
UnicodeÔ Support in Win32

UnicodeÔ is a 16-bit, fixed width character encoding standard that encompasses virtually all of the
characters commonly used on computers today. This includes most of the world’s written languages,
plus publishing characters, mathematical and technical symbols, and punctuation marks.

The Unicode Consortium was founded in 1991 as a non-profit organization dedicated to devising and
promoting the Unicode Standard. Its membership now includes companies such as Adobe, Aldus,
Borland, Digital, GO, IBM, HP, Lotus, Metaphor, Microsoft, NeXT, Novell, Sun, Symantec, Taligent,
Unisys and WordPerfect.

Addison Wesley has published a book called The Unicode Standard Version 1.0 (Vol. 1: ISBN 0-201-
56788-1, Vol. 2: ISBN 0-201-60845-6). Unicode Version 1.1 is code-for-code identical to the first
page of the international standard ISO10646. Information on The Unicode Standard, Version 1.1 can
be found on the MSDN Developer Library in the Specs and Strategy, Specifications section.

Unicode: Encoding LayoutUnicode: Encoding Layout

0x0000 0xFFFF

PunctuationPunctuation

Future use:

Private usePrivate use

CompatibilityCompatibility

IndicIndic
GreekGreek

CyrillicCyrillic
LatinLatin

IdeographsIdeographs

SymbolsSymbols
HangulHangul

KanaKana

ThaiThai

Windows 3.1 and ANSI

Unlike the Windows NTÔ operating system, which is based on Unicode, the WindowsÔ operating
system, version 3.1, uses the code page model. Each single-byte code page is limited to 256 different
characters. The U.S. and Western European versions of Windows 3.1 use code page 1252. Eastern
European versions use code page 1250 if they are Latin-based, and code page 1251 if they are Cyrillic.
There are also code pages for Greek, Turkish, Thai, Arabic, and Hebrew. The code-page model adds a
layer of complexity in the Far East versions of Windows 3.1 (Japanese, Korean, traditional and
simplified Chinese). Each of these systems is based on a double-byte character set (DBCS), where
some characters are represented by one-byte values and the rest are represented by two-byte values.
For this reason, the term “multi-byte character set,” which means one or more bytes, is sometimes used
in place of “DBCS.”

All of the Windows 3.1 code pages support the set of characters used in English, but suppose you
wanted to support text from different code page categories (Swedish, Arabic, Chinese, and Turkish) in
your application documents. With the code page model, this is not very practical. In addition, what if
you needed to support a language for which no code page exists? Unicode is a fixed-width, 16-bit

character encoding that covers the majority of written languages used in the world today. Each
Unicode code point is associated with one and only one character. While it isn’t a localization
panacea, it sets the stage for seamless support of a much broader range of languages than the code page
model.

Unicode and the Win32 API

The Win32Ò API is designed so that each system function exists in two flavors: one that expects string
parameters to be in a Windows 3.1-based (single-byte ANSI) character encoding, and another that
expects string parameters to be in Unicode. Only a single name for each function appears in the
documentation, but in the system there are two different entry points. The function prototype (e.g.
SetWindowText()) in the header files is a macro that expands depending on whether the compile time
symbol UNICODE is defined (usually by adding -DUNICODE to the compiler’s command line).
Unicode programs that call any C run-time functions should also define the _UNICODE flag
(UNICODE preceded by an underscore). The compiled name appends either an A (for ANSI, e.g.
SetWindowTextA()) or a W (for wide character, or Unicode, e.g. SetWindowTextW()) to the
function names. Similarly, the header files define generic data types (TCHAR, LPTSTR), and data
structures. With these, it is possible to use a single set of sources and compile them for either Unicode
or ANSI support.

ExplicitExplicit

TCHAR LPTSTR

 CHAR WCHAR LPSTR LPWSTR

char wchar_t char * wchar_t *

GenericGeneric

ResolvedResolved

To convert data (e.g. from a file) from a Windows 3.1-based character encoding to Unicode or vice-
versa, you can use the two functions MultiByteToWideChar() and WideCharToMultiByte().

The Win32 API is supported on several platforms. These platforms differ in their level of support for
Unicode.

Unicode in Windows NT

Windows NT uses Unicode internally. Windows NT GDI does all its text work in Unicode, resource
strings are compiled as Unicode, system information files are stored as Unicode, and the Windows NT
file system (NTFS) file names are Unicode. However, even on Windows NT an application can be
written to use one of the Windows (ANSI) or MS-DOSÒ (OEM) code pages. An ‘A’ version of a
Win32 API entry point calls MultiByteToWideChar() to translate text parameters, and then calls the
‘W’ version of the same API. Conversely, the system calls WideCharToMultiByte() to translate
return parameters for a program that expects ANSI values.

