
Contents
Begin

What is it?
What Should I Do First?

The Game Rules
The Board
The Pieces
Combat
The Turn Sequence
Winning

The Game Interface
Status Bar
Menus

Setting up a Game
Starting a Game
Network Games

Evolution
Evolution in Cloak, Dagger and DNA
Managing the Gene Pool
Parameter Selection
Tournament Results
Running the Evolution Engine

Gene Editing
Concepts
Architecture
Instruction Set
Using the Gene Editor

End
A Note from the Author
Bibliography

What is it?
(Begin: 1 of 2)

This is a multi-player strategy game combined with a genetic algorithm engine.    Any
combination of human and computer players can play a game.    Computer players can be
individually programmed or collectively evolved using genetic algorithms.    The computer
players are evolved not during a game, but over the course of playing many thousands of
games with each other.    The evolution engine keeps a pool of computer player genes
(programs), which it pits against each other in four-game tournaments.    It rewards the more
successful genes by allowing them to combine as parents of new programs which replace
the less successful genes.    With this game, your computer opponents can literally improve
on your computer while you run it.

PLAYING THE GAME
Use your armies to conquer the board.    Some board areas have factories, and factories are
needed to support your armies.    The more factories you capture, the more armies you can
build--to capture more factories.    You cannot see where your opponents' forces are unless
you encounter them with your armies, and once encountered, opponent forces limit the
movement of your armies.    You can build spies to wander freely through enemy lines and
see how the other players have distributed their forces.    Spies can often show you a weak
area to break through.    But beware, your enemy can see your spies, so all watchers are
being watched!

What Should I Do First?
(Begin: 2 of 2)
THE VERY FIRST THING
If you've never played, or you've only watched someone else play, it would be a good idea
to familiarize yourself with the sections under The Game Rules and The Game Play Interface,
you don't have to read every word, just quickly browse the sections to see what is there.

PLAY A GAME OR TWO
Then, start a new game playing Red, with just one human (you) in the game.    Choose the
OK button on the GAME SETUP screen, and play a few games to get the feel of it.    During
the game you can bring up The Game Rules and The Game Play Interface sections again,
and this time as you try things, or don't know how to do something, you can read the details.

TRY THE AI ADVISOR
While you are playing, see what the RED.DNA program would do by pressing F7 or selecting
Orders|Ask the AI from the menu.    If you don't like what it does, you can use your mouse
to change only the orders you don't like, or select Orders|Cancel all orders to revert back
to no orders.    You might build a spy or two and move them around behind enemy lines to
see what the other players are doing.    Sometimes an opponent who attacks viciously does
not protect all areas on his front lines.    Find a weakness with one of your spies, and go get
some of his factories!

CHANGE THE AI ADVISOR
Get into a game a few turns, and then select View|Gene Editor.    In the Gene Editor
window, select Run! from the menu bar.    This does exactly the same thing as selecting
Orders|Ask the AI from the main game window, but now you can change a number or two
in the program, and when you select Run! you can immediately see what your change did
to your orders, if any.    You do not need to understand the Gene programming language to
do this.    To learn about the Gene programming language, start with the Concepts section
under Writing Computer Player Programs in this help file.

WATCH WHAT THE COMPUTER PLAYERS DO
Set up a game with 4 human players, making sure to select advisors for each, or use the
defaults.    Start the game.    When you get to the select player dialog, press the SPACE BAR
to get the next available player, the first time this will be RED.    Now you can press F7 to see
what the RED advisor would do.    From now on, you can press the sequence: F9, SPACE
BAR, F7, to cycle through and see what each computer advisor would do.    You can step
through an entire game this way.

EVOLUTION 101
Once you are familiar with the game, read Evolution in Cloak, Dagger and DNA and then
bring up the Evolution Lab Screen while you scan the other sections under Evolving
Computer Players in this help file, or use the HELP buttons from the Evolution Lab Screen.    If
you haven't done anything since installing, press the FILL button on the Gene Pool tab page
to generate an initial set of genes from the original four.    Leave the original four locked,
you'll see why later.    Choose some parameter settings, at first you may want to leave them
at the default values.    Choose Continuous Play in the Run Mode box and Allow Evolution in
the Engine box.    Now press the RUN button and watch what happens!   

AFTER A FEW THOUSAND TOURNAMENTS
When you've let it run long enough, the original four genes' food supply will begin to go
negative.
This means they are consistently losing games, and it also means you have evolved better

players!    You can continue this process, unlock the losers, to free up the space, and lock
some of the ones who have played quite a few games and still have a high score.    Then let
it run some more.    Of course you can skip the locking and unlocking and just let it run.

After a while, EXTRACT three of the best genes to DNA files, and then start and play a game,
(with you as a human player of course) and compete against the other three!    Are they
harder to beat than the originals?

There is an element of randomness in the evolution engine part of this program.    Often long
periods of time can go by with no apparent evolution.    Then a short spurt of improvement(s)
and then another static phase.    This seems to be normal with Genetic Algorithm programs,
and has been referred to as "punctuated equilibrium".    The random number generator is
initialized by the time on your computer when you run the program, so it is unlikely that you
will have the same results as anyone else even if they do exactly the same thing.    If any of
your friends are running this program, trade your best DNA files once in a while!

ABOVE AND BEYOND THE SCOPE OF THIS PROGRAM
One of the problems with Genetic Algorithms is that it is not always obvious what is the best
selection and reproduction criteria.    In other words, what values should you put in the
parameter settings page?    Certainly there has been work done in this area, and perhaps
research already done (in the proceedings listed in the Bibliography section of this help file?) 
would indicate a better approach than has been taken.    The Evolution Lab as it stands now,
reproduces by demerit rather than merit,    meaning that new genes are created only when
other ones run out of food, not directly because they were successful.    Would evolution
proceed more efficiently if the successful genes (by whatever criteria) were always allowed
to reproduce, and genes were deleted only when space was needed?

One interesting idea with Genetic Algorithms is to use them to solve some of the above
problems.    Imagine that the parameter settings (and any other interesting controls/methods
you can think of) are yet another genetic code.    An arbitrary starting pool could be created,
which would be evolved for some fixed number of tournaments, say fifty thousand.    In the
same way that the Evolution Lab calls the game engine to play entire games with the
computer player programs as the genetic codes, some other program could call the
Evolution Lab to run fifty thousand tournaments, with the parameter settings as the genetic
codes, always with the same starting pool.    You would need some method of evaluating the
resulting pools for comparative fitness, just as the individual genes are compared by playing
games.    You could then run this program to "evolve" better parameter settings for the
Evolution Lab.

