
$1 #2 +3 K4 Macro Language
The MicroEMACS macro language allows you to add extensions to the editor. Statements (one
per line) are composed of the following elements:

Commands manipulate text, buffers, windows, etc... within the editor
Directives control the flow of execution within a macro
Arguments:

Constants
Variables
Functions

Comments

Macros are registered with MicroEMACS by the store-macro or store-procedure commands. They
get executed through menus or keystrokes they have been bound to, or through the execute-
macro- n or run commands.

Macros can also be executed directly from a buffer or a file by the execute-buffer or execute-file
commands.

1$ Macro Language
2# MacroLanguage
3+ Index:2040
4K macro;language

$5 #6 +7 K8 Commands
By topic:

Binding
Block of Text
Buffer, Window and Screen
Clipboard and Kill Buffer
Execution, Macro and Variable
File
Mouse
Positioning
Search and Replace

Miscellaneous

Alphabetical lists:

Standard commands
Additional commands

5$ Commands
6# Commands
7+ MacroLanguage:010
8K commands

$9 #10 +11 K12 Binding commands
apropos
bind-to-key
bind-to-menu
ctlx-prefix
describe-bindings
describe-key
macro-to-key
macro-to-menu
meta-prefix
unbind-key
unbind-menu

9$ Binding commands
10# BindingCommands
11+ CommandsByTopic:bindingcommands
12K binding;commands

$13 #14 +15 K16 Block of Text commands
Commands that affect regions, lines, words and paragraphs.

case-region-lower
case-region-upper
case-word-capitalize
case-word-lower
case-word-upper
copy-region
count-words
delete-blank-lines
delete-next-word
delete-previous-word
detab-region
entab-region
fill-paragraph
indent-region
kill-paragraph
kill-region
kill-to-end-of-line
narrow-to-region
remove-mark
set-fill-column
set-mark
trim-region
undent-region
widen-from-region
wrap-word

13$ Block of Text commands
14# BlockOfTextCommands
15+ CommandsByTopic:blockoftextcommands
16K region;line;word;paragraph;commands

$17 #18 +19 K20 Buffer, Window and Screen commands
add-global-mode
add-mode
cascade-screens
change-screen-column
change-screen-row
change-screen-size
change-screen-width
clear-and-redraw
cycle-screens
delete-buffer
delete-global-mode
delete-other-windows
delete-mode
delete-screen
delete-window
execute-buffer
filter-buffer
find-screen
grow-window
list-buffers
list-screens
maximize-screen
minimize-screen
move-window-down
move-window-up
name-buffer
narrow-to-region
next-buffer
next-window
pipe-command
pop-buffer
previous-window
rename-screen
resize-window
restore-screen
restore-window
save-window
scroll-next-up
scroll-next-down
select-buffer
shrink-window
split-current-window
tile-screens
unmark-buffer
update-screen
widen-from-region

17$ Buffer, Window and Screen commands
18# BufferWindowScreenCommands
19+ CommandsByTopic:bufferwindowscreencommands
20K buffer;window;screen;commands

$21 #22 +23 K24 Clipboard and Kill Buffer commands
clip-region
copy-region
cut-region
cycle-ring
delete-kill-ring
delete-next-character (with argument)
delete-next-word
delete-previous-character (with argument)
delete-previous-word
insert-clip
kill-paragraph
kill-region
kill-to-end-of-line
yank
yank-pop

21$ Clipboard and Kill Buffer commands
22# ClipboardKillBufferCommands
23+ CommandsByTopic:clipboardandkillbuffercommands
24K clipboard;kill;commands

$25 #26 +27 K28 Execution, Macro and Variable commands
abort-command
begin-macro
describe-functions
describe-variables
display
end-macro
execute-buffer
execute-command-line
execute-file
execute-macro
execute-macro- n
execute-named-command
execute-procedure
execute-program
filter-buffer
i-shell
nop
pipe-command
run
set
shell-command
source
store-macro
store-procedure
help-engine

25$ Execution, Macro and Variable commands
26# ExecutionMacroVariableCommands
27+ CommandsByTopic:executionmacrovariablecommands
28K execute;spawn;filter;pipe;shell;DOS;macro;variable;commands

$29 #30 +31 K32 File Commands
append-file
change-file-name
execute-file
find-file
insert-file
read-file
save-file
show-files
source
view-file
write-file

29$ File Commands
30# FileCommands
31+ CommandsByTopic:filecommands
32K file;commands

$33 #34 +35 K36 Mouse commands
mouse-move
mouse-move-down
mouse-move-up
mouse-region-down
mouse-region-up
mouse-resize-screen

33$ Mouse commands
34# MouseCommands
35+ CommandsByTopic:mousecommands
36K mouse;commands

$37 #38 +39 K40 Positioning commands
backward-character
beginning-of-file
beginning-of-line
buffer-position
end-of-file
end-of-line
end-of-word
exchange-point-and-mark
forward-character
goto-line
goto-mark
goto-matching-fence
next-line
next-page
next-paragraph
next-word
previous-line
previous-page
previous-paragraph
previous-word
redraw-display