Thus, you could write an application for the Japanese version of Windows NT that uses the Shift-JIS
(CP 932) character encoding internally. Shift-JIS is the ANSI code page supported by Japanese
Windows NT. In all language versions of Windows NT, ANSI and MS-DOS code pages are also
supported for MS-DOS or Win16 applications that run on Windows NT.

Some Windows NT-based applications may call APIs that require an ANSI or OEM code page number
as a parameter. The macros CP_ACP (for ANSI code page) or CP_OEMCP (for OEM code page) will
resolve to the default code page values that have been set by the user.

Win32-based programs that are written to the Unicode (or ‘W’) version of the API run natively across
all language versions of Windows NT — no character translation needs to be performed.

Unicode in Win32s

Win32sÔ API offers a strategy for targeting both the Windows 3.1 and the Windows NT operating
systems with one 32-bit binary. Win32s does not natively support all of the wide character versions of
the Win32 API entry points. Depending on where an application is installed, the target display
mechanism (GDI) might be Windows 3.1, and the file system might be (FAT); neither of these
supports Unicode. Win32s does, however, support APIs that convert between Unicode and the native
Windows 3.1 code page. Win32s version 1.2 also supports a number of functions that are useful in
‘processing’ Unicode data, such as CompareStringW(), LCMapstringW(), etc. This makes it
possible for a Windows 3.1-based application to share a Unicode-based file format with its Windows
NT-based sister application, even though Windows 3.1 does not use Unicode internally.

Unicode in Windows “Chicago”

Windows “Chicago” inherits the Unicode support present in Win32s and adds support for the
CF_UNICODETEXT clipboard format. Chicago does not internally support the full set of Unicode
string processing APIs available on Windows NT.

However, a new feature in Chicago, called multilingual content I/O, is a method of dynamically
switching among single-byte character sets (the same character sets used in Windows 3.1) for
displaying fonts and determining keyboard layouts. Using formatted text, i.e. text that stores font tags,
it is possible with Chicago to create and display a single document that spans multiple character sets,
such as Cyrillic, Greek, Eastern European, and Western European. Such text can no longer be
expressed as plain text, unless it is converted into Unicode. Unicode thus becomes an attractive plain-
text format for exporting multilingual data on Chicago.

Unicode in OLE and Windows “Cairo”

Windows NT “Daytona” supports OLE 2.0 and ships with its 32-bit libraries. Windows NT “Cairo”
will support additional OLE features, including full object support for distributed applications and
distributed file systems. Given the reality of global computer networks, these technologies must offer
consistent, reliable, language-independent access to data. Local character sets are too limited — they
don’t interoperate with one another adequately. Therefore, Windows NT “Cairo” and 32-bit OLE 2.0
(even on Chicago) are based on Unicode, and full access to all Cairo-specific features will require
Unicode.

Tools

Historically, most compiler and resource compiler source files have been in ASCII (7-bit) or ANSI (8-
bit) format. This is adequate for the Americas and parts of Europe, assuming those applications will
never have to manipulate data from other regions. More recent compilers support the Japanese Shift-
JIS code page. To use Shift-JIS resources elsewhere in the Far East or with other Japanese code pages
you will have to do some editing.

Development tools which support universal, language-independent applications on Win32 are
becoming available. For example, Microsoft Visual C++Ô development system version 2.0 supports
the Win32 Unicode APIs, and its Microsoft Foundation Classes 3.0 (MFC) provide support for ANSI,
DBCS (Shift-JIS) and Unicode text processing. The resource and message compilers that will ship
with Windows “Daytona,” Windows “Chicago” and Visual C++ 2.0 will support Unicode files.

Implications for your strategy

Win32-based applications running on Windows NT will run more efficiently if they are based on
Unicode. This is especially true for programs localized into Japanese or other Far East languages.
Japanese-language programs that use the Shift-JIS character encoding must contend with the mix of
one- and two-byte characters. Since Unicode is fixed-width, string parsing is simpler. And since the
Windows NT system converts non-Unicode APIs to Unicode APIs at runtime, not using Unicode adds

a step (overhead) to some function calls. Another benefit to using wide characters internally is that
only the NLS (National Language Support) data table for Unicode needs to be present — multiple data
tables to support different code pages are unnecessary.