The Board
(The Game Rules: 1 of 5)
TERRAIN AND BORDERS

The board consists of a map of bordered areas, where the areas contain a number of square
terrain cells.    Two areas are considered adjacent if there is a section of border between
them with land squares on both sides of that border.    In the above picture, the area with a
blue border is not adjacent to the area with a green border, because of the water on the blue
side of their common border.    For game purposes there are only two distinct terrain types,
water and land, but there are different styles of each to make the map more interesting.   
Game pieces can only exist on land squares.    Water squares are used only to restrict
movement between areas, as in the above example.    If you own or know who owns a
particular area, the inside of its border will be the color of the player who owns it.    If it is
unowned or you do not know who owns it the border color will be gray.    You will only be able
to see in an area if you own it or you have one or more (surviving) pieces there.    To take
ownership of an area, you must be the ONLY player with one or more armies there at the end
of a turn.

FACTORIES

Some areas will have factories; the factory symbol will have a number on it representing the
number of factories in that area.    Factories are permanent fixtures on the board.    Each
factory produces $1 per turn for its owner, indicated by the color of the factory. In the above
example, the three green factories will produce $3 each turn for their owner.    If you can see
into an area, the factory will be the color of the owning player, or gray if no player owns it
yet.    If you cannot see into an area, the factory symbol will be gray, in this case indicating
that you do not know who owns it.    Income not spent in a turn goes into the player's
treasury which may be used later.    You will always be able see all the factories (and their
quantity) on the board, but you won't necessarily know who owns them, or if they are
owned.

FLAGS AND SOLDIERS

When the ownership of an area changes, and you can see in the area, a flag symbol will
appear to indicate the change.    When a battle has occurred and armies were lost, a soldier
symbol will appear, which can be clicked on to see which players lost armies, and how many
they lost.    Sometimes they will appear together.

The Pieces
(The Game Rules: 2 of 5)
ARMIES and SPIES

There are two types of movable playing pieces, armies and spies.    Armies are represented
by a face with an old fashioned military type hat, and spies by a telescope.    They are the
color of the owning player.    The quantities of each are indicated by a number to the upper
left of the piece.    Armies are used to fight other armies and capture areas, Spies are used to
see what is going on where you don't have armies.    Spies can freely wander through enemy
lines and territory, unlike armies, and are used to see into areas you do not own.    Armies
can be killed by other armies, spies can never be hurt.    If another player has spies in an
area you own you will see them, but you cannot do anything about them.    Each piece (army
or spy) costs $1 to build, and $1 to supply each turn.   

MOVING PIECES

You may order pieces to move into any adjacent area with one exception:    if you have
armies in an area where at least one other player has armies, you may only move your
armies out of that area into areas you already own.    If you do not give an army a specific
order, it is by default considered 'ordered to defend' the area.    Pieces ordered to move into
another area are drawn on top of an arrow indicating the move. You can freely move both
your own and other players' pieces within the same area, as this does not affect the play of
the game.

HOW TO MOVE PIECES
To move one piece, press the left button down on the piece, move the mouse where you
want it to go and then release the left button.    To move the entire quantity when there is
more than one, use the middle button, or the Shift key and the left button.    If there is more
than one type of piece in a square, then you must move the top ones first.    Use the right
button, or Alt key and the left button to cancel a move into another area.

BUILDING

You may order to be built as many spies as you can afford in any area you own.    Armies may
only be built where you have factories, and each turn you may only build as many armies as
you have factories in any particular area.    Build orders are on a light blue square, think of
this as a 'blueprint' to build a piece, not the piece itself.

HOW TO BUILD PIECES
Use the right mouse button in an empty square to bring up a build selection menu, or hold
down the left mouse button and press the 'a' key to build an army or the 's' key to build a
spy.    Once you have a build order, you can use the left button to increase the quantity or
the right button to decrease the quantity.    Alternatively, while holding down the left button
on a build order, press the 'd' key to decrease the build quantity, or the 's' or 'a' keys to
increase the quantity.

DISBANDING

You may order any of your pieces to disband without restriction.    If you cannot afford to
supply all your units in a turn you should select which ones to disband, otherwise the

computer will disband them randomly as it processes the turn.    Pieces ordered to disband
are shown in gray.

HOW TO DISBAND PIECES
Click the right mouse button on non-moving pieces to disband them.    Click the right button
again to cancel the disband.    Alternatively hold down the left mouse button and press the
'd' key to disband or cancel a disband.

Combat
(The Game Rules: 3 of 5)

After all pieces move, if an area contains armies belonging to more than one player, combat
occurs in that area.    Spies are not involved in combat.    Armies have an attack strength of
one and a defense strength of two.    Armies defending or moving into an area they own have
a defense bonus of +1 which makes their defense strength three.    Each player computes his
losses based on the total attack strength of the largest single opposing force, ignoring any
smaller forces which may be in the area.    A player with a defense bonus loses one army for
every three opposing armies in the largest opposing force.    A player without a defense
bonus loses one army for every two opposing armies in the largest opposing force. Combat
is computed simultaneously for all players, before removing any destroyed pieces.

If two opposing forces are the same size it doesn't matter which is used, only the total attack
points from either one, but only one, are important.    If only two players are involved in
combat then of course the other player is the largest opposing force.

EXAMPLE ONE

Red moves 2 armies into an unowned area at the same time that Blue moves 3 into that
area. They will each lose one army.    Neither will have a defense bonus.    Blue has a total
attack strength of 3, of which only 2 are needed to defeat one Red army, and Red has an
attack strength of 2 which is exactly enough to defeat one Blue army.

Now there is 1 Red army and 2 Blue armies in this area which remains unowned.    If no
reinforcements are brought in by any player in the next turn, Red will lose his one army to
Blue's 2 armies, and Blue will gain ownership of the area with no further losses.

The factory and border colors will change to blue to indicate the new owner.    (This will only
be visible to the Blue player unless Red has moved a Spy into the area.)

EXAMPLE TWO

Yellow is defending an area he owns with 2 armies, and Green attacks with 5 armies.    Since
Yellow has a defense bonus, it takes 3 Green armies to destroy 1 Yellow army.    Yellow loses 1
army (Green would need 6 to destroy them both), and green loses 1 army, leaving Yellow
with 1 and Green with 4.    Since Green does not have a defense bonus only 2 yellow armies
are needed to destroy 1 Green army.

Yellow still owns the area, as indicated by the yellow borders.    If no reinforcements are
brought up by either side, then on the next turn, Yellow will lose his last army, without
affecting Green who will now take ownership of the area with 4 armies, needing only 3 to
destroy the last Yellow army.   

EXAMPLE THREE

In a three player example, Red defends an area he owns with 4 armies, Green moves in 3,
and Blue moves in 7:

          Before combat:
                    Player armies    largest opponent
                    Red              4              (Blue) 7
                    Green        3              (Blue) 7
                    Blue              7              (Red) 4

Red sees Blue as the greatest attack force with 7 attack points. Since Red has the defense
bonus, it takes 3 attacking armies to destroy each Red army.    The 7 Blue armies are enough
to destroy 2 Red armies. Green also sees Blue as the largest attack force, but Green does
not have a defense bonus, so he loses 1 army for every 2 Blue armies, thus Green loses all
his armies.    Blue sees Red as his greatest attack force, and without a defense bonus, Blue
loses 2 armies.