37$ Positioning commands
38# PositioningCommands
39+ CommandsByTopic:positioningcommands
40K position;point;commands

$41 #42 +43 K44 Search and Replace commands
hunt-backward
hunt-forward
incremental-search
query-replace-string
replace-string
reverse-incremental-search
search-forward
search-reverse

41$ Search and Replace commands
42# SearchReplaceCommands
43+ CommandsByTopic:searchreplacecommands
44K search;replace;commands

$45 #46 +47 K48 Miscellaneous Commands
clear-message-line
exit-emacs
handle-tab
help
insert-space
insert-string
newline
newline-and-indent
nop
open-line
overwrite-string
print
quick-exit
quote-character
redraw-display
set-encryption-key
set-fill-column
transpose-characters
universal-argument
write-message

45$ Miscellaneous commands
46# MiscellaneousCommands
47+ CommandsByTopic:zzz010
48K misc;commands

$49 #50 +51 K52 Standard commands
The following commands are available in all implementations of MicroEMACS:

abort-command Allows the user to abort out of any command that is waiting for
input

add-global-mode Add a global mode for all new buffers

add-mode Add a mode to the current buffer

append-file Append a buffer to the end of a file

apropos Lists commands and macros whose name contains the string
specified

backward-character Move one character to the left

begin-macro Begin recording a keyboard macro

beginning-of-file Move to the beginning of the file in the current buffer

beginning-of-line Move to the beginning of the current line

bind-to-key Bind a key to a command

buffer-position List the position of the point on the message line

case-region-lower Make a region all lower case

case-region-upper Make a region all upper case

case-word-capitalize Capitalize the following word

case-word-lower Lower case the following word

case-word-upper Upper case the following word

change-file-name Change the name of the file in the current buffer

change-screen-column change the column offset of the current screen

change-screen-row change the row offset of the current screen

change-screen-size Change the number of lines of the current screen

change-screen-width Change the number of columns of the current screen

clear-and-redraw Repaint all screens or center the point in the current window

clear-message-line Clear the message line

copy-region Copy the current region into the kill buffer

count-words Count how many words, lines and characters are in the current
region

ctlx-prefix Bound to the key used as the ^X prefix

cycle-ring moves the current position of the kill buffer within the kill ring

cycle-screens Bring the rearmost screen to front

delete-blank-lines Delete all blank lines around the point

49$ Standard commands
50# StandardCommands
51+ CommandsByTopic:zzz900
52K standard;commands

delete-buffer Delete a buffer which is not being currently displayed in a
window

delete-kill-ring Reclaim the memory used by the kill ring

delete-global-mode Turn off a global mode

delete-mode Turn off a mode in the current buffer

delete-next-character Delete the character following the point

delete-next-word Delete the word following the point

delete-other-windows Make the current window cover the entire screen

delete-previous-character Delete the character to the left of the point

delete-previous-word Delete the word to the left of the point

delete-screen Delete a screen (not the top one)

delete-window Remove the current window from the screen

describe-bindings List all commands and macros

describe-functions List all functions

describe-variables List all variables

describe-key Describe what command or macro is bound to a keystroke
sequence

detab-region Change all tabs in a region to the equivalent spaces

display Displays a variable's current value

end-macro Stop recording a keyboard macro

end-of-file Move to the end of the current buffer

end-of-line Move to the end of the current line

end-of-word Move just past the end of the current word

entab-region Change multiple spaces to tabs where possible

exchange-point-and-mark Move the point to the last marked spot, make the original
position be marked

execute-buffer Execute a buffer as a macro

execute-command-line Execute a line typed on the command line as a macro

execute-file Execute a file as a macro

execute-macro Execute the keyboard macro (play back the recorded
keystrokes)

execute-macro- n Execute numbered macro n where n is an integer from 1 to 40

execute-named-command Execute a command by name

execute-procedure Execute a procedure by name

execute-program Execute a program directly (not through an intervening shell)

exit-emacs Exit MicroEMACS. If there are unwritten, changed buffers
MicroEMACS will ask to confirm

