0003L The control appears as a static

bitmap or icon
HSS_RIGHT 0x0080L The control's text is right justified
HSS_TEXT 0x0000L The control appears as static text
HSS_TEXTINDENT 0x0100L The control's text is right indented
HSS_TRANSPARENT 0x0200L The button does not erase its

background, allowing whatever is
behind it to show through.

HSS_VLINE 0x0005L The control appears as    vertical
line

    HComb Messages
Message wParam lParam Return Value
HCM_BEQUIET bValue 0L Not Used
HCM_DELETEITEM iIndex 0L bSuccess
HCM_FINDCODE iStart lpCode iIndex
HCM_FINDDATA iStart lpData iIndex
HCM_FINDSTRING iStart lpText iIndex
HCM_GETBKGNDBRUSH 0 0L hbrBkgnd

HCM_GETCODE iIndex lpCode bSuccess
HCM_GETCODECLASS 0 0 cCodeClass
HCM_GETCODELINK 0 0L lpCodeLink
HCM_GETCODESIZE iIndex 0L iCodeSize
HCM_GETCODETYPE 0 0L cCodeType
HCM_GETCOUNT 0 0 iCount
HCM_GETCURCODE wSize lpBuf iResult
HCM_GETCURDATA wSize lpBuf iResult
HCM_GETCURSEL 0 0L iCurSel
HCM_GETDATA iIndex lpData bSuccess
HCM_GETDATACLASS 0 0L cDataClass
HCM_GETDATALINK 0 0L lpDataLink
HCM_GETDATASIZE iIndex 0L iDataSize
HCM_GETDATATYPE 0 0L cDataType
HCM_GETDROPHEIGHT 0 0L iDropHeight
HCM_GETEDITDATA iMaxBytes lpData lBytesCopied
HCM_GETEDITMAXTEXTLEN 0 0L iMaxLen
HCM_GETEDITSCROLLPOS 0 0L iScrollPos
HCM_GETEDITSEL 0 0L lSel
HCM_GETEDITTEXT iMaxBytes lpBuf lBytesCopied
HCM_GETEDITTEXTLEN 0 0L iEditTextLen
HCM_GETFONT 0 0L hfFont
HCM_GETFORMAT iMaxBytes lpstrBuf lBytesCopied
HCM_GETHILITEBRUSH 0 0L hbrHilite
HCM_GETOVERWRITEMODE 0 0L bOverwrite
HCM_GETTEXT iIndex lpBuf lBytesCopied
HCM_GETTEXTCOLOR bNegative 0L crTextColor
HCM_GETTEXTLEN iIndex 0L iTextLen
HCM_HASCHANGED 0 0 bChanged
HCM_ISQUIET 0 0L bQuiet
HCM_RESETCONTENT 0 0L Not Used
HCM_SELECTCODE wAction lpCode bSuccess
HCM_SELECTDATA wAction lpData bSuccess
HCM_SELECTSTRING iStart lpText bSuccess
HCM_SETBKGNDBRUSH hbrNewBrus

h
0L hbrOldBkgnd

HCM_SETCHANGED bVal 0L Not Used
HCM_SETCODE iIndex lpCode bSuccess
HCM_SETCODELINK bSelect lpNewLink lBytesCopied
HCM_SETCURSEL iIndex 0L iResult
HCM_SETDATALINK bSelect lpNewLink lBytesColpied
HCM_SETDROPHEIGHT iNewHeight 0L bSuccess

HCM_SETEDITDATA 0 lpData lBytesCopied
HCM_SETEDITMAXTEXTLEN iLen 0L Not Used
HCM_SETEDITSCROLLPOS iScroll bRedraw iScrollPos
HCM_SETEDITSEL 0 lNewSel Not Used
HCM_SETFONT hfOldFont hfNewFont bRedraw
HCM_SETFORMAT bRedraw lpstrBuf lBytesCopied
HCM_SETHILITEBRUSH hbrNewHilit

e
0L hbrOldHilite

HCM_SETOVERWRITEMODE bMode 0L Not Used
HCM_SETTABSTOPS iNumber lpTabs bSuccess
HCM_SETTEXTCOLOR bNegative crNewColor Not Used

    HList Messages
Message wParam lParam Return Value
HLM_BEQUIET bVal 0L Not Used
HLM_DELETEITEM iIndex 0L bSuccess
HLM_FINDCODE iStart lpCode iIndex
HLM_FINDDATA iStart lpData iIndex
HLM_FINDSTRING iStart lpText iIndex
HLM_GETBKGNDBRUSH 0 0L hbrBkgnd
HLM_GETCODE iIndex lpCode bSuccess
HLM_GETCODECLASS 0 0L cCodeClass
HLM_GETCODELINK 0 0L lpCodeLink
HLM_GETCODESIZE iIndex 0L iCodeSize
HLM_GETCODETYPE 0 0L cCodeType
HLM_GETCOUNT 0 0L iCount
HLM_GETCURCODE wSize lpBuf iResult
HLM_GETCURDATA wSize lpBuf iResult
HLM_GETCURSEL 0 0L iCurSel
HLM_GETDATA iIndex lpData bSuccess
HLM_GETDATACLASS 0 0L cDataClass
HLM_GETDATALINK 0 0L lpDataLink
HLM_GETDATASIZE 0 0L iDataSize
HLM_GETDATATYPE 0 0L cDataType
HLM_GETFONT 0 0L hfFont
HLM_GETFORMAT iMaxBytes lpstrBuf lBytesCopied
HLM_GETHILITEBRUSH 0 0L hbrHilite
HLM_GETSEL iIndex 0L bSelected
HLM_GETSELCOUNT 0 0L iCount
HLM_GETSELITEMS iMaxItems lpBuf iCopied
HLM_GETSTATE 0 0L wState
HLM_GETTEXT iIndex lpBuf lBytesCopied
HLM_GETTEXTCOLOR bNegative 0L crTextColor