NOTES
After combat, if only one player has armies in the area, he becomes the owner.    Note that if
forces are fairly evenly matched, many players may have survivors.    Also, two players may
be fighting over an area owned by a third player, who has no armies there, and as long as
both players maintain at least one army there, the third player still gets the factory income,
and may still build there!

The Turn
(The Game Rules: 4 of 5)
After all players have submitted their orders, income, building, supply, moving, combat, and
map updating are handled by the computer. Here is a detailed look at what happens:

1) INCOME
Each factory in an every area owned by any player produces $1 which is put into the owning
players treasury.

2) PROCESS ORDERS
The computer reads human player orders, and runs the order generating programs for the
computer players.    Pieces ordered to move are moved, and build and disband orders are
carried out.

3) BUILDING AND SUPPLY
For each player, the computer scans the map in an arbitrary order, and for each piece
subtracts the build or supply cost of that piece as appropriate from the owning players
treasury. If a player's treasury is zero when a piece is scanned, the piece is removed from
the game.

4) COMBAT
Each area on the map is inspected to see if it contains armies belonging to more than one
player.    If so, combat takes place.    Depending on the results, some pieces may be removed.
After combat it is possible that more than one player will have surviving armies in any given
area as combat does not necessarily result in only one player continuing to have pieces in
any given area.    A soldier symbol is placed in every area where armies were lost due to
combat this turn.    Players can see a soldier if either they own the area, or they lost some of
the armies that caused the soldier.

5) OWNERSHIP CHECK
All areas are checked to see if they contain armies belonging to only one player.    Each such
area's ownership is changed to the sole player with armies in the area if they didn't already
own it.    Note that combat is not necessary, as one player may have no armies in or may
move his armies out of an area in the same turn another player moves one in.    The player
moving in will now own the area.    Areas continue to be owned even if they contain NO
armies, until some other player takes ownership as described above.    A flag symbol is
placed in any area which changed ownership this turn. Players can see the flag symbol if
either they own the area, or they lost some armies (and possibly ownership) there this turn.   
Note that if you own an area with no pieces in it, and it is taken over by another player, its
border will change from your color to gray, but you will not see a flag symbol in it on the
next turn.

6) WINNER CHECK
The computer checks if any player has won the game.

7) WRITE FILES
The new situation files are written for each player, and the turn processor stops.

Winning
(The Game Rules: 5 of 5)
WINNING
The game ends on turn 50, and the player with the most factories wins.    Players' scores are
the percentage of all factories owned at the end of the game. Due to rounding, the total
scores of all players may not always add up to exactly 100.   

EARLY WIN BONUS
If at any time before turn 50 a player owns at least 75% of all factories in the game, or has
completely eliminated all other players, he wins immediately and scores 100, other players
score nothing.

Reading the Status Bar
(The Game Interface: 1 of 2)

Just below the menu bar is a status area.    This contains financial information, a killed in
battle indicator or an error message.

FINANCIAL MESSAGES
Normally the status bar will contain financial information, like the example below.    If it
contains one of the other types of information you can click on it to restore the financial
message.

                    Treasury $10, Income $28, Exp. $15, C.F. $13, -> $23

"Treasury $10" is how much money is available in your treasury to be spent.   

"Income $28" is how much money you will get from factory production this turn.    (Note:
Factory production happens before combat and area ownership change, so this income is
certain)    Remember that each factory produces $1 per turn so the above would indicate you
own a combined total of 28 factories.

"Exp $15" is how much it will cost this turn to build and/or support your armies and spies.   
Note that as you order builds and/or disbands, this number, and the ones that follow it will
be immediately updated.    This number indicates that you are currently supporting a
combined total of 15 armies and/or spies.

"C.F. $13" is your Cash Flow which is income minus expenses, in other words, if this is a
positive number your treasury will increase this much, and if it is a negative number, your
treasury will be reduced this much.    This is a good number to keep an eye on as you plan
your turn.

"-> $23" is    the projected amount of money you will have in your treasury next turn.    If you
proceed with your turn when this number is negative, the treasury will not actually go below
zero, but the computer will randomly disband your pieces to keep your treasury at zero.

ERROR MESSAGES
When attempting to do something that is not allowed by the rules, nothing will happen.    In
most cases an error message will appear on the status bar in place of the financial
information to indicate why you can't do what you attempted.    This is a list of those
messages:

Areas do not connect
You have attempted to move piece(s) to an area that is not adjacent to the area they

currently are in.

Build limited by factories
You have attempted to order more armies to be built than the number of factories in

that area.

Illegal exit of multiplayer-area
From an area where one or more other players have one or more armies, you have

attempted to move one or more of your armies to an area that you do not own.

Can't afford
You have attempted to order a build that would cause your    projected treasury next

turn to be less than $0.    (Disband something else, and then try again)

Can't move onto water
Can't build on water

You are not allowed to move or build pieces on water squares.

KILLED IN BATTLE MESSAGES

When you click on a gray soldier or soldier-with-flag symbol on the map, the status bar will
indicate how many armies were lost in combat in that area last turn.

Menu Commands
(The Game Interface: 2 of 2)

File|Save
Saves this player's current view, and order set.    This will not submit orders in a

multiplayer game, but it will save them for later playing.

File|Turn
Saves this player's current view, and creates an order file. If there is only one human

player, then the game will immediately proceed to the next turn, and update the player's
map when finished. If there is more than one human player, then a list box will appear with
the human players in the game and their ready status.

File|Return to Main Screen
Returns to main button control screen.

File|Exit
Ends program.

View|Zoom In, View Zoom Out
Change the view scale.

View|Redraw
This updates the screen.    You may want this if you've moved pieces around or

scrolled to a different view and move order arrows seem to be missing or have been drawn
over.

View|Simplify
Tries to collect like pieces together, move unlike pieces apart, and for pieces ordered

to move, tries to move them closer to the border they will cross and shorten the arrow.    Try
this if your orders get messy, you'll either love it or hate it.    It has no effect on any existing
orders and does not create any new orders.

View|Gene Editor
Puts up a window where you can modify and test your AI advisor Program.

Orders|Ask the A.I.
Runs the Genetic program associated with this player.    The orders generated by this

program will immediately appear on the map.    You are not committed to these orders and
may change or cancel them, and you may change the A.I. program and run it again or run
other A.I. programs.

Orders|Cancel all orders
All builds/disbands will be canceled, and all pieces ordered to move will have their

moves canceled.   

Starting a Game
(Setting up a Game: 1 of 2)

PLAYER
This column indicates the color and by default the starting position on the map of each
player.    Red starts in the upper left, Yellow in the lower right, Green in the upper right and
Blue in the lower left.