fill-paragraph Fill the current paragraph

filter-buffer Filter the current buffer through an external filter

find-file Find a file to edit in the current window

find-screen Bring the named screen on top, creating it if needed

forward-character Move one character to the right

goto-line Goto a numbered line

goto-mark Goto a numbered mark

goto-matching-fence Goto the matching fence

grow-window Make the current window larger

handle-tab Insert a tab or set tab stops

hunt-backward Hunt for the last match of the last search string

hunt-forward Hunt for the next match of the last search string

help Read EMACS.HLP into a buffer and display it

i-shell Shell up to a new command processor

incremental-search Search for a string, incrementally

indent-region Indent the current region one tab

insert-file Insert a file at the point in the current file

insert-space Insert a space to the right of the point

insert-string Insert a string at the point

kill-paragraph Delete the current paragraph

kill-region Delete the current region, moving it to the kill buffer

kill-to-end-of-line Delete the rest of the current line

list-buffers List all existing buffers

list-screens List all existing screens

macro-to-key Bind a key to a macro

meta-prefix Key used to precede all META commands

mouse-move Usually bound to the movement of the mouse

mouse-move-down Usually bound to a press on the left mouse button

mouse-move-up Usually bound to the release of the left mouse button

mouse-region-down Usually bound to a press on the right mouse button

mouse-region-up Usually bound to the release of the right mouse button

mouse-resize-screen Resize the screen to bring the bottom-left corner where the
mouse was clicked

move-window-down Scroll the current window down

move-window-up Scroll the current window up

name-buffer Change the name of the current buffer

narrow-to-region Hides all text not in the current region (see widen-from-region)

newline Insert a newline

newline-and-indent Insert a newline and indent the new line the same as the
preceding line

next-buffer Bring the next buffer in the list into the current window

next-line Move down one line

next-page Move down one page

next-paragraph Move to the next paragraph

next-window Move to the next window

next-word Move to the beginning of the next word

nop Does nothing

open-line Open a line at the point

overwrite-string Overwrite a string at the point

pipe-command Execute an external command and place its output in a buffer

pop-buffer Display a buffer temporarily, paging through it

previous-line Move up one line

previous-page Move up one page

previous-paragraph Move back one paragraph

previous-window Move to the last window

previous-word Move to the beginning of the word to the left of the point

print Display a string on the message line (synonym of write-
message)

query-replace-string Replace occurrences of a string with another string, interactively
querying the user

quick-exit Exit MicroEMACS, writing out all the changed buffers

quote-character Insert the next character literally

read-file Read a file into the current buffer

redraw-display Reposition the current line in the window

remove-mark Remove a numbered mark

replace-string Replace all occurrences of a string with another string

resize-window Change the number of lines in the current window

restore-window Move to the last saved window (see save-window)

reverse-incremental-search Search backwards, incrementally

run Execute a named procedure

save-file Save the current buffer if it is changed

save-window Remember the current window (see restore-window)

scroll-next-up Scroll the next window up

scroll-next-down Scroll the next window down

search-forward Search for a string

search-reverse Search backwards for a string

select-buffer Select a buffer to display in the current window

set Set a variable to a value

set-encryption-key Set the encryption key of the current buffer

set-fill-column Set the current fill column

set-mark Set a numbered mark

shell-command Causes an external shell to execute a command

show-files list files matching a pattern within a directory

shrink-window Make the current window smaller

source Execute a file as a macro

split-current-window Split the current window in two

store-macro Store the following macro lines as a numbered macro

store-procedure Store the following macro lines in a named procedure

transpose-characters Transpose the character at the point with the character
immediately to the left

trim-region Trim any trailing white space from a region

unbind-key Unbind a key from a command or macro

undent-region Remove a leading indent from a region

universal-argument Execute the following command or macro 4 times

unmark-buffer Unmark the current buffer (so it is no longer seen as changed)

update-screen Force a display update during macro execution

view-file Read a file in a buffer, in view mode

widen-from-region Restores hidden text (see narrow-to-region)

wrap-word Wrap the current word (internal command)

write-file Write the current buffer under a new file name

write-message Display a string on the message line

yank Yank the kill buffer into the current buffer at the point

yank-pop yank the kill buffer, subsequent invocations replacing the yanked
text by the next one from the kill ring.

$53 #54 +55 K56 Additional commands
The following commands are available only from the Microsoft Windows version of MicroEMACS:

bind-to-menu creates a menu item and binds it to a command

cascade-screens arranges all non-iconic screens using a cascading scheme

clip-region copies the region to the Windows clipboard

cut-region moves the region to the Windows clipboard

help-engine invokes the Microsoft Windows help engine

insert-clip inserts the contents of the Windows clipboard at the point

macro-to-menu creates a menu item and binds it to a macro

maximize-screen makes the current screen occupy the whole MicroEMACS
window

minimize-screen iconizes the current screen

rename-screen change the current screen's name

restore-screen restores the current screen back from maximized or iconized
state

tile-screens arranges all non-iconic screens using a tiling scheme

unbind-menu deletes a menu item

53$ Additional commands
54# AdditionalCommands
55+ CommandsByTopic:zzz910
56K Additionnal commands;Microsoft Windows;MS Windows

$57 #58 +59 K60 Directives
Directives are used within macros to control what lines are executed and in what order.

Directives always start with the exclamation mark "!" character and must be the first non-white
text placed on a line. They are:

!BREAK
!ENDM
!FORCE
!GOTO
!IF, !ELSE and !ENDIF
!RETURN
!WHILE and !ENDWHILE

Directives do not make sense as a single commands. As such, they cannot be called up singly or
bound to keystrokes.Directives executed interactively (via the execute-command-line command)
are ignored.