HLM_GETTEXTLEN iIndex 0L iTextLen
HLM_GETTOPINDEX 0 0L iTop
HLM_HASCHANGED 0 0L bChanged
HLM_ISQUIET 0 0L bQuiet
HLM_RESETCONTENT 0 0L Not Used
HLM_SELECTCODE wAction lpCode bSuccess
HLM_SELECTDATA wAction lpData bSuccess
HLM_SELECTITEM wAction iIndex bSuccess
HLM_SELECTRANGE wAction (iStart, iEnd) iNumber
HLM_SELECTSTRING iStart lpText bSuccess
HLM_SETBKGNDBRUSH hbrNewBrus

h
0L hbrOldBkgnd

HLM_SETCHANGED bVal 0L Not Used
HLM_SETCODE iIndex lpCode bSuccessq
HLM_SETCODELINK bSelect lpNewLink lBytesCopied
HLM_SETCOLUMNWIDTH iWidth 0L bSuccess
HLM_SETCURSEL iIndex 0L iResult
HLM_SETDATALINK bSelect lpNewLink lBytesCopied
HLM_SETFONT hfNewFont bRedraw hfOldFont
HLM_SETFORMAT bRedraw lpstrBuf lBytesCopied
HLM_SETHILITEBRUSH hbrNewHilit

e
0L hbrOldHilite

HLM_SETREDRAW bSetting bRedrawNow Not Used
HLM_SETSEL iAction iIndex bSuccess
HLM_SETSTATE wFlag bSetting wNewState
HLM_SETTABSTOPS iNumber lpTabs bSuccess
HLM_SETTEXTCOLOR bNegative crNewColor Not Used
HLM_SETTOPINDEX iIndex 0L iTop

    HStat Messages
Message wParam lParam Return Value
HSM_GETBKGNDCOLOR 0 0L crBkgnd
HSM_GETFRGNDCOLOR 0 0L crFrgnd
HSM_GETPALETTE 0 0L hpPalette
HSM_GETPIC 0 0L hPic
HSM_GETTEXT iMaxBytes lpBuf lBytesCopied
HSM_GETTYPE 0 0L wType
HSM_SETBKGNDCOLOR 0 crNewColor Not Used
HSM_SETFRGNDCOLOR 0 crNewFrgnd Not Used
HSM_SETPIC 0 (hPic, wType) hOldPic
HSM_SETTEXT 0 lpBuf Not Used

    HTool Messages

Message wParam lParam Return Value
HTM_BEQUIET bValue 0L Not Used
HTM_GETBRUSH 0 0L hbrBkgnd
HTM_GETCAPTION wCount lpBuf Not Used
HTM_GETNOTIFY 0 0L hwndNotify
HTM_ISQUIET 0 0L bQuiet
HTM_SETBRUSH hbrNewBrus

h
0L hbrOldBkgnd

HTM_SETCAPTION 0 lpTitle Not Used
HTM_SETNOTIFY hwndNew 0L Not Used

    HGrid Messages
Message wParam lParam Return Value
HGM_ADDFLD 0 hFld iFld
HGM_ADDREC 0 lpRecData iRowIndex
HGM_BEQUIET bValue 0L Not Used
HGM_DELETEFLD iColIndex 0L bSuccess
HGM_DELETEREC iRowIndex 0L bSuccess
HGM_FINDFLD 0 lpFldName iColIndex
HGM_GETBASEREC 0 0L lBaseRec
HGM_GETBKGNDBRUSH 0 0L hbrBkgnd
HGM_GETBTNHEIGHT 0 0L wBtnHeight
HGM_GETBTNWIDTH 0 0L iBtnWidth
HGM_GETBUFFERPROC 0 0L lpfnBufferProc
HGM_GETBUFFERSIZE 0 0L iBufSize
HGM_GETCOLCOUNT 0 0L wColCount
HGM_GETCOLMAP 0 lpMap Not Used
HGM_GETCURREC 0 lpRecData bSuccess
HGM_GETFIRSTCOL 0 0L wFirstCol
HGM_GETFIRSTREC 0 0L lFirstRec
HGM_GETFONT 0 0L hfFont
HGM_GETFROZENCOLS 0 0L wFrozenFlds
HGM_GETMARKER 0 0L lMarker
HGM_GETMAXREC 0 0L lMaxRec
HGM_GETRECLINK 0 0L lpLink
HGM_GETRECSIZE 0 0L wRecSize
HGM_GETROWCOUNT 0 0L iRowCount
HGM_GETROWHEIGHT 0 0L wRowHeight
HGM_GETSELANCHOR 0 lpCell lCell
HGM_GETSELEXTENT 0 lpCell lCell
HGM_GETSTATE 0 0L lState
HGM_GETTITLE wCount lpBuf Not Used
HGM_INSERTFLD iAtIndex hFld iFld

HGM_INSERTREC iAtRow lpRecData iRowIndex
HGM_ISQUIET 0 0L bQuiet
HGM_MOVECOL iFrom iTo iNewIndex
HGM_MOVEROW iFrom iTo iRowIndex
HGM_RESETCONTENT bRedraw 0L Not Used
HGM_SETBKGNDBRUSH hbrNewBrus

h
0L hbrOldBkgnd

HGM_SETBTNHEIGHT wNewHeigh
t

bRedraw Not Used

HGM_SETBTNWIDTH wNewWidth bRedraw Not Used
HGM_SETBUFFERPROC 0 lpfnNewBufProc lpfnOldBufProc
HGM_SETBUFFERSIZE 0 iNewBufSize iBufSize
HGM_SETCOLMAP 0 lpMap Not Used
HGM_SETFIRSTCOL iColIndex 0L Not Used
HGM_SETFIRSTREC 0 lNewFirstRec lFirstRec
HGM_SETFONT hfNewFont bRedraw hfOldFont
HGM_SETFROZENCOLS wNumFroze

n
0L Not Used

HGM_SETMARKER 0 (iColIndex,
iRowIndex)

Not Used

HGM_SETMAXREC 0 lNewMaxRec bSuccess
HGM_SETRECLINK 0 lpBuf bSuccess
HGM_SETROWHEIGHT wNewHeigh

t
bRedraw Not Used

HGM_SETSELANCHOR 0 (iCol, iRow) Not Used
HGM_SETSELEXTENT bExtend (iCol, iRow) Not Used
HGM_SETSTATE bValue wStateFlag Not Used
HGM_SETTITLE 0 lpTitle Not Used
HGM_UPDATE bErase 0L Not Used

Record Messages
HGRM_GETDATA wRowIndex lpRecStruct bSuccess
HGRM_GETSTATE wRowIndex 0L wState
HGRM_SETDATA wRowIndex lpRecStruct bSuccess
HGRM_SETSTATE wRowIndex (bValue,

wStateFlag)
Not Used

Field Messages
HGFM_GETCODECLASS iFld 0L cCodeClass
HGFM_GETCODETYPE iFld 0L cCodeType
HGFM_GETCOLWIDTH iFld 0L iWidth
HGFM_GETCTLTYPE iFld 0L cCtlType
HGFM_GETDATACLASS iFld 0L cFldDataClass
HGFM_GETDATASIZE iFld 0L iSize