NAME
You can change the player names (up to 8 characters) if you wish.    This is the filename part
(not extension) that will be used for some of the player files.    For humans in a multiple
human game, these will be the names in the choose player listbox.

TYPE
This assigns how each player in the game will be controlled.    Clicking in this field will bring
up a combo box with the following choices:

INACTIVE
This player does not move, and defends his initial position with only his initial armies
until they are defeated.    If you want a game with less than 4 players, and minimum
interference from the not-played players, use this.   

HUMAN
This player is played interactively, for the sake of discussion we assume this means a
human but this is not required.    If there is only one human, then selecting File|Turn
or pressing F9 while playing will cause the turn to be processed and the 'human' will
be immediately put back into the game.    If there is more than one human, then after
each turn, a list box will appear with the names of the human players in the game of
which one can be selected.

AI
This player is played by the .DNA program listed in the DNA file column.    In games
with humans,    when the humans have all submitted their orders for the next turn,
the AI programs are then run, and the turn is processed.

DNA FILE
Select the DNA file to be used for order generation for this player.    For human players, this
will be the AI advisor program that can be run by selecting Orders|Ask the AI or pressing
F7.

Network Game
(Setting up a Game: 2 of 2)

The first player must start a normal (multiple human player) game using the START NEW
GAME button.    The first player and any other players sharing the first player's machine to
play will use the PLAY GAME button.

All players on other (networked) machines must have read/write access to the directory
where the game was installed on the first players' machine and locate this using the FIND
REMOTE GAME button.    Then these other players use the PLAY REMOTE GAME button to
play.

Once the first turn is set up, players do not need to return to the main screen, they can
continue playing turns by selecting their name from the player selection list box which will
appear when there are two or more human players in a game.

CHEAT WARNING
This program does not make any attempt to keep human players from cheating.    The
validity of the orders in an order file is not checked, and nothing stops a player from
changing another players' orders before the next turn begins.    Just as the author has more
fun with computer games that do not cheat, you may have more fun if you compete only
with human players that do not cheat.   

On the other hand, or let's say a different perspective, since the save files are all ASCII text
and pretty easy to decode, some pretty creative cheating is possible.    However, once you
start changing any files, don't count on much support even if you are a registered user!   

Evolution in Cloak, Dagger and DNA
(Evolution: 1 of 5)

PROGRAM = GENE
In this game all player's game pieces move simultaneously.    In order to simulate this,
players do not actually move their game pieces, but submit orders for them to be moved.   
The game engine then handles actually moving them during the turn sequence.    Thus, a
player's turn consists of issuing orders for game pieces to move, build or disband.    The
computer players play the game by running a special program which generates the same
kind of orders.    These special programs can be thought of as the computer players' genetic
codes or genes, and these are what the evolution engine works with.

TOURNAMENTS
Programs compete in tournaments, which is a sequence of four games played by four
programs.    Between each game, the programs are rotated between board positions in the
same way that humans might rotate chairs in a table game.    Thus each program plays once
as each of the four colors (RED, YELLOW, GREEN, and BLUE) in the game. This has the effect
of reducing the advantages or disadvantages any board position (color) may have.    The
program is treated as if it were an organism, competing with other organisms for food in
each tournament.    See Parameter Selection for understanding and changing food costs and
rewards for playing in tournaments.

THE GENE POOL
The evolution engine manages a pool of programs, and for each program keeps track of how
many tournaments it has played,    and its current food supply, among other things.    This
pool provides the programs the evolution engine uses for tournaments,    and the members
(programs) of this pool are selectively eliminated and replaced using others in the pool as
genetic parents.

EVOLUTION
After each tournament the programs' food supplies are checked.    Any program which is out
of food (zero or less) is removed from the gene pool and replaced with a new program by
'crossing' the programs of two parents.    (See Parameter Selection for how the parents are
chosen)    Crossing is accomplished by selecting a random number of instructions from the
beginning of one parent and adding to those a random number of instructions from the end
of the other parent.    A counter keeps track of how many instructions are added to each new
program, and if this counter reaches the mutation count during the construction of a new
program, (and mutation is enabled) a random instruction in the new program is 'mutated' to
some valid instruction, and the mutation counter is reset.

Managing the Gene Pool
(Evolution: 2 of 5)

THE LISTBOX
Contains one line for each member of the gene pool.    The gene pool is limited to 50 entries,
which look like:

2        6          22
3*    51        -87    XYZ.DNA
4    999+      100

In the above example, there are 3 genes.    The first, index 2, has played 6 tournaments and
has 22 food points.    The second, index 3, has been locked (so it will not be killed) indicated
by the asterisk after the 3.    It has played 51 tournaments and has a negative food point
total of 87, this means it has been losing, but it cannot be killed because of the lock.    It has
either been loaded from the file XYZ.DNA with the ADD button, or was copied to that file
with the EXTRACT button.    The filename only indicates that there was a relationship at one
time, since nothing stops you from editing XYZ.DNA, and this indicator will not compare
them later. The last in the example, index 4, has played more than 999 tournaments, the
most that is kept track of, as indicated by the plus sign after the 999.    It has a food supply
of 100.

PLAY>>
Press this button (or Double click the entry in the listbox) to move the selected entry in to
the current players box for the next tournament.

ADD
Press this button (if there are currently less than 50 pool members) to load a new member
from an external .DNA file.    This will give you an open file dialog, and the file selected will
be placed in an unused index in the gene pool.

EXTRACT
Press this button to save the current selection (in the listbox) to a .DNA file.    You will get a
file save dialog.

VIEW
When this is checked, the current selection will be disassembled into a text viewer window
and updated as you change the selection.

LOCK
The button toggles a lock on the current selection.    When a gene is locked it will not be
replaced, even if its food goes below zero.

FILL
If the pool is not full, this button will fill the remaining slots by selecting random parents and
crossing them with possible mutation.    Only parents will be used that existed before the
FILL button is pushed.

DELETE
Deletes the current selection from the gene pool.

CLEAR
Deletes all members of the gene pool.

HELP
Brings you to this page.

Parameter Selection
(Evolution: 3 of 5)

PLAYER SELECTION
When players (programs) are needed for a tournament, they can be manually selected with
the "Play>>" button, or automatically selected by one of these methods:

NEAR
Selects gene pool programs that are near each other in the pool. The bottom and top
members of the pool are considered near.

RANDOM
Selects programs from anywhere in the pool.

PARENT SELECTION
After each tournament, if new programs are created, this controls how the parents of those
programs are selected.    When a program is selected as parent, its food supply is reduced by
the amount in the parent cost control.    In this case it is temporarily allowed to exist with a
negative food supply, which it MUST bring positive in its next tournament if it is to survive.