57$ Directives
58# Directives
59+ MacroLanguage:020
60K directives;macro

$61 #62 +63 K64 !BREAK
This directive lets you abort out of the most inner currently executing while loop, in a macro. It is
often used to abort processing for error conditions. For example:

; Read in files and substitute "beginning" with "beginning"
set %filename #list
!while ¬ &seq %filename "<end>"
!force find-file %filename
 !if &seq $status FALSE
 write-message "[File read error]"
 !break
 !endif
 beginning-of-file
 replace-string "beginning" "beginning"
 save-file
 set %filename #list
!endwhile

61$!BREAK directive
62# .BREAK
63+ Directives:BREAK
64K !BREAK;!WHILE;loop

$65 #66 +67 K68 !ENDM
This directive is used to terminate a macro being stored. For example:

; Read in a file in view mode, and make the window red
store-procedure get-red-viewed-file
 view-file @"File to view: "
 add-mode "red"
!endm

Related commands:

store-procedure
store-macro.

65$!ENDM directive
66# .ENDM
67+ Directives:endm
68K !ENDM;macro

$69 #70 +71 K72 !FORCE
When MicroEMACS executes a macro, if any command fails, the macro is terminated at that
point. If a line is preceded by a !FORCE directive, execution continues whether the command
succeeds or not.

This is often used together with the $status variable to test if a command succeeded. For
example:

set %seekstring @"String to Find: "
!force search-forward %seekstring
!if $status
 print "Your string is Found"
!else
 print "No such string!"
!endif

69$!FORCE directive
70# .FORCE
71+ Directives:force
72K !FORCE;error

$73 #74 +75 K76 !GOTO
The flow of execution within a MicroEMACS macro can be controlled using the !GOTO directive.
It takes a label as argument. A label consists of a line starting with an asterisk "*" and then an
alphanumeric label. Only labels in the currently executing macro can be jumped to, and trying to
jump to a non-existing label terminates execution of a macro. For example:

; Create a block of DATA statements for a BASIC program
insert-string "1000 DATA "
set %linenum 1000
*nxtin
update-screen ;make sure we see the changes
set %data @@"Next number: "
!if &equal %data 0
 !goto finish
!endif
!if &greater $curcol 60
 2 delete-previous-character
 newline
 set %linenum &add %linenum 10
 insert-string &cat %linenum " DATA "
!endif
insert-string &cat %data ", "
!goto nxtin
*finish
2 delete-previous-character
newline

Note that loops constructed with !WHILE are usually more efficient than those constructed purely
by !GOTOs.

73$!GOTO directive
74# .GOTO
75+ Directives:goto
76K !GOTO;!WHILE;loop

$77 #78 +79 K80 !IF, !ELSE and !ENDIF
The !IF directive allows for conditional execution within a macro.

Lines following the !IF directive, until the corresponding !ELSE or !ENDIF, are executed only if the
expression within the !IF line evaluates to a TRUE value. Lines following an !ELSE directive, until
the corresponding !ENDIF, are executed only if the expression within the corresponding !IF line
did not evaluate to a TRUE value.

For example, the following macro creates the portion of a text file automatically:
!if &sequal %curplace "timespace vortex"
 insert-string "First, rematerialize~n"
!endif
!if &sequal %planet "earth" ;If we have landed on earth...
 !if &sequal %time "late 20th century" ;and we are then
 write-message "Contact U.N.I.T."
 !else
 insert-string "Investigate the situation....~n"
 insert-string "(SAY 'stay here Sarah)~n"
 !endif
!else
 set %conditions @"Atmosphere conditions outside? "
 !if &sequal %conditions "safe"
 insert-string &cat "Go outside......" "~n"
 insert-string "lock the door~n"
 !else
 insert-string "Dematerialize..try somewhen else"
 newline
 !endif
!endif

77$!IF, !ELSE and !ENDIF directives
78# .IF
79+ Directives:if
80K !IF;!ELSE;!ENDIF

$81 #82 +83 K84 !RETURN
This directive causes the current macro to exit, either returning to the caller (if any) or to
interactive mode. For example:

; Check the display type and set %wintyp
!if &sequal $sres "MSWIN"
 set %wintyp 1
 !return
!endif
set %wintyp 0
write-message "You are not running under MS-Windows!"
!return

81$!RETURN directive
82# .RETURN
83+ Directives:return
84K !RETURN

$85 #86 +87 K88 !WHILE and !ENDWHILE
This pair of directives facilitates repetitive execution within a macro. If a group of statements
needs to be executed while a certain expression evaluates to TRUE, enclose them with a while
loop. For example:

!while &less $curcol 70
 insert-string &cat &cat "[" #stuff "]"
!endwhile

While loops may be nested and can contain and be the targets of !GOTOs with no ill effects.
Using a while loop to enclose a repeated task will run much faster than the corresponding
construct using !IFs.