HGFM_GETDATATYPE iFld 0L cDataType
HGFM_GETDROPHEIGH iFld 0L wHeight
HGFM_GETFORMAT iFld lpszFormat lBytesCopied
HGFM_GETFORMATLEN iFld 0L wFormatLen
HGFM_GETHCTL iFld 0L hwControl
HGFM_GETNAME iFld lpszName bSuccess
HGFM_GETNAMELEN iFld 0L iNameLen
HGFM_GETOFFSET iFld 0L iOffset
HGFM_GETSTATE iFld 0L wState
HGFM_SETDROPHEIGHT iFld wNewHeight Not Used
HGFM_SETNAME iFld lpszName bSuccess
HGFM_SETSTATE iFld (bValue,

wStateFlag)
Not Used

    HComb Methods
int FAR PASCAL HCAddItemEx(HWND hwnd, LPVOID lpData, LPVOID lpCode);
int FAR PASCAL HCAddItems(HWND hwnd, int iCount, LPVOID lpData);
int FAR PASCAL HCAddItemsEx(HWND hwnd, int iCount, LPVOID lpData, LPVOID

lpCode);
BOOL FAR PASCAL HCDeleteItems(HWND hwnd, WORD wSearch, int iCount, LPVOID

lpInfo);
int FAR PASCAL HCGetItems(HWND hwnd, int iCount, WORD wReturn, LPVOID

lpReturn, WORD wSearch, LPVOID lpInfo);
int FAR PASCAL HCInsertItemEx(HWND hwnd, int iPos, LPVOID lpData, LPVOID

lpCode);
int FAR PASCAL HCInsertItems(HWND hwnd, int iPos, int iCount, LPVOID lpData);
int FAR PASCAL HCInsertItemsEx(HWND hwnd, int iPos, int iCount, LPVOID lpData,

LPVOID lpCode);

    HList Methods
int FAR PASCAL HLAddItem(HWND hwnd, LPVOID lpData);
int FAR PASCAL HLAddItemEx(HWND hwnd, LPVOID lpData, LPVOID lpCode);
int FAR PASCAL HLAddItems(HWND hwnd, int iCount, LPVOID lpData);
int FAR PASCAL HLAddItemsEx(HWND hwnd, int iCount, LPVOID lpData, LPVOID

lpCode);
BOOL FAR PASCAL HLDeleteItem(HWND hwnd, int iIndex);
BOOL FAR PASCAL HLDeleteItems(HWND hwnd, WORD wSearch, int iCount, LPVOID

lpInfo);
BOOL FAR PASCAL HLEmptyList(HWND hwnd);
BOOL FAR PASCAL HLGetCode(HWND hwnd, int iIndex, LPVOID lpCode);
BOOL FAR PASCAL HLGetData(HWND hwnd, int iIndex, LPVOID lpData);
int FAR PASCAL HLGetItems(HWND hwnd, int iCount, WORD wReturn, LPVOID

lpReturn, WORD wSearch, LPVOID lpInfo);
int FAR PASCAL HLInsertItem(HWND hwnd, int iPos, LPVOID lpData);
int FAR PASCAL HLInsertItemEx(HWND hwnd, int iPos, LPVOID lpData, LPVOID

lpCode);
int FAR PASCAL HLInsertItems(HWND hwnd, int iPos, int iCount, LPVOID lpData);
int FAR PASCAL HLInsertItemsEx(HWND hwnd, int iPos, int iCount, LPVOID lpData,

LPVOID lpCode);
BOOL FAR PASCAL HLSelectCode(HWND hwnd, LPVOID lpCode, WORD wAction);
BOOL FAR PASCAL HLSelectData(HWND hwnd, LPVOID lpData, WORD wAction);
BOOL FAR PASCAL HLSelectItem(HWND hwnd, int iIndex, WORD wAction);
BOOL FAR PASCAL HLSelectItems(HWND hwnd, WORD wAction, WORD wSearch, int

iCount, LPVOID lpInfo);
BOOL FAR PASCAL HLSetCode(HWND hwnd, int iIndex, LPVOID lpCode);
BOOL FAR PASCAL HLSetCodeLin(HWND hwnd, LPVOID lpCode, BOOL bSelect);
BOOL FAR PASCAL HLSetDataLink(HWND hwnd, LPVOID lpData, BOOL bSelect);

    HTool Methods
HWND FAR PASCAL HToolCreate(HANDLE hInstance, LPCSTR lpTemplate, HWND

hwndParent, HWND hwndNotify, DWORD dwStyle, WORD wID, int
iXPos, int iYPos);

void FAR PASCAL HToolUpdate (HWND);

    HGrid Methods
BOOL FAR PASCAL HGGetCellData (HWND hCtl, int iCol, int iRow, LPVOID lpDest);
BOOL FAR PASCAL HGSetCellData (HWND hCtl, int iCol, int iRow, LPVOID lpSrc);
BOOL FAR PASCAL HGSetCellString (HWND hCtl, int iCol, int iRow, LPSTR lpSrc);
WORD FAR PASCAL HGGetCellText (HWND hCtl, int iCol, int iRow, LPSTR lpText, int iMax);
BOOL FAR PASCAL HGridInvalidateRange(HWND hwnd, int iCol1, int iRow1, int iCol2, int

iRow2);
BOOL FAR PASCAL HGridInvalidateCell (HWND hwnd, int iCol, int iRow);
LPSTR FAR PASCAL HGOffsetPtr (HWND hCtl, int iCol, LPVOID lpRec);
HFLD FAR PASCAL HGFieldCreate(LPCSTR lpName, WORD wState, int iColWidth, int

iDropHeight, char cDataClass, char cDataType, char cCodeClass, char
cCodeType, int iSize, char cCtlType, long lCtlStyle, LPCSTR lpFmt);

BOOL FAR PASCAL HGFieldDestroy (HFLD lpFld);

    HButt Notify

Notification Code Meaning
HBN_CLICKED The user has clicked the button.
HBN_DOUBLECLICKED The user has double-clicked the button.

    HComb Notify

Notification Code Meaning
HCN_ERRSPACE The control is unable to perform an

operation because of memory constraints.
HCN_SELCHANGE The listbox Selection has changed.
HCN_DBLCLK The user has double-clicked on an item.
HCN_SETFOCUS The control has gained the input focus.
HCN_KILLFOCUS The control has lost the input focus.