Standalone Win32-based applications running on Chicago will operate more efficiently at runtime if
they’re based on ANSI or another local code page. Documents from those applications can use
Chicago’s multilingual content I/O if more than one single-byte character set is required. However, in
a client/server world you need to consider how closely your product will interact with operating sytems
offering full Unicode support. The Unicode conversion APIs on Windows Chicago offer a path to
Unicode-based data that may reside on a server, and at a minimum your strategy should include the use
of these conversion APIs. If your application requires working with language-independent data, you
may want to incorporate Unicode conventions within your application’s internal processing modules,
then convert data before sending it to the system. Windows NT and Windows NT “Cairo” put
Unicode “on the wire,” unless they are communicating with “downlevel” (e.g. Windows for
Workgroups or LAN Manager) workstations.

Conclusion

Unicode is the preferred method for server applications. You should not assume that servers will only
deal with data originating the Americas or parts of Europe. On all Win32-based systems (including
Chicago), Unicode conventions are used in 32-bit OLE 2.0. Unicode can make localization to the Far
East simpler, since text handling in your code can be implemented with consistent, language-
independent algorithms instead. There is no need for extensive code reworking for specific languages,
as you need to do for the different DBCS encodings. And Unicode brings us closer to Information At
Your Fingertips by offering a language-independent encoding for distributed applications and data on a
global network.

Additional Reading

- The Unicode Standard 1.0 (plus 1.1 supplement), published by Addison-Wesley
- Microsoft Win32 Programmer’s Reference (overview on Unicode)
- Microsoft International Handbook for Software Design

Microsoft, MS-DOS, and Win32 are registered trademarks and Visual C++, Windows, Windows NT,
and Win32s are trademarks of Microsoft Corporation. Unicode is a trademark of Unicode, Inc.

Appendix A: Code Page Data
(excerpted from the Microsoft Win32 NLS API Specification)

The following table shows various Code Pages and the support associated with that code page. Some code pages can be
used in the console or file system (OEMCP), or in the Windows UI (ACP). Other code pages are supported only for some
functions, such as code page translation to/from Unicode (Macintosh Code Pages, EBCDIC). Except for in Chicago,
which has multilingual content I/O support, only one ACP is active at a time in a system. Unicode is not designated as
ACP or OEMCP in this table, but it may be used as the character encoding for GUI and console Win32 applications on
Windows NT, Daytona and Cairo.

CP ID - the Code Page ID
Name - the canonical name of the character set
ACP - eligibility for ACP
OEMCP - eligibility for OEMCP

CP ID Name ACP OEMCP US/Eur.
NT 3.1

Chicago Daytona Cairo

1200 Unicode (BMP of ISO 10646) x x x
1250 Windows 3.1 Eastern European x x x x x
1251 Windows 3.1 Cyrillic x x x x x
1252 Windows 3.1 US (ANSI) x x x x x
1253 Windows 3.1 Greek x x x x x
1254 Windows 3.1 Turkish x x x x x
1255 Hebrew x x x x
1256 Arabic x x x x
1257 Baltic x x x x
437 MS-DOS United States x x x x x
708 Arabic (ASMO 708) x x x x
709 Arabic (ASMO 449+, BCON V4) x x x x
710 Arabic (Transparent Arabic) x x x x
720 Arabic (Transparent ASMO) x x x x
737 Greek (formerly 437G) x x x x x
775 Baltic x x x x
850 MS-DOS Multilingual (Latin I) x x x x x
852 MS-DOS Slavic (Latin II) x x x x x
855 IBM Cyrillic x x x x x
857 IBM Turkish x x x x x
860 MS-DOS Portuguese x x x x x
861 MS-DOS Icelandic x x x x x
862 Hebrew x x x x
863 MS-DOS Canadian-French x x x x x
864 Arabic x x x x
865 MS-DOS Nordic x x x x x
866 MS-DOS Russian (USSR) x x x x x
869 IBM Modern Greek x x x x x
874 Thai x x x x x
932 Japan x x NT-J x NT-J C-J
936 Simplified Chinese (PRC, Singapore) x x x x x
949 Korean x x x x x
950 Chinese (Taiwan, Hong Kong) x x x x x
874 Thai x x x x
1361 Korean (Johab) x
10000 Macintosh Roman x x x
10001 Macintosh Japanese x x x
10006 Macintosh Greek I x x x

10007 Macintosh Cyrillic x x x
10029 Macintosh Latin 2 x x x
10079 Macintosh Icelandic x x x
10081 Macintosh Turkish x x x
037 EBCDIC x x x
500 EBCDIC "500V1" x x x
1026 EBCDIC x x x
875 EBCDIC x x x