85$!WHILE and !ENDWHILE directives
86# .WHILE
87+ Directives:while
88K !WHILE;!ENDWHILE;loop;!BREAK

$89 #90 +91 K92 Arguments
In the MicroEMACS macro language, commands and functions often require arguments. There
are three types of arguments and they are automatically converted to the proper type when used:

Numerical An ASCII string of digits which is interpreted as a numeric value.
Any string which does not start with a digit or a minus sign "-" will
be considered zero.

String An arbitrary string of characters. Strings are limited to 128
characters in length.

Boolean A logical value consisting of the string "TRUE" or "FALSE".
Numeric strings will also evaluate to "FALSE" if they are equal to
zero, and "TRUE" if they are non-zero. Arbitrary text strings will
be considered equivalent "FALSE".

While arguments usually follow the command or function that uses them, a single numerical
argument can also be placed in front of a command, producing an effect similar to the numeric
arguments used in interactive mode.

If a command needs more arguments than have be supplied on the line, the command fails.

89$ Arguments
90# Arguments
91+ MacroLanguage:030
92K argument;evaluate;expression;

$93 #94 +95 K96 Constants
Wherever macro language statements need to have arguments, it is legal to place constants. A
constant is a double quote character, followed by a string of characters, and terminated by
another double quote character.

The double quotes around constants are not needed if the constant contains no white space and
it also does not happen to meet the rules for any other MicroEMACS commands, directives,
variables, or functions. This is very practical for numeric constants.

To represent various special characters within a constant, the tilde "~" character is used. The
character following the tilde is interpreted according to the following table:

Sequence Meaning

~" double quote

~~ tilde

~b backspace (^H)

~f formfeed (^L)

~l linefeed (^J)

~n newline

~r carriage return (^M)

~t tab (^I)

Any character not in the above table which follows a tilde will be passed unmodified. This action
is similar to the quote-character (^Q) command available from the keyboard.

MicroEMACS may use different characters for line terminators on different computers. The "~n"
combination will always get the proper line terminating sequence for the current system.

93$ Constants
94# Constants
95+ MacroLanguage:040
96K constants;macro

$97 #98 +99 K100 Variables
Variables are part of the MicroEMACS Macro language. They can be used wherever an argument
(number, boolean or string) is needed.

Environmental variables both control and report on different aspects of the editor. User variables
hold values which may be changed and inspected. Buffer variables allow lines from buffers to be
used as values. Interactive variables allow macros to prompt the user for information.

97$ Variables
98# Variables
99+ MacroLanguage:050
100K variable;macro

$101 #102 +103 K104 Buffer Variables
Buffer variables are a way to take a line of text from a buffer and place it in a variable. They can
only be queried and cannot be set. A buffer variable consists of the buffer name, preceded by a
pound sign "#". Its value is the text between the point and the end of the line. Each use of a buffer
variable advances the point to the beginning of the following line.

For example, if you have a buffer by the name of RIGEL2, and it contains the text (the point being
on the "B" of "Bloomington"):

Richmond
Lafayette
Bloomington
Indianapolis
Gary

and within a command you reference #rigel2, like in:
insert-string #rigel2

MicroEMACS would start at the current point in the RIGEL2 buffer and grab all the text up to the
end of that line and pass that back. Then it would advance the point to the beginning of the next
line. Thus, after the insert-string command executes, the string "Bloomington" gets inserted into
the current buffer, and the buffer RIGEL2 now looks like this (the point is on the "I" of
"Indianapolis"):

Richmond
Lafayette
Bloomington
Indianapolis
Gary

When the end of a buffer variable is reached, the value returned is: <END>

101$ Buffer Variables
102# BufferVariables
103+ Variables:buffervariables
104K buffer;variable

$105 #106 +107 K108 Environmental Variables
These variables are used to change or get information about various aspects of the editor. They
return a current setting if used as part of an expression. All environmental variable names begin
with a dollar sign "$" and are in lower case:

$acount Countdown until next auto-save
$asave Auto-save frequency
$bufhook Command/macro run when entering a buffer
$cbflags Buffer attribute flags.
$cbufname Buffer name
$cfname File name
$cmdhook Command/macro run before each keystroke
$cmode Buffer modes
$curchar ASCII value of character
$curcol Current column
$curline Current line
$curwidth Number of columns
$curwind Window index
$cwline Line number in current window
$debug Macro debugging flag
$deskcolor Color for desktop
$diagflag Diagonal dragging flag
$discmd Prompt echo flag
$disinp Input echo flag
$disphigh High-bit characters display flag
$exbhook Command/macro run when leaving a buffer.
$fcol Line number at top of window
$fillcol Fill column.
$flicker Flicker flag (for CGA or animated grinder cursor)
$fmtlead Text formatter command prefixes
$gflags Global flags
$gmode Global mode flags
$hardtab Size of hard tabs
$hilight Region to be highlighted
$hjump Horizontal scrolling quantum
$hscroll Horizontal scrolling flag
$hscrlbar Horizontal scroll bar flag
$isterm Incremental search string terminator key
$kill Kill buffer contents
$language National language used by MicroEMACS
$lastkey Last keyboard character
$lastmesg Last message
$line Current line contents
$lterm Line terminator string
$lwidth Width of current line
$match Last string matched in a search
$mmove Controls the generation of mouse movements
$modeflag Mode line display flag
$msflag Mouse flag