    HEdit Notify

Notification Code Meaning
HEN_CHANGE The user has changed the Text.
HEN_ERRSPACE The control was unable to allocate a

memory.
HEN_HSCROLL The user clicked on the horizontal scroll

bar.
HEN_INVALID The user has entered an invalid date or

other data item.    Returning TRUE
prevents focus from leaving the control.

HEN_KILLFOCUS The control has lost input focus.
HEN_MAXTEXT The Text has reached TextMaxLen.
HEN_SETFOCUS The control has gained input focus.
HEN_UPDATE The control is about to display altered Text

    HList Notify

Notification Code Meaning
HLN_DBLCLK        The user has double-clicked on an item.
HLN_ERRSPACE    The control is unable to perform an

operation because of memory constraints.
HLN_KILLFOCUS The control has lost the input focus.
HLN_SELCHANGE The listbox Selection has changed.
HLN_SETFOCUS    The control has gained the input focus.

    HGrid Notify

Notification Code Meaning
HGN_BOTTOM The user has attempted to scroll off the

bottom of the table.
HGN_COLMOVED The user has draged a column to a new

location
HGN_COLSIZED The user has resized a column
HGN_DBLCLK The user has double-clicked on an cell.
HGN_DESTROY The grid is about to be destroyed.
HGN_ERRSPACE The control is unable to perform an

operation because of memory
constraints.

HGN_KILLFOCUS The control has lost the input focus.
HGN_RECCHANGED The contents of a record have been

changed.
HGN_RECDELETE A record is about to be deleted.
HGN_RECNEW A new record was inserted.
HGN_RECSWITCH The selection has been moved to a

different record.
HGN_ROWSIZED The user has resized the rows.
HGN_SELCHANGE The Selection has changed.
HGN_SELCHANGING The selection is about to change.   

Changing the Marker changes the new
selection.

HGN_SELEXTENDING The selection is about to extend.   
Changing the Marker changes the new
selection.

HGN_SETFOCUS The control has gained the input focus.
HGN_TOP The user has attempted to scroll off the

top of the table.

C++ Quick Reference
Class Hierarchy

Button Controls

The ComboBox

The Edit Control

The Grid

The List Control

Static Controls

The ToolBar

Member Functions
Styles
Notification Codes
Window Text

Member Functions
Styles
Notification Codes
Window Text

Member Functions
Styles
Notification Codes
Window Text

Member Functions
Styles
Notification Codes
Window Text

Member Functions
Styles
Notification Codes
Window Text

Member Functions
Styles
Window Text

Member Functions
Styles

    CHButt, CHBCheck, CHB3State, CHBDefault, CHBRadio
Classes
Constructors

Members

Defined in CHButt/THButt:
BOOL Attach(HWND hParent, int nID) ;
BOOL Attach(HWND hWnd) ;
int GetPAlign(void);
CBrush * GetBkgndBrush(void) ;
int GetCount(void) ;
CFont * GetFont(void) ;
COLORREF GetMaskColor (void) ;
CPalette * GetPalette(void);
CGdiObject * GetPic(int iIndex=0)    ;
int GetRAlign(void) ;
HANDLE GetSound(void) ;
int GetState(void) ;
int GetStateCount(void) ;
int GetTAlign(void) ;
int GetText(LPSTR lpBuf, int iMaxBytes=-1) ;
COLORREF GetTextColor(void) ;
BOOL IsPressed(void) ;
void Press(BOOL bPress) ;
void SetPAlign(int iAlign) ;
CBrush * SetBkgndBrush(CBrush *pBkgnd) ;
CFont * SetFont(CFont *pFont, BOOL bRedraw=TRUE) ;
void SetMaskColor (COLORREF clrMask) ;
CGdiObject * SetPic (CGdiObject *pPic, WORD wType, int iIndex=0);
void SetRAlign(int iAlign) ;
HANDLE SetSound(HANDLE hSnd) ;
int SetState(int iState, BOOL bRedraw = TRUE) ;
void SetTAlign(int iAlign) ;
void SetText(LPSTR lpszText) ;
void SetTextColor(COLORREF clrText) ;

Defined in CHBCheck/THBCheck:
int GetData(LPVOID lpData);
int GetDataSize(void);
int SetData(LPVOID lpBuf);
int SetDataLink(LPVOID lpBuf=NULL);

Defined in CHBRadio/THBRadio:
BOOL IsLastInGroup(void);

    CHComb Class
Constructors

Members
int AddItem(LPVOID lpData);
int AddItemEx(LPVOID lpData, LPVOID lpCode);
int AddItems(int iCount, LPVOID lpData);
int AddItemsEx(int iCount, LPVOID lpData, LPVOID lpCode);
int DeleteItem(int iIndex);
BOOL DeleteItems(WORD wSearch, int iCount, LPVOID lpInfo);
BOOL EmptyList(void);
int FindCode(int iStart, LPVOID lpCode);
int FindData(int iStart, LPVOID lpData);
CBrush * GetBkgndBrush(void);
BOOL GetCode(int iIndex, LPVOID lpCode);
char GetCodeClass(void);
LPVOID GetCodeLink(void);
int GetCodeSize(int iIndex=-1);
int GetCodeType(void);
int GetCount(void);
BOOL GetCurCode(LPVOID lpBuf);
BOOL GetCurData(LPVOID lpBuf);
int GetCurSel(void);
BOOL GetData(int iIndex, LPVOID lpData);
char GetDataClass(void);
LPVOID GetDataLink(void);
int GetDataSize(int iIndex=-1);
int GetDataType(void);
int GetDropHeight(void);
int GetEditData(LPVOID lpData, int iMaxLen=-1);
int GetEditScrollPos(void);
LONG GetEditSel(void);
int GetEditText(LPSTR lpText, int iMaxLen=-1);
int GetEditTextLen(void);
CFont * GetFont(void);
void GetFormat(LPSTR lpFormat, int iMaxLen=-1);
CBrush * GetHiliteBrush(void);
int GetItems(int iCount, WORD wReturn, LPVOID lpReturn, WORD wSearch,

LPVOID lpInfo);
int GetText(LPSTR lpBuf, int iIndex);
COLORREF GetTextColor(BOOL bNeg=FALSE);
int GetTextLen(int iIndex);
BOOL HasChanged(void);
int InsertItem(int iPos, LPVOID lpData);
int InsertItemEx(int iPos, LPVOID lpData, LPVOID lpCode);
int InsertItems(int iPos, int iCount, LPVOID lpData);
int InsertItemsEx(int iPos, int iCount, LPVOID lpData, LPVOID lpCode);