FITTEST TOURNAMENT SURVIVORS
Of any surviving tournament players, select the fittest two (most food) as the
parents, if less that two can be found this way then the remaining parent(s) will be
chosen by the method below:

WEIGHTED, ENTIRE POOL
For each parent program needed, a gene pool member is chosen randomly, but with
a relative probability exactly equal to each programs' food supply.    Thus a program
with 20 food has exactly twice the chance of being a parent as a program with 10
food.    Programs with a zero or negative food supply will not be selected.

FOOD
Food is the survival measure of the programs.    When a tournament is played, food points
are distributed to the players depending on their performance in the tournament.    The total
food distributed will be 100 or possibly less due to round off. The following controls select
other food rules, and ranges are allowed far outside of what we believe to be reasonable for
the sake of experimentation, and our own possible human error.    Suggested value ranges
are given for what we believe to be reasonable performance but should not be taken as
gospel.

MAXIMUM FOOD STORE
This is the most food a program can store between tournaments.    If a program wins
more than this, it is reduced to this amount after each tournament.    Allowed range is
0 to 30000.    Suggested range is 20 to 200.

FOOD AT BIRTH
This is the amount that is placed in the initial food supply of a new program.    Allowed
range is 0 to 30000.    Suggested range is 20 to 100.

COST TO BE PARENT
Each time a program is used as a parent of a new program, this is the amount the

parents' food supply is reduced.    Allowed range is -1000 to 1000.    Suggested range
is 0 to 25.    Note that a negative value in this field results in additional food to the
parent.

TOURNAMENT PLAY COST
This is the cost for a program to play a tournament.    It is subtracted from each
programs winnings after each tournament. Allowed range is -100 to 100.    Suggested
range is 0 to 50.

MUTATION
Whenever a new program is created, it may be subject to mutation.    When a program is
mutated, one of its instructions is randomly changed to some other (or possibly the same)
instruction.    This control allows you to control how often mutation happens, in terms of the
number of instructions processed into newly created programs.    For example, assume the
number is 500.    Each time a program is created, the number of instructions in that program
are counted.    When the counter total for all programs created reaches 500, the program just
created is mutated, and the counter is reset.    To have NO MUTATIONS, set this to 0.

Tournament Results
(Evolution: 4 of 5)

After the completion of tournaments during the run of the program, this screen will display
statistics regarding the most recently completed tournament, which will look something like:

Tournament 10780

Gene          28      29      30      32
                ---    ---    ---    ---
Red          100        0    100        0    50
Yellow        0        0    100        0    25
Green          0        0        0        0      0
Blue            0        0    100        0    25
                ---    ---    ---    ---
Score        25        0      75        0

Food            0      55    100    -25

Gene 28 = 30(10) X 29(5)
Gene 32 = 29(7) X 30(12) M@3

At the top is the tournament number for the current gene pool. This is followed by four
columns of information relating to each of the four genes which participated in the
tournament.    At the top the gene index numbers head the columns, this is followed by the
score of each gene as it played each of the four colors (board positions) during the
tournament. In the above example, looking at the column for gene index 28, it scored 100 in
the game where it played the Red board position, and 0 in the other three games.    Gene
28's tournament score was 25, which is the average of the scores from the four games
played, and its remaining food after this tournament was 0.

Following the results table, statistics on gene replacement will appear if any genes were
replaced.    In the above example, gene 28 was replaced by a cross of genes 30 and 29, with
the first 10 instructions coming from the beginning of gene 30 and then 5 instructions
coming from the end of gene 29, with no mutations.

Gene 32 was replaced, with the first 7 instructions coming from the beginning of gene 29
and then 12 instructions from the end of gene 12.    The M@3 indicates that the new gene 32
had its third instruction mutated, changing it to some (legal) random instruction, including
the possibility of the same one.

This page will be updated at the end of each tournament, so if you are examining this page
during a run, be prepared for it to be updated with new results.    You might want to run only
one tournament at a time or press the PAUSE button (the RUN button changes into this when
pressed) while you are looking at this page.

Running the Evolution Engine
(Evolution: 5 of 5)

CURRENT PLAYERS
This list box contains the players either playing or selected to play the next tournament.   
You can select players into this box with the "Play>>" button or Double Clicking from the
"Gene Pool" tab-page.    Double click an entry in this list box to remove it.    If less than 4
entries are here when the RUN button is pressed, it will be filled automatically as specified in
PLAYER SELECTION on the "Parameters" tab-page.

STATUS AREA
Indicates tournament number for this gene pool run, and status bars for each of the 4 games
in the tournament during a run.

RUN MODE
ONE TOURNAMENT
Select this to play only one tournament when the RUN button is pressed, or select
this while a tournament is running to stop when it is done.

CONTINUOUS PLAY
Select this to play continuously when the RUN button is pressed.    If you are planning
to run a large number of tournaments, you may want to minimize the Evolution Lab
screen.    On machines with slower graphics cards this may slightly improve
performance.

ENGINE
CONTEST ONLY
Select this to disable all evolution functions, and just play tournaments, adjust game
counts and food supply.    Programs with negative food will not be deleted in this
mode.

ALLOW EVOLUTION
Select this to allow (non-locked) pool members to be deleted and replaced by
evolution functions.

RUN (PAUSE)
Press this to start playing one or more tournaments.    Any players selected into the
Players list box will be selected to play, and any empty slots will be filled with other
pool members according to the PLAYER SELECTION control on the PARAMETERS tab-
page. There must be at least four members of the gene pool for this to work properly,
since duplicates will not be selected automatically.    The RUN button will become a
PAUSE button which you can press to temporarily stop the current tournament. Press
again to resume.

Concepts
(Gene Editing: 1 of 4)

Each genetic program playing the game or used to advise a human is represented by a small
program in a language specifically designed for this task.    The language has no loops or
branching, it starts at the beginning and runs to the end.    There is a limit of 25 instructions
a program may have, including the required Halt at the end.    The program generates build,
disband and move orders for a player's pieces in the game.    If the program does not
specifically give an order to a piece then the default orders for that piece is to defend which
is the same as doing nothing.    A program generated randomly in this language is
guaranteed to terminate in a finite time, but may not generate any orders, in this case the
pieces would just sit and defend until the end of the game or until they are destroyed by
other players.    A program only considers one turn in isolation, thus there is no provision to
store information to be used in a later turn.

Architecture
(Gene Editing: 2 of 4)

AREA REGISTERS
There are 4 registers: R0, R1, R2 and R3 for each area in the game.    These can have
independent values for each area and are processed in parallel.    For example, if an
instruction adds five to R3, it will add 5 to the R3 register in every area.    These registers can
hold values from -32768 to 32767.

At program start, area register R0 is 1 for all areas, and R1, R2 and R3 are 0 for all areas.    In
this document Rx, <Rdst>, and <Rsrc> will be used to indicate any of the area registers.