105$ Environmental Variables
106# EnvironmentalVariables
107+ Variables:environmentalvariables
108K variable

$numwind Number of windows
$oldcrypt Encryption method flag
$orgrow Row of current screen within desktop
$orgcol Column of current screen within desktop
$os Operating system (MSWIN under MS-Windows)
$overlap Size of overlap during paging
$pagelen Number of lines in screen
$palette Color palette settings
$paralead Paragraph start characters
$pending Keystrokes pending flag
$popflag Popup buffer flag
$posflag Row&column display flag
$progname "MicroEMACS"
$readhook Command/macro run when a file is read
$region Contents of current region
$replace Default replace string.
$rval Exit value from last invoked subprocess
$scrname Screen name
$search Default search string
$searchpnt After-search-positioning flag
$seed Random number generator seed
$softtab Tab size for handle-tab command
$sres Display resolution (MSWIN under MS-Windows)
$ssave Safe-save flag
$sscroll Smooth scroll flag
$status Status from last command
$sterm Search string terminator key
$target Target for line moves
$time Date and time
$timeflag Time display flag
$tpause Duration of fence matching pause
$version MicroEMACS version
$vscrlbar Vertical scroll bar flag
$wchars List of characters that can be part of a word
$wline Window height (lines)
$wraphook Command/macro run when wrapping text
$writehook Command/macro run when writing a file
$xpos Column the mouse was in at last click
$yankflag After-yank-positioning flag
$ypos Line the mouse was in at last click

$109 #110 +111 K112 $acount
This variable is used in ASAVE mode. It contains the countdown on inserted character until the
next auto-save. When it reaches zero, it is reset to the value of $asave.

Initial value: 256

109$ $acount variable
110# _acount
111+ EVariables:acount
112K $acount;ASAVE;autosave

$113 #114 +115 K116 $asave
This variable is used in ASAVE mode. It specifies the value used to reset $acount after an
automatic save occurs.

Default value: 256

113$ $asave variable
114# _asave
115+ EVariables:asave
116K $asave;ASAVE;autosave

$117 #118 +119 K120 $bufhook
The command or macro named in this variable is run when a buffer is entered. This can be used
to implement modes which are specific to a particular file or file type.

Default value: nop

117$ $bufhook variable
118# _bufhook
119+ EVariables:bufhook
120K $bufhook;hook;buffer

$121 #122 +123 K124 $cbflags
This variable contains the current buffer's attribute flags, encoded as the sum of the following
numbers:

1 Internal invisible buffer
2 Changed since last read or write
4 Buffer was truncated when read (due to lack of memory)
8 Buffer has been narrowed

Only the invisible (1) and changed (2) flags can be modified by setting $cbflags. The truncated file
(4) and narrowed (8) flags are read-only.

121$ $cbflags variable
122# _cbflags
123+ EVariables:cbflags
124K $cbflags

$125 #126 +127 K128 $cbufname
This variable contains the name of the current buffer.

125$ $cbufname variable
126# _cbufname
127+ EVariables:cbufname
128K $cbufname;buffer

$129 #130 +131 K132 $cfname
This variable contains the file name associated to the current buffer.

129$ $cfname variable
130# _cfname
131+ EVariables:cfname
132K $cfname;file;buffer

$133 #134 +135 K136 $cmdhook
This variable contains the name of a command or macro to run before accepting a keystroke.
This is by default set to the nop command.

Default value: nop

133$ $cmdhook variable
134# _cmdhook
135+ EVariables:cmdhook
136K $cmdhook;hook;keyboard

$137 #138 +139 K140 $cmode and $gmode
The two variables $cmode and $gmode contain a number that corresponds to the modes for the
current buffer ($cmode) and the new buffers ($gmode). They are encoded as the sum of the
following numbers for each of the possible modes:

WRAP 1 Word wrap
CMODE 2 C indentation and fence matching
SPELL 4 Interactive spell checking (Not implemented yet)
EXACT 8 Exact matching for searches
VIEW 16 Read-only buffer
OVER 32 Overwrite mode
MAGIC 64 Regular expressions in search
CRYPT 128 Encryption mode active
ASAVE 256 Auto-save mode

Thus, if you wished to set the current buffer to have CMODE, EXACT, and MAGIC on, and all the
others off, you would add up the values for those three, CMODE 2 + EXACT 8 + MAGIC 64 = 74,
and use a statement like:

set $cmode 74
or, use the binary or operator to combine the different modes:

set $cmode &bor &bor 2 8 64
Alternatively, you can also modify the modes one by one, using the add-mode and add-global-
mode or delete-mode and delete-global-mode commands

137$ $cmode and $gmode variables
138# _cmode
139+ EVariables:cmode
140K $cmode;$gmode;mode

$141 #142 +143 K144 $curchar
This variable contains the ASCII value of the character currently at the point.