BOOL IsSelected(int iIndex);
BOOL SelectCode(LPVOID lpCode);
BOOL SelectData(LPVOID lpData);
CBrush * SetBkgndBrush(CBrush *pBknd, BOOL bRedraw=TRUE);
BOOL SetChanged(BOOL bChanged);
BOOL SetCode(int iIndex, LPVOID lpCode);
BOOL SetCodeLink(LPVOID lpCode);
int SetCurSel(int iIndex);
BOOL SetDataLink(LPVOID lpData);
BOOL SetDropHeight(int iNewHeight);
int SetEditData(LPVOID lpData);
int SetEditScrollPos(int iScroll, BOOL bRedraw);
void SetEditSel(int iAnchor, int iExtent);
CFont * SetFont(CFont *pFont, BOOL bRedraw=TRUE);
int SetFormat(LPSTR lpFormat, BOOL bRedraw=TRUE);
CBrush * SetHiliteBrush(CBrush *pBrush, BOOL bRedraw=TRUE);
void SetMaxTextLen(int iLen);
void SetOverwrite(BOOL bOverwrite);
void SetTextColor(COLORREF crNew, BOOL bNeg=FALSE);
int SetTabStops(int iNum, LPINT lpTStops);   

    CHEdit Class
Members

BOOL    BeQuiet(BOOL bQuiet);
void Clear();
void Copy();
void Cut();
CBrush * GetBkgndBrush(void);
char    GetDataClass(void);
LONG    GetData(LPVOID lpData, int iMaxBytes=-1);
LONG    GetDataSize(void);
char    GetDataType(void);
CFont * GetFont(void);
LONG    GetFormat(LPSTR lpszFormat, int iMaxBytes=-1);
CBrush * GetHiliteBrush(void);vt
int      GetMaxTextLen(void);
BOOL    GetOverwriteMode(void);
char    GetPasswordChar(void);
LONG    GetScrollPos(void);
LONG    GetSel(void);
void    GetSelText(LPSTR lpSelText, int iMaxBytes=-1);
LONG    GetState(void);
COLORREF GetTextColor(BOOL bNeg = FALSE);
LONG    GetText(LPSTR lpBuf, int iMaxBytes=-1);
LONG    GetTextLen(void);
VALIDATEPROC    GetValidate(void);
BOOL    HasChanged(void);
BOOL    IsQuiet(void);
void Paste();
void    ReplaceSel(LPSTR lpStr);
CBrush * SetBkgndBrush(CBrush *pBkgnd);
void    SetChanged(BOOL bChanged);
LONG    SetData(LPVOID lpBuf);
LONG    SetDataLink(LPVOID lpBuf=NULL);
CFont * SetFont(CFont *pFont, BOOL bRedraw=TRUE);
LONG    SetFormat(LPSTR lpString, BOOL bRedraw=TRUE);
CBrush * SetHiliteBrush(CBrush *pHilite);
void    SetMaxTextLen(int iMaxLen);
void    SetOverwriteMode(BOOL bMode=TRUE);
void    SetPasswordChar(char c);
LONG    SetScrollPos(int iNumChars, BOOL bRedraw=TRUE);
void    SetSel(int iAnchor, int iExtent);
BOOL    SetState(LONG lStateFlag, BOOL bValue);
BOOL    SetTextColor(COLORREF cr, BOOL bNeg = FALSE);
BOOL    SetText(LPSTR lpBuf);
void    SetValidate(VALIDATEPROC lpfnValidate);
void Undo();
void    Update(BOOL bParseText=FALSE, BOOL bUpdateText=TRUE);

int Validate(void);

    CHGrid Class
Members

void AddFld(HFLD& Fld);
int AddRec(LPVOID lpRecStruct=NULL);
void BeQuiet(BOOL bValue);
int ColToFld(int c);
void DeleteFld(int iColIndex);
BOOL DeleteRec(int iRecIndex);
HFLD FieldCreate(LPSTR lpName, WORD wState, int iWidth, int iHeight, char

cDataClass, char cDataType, char cCodeClass, char cCodeType,int iSize, char
cCtlType, DWORD lCtlStyle, LPCSTR lpFormat);

int FindFld(LPSTR lpszFldName);
int FldToCol(int f);
LONG GetBaseRec(void);
CBrush * GetBkgndBrush(void);
int GetBtnHeight(void);
int GetBtnWidth(void);
BUFFERPROC GetBufferProc(void);
int GetBufferSize(void);
BOOL GetCellData(int iField, int iRec, LPVOID lpData);
WORD GetCellText(int iField, int iRec, LPSTR lpText, WORD wMax);
char GetCodeClass(int iColIndex);
char GetCodeType(int iColIndex);
int GetColCount(void);
void GetColMap(int FAR *lpMap);
int GetColWidth(int iColIndex);
WORD GetCtlType(int iColIndex);
void GetCurRec(LPVOID lpRecStruct);
char GetDataClass(int iColIndex);
BOOL GetData(int iRecIndex, LPVOID lpRecStruct);
int GetDataSize(int iColIndex);
char GetDataType(int iColIndex);
int GetDropHeight(int iColIndex);
WORD GetFieldState(int iColIndex);
int GetFirstCol(void);
LONG GetFirstRec(void);
CFont * GetFont(void);
void GetFormat(int iColIndex, LPSTR lpszFormat);
int GetFormatLen(int iColIndex);
int GetFrozenCols(void);
HWND GetHCtl(int iColIndex);
LONG GetMarker(void);
LONG GetMaxRec(void);
void GetName(int iColIndex, LPSTR lpszName);
int GetNameLen(int iColIndex);
LPVOID GetRecLink(void);
int GetRecSize(void);