Most instructions which can change R1 (they will have an R1 in a field named <Rdst>) are
conditional on the value of R0 in the same area being greater than zero.    The Notes section
for each individual instruction will indicate any exceptions.    Thus, for most instructions, if R0
is 0 (or negative) in a given area, then an instruction that modifies R1 would be skipped for
that area.    In any other areas where R0 is greater than zero, the instruction modifying R1
would be executed.    R2 and R3 are general purpose area registers and have no special
restrictions.

The area registers can be thought of as if they represent elevations in each area, where a
higher elevation is owned and more protected, and a lower elevation is enemy owned and
desirable.    The move, build and disband instructions will use these 'elevations' to decide
where to move, build and/or disband and in what order.

SPECIAL REGISTERS
There are two special purpose registers used to set thresholds for the build and disband
instructions: "Treas" and "Cf" which unless changed by the Set instruction, default to 0.   
There are only one each of these registers, not one for each area.

Instruction Set
(Gene Editing: 3 of 4)

Halt Stop program execution.
Set Put a value in one of the specific purpose registers.
Mov Put a value or piece count in each of one Rx.
Add Add a value or piece count to each of one Rx.
Sub Subtract a value or piece count from each of one Rx.
Mul Multiply each of one Rx by a value or piece count.
Div Divide each of one Rx by a value or piece count.
Avg Average each of one Rx with all its immediate neighbors.
Distf Add a 'distance to front' value in each of one Rx.
Move Generate move orders into any areas
Build Generate build orders
Disband Generate disband orders

Halt
(Instruction Set: 1 of 12)

Purpose
Stops program execution.    No instructions are executed after a Halt.    Any program
with more than 25 instructions will have the first 24 instructions run, and then it will
halt, regardless of whether the 25th instruction actually is a Halt.

Syntax
Halt

Example
Build army 20
Halt

Set
(Instruction Set: 2 of 12)

Purpose
Put a value in one of the specific purpose registers.

Syntax
Set Treas <Ttest>
Set Cf <Ctest>

<Ttest> range is 0..255
<Ctest> range is -128..127

Notes
These registers default to a zero value.    See the Build and Disband instructions
for information on how these values are used.

Examples
Set Treas 10
Set Cf 4
Set Cf -2

Mov
(Instruction Set: 3 of 12)

Purpose
Move a constant value, a value from another register, or piece count into an area
register set.    This replaces the previous value in that register which is lost.

Syntax
Mov <Rdst> <data>
Mov <Rdst> <Rsrc>
Mov <Rdst> my army
Mov <Rdst> my spy
Mov <Rdst> my factory
Mov <Rdst> my area
Mov <Rdst> notmy army <default_value>
Mov <Rdst> notmy spy <default_value>
Mov <Rdst> notmy factory
Mov <Rdst> notmy area

<Rdst>,<Rsrc> are one of: R0, R1, R2 or R3
<data> is a constant: -128 to 127
<default_value> is: 0 to 31

Notes
The forms using the "my" keyword will place the appropriate quantity of game pieces
present into the <Rdst> registers, or 0 if none are present in a particular area.    The
form "my area" will use 1 in owned areas, and 0 in all other areas, and "notmy area"
will be the reverse, or 1 in unowned areas, and 0 in owned areas.

The forms using "notmy army" and "notmy spy" will place the quantity of the largest
single opposing force (of the specified type of piece) into the <Rdst> registers, or, if
this value is not known, <default_value> will be placed in the <Rdst> registers.

When "my factory" or "notmy factory" is used, the number of factories of appropriate
ownership will be placed in <Rdst>, or 0 if no factories.

Remember that instructions using R1 as <Rdst>, will not be executed in areas where
R0 is 0 or less.

Examples
Mov R0 5

Move 5 into all R0 area registers.

Mov R1 R2
In all areas where R0 is greater than 0, copy the value in register R2 into R1.   
Note that since R1 is the <Rdst> register, it can be modified by this
instruction, thus the instruction is only executed in areas where R0 is greater
than 0.

Mov R2 R1
In all areas, copy the value in register R1 into R2.    Note that since R1 is not
modified, (it is <Rsrc> not <Rdst>) this instruction is not subject to the R0
restriction.

Mov R2 my army
In each area, move the number of the player's armies present into R2.

Mov R0 my area
Place 1 in R0 for areas owned by the player, place 0 in R0 for areas not
owned.    Until R0 is modified, instructions following this that would modify R1
will now only be executed in areas owned by the player.

Mov R1 notmy area
In all areas where R0 is greater than 0, place 1 in R1 for areas not owned by
the player, place 0 in R1 for areas owned.

Mov R2 notmy army 5
In all R2 registers, place the number of armies of the single largest opposing
force in R2, or in any area where this information is not known, place 5.

Add
(Instruction Set: 4 of 12)

Purpose
Add a value or piece count to an area register set.

Syntax
Add <Rdst> <data>
Add <Rdst> <Rsrc>
Add <Rdst> my army
Add <Rdst> my spy
Add <Rdst> my factory
Add <Rdst> my area
Add <Rdst> notmy army <default_value>
Add <Rdst> notmy spy <default_value>
Add <Rdst> notmy factory
Add <Rdst> notmy area

<Rdst>,<Rsrc> are one of: R0, R1, R2 or R3
<data> is a constant: -128 to 127
<default_value> is: 0 to 31

Notes
The forms using the "my" keyword will add the appropriate quantity of game pieces
present into the <Rdst> registers, or 0 if none are present in a particular area.    The
form "my area" will add 1 in owned areas, and 0 in all other areas, and "notmy area"
will be the reverse, or 1 in unowned areas, and 0 in owned areas.

The forms using "notmy army" and "notmy spy" will add the quantity of the largest
single opposing force (of the specified type of piece) to the <Rdst> registers, or, if
this value is not known, <default_value> will be added to the <Rdst> registers.

When "my factory" or "notmy factory" is used, the number of factories of appropriate
ownership will be added to <Rdst>, or 0 if no factories.

Remember that instructions using R1 as <Rdst>, will not be executed in areas where
R0 is 0 or less.

Examples
Add R2 5

Add 5 to all of the R2 registers.

Add R1 R3
in each area, add R3 to R1 if R0 in that area is non-0.

Sub
(Instruction Set: 5 of 12)

Purpose
Subtract a value or piece count from an area register set.

Syntax
Sub <Rdst> <data>
Sub <Rdst> <Rsrc>
Sub <Rdst> my army
Sub <Rdst> my spy
Sub <Rdst> my factory
Sub <Rdst> my area
Sub <Rdst> notmy army <default value>
Sub <Rdst> notmy spy <default value>
Sub <Rdst> notmy factory
Sub <Rdst> notmy area

Notes
The forms using the "my" keyword will subtract the appropriate quantity of game
pieces present from the <Rdst> registers, or 0 if none are present in a particular
area.    The form "my area" will subtract 1 in owned areas, and 0 in all other areas,
and "notmy area" will be the reverse, or 1 in unowned areas, and 0 in owned areas.