141$ $curchar variable
142# _curchar
143+ EVariables:curchar
144K $curchar

$145 #146 +147 K148 $curcol
This variable contains the column (starting at 0) of the point in the current buffer.

145$ $curcol variable
146# _curcol
147+ EVariables:curcol
148K $curcol

$149 #150 +151 K152 $curline
This variable contains the line number (starting at 1) of the point in the current buffer.

149$ $curline variable
150# _curline
151+ EVariables:curline
152K $curline

$153 #154 +155 K156 $curwidth
This variable contains the number of columns displayed in the current screen.

Setting this variable is equivalent to using the change-screen-width command with a numeric
argument.

153$ $curwidth variable
154# _curwidth
155+ EVariables:curwidth
156K $curwidth

$157 #158 +159 K160 $curwind
This variable contains the index of the current window within the screen. Windows are numbered
from top to bottom, starting at 1. The number of windows within the current screen is held by the
$numwind variable.

157$ $curwind variable
158# _curwind
159+ EVariables:curwind
160K $curwind

$161 #162 +163 K164 $cwline
This variable contains the number of lines displayed in the current window.

161$ $cwline variable
162# _cwline
163+ EVariables:cwline
164K $cwline

$165 #166 +167 K168 $debug
This boolean variable contains a flag used to trigger macro debugging. If it is set to TRUE,
macros are executed step by step, and each statement and variable assignment is displayed on
the message line.

Default value: FALSE

165$ $debug variable
166# _debug
167+ EVariables:debug
168K $debug

$169 #170 +171 K172 $deskcolor
This variable contains the color to use for the desktop. In the MS-Windows version of
MicroEMACS, the value of this variable is irrelevant.

Default value: BLACK.

169$ $deskcolor variable
170# _deskcolor
171+ EVariables:deskcolor
172K $deskcolor

$173 #174 +175 K176 $diagflag
If this boolean variable is set to TRUE, diagonal dragging of text and mode lines is enabled. If it is
FALSE, text and modelines can either be dragged horizontally or vertically but not both at the
same time.

173$ $diagflag variable
174# _diagflag
175+ EVariables:diagflag
176K $diagflag

$177 #178 +179 K180 $discmd
If this boolean variable is set to TRUE, the echoing of command prompts and output on the
message line is enabled. If it is FALSE, most messages and prompts are disabled (this is handy
to avoid some cases of message line flashing while a macro is running).

Default value: TRUE.

177$ $discmd variable
178# _discmd
179+ EVariables:discmd
180K $discmd

$181 #182 +183 K184 $disinp
If this boolean variable is set to TRUE, the echoing of input at the command prompts is enabled.

Default value: TRUE.

181$ $disinp variable
182# _disinp
183+ EVariables:disinp
184K $disinp

$185 #186 +187 K188 $disphigh
If this boolean variable is set to TRUE, high-bit characters (single byte characters that are greater
than 127 in value) will be displayed in a pseudo-control format. The characters "^!" will lead off
the sequence, followed by the character stripped of its high bit.

Default value: FALSE.

185$ $disphigh variable
186# _disphigh
187+ EVariables:disphigh
188K $disphigh

$189 #190 +191 K192 $exbhook
This variable holds the name of a command or macro which is run whenever you are switching
out of a buffer.

Default value: nop

189$ $exbhook variable
190# _exbhook
191+ EVariables:exbhook
192K $exbhook;hook;buffer

$193 #194 +195 K196 $fcol
This variable contains the line position being displayed in the first column of the current window.

193$ $fcol variable
194# _fcol
195+ EVariables:fcol
196K $fcol

$197 #198 +199 K200 $fillcol
This variable contains the current fill column. It is used by the fill-paragraph command. It can be
set through the set command or by using the set-fill-column command.

Default value: 72

197$ $fillcol variable
198# _fillcol
199+ EVariables:fillcol
200K $fillcol;fill

$201 #202 +203 K204 $flicker
In the MS-DOS version of MicroEMACS, this variable contains a flicker flag that should be set to
TRUE if the display is an IBM CGA and set to FALSE for most others.

In the MS-Windows version of MicroEMACS, this variable can be set to FALSE to allow an
animated grinder to be displayed in place of the hourglass mouse cursor. Since this animation
results, on many video displays, in an annoying flicker of the cursor, it is disabled when $flicker is
set to TRUE.