WORD GetRecState(int iRecIndex);
int GetRowCount(void);
int GetRowHeight(void);
LONG GetSelAnchor(LPCELL lpCell=NULL);
LONG GetSelExtent(LPCELL lpCell=NULL);
LONG GetState(void);
void GetTitle(int iCount, LPSTR lpsTitle);
void InsertFld(int wBeforeFld, HFLD& Fld);
int InsertRow(int iRecIndex, LPVOID lpRecStruct=NULL);
BOOL InvalidateCell (int iFld, int iRec);
BOOL InvalidateRange(int iFld1, int iRec1, int iFld2, int iRec2);
BOOL IsQuiet(void);
void MoveCol(int wOldIndex, int wNewIndex);
int MoveRow(int iOldIndex, int iNewIndex);
LPSTR OffsetPtr (int iFld, LPVOID lpRec);
int RecToRow(LONG rec);
void ResetContent(BOOL bRedraw = TRUE);
LONG RowToRec(int row);
CBrush * SetBkgndBrush(CBrush *pBrush, BOOL bRedraw=TRUE);
void SetBtnHeight(int iHeight, BOOL bRedraw=TRUE);
void SetBtnWidth(int iWidth, BOOL bRedraw=TRUE);
BUFFERPROC SetBufferProc(BUFFERPROC lpfnBufProc);
int SetBufferSize(int iSize);
BOOL SetCellData(int iField, int iRec, LPVOID lpData);
BOOL SetCellString(int iField, int iRec, LPSTR lpData);
void SetColMap(int FAR *lpMap);
void SetColWidth(int iColIndex, int iNewWidth);
BOOL SetData(int iRecIndex, LPVOID lpRecStruct);
void SetDropHeight(int iColIndex, int iNewHeight);
WORD SetFieldState(int iColIndex, WORD wFlag, BOOL bValue);
void SetFirstCol(int iHeight, BOOL bRedraw=TRUE);
LONG SetFirstRec(int iRecIndex);
CFont * SetFont(CFont *pFont, BOOL bRedraw=TRUE);
void SetFrozenCols(int iFrznCols);
void SetMarker(int iColIndex, int iRowIndex);
LONG SetMaxRec(LONG lMax);
void SetName(int iColIndex, LPSTR lpszName);
void SetRecLink(LPVOID lpRecStruct);
void SetRecState(int iRecIndex, WORD wFlag, BOOL bValue);
void SetRowHeight(int iHeight, BOOL bRedraw=TRUE);
void SetSelAnchor(int iCol, int iRow);
void SetSelExtent(BOOL bExtend, int iCol, int iRow);
void SetState(BOOL bValue, WORD wFlag);
void SetTitle(int iCount, LPSTR lpsTitle);
void Update(BOOL bErase);

    CHList Class
Members

int AddItem(LPVOID lpData);
int AddItemEx(LPVOID lpData, LPVOID lpCode);
int AddItems(int iCount, LPVOID lpData);
int AddItemsEx(int iCount, LPVOID lpData, LPVOID lpCode);
void BeQuiet(BOOL bQuiet);
BOOL DeleteItem(int iIndex);
int DeleteItems(WORD wSearch, int iCount, LPVOID lpInfo);
int FindCode(int iStart, LPVOID lpCode);
int FindData(int iStart, LPVOID lpData);
int FindString(int iStart, LPSTR lpString);
CBrush * GetBkgndBrush(void);
BOOL GetCode(int iIndex, LPVOID lpCode);
char GetCodeClass(void);
LPVOID GetCodeLink(void);
int GetCodeSize(int iIndex=-1);
int GetCodeType(void);
BOOL GetCurCode(LPVOID lpBuf, WORD wSize=-1);
BOOL GetCurData(LPVOID lpBuf, WORD wSize=-1);
WORD GetCurSel(void);
BOOL GetData(int iIndex, LPVOID lpData);
char GetDataClass(void);
LPVOID GetDataLink(void);
int GetDataSize(int iIndex=-1);
int GetDataType(void);
CFont * GetFont(void);
void GetFormat(LPSTR lpBuf, int iMaxLen=-1);
CBrush * GetHiliteBrush(void);
int GetItems(int iCount, WORD wReturn, LPVOID lpReturn, WORDwSearch,

LPVOID lpInfo);
BOOL GetSel(int iIndex);
int GetSelCount(void);
int GetSelItems(LPINT lpBuf, int iMaxItems);
LONG GetState(void);
int GetText(LPSTR lpBuf, int iIndex);
COLORREF GetTextColor(BOOL bNeg=FALSE);
int GetTextLen(int iIndex);
int GetTopIndex(void);
BOOL HasChanged(void);
int InsertItem(int iPos, LPVOID lpData);
int InsertItemEx(int iPos, LPVOID lpData, LPVOID lpCode);
int InsertItems(int iPos, int iCount, LPVOID lpData);
int InsertItemsEx(int iPos, int iCount, LPVOID lpData, LPVOID lpCode);
BOOL IsQuiet(void);
BOOL SelectCode(LPVOID lpCode, WORD wAction);
BOOL SelectData(LPVOID lpData, WORD wAction);

BOOL SelectItem(int iIndex, WORD wAction);
BOOL SelectItems(WORD wAction, WORD wSearch, int iCount, LPVOID lpInfo);
int SelectString(int iStart, LPSTR lpString);
CBrush * SetBkgndBrush(CBrush *pBknd, BOOL bRedraw=TRUE);
BOOL SetChanged(BOOL bChanged);
BOOL SetCode(int iIndex, LPVOID lpCode);
BOOL SetCodeLink(LPVOID lpCode, BOOL bSelect=TRUE);
BOOL SetColumnWidth(int iWidth);
int SetCurSel(int iIndex);
BOOL SetDataLink(LPVOID lpData, BOOL bSelect=TRUE);
CFont * SetFont(CFont *pFont, BOOL bRedraw=TRUE);
int SetFormat(LPSTR lpszFormat, BOOL bRedraw=TRUE);
CBrush * SetHiliteBrush(CBrush *pBrush, BOOL bRedraw=TRUE)      ;
BOOL SetRedraw(BOOL bRedraw, BOOL bRedrawNow);
BOOL SetSel(int iAction, int iIndex);
LONG SetState(WORD wFlag, BOOL bSetting);
BOOL SetTabStops(int iNum, LPINT lpStops);
void SetTextColor(COLORREF crNew, BOOL bNeg=FALSE);
int SetTopIndex(int iTop);

    CHStat Class
Members

COLORREF GetBkgndColor(void);
COLORREF GetFrgndColor(void);
CPalette * GetPalette(void);
CGdiObject * GetPic(void);         
int GetText(LPSTR lpBuf, int iMaxLen=-1);
int GetType(void);
void SetBkgndColor(COLORREF cr, BOOL bRedraw);
void SetFrgndColor(COLORREF cr, BOOL bRedraw);
CGdiObject * SetPic(CGdiObject *Image, WORD wType, BOOL bRedraw=TRUE);
void SetText(LPSTR lpszText);