The forms using "notmy army" and "notmy spy" will subtract the quantity of the
largest single opposing force (of the specified type of piece) from the <Rdst>
registers, or, if this value is not known, <default_value> will be subtracted from the
<Rdst> registers.

When "my factory" or "notmy factory" is used, the number of factories of appropriate
ownership will be subtracted from <Rdst>, or 0 if no factories.

Remember that instructions using R1 as <Rdst>, will not be executed in areas where
R0 is 0 or less.

Examples
Sub R3 notmy army 5

Subtract opponents army count from R3, if player can't see this area, subtract
5.

Sub R3 5
Subtract 5 from all R3 registers.

Mul
(Instruction Set: 6 of 12)

Purpose
Multiply an area register set by a value or piece count.

Syntax
Mul <Rdst> <data>
Mul <Rdst> <Rsrc>
Mul <Rdst> my army
Mul <Rdst> my spy
Mul <Rdst> my factory
Mul <Rdst> my area
Mul <Rdst> notmy army <default value>
Mul <Rdst> notmy spy <default value>
Mul <Rdst> notmy factory
Mul <Rdst> notmy area

Notes
The forms using the "my" keyword will multiply <Rdst> by the appropriate quantity
of game pieces present, or 0 if none are present in a particular area.    The form "my
area" will multiply <Rdst> by 1 in owned areas, and 0 in all other areas, and "notmy
area" will be the reverse, or 1 in unowned areas, and 0 in owned areas.

The forms using "notmy army" and "notmy spy" will multiply <Rdst> by the quantity
of the largest single opposing force, (of the specified type of piece) or, if this value is
not known, <Rdst> will be multiplied by <default_value>.

When "my factory" or "notmy factory" is used, <Rdst> will be multiplied by the
number of factories of appropriate ownership, or 0 if no factories.

Remember that instructions using R1 as <Rdst>, will not be executed in areas where
R0 is 0 or less.

Example
Mul R2 notmy factory

Multiplies the value in each R2 by the number of factories in each unowned
area.    In owned areas and areas with no factories, R2 is multiplied by 0.

Div
(Instruction Set: 7 of 12)

Purpose
Divide an area register set by a value or piece count.

Syntax
Div <Rdst> <data>
Div <Rdst> <Rsrc>
Div <Rdst> my army
Div <Rdst> my spy
Div <Rdst> my factory
Div <Rdst> my area
Div <Rdst> notmy army <default value>
Div <Rdst> notmy spy <default value>
Div <Rdst> notmy factory
Div <Rdst> notmy area

Notes
The forms using the "my" keyword will divide <Rdst> by the appropriate quantity of
game pieces present, or 0 if none are present in a particular area.    The form "my
area" will divide <Rdst> by 1 in owned areas, and 0 in all other areas, and "notmy
area" will be the reverse, or 1 in unowned areas, and 0 in owned areas.

The forms using "notmy army" and "notmy spy" will divide <Rdst> by the quantity of
the largest single opposing force, (of the specified type of piece)    or, if this value is
not known, <Rdst> will be divided by <default_value>.

When "my factory" or "notmy factory" is used, <Rdst> will be divided by the number
of factories of appropriate ownership, or 0 if no factories.

Whenever this instruction would attempt to divide by zero, the largest representable
value will be placed in <Rdst> which is 32767.

Remember that instructions using R1 as <Rdst>, will not be executed in areas where
R0 is 0 or less.

Examples
Div R1 2

In every area where R0 >= 0, divide R1 by 2.

Div R3 R2
In every area, R3 becomes the value of R3 divided by R2.    Exception:
anywhere that R2 is zero, 32767 will be placed in R3.

Avg
(Instruction Set: 8 of 12)

Purpose
Average each <Rdst> with all its immediate neighbors.

Syntax
Avg    <Rdst> <passes>

<Rdst> is R0, R1, R2 or R3
<passes> is 0..3

Notes
If <passes> is 0 then nothing happens.

Each node becomes average of itself and all its neighbors.    This process is repeated
<passes> times.    If R1 is averaged, only areas where R0 > 0 will be modified,
however all areas that are modified will use the values in ALL neighbors, regardless of
the neighbors' R0 value, to compute the new value.

Example
Avg R2 3

DistF
(Instruction Set: 9 of 12)

Purpose
Add a 'distance to front' value in each area's <Rdst>.

Syntax
DistF <Rdst>

Notes
In all the players' owned areas, the shortest number of moves it would take a spy
(spies have no movement restrictions) to enter an unowned area is added to Rdst.   
Nothing is changed in unowned <Rdst>'s.    This is a simple way to generate a slope
leading to the front lines.

Example
DistF R2

Move
(Instruction Set: 10 of 12)

Purpose
Generate move orders for some or all of a particular type of piece.

Syntax
Move army <weight>
Move spy    <weight>

<weight> is -128 to 127

Notes
The move instruction uses R1 as an elevation, however it does not generate orders
for pieces in areas where R0 <= 0.    R1 exception: this instruction may generate
orders to move pieces into areas where R0 <= 0, in which case, it is allowed to
change R1 in those areas.

Starting with the area having the highest value (elevation) in R1, and working down,
this instruction examines pieces of the type specified and considers moving them to
lower elevations.    Each piece examined is temporarily 'removed' from the board by
adding <weight> to the R1 of the area it is in.    Then if at least one neighboring area
has a lower elevation, the piece is given orders to move to the lowest of those
neighbors, and that neighbor's R1 has <weight> added to it.    Each remaining piece
in the same area, if any, is examined in the same way using the R1 values just
modified by the previously moving piece.    If there is no lower neighbor, <weight> is
added back to the current area, any remaining pieces in this area are not considered
further, and the next lower elevation with pieces of the type specified are considered
for moving.    Note that <weight> is allowed to be negative, which may or may not be
useful.

Examples
Move Spy 5
Move Army 80

Build
(Instruction Set: 11 of 12)

Purpose
Possibly generate build orders for a specified type of piece.    Build prefers to generate
build orders at lower R1 values, which tend to be closer to enemy pieces and areas.

Syntax
Build army <weight>
Build spy <weight>

<weight> is -128 to 127

Notes
Build creates a list of areas by sorting all areas owned by the values in R1.    It will
only consider areas that have R0 >= 0.      Starting with the area having the lowest R1
and working upwards, build may generate a build order for a spy or army.    Before
each attempted build, this instruction checks the Treas and Cf registers which can be
changed by the Set instruction.    Build will only build a piece, if, after the build, the
players treasury will be greater than or equal to the value in the Treas register and
the players Cash flow (after the build) will be greater than or equal to the value in the
Cf register.    If either of these tests fails, then the build instruction passes control to
the next instruction, possibly without having generated any build orders.