Appendix B: NLSAPI Support (excerpted from the Microsoft NLSAPI Specification)

Code Pages:
There are a total of four code page settings in Windows NT and Chicago, and a large overall number of code pages
supported as options. The ANSI Code Page (ACP) is supported for Windows 3.1 compatibility. The Console Code Page,
Console Output Code Page and OEM Code Page (OEMCP) are supported for MS-DOS compatibility. There is a high-
level relationship between the locale that the system is running in and the various code page settings. Based on the locale
specified during installation, default code page settings are derived for these 4 values. Only the Console and Console
Output Code Pages can be modified without re-installing Windows NT. Other code pages are available, based on the
installed locale, for use in data translation. These include secondary OEM code pages, MAC code pages and EBCDIC
code pages.

Unicode:
In order to support Windows 3.1 and MS-DOS compatibility, Windows NT supports 8-bit code pages via the previous
four code page settings. All character sets and code pages supported by Microsoft systems and applications can be
mapped to Unicode (wide characters). Chicago supports Unicode only within data translation. The Chicago operating
system is based on the Windows ANSI code page, rather than Unicode.

ANSI defines the "wchar_t" data type to refer to a wide character. We use the convention WCHAR, LPWCHAR and
LPWSTR to represent a wide character, pointer to a wide character, and a pointer to a wide character string respectively.

APIs:
The API set described in this table are broken down into three areas: string transformation, code page manipulation and
locale manipulation. The types of string transformation that are supported are uppercasing, lowercasing, sort key
generation (all locale dependent), getting string type information and character translation from one code page to Unicode
and back again, i.e., round-trip mapping, (both non-locale dependent). Code Page manipulation includes getting and
setting the 2 Console Code Pages and getting information about the other 2 code pages being used. Locale manipulation
includes comparing strings, mapping strings, and getting information about installed locales.

The Windows NT API names use a trailing W to denote the use of the wide character set (Unicode) and the Chicago
APIs use an A to denote the use of the ANSI character set.

API Name Win32S v1.2 NT 3.1 Chicago Daytona Cairo
GetSystemDefaultLangID X X X X X
GetUserDefaultLangID X X X X X
GetSystemDefaultLCID X X X X X
GetUserDefaultLCID X X X X X
IsValidLocale X X X X X
ConvertDefaultLocale X X X X
EnumSystemLocales X X X
EnumSystemLocalesW X X X
EnumSystemLocalesA X X X X
GetLocaleInfo X X X
GetLocaleInfoW X X X X
GetLocaleInfoA X X X X
SetLocaleInfo TBD X X
SetLocaleInfoW TBD X X X
SetLocaleInfoA TBD X X
GetTimeFormat TBD X X
GetTimeFormatW TBD X X X
GetTimeFormatA X X X X
GetDateFormat TBD X X
GetDateFormatW TBD X X X
GetDateFormatA X X X X
EnumDateFormats TBD X X
EnumDateFormatsW TBD X X

EnumDateFormatsA X X X X
EnumTimeFormats TBD X X
EnumTimeFormatsW TBD X X
EnumTimeFormatsA X X X X
EnumCalendarInfo TBD X X
EnumCalendarInfoW TBD X X
EnumCalendarInfoA X X X X
GetNumberFormat TBD X X
GetNumberFormatW TBD X X
GetNumberFormatA X X X X
GetCurrencyFormat TBD X X
GetCurrencyFormatW TBD X X
GetCurrencyFormatA X X X X
CompareString X X X
CompareStringW X X X X
CompareStringA X X X X
SetThreadLocale TBD X X X
GetThreadLocale X X X X
LCMapString X X X
LCMapStringW X X X X
LCMapStringA X X X X
MultiByteToWideChar X X X X X
WideCharToMultiByte X X X X X
FoldString TBD X X
FoldStringW TBD X X X
FoldStringA TBD X X
IsValidCodePage X X X X X
EnumSystemCodePages TBD X X
EnumSystemCodePagesW TBD X X
EnumSystemCodePagesA TBD X X X
GetConsoleCP X X X
GetConsoleOutputCP X X X
SetConsoleCP X X X
SetConsoleOutputCP X X X
GetACP X X X X X
GetOEMCP X X X X X
GetCPInfo X X X X X
IsDBCSLeadByte X X X X X
IsDBCSLeadByteEx X X
GetStringTypeEx X X X
GetStringTypeW X X X X
GetStringTypeA X X X X
GetStringTypeExA X X X
GetStringTypeExW X X