    CHTool Class
Members

HBRUSH GetBrushHTool_Attr_Background>main(void);
int GetCaption(LPSTR lpBuf, int iMaxLen=-1);
HWND GetNotify(void);
HBRUSH SetBrush(HBRUSH hBkgnd);
void SetCaption(LPSTR lpszCaption);
HWND SetNotify(HWND hNotify);
void Update();

    C++ Class Derivation Chart
MFC Classes

Class Name Description WinWidget
Encapsulated

Derived
From

CHButt Generic Pushbutton HButt CWnd
CHBCheck CheckBox HButt CHButt
CHB3State 3 State Button HButt CHBCheck
CHBDefault Defpushbutton HButt CHButt
CHBRadio Radio Button HButt CHBCheck
CHComb Combo Box HComb CWnd
CHEdit Edit control HEdit CWnd
CHGrid Grid control child HGrid CWnd
CHGridView Grid control view HGrid CView
CHGridBuffer Grid buffer object N/A CObject
CHList List control HList CWnd
CHStat Static control HStat CWnd
CHTool Toolbar HTool CDialog

OWL Classes

Class Name Description WinWidget
Encapsulated

Derived
From

THButt Generic Pushbutton HButt TControl
THBCheck CheckBox HButt THButt
THB3State 3 State Button HButt THBCheck
THBDefault Defpushbutton HButt THButt
THBRadio Radio Button HButt THBCheck
THComb Combo Box HComb TControl
THEdit Edit control HEdit TControl
THGrid Grid control HGrid TControl
THList List control HList TControl
THStat Static control HStat TControl
THTool Toolbar HTool TDialog

Installing the WinWidgets
The SETUP program on the WinWidgets diskettes will help install your toolset.   
In the SETUP program, use the Set Path button to enter a directory in which to install the
WinWidgets.    SETUP will create several sub-directories within this directory to hold various
toolset components.    One of these sub-directories, ...\bin, must be added to your PATH.    If
a previous version of the WinWidgets is present in the installation directory, the existing
files will be over-written.
Select the toolset components you want to install by checking the boxes on the left side of
the window.    The WinWidgets' components and their meanings are listed below.    Because
components vary between editions, some may not be present in your package.

Component Content
DLL and VBX files The Dynamic Link Libraries containing the

WinWidgets' code and the resource editor
interface code.

On-line Manual The WinWidgets help file, WIDGETS.HLP
Include/Declaration files Header files containing definitions and

declarations
Utilities Utility programs, such as DaBoot
Libraries Import libraries for linking to WIDGETS.DLL
Samples Sample code for Visual Basic, C and C++

programmers.
OWL and MFC (.CPP)
files

C++ source files containing OWL and MFC-
compatible class wrappers for the WinWidgets

Source Code Microsoft and Borland compatible C files and
projects for rebuilding the WinWidgets

In the WinWidgets Professional Edition, SETUP can also help integrate the WinWidgets with
the Microsoft Dialog Editor and/or Borland Resource Workshop.    If you check the box
labeled "Integrate with resource editors" SETUP will modify the initialization files for these
tools to include the WinWidgets support DLL's.    If you do not want SETUP to perform these
modifications, make sure the box is not checked.
After installation, use the procedure described in Resource Editor Integration to integrate
the WinWidgets with other programming tools.
For users of Microsoft Visual C++, SETUP can integrate the WinWidgets manual with the
Visual Workbench Help System.    This is a new and extremely useful feature that provides
context-sensitive help for keywords defined in the WinWidgets manual.    Once integrated,
highlighting a word such as HEM_SETFORMAT and pressing F1 will open the WinWidgets
manual directly to the related topic.   
To have SETUP integrate the manual, check both the On-line Manual and Integrate with
Visual Workbench boxes.    SETUP will execute the HELPINST.EXE utility, which modifies
the MSVCHELP.IDX file in your \MSVC\HELP\ directory after making a backup called
MSVCHELP.~SS.    To undo the changes, copy the backup over the modified file.
To proceed with the installation, press Install.    Installation can take a few minutes.   
Several files, such as the WinWidgets source code, are copied as self-extracting,
compressed executeables.    If an error occurs during SETUP, you may extract the

contained files by simply calling the executeable from DOS or Windows; the executeable
may then be deleted.

IMPORTANT - Read This Carefully Before Installation!
Copyright and License Information

Copyright © 1992 Simple Software
All rights reserved.

Simple Software, Inc.
543 3rd Street
Brooklyn, NY 11215

Copy and
use
restrictions

The Software is protected by the copyright laws that pertain
to computer software.    Federal copyright law permits you to
make one backup copy of the Software for your own use. It is
illegal to duplicate the Software, by any means, in whole or
part, for other purposes, except the individual files listed
below, which may be distributed with applications that do not
fall into the category of Application Design Tools (e.g. GUI
builders, resource editors, etc.).    Any other duplication
requires a specific agreement with Simple Software.

WIDGETS.DLL
WIDGEVB.VBX

No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language in any form by any means without the prior
written consent of Simple Software.    Information in this
manual is subject to change without notice and does not
represent a commitment on the part of the vendor.

Disk
warranty

Simple Software warrants that the original diskettes are free
from defects in material and workmanship, assuming normal
use, for a period of ninety (90) days from date of purchase.
You may return a defective disk within the given period to
Simple Software, with a dated receipt;    Simple Software will
replace the disk free of charge.    After 90 days, you may
obtain a replacement by sending your faulty disk and check
for $20.00 to Simple Software.

EXCEPT FOR THE EXPRESS WARRANTY OF THE ORIGINAL
DISKETTES SET FORTH ABOVE, SIMPLE SOFTWARE GRANTS
NO OTHER WARRANTIES, EXPRESS OR IMPLIED, BY STATUTE
OR OTHERWISE, REGARDING THE USE OF, OR THE RESULTS
OF THE USE OF THIS SOFTWARE AND THE RELATED
MATERIALS IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, CURRENTNESS, OR OTHERWISE.    THE LIABILITY
OF SIMPLE SOFTWARE UNDER THE WARRANTY SET FORTH
ABOVE SHALL BE LIMITED TO THE AMOUNT PAID BY THE
CUSTOMER FOR THE PRODUCT.    IN NO EVENT SHALL SIMPLE
SOFTWARE BE LIABLE FOR ANY SPECIAL, CONSEQUENTIAL,
OR OTHER DAMAGES FOR BREACH OF WARRANT.