When build decides to generate a build order for a piece,    it will add the value in the
<weight> parameter to the area given the build instruction, and re-sort this area
back in the list before attempting the next build.    Thus a large weight will tend to
spread out build orders over a number of areas, and a small weight will tend to build
a larger number of pieces in a few areas.

Examples
Build army 20
Build spy 100

Disband
(Instruction Set: 12 of 12)

Purpose
Possibly generate disband orders for a particular type of piece.    Disband prefers to
generate disband orders at higher R1 values, which tend to be farther away from
enemy pieces and areas.

Syntax
Disband spy <weight>
Disband army <weight>

Notes
Disband creates a list of areas by sorting all areas with the specified type of piece by
the values in R1.      It will only consider areas that have R0 >= 0.      Starting    with the
area having the highest R1 and working down, Disband may generate a disband
order for a spy or army.    Disband checks the Treas and Cf registers which are set by
the Set instruction.    Disband will only disband pieces as long as the player's treasury
is less than the value in the Treas register OR the player's Cash flow is less than the
value in the Cf register.

When Disband decides to generate a disband order for a piece,    it will subtract the
value in the <weight> parameter from the area given the disband instruction, and re-
sort this area back in the list before attempting the next disband.    Thus a large
weight will tend to spread out disband orders over a number of areas, and a small
weight will tend to disband a larger number of pieces in a few areas.

The disband instruction is useful in controlling how pieces are disbanded when this is
necessary.    Without this instruction, if a situation developed where the treasury could
not cover the current supply costs, the necessary pieces would be automatically
disbanded at random by the turn engine.

Examples
Disband army 20

Using the Gene Editor
(Gene Editing: 4 of 4)

You must be playing a game (as a human) to get to the Gene Editor.    Select VIEW|Gene
Editor from the menu.    You will get a window that shows your current 'advisor' program.   
You can edit this program, and when you select Run! from the menu it will compile and if
there are no errors, the program will be run, immediately generating orders for your game
pieces.    If there are errors, a '?' will appear at the left of any line with an error and another
'?' will appear immediately after the token or symbol that was not understood.    You can fix
the error and then hit Run! again, ignoring the '?'s which will be automatically removed
when there are no errors.    Once the program has run successfully, you can select the Run
Info tab to see information on the game registers as modified by each instruction.

You can use this to learn the instruction set.    Play a game to turn 4 or so, enough that you
own a few areas, and can see more than one opponent.    Now, using the gene editor, write
very small programs, one line at first, run them, and observe the output on the Run Info
page.    Following each instruction that modifies a register set is a list of the values of each
register.    For example, write and run the one line program "DistF R2".    The output will show
for each area, how far it is from the closest unowned area.

Also on the menu are standard File|Open...,File|Save as..., and File|Close selections.   
Use the open and save to save this as a .DNA file.

Once you have modified the .DNA file in any game, it will automatically be saved with an
ADV extension (in the directory where you installed the program) as an advisor file.    If you
were playing GREEN, then it would be saved as GREEN.ADV. When the next turn is loaded, if
this file exists, it will be loaded instead of GREEN.DNA.    This way you do not have to save
and reload each turn, and the original GREEN.DNA is not modified.    After the game, if you
want to keep your new .ADV file you should rename it to something with a DNA extension,
using DOS or the File Manager.    The format of the .DNA and .ADV files are identical.   
Advisor (.ADV) files will be deleted when the next game starts.

A Note from the Author
(End: 1 of 2)

This program was largely inspired by my interests in games and the (computer science) field
of Genetic Algorithms, and a desire to combine them in an interesting way.    A small amount
of inspiration is from my frustration with some computer strategy games where the
computer players play by a different set of rules than the humans, in other words, they have
to "cheat", in order to play an interesting game.

Of course, if a computer game company were to put the time and resources necessary into
every game to make the computer opponents smart enough to play by the same rules,
some of those games would have to be pretty expensive!    That company probably wouldn't
stay    in business very long, unless they could find a large market for games costing
thousands of dollars each!    Even for computer scientists, some games can present very
difficult problems.    As I write this, (September 1995) I have yet to heard of a Chess program
that consistently beats the best human Chess players, although I have heard that a
Backgammon program based on neural networks has caused some reconsideration of at
least one of the accepted standard opening moves.

Occasionally the author of a research paper in the Genetic Algorithm field will document a
surprise, usually some success of evolution that was unexpected.    During the development
of this program I experienced a surprise, but of a slightly different nature.    As the computer
players evolved to the point where some could occasionally beat me in a game, I realized
that this was a good thing.    Normally I'm not especially pleased when the computer wins a
game, but in this case, losing became a measure of success!

Probably the biggest non-programming challenge has been trying to find a reasonable
balance between a game that is complex enough to be interesting (to humans) for at least a
few games, and yet simple enough that a fairly small program with a limited instruction set
(representing the genetic code) could play a reasonably competent opponent.    With a more
complex instruction set or a larger program, I was worried that a home computer would not
be capable of evolving anything interesting in a short time span, say a few hours, or
overnight at the most.    As I write this probably close to a total of half a million evolution
tournaments have been played on various machines with various parameters, and
sometimes twenty thousand or more tournaments can go by with no obvious improvement.   
Have we seen the best possible players already,    or are the best we've seen so far only
simpletons compared to what will come?    Only time and more users (hopefully registered
ones!) can tell.

I would like to hear what you think about this program even if you haven't decided to
register!    And even if the computer never beats you. (Try doing nothing on your first turn.)   
If you write or evolve some really super opponents, please send them along, and challenge
your friends come up with better ones!   

Please understand that unless a miracle occurs, support of this program will be a part-time
effort, and if you have a question or desire a response, it could take some time for me to get
back to you, which I will try to do.    Of course for practical reasons, registered users will be
put in the queue ahead of everyone else!

I hope you have as much fun playing/experimenting/learning with this program as I had
creating it!

Don O'Brien

Oidian Systems
P.O. Box 700365
San Jose, CA 95170-0365

CIS: 71702,2255 (71702.2255@compuserve.com)

Bibliography
(End: 2 of 2)
Brooks, R.A., P. Maes, Artificial Life IV (proceedings)

MIT Press, 1994

Dawkins, R. The Blind Watchmaker.
Norton, 1987

Dawkins, R. The Selfish Gene.
Oxford, 1976

Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989

Langton, C.G., editor Artificial Life (proceedings)
Addison-Wesley, 1989

Langton, C.G., C.Taylor, J.D. Farmer, & S. Rasmussen, editors Artificial Life II (proceedings)
Addison-Wesley, 1992

Langton, C.G., editor Artificial Life III (proceedings)
Addison-Wesley, 1994

Ray, T.S., An approach to the synthesis of life.   
In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S., editors Artificial Life II,
pp. 371-408.    Addison-Wesley 1992