Integration, Layout and Design
After installing the WinWidgets DLL's to your hard drive, you need to set up the Widgets as
custom controls in your resource editor.    The procedures listed here work for Microsoft's
SDK Dialog Editor, AppStudio and Visual Basic, and Borland's Resource Workshop.   
In addition to the procedures below, there are two important steps to using the
WinWidgets controls in a C/C++ application.    First, at the beginning of the application
(WinMain() is a good place), the Widgets must be initialized.    To do this, call

WidgetsInit();
Second, the WinWidgets header file, WIDGETS.H, must be included for both the compiler
and resource compiler.    In the Resource Workshop, you will receive "Expecting control
window style" error messages if you do not include WIDGETS.H in a .RC project.

Dialog Editor
In the Dialog Editor, select File, Open Custom and enter the path and name of the
HBUTT.DLL file.    This adds the HButt control to the Dialog Editor's list of custom controls;   
in subsequent sessions the control will be loaded automatically.    Repeat this procedure for
each of the WinWidgets support DLL's.
Once installed, the WinWidgets are instantiated by pressing the
 button in the Toolbox.    This will present a list of available custom controls.    There may be
a number of items in the list with the same name, each representative of a different
control style.    Choose the one closest to your needs and press OK.    The Dialog Editor will
present a rectangular cursor, allowing you to place the control in the dialog box.
Once placed, the control is ready to be customized.    Select Edit, Styles or simply double-
click on the control to bring up the Styles dialog.    For a detailed description of each style
flag, see the Styles section in the control's documentation.

Borland's Resource Workshop
In Borland's Resource Workshop, you must create a DIALOG resource before installing the
WinWidgets.    Choose File, New Project..., select .RC and press OK.    Then choose
Resource, New..., select DIALOG and press OK.    Next, choose Options, Install Control
Library... and enter the path and name of the HBUTT.DLL file.    Repeat the last step for
each of the WinWidgets support DLL's.    As the WinWidgets are integrated, they will appear
as additional buttons in the Resource Workshop Tools palette.
The WinWidgets are instantiated by pressing the appropriate button in the Tools palette.   
The Resource Workshop will present a rectangular cursor, allowing you to place the control
in the dialog box.
Once placed, the control is ready to be customized.    Select Control, Style or simply
double-click on the control to bring up the Styles dialog.    For a detailed description of each
style flag, see the Styles section in the control's documentation.

Visual Basic
To install the WinWidgets in Visual Basic, open the AUTOLOAD.MAK project from the Visual
Basic directory.    Then choose Add File..., and select WIDGEVB.VBX from WIDGETS\BIN\.   
The WinWidgets will appear as extra buttons in the Visual Basic Toolbox (choose Window,
Toolbox) whenever a project is opened.    The WinWidgets can also be installed for a single
project by adding WIDGEVB.VBX to the project file rather than AUTOLOAD.MAK.
To create a control on a form, simply depress the appropriate button in the Toolbox, then
create a rectangle for the control by clicking and dragging the mouse on the form.    To edit
the properties of a control, open the Properties window while the control is selected.

When distributing an application that uses the WinWidgets, include both WIDGEVB.VBX
and WIDGETS.DLL on the distribution diskettes.

AppStudio
In Microsoft's AppStudio, choose Add File..., and select WIDGEVB.VBX from WIDGETS\
BIN\.    The WinWidgets will appear as extra buttons in the Control Palette (choose
Window, Show Control Palette) whenever a dialog resource is opened.
To create a VBX control in a form, simply depress the appropriate button in the Toolbox,
then create a rectangle for the control by clicking and dragging the mouse on the dialog.   
To edit the properties of a control, open the Properties window (choose Window, Show
Properties) while the control is selected, or double-click on the control.
When distributing an application that uses the WinWidgets as VBX controls, include both
WIDGEVB.VBX and WIDGETS.DLL on the distribution diskettes.
It is possible to create an old style custom control by pressing the User Control button on
the Toolbox
.    As with VBX controls, open the Properties window (choose Window, Show Properties)
while the control is selected, or double-click on the control to edit the properties of a
control.    You must supply the appropriate window text (Caption), window class name
(Class) and hexadecimal style bits (Style)in the Properties window.    The C and C++ quick
references of this manual will provide you with the necessary information to complete
these fields.    Non-VBX custom controls appear in AppStudio as featureless boxes and can
only be tested in the compiled application, itself.      Given the limited support for these
types of controls in AppStudio, developers who do not wish to use VBX controls at all in
their applications should consider designing dialogs in the SDK Dialog Editor or Borland's
Resource Workshop instead of AppStudio.     
When distributing an application that uses the WinWidgets as custom (non-VBX) controls,
include only WIDGETS.DLL on the distribution diskettes.

Press this button in the Dialog Editor Toolbox to present a list of available custom controls.

Press this button in the AppStudio Toolbox to present a list of available custom controls.

WinWidgets Files
The software provided with the WinWidgets toolset includes the Widgets DLL's, import
library, and header, along with sample application code and executables.    The files and
their purposes are listed below.    For those who bought the Widgets' source, a separate
diskette contains the code and project files.
These are the only files that may be redistributed with your application:

WIDGETS.DLL A library containing all of the WinWidgets controls.   
WIDGEVB.VBX A library containing the Visual Basic interface to the

WinWidgets.   

As stated in the WinWidgets License Agreement, it is illegal to copy or distribute
the files listed below:
Help files:

WIDGETS.HLP The WinWidgets on-line manual.
SETUP.EXE A Windows-based installation program.
README.TXT Contains information that was added after the

completion of this manual.

Support DLL's:
HBUTT.DLL The resource editor interface for the HButt button

control.
HCOMB.DLL The resource editor interface for the HComb

combobox control.
HEDIT.DLL The resource editor interface for the HEdit edit

control.
HLIST.DLL The resource editor interface for the HList list

control.
HSTAT.DLL The resource editor interface for the HStat static

control.
HGRID.DLL The resource editor interface for the HGrid grid

control.

HCORE.DLL** Core routines for the WinWidgets' resource editor
interface.

** NOTE **    Do not attempt to integrate HCORE.DLL or WIDGETS.DLL with a
resource editor; they do not contain any code to interface with resource editors and
may cause unexpected results.

Import library and declaration/include files:
WIDGETS.H The include file for WIDGETS.DLL.
WIDGETS.LIB The import library for WIDGETS.DLL.
WIDGEVB.TXT Contains Visual Basic definitions and declarations.

Demo files:
SAMPLES*.* Source files and executables demonstrating the use

and capabilities of the WinWidgets toolset.