Default value: TRUE

201$ $flicker variable
202# _flicker
203+ EVariables:flicker
204K $flicker;grinder;hourglass

$205 #206 +207 K208 $fmtlead
A line starting with one of the characters in the $fmtlead variable is considered to be a text
formatter command. Therefore, the following line is considered to be the start of a paragraph.

If you are editing text destined for use by a text formatter, set $fmtlead to the command character
for that formatter. That will prevent MicroEMACS from formatting what should be lines of
commands meant for the formatter. If, for example, you are editing SCRIBE source, use the set
(^XA) command to set $fmtlead to "@".

Default value: empty string

205$ $fmtlead variable
206# _fmtlead
207+ EVariables:fmtlead
208K $fmtlead;paragraph

$209 #210 +211 K212 $gflags
Some of the ways MicroEMACS controls its internal functions can be modified by the value in the
$gflags variable. Each bit in this variable will be used to control a different function:

1 If this bit is set to zero, EMACS will not automatically switch to the buffer of the
first file after executing the startup macros.

2 If this bit is set to one, suppress redraw events.

209$ $gflags variable
210# _gflags
211+ EVariables:gflags
212K $gflags

$213 #214 +215 K216 $hardtab
This variable contains the number of spaces between hard tab stops. This can be used to change
the way tabs are displayed within the editor.

Default value: 8

213$ $hardtab variable
214# _hardtab
215+ EVariables:hardtab
216K $hardtab

$217 #218 +219 K220 $hilight
When this variable contains a value n between 0 and 14, it indicates that the text located between
the marks n and n+1 should be highlighted. A value of 255 indicates that no highlighting is
performed.

Default value: 10

217$ $hilight variable
218# _hilight
219+ EVariables:hilight
220K $hilight

$221 #222 +223 K224 $hjump
This variable contains the number of columns the editor should scroll the screen horizontally
when a horizontal scroll is required.

Default value: 1

221$ $hjump variable
222# _hjump
223+ EVariables:hjump
224K $hjump

$225 #226 +227 K228 $hscroll
This variable is a flag that determines if MicroEMACS will scroll the entire window horizontally, or
just the current line. The default value, TRUE, results in the entire window being shifted left or
right when the cursor goes off the edge of the screen.

225$ $hscroll variable
226# _hscroll
227+ EVariables:hscroll
228K $hscroll

$229 #230 +231 K232 $hscrlbar
This boolean variable exists only under the MS-Windows version of MicroEMACS. If it is TRUE,
an horizontal scroll bar is available at the bottom of each screen, allowing you to scroll the text in
the current window right and left.

If $hscrlbar is FALSE, the horizontal scroll bar is not present.

Default value: TRUE

229$ $hscrlbar variable
230# _hscrlbar
231+ EVariables:hscrlbar
232K $hscrlbar;scroll bar

$233 #234 +235 K236 $isterm
This variable contains the character used to terminate incremental search string inputs.

Default value: the last key bound to meta-prefix (initially: Escape character)

233$ $isterm variable
234# _isterm
235+ EVariables:isterm
236K $isterm;incremental search

$237 #238 +239 K240 $kill
This variable contains the first 127 characters currently in the kill buffer.

Attempts to set this variable are ignored.

237$ $kill variable
238# _kill
239+ EVariables:kill
240K $kill

$241 #242 +243 K244 $language
This variable contains the name of the national language in which MicroEMACS messages will be
displayed. (Currently MicroEMACS is available in English, French, Spanish, Latin, Portuguese,
Dutch, German, and Pig Latin).

The MS-Windows version of MicroEMACS is currently available in English only.

Attempts to set this variable are ignored. Changing the language used by MicroEMACS requires
recompiling.

241$ $language variable
242# _language
243+ EVariables:language
244K $language

$245 #246 +247 K248 $lastkey
This variable contains a number representing the ASCII value of the last key press processed by
MicroEMACS. This variable does not contain any indication that the last keystroke was prefixed
by the Meta or the Alt keys. Further more, function or special keys are perceived as the last
character of their keystroke representation.

Note that this variable does not change during playback of a keyboard macro.

Setting this variable does not have any effect on the editor beyond changing the variable's value.

245$ $lastkey variable
246# _lastkey
247+ EVariables:lastkey
248K $lastkey

$249 #250 +251 K252 $lastmesg
This variable contains the text of the last message which MicroEMACS wrote on the message
line.

Setting this variable does not have any effect on the editor beyond changing the variable's value.

249$ $lastmesg variable
250# _lastmesg
251+ EVariables:lastmesg
252K $lastmesg

$253 #254 +255 K256 $line
This variable contains the first 127 characters of the current line. Setting this variable overwrites
the contents of the current line.

253$ $line variable
254# _line
255+ EVariables:line
256K $line

$257 #258 +259 K260 $lterm
This variable contains the string of characters to use as a line terminator when writing a file to
disk. By default, it is an empty string, which causes a newline to be written (under MS-DOS or
MS-Windows, this translates into a carriage return character followed by a line feed character).

Under some operating systems, the value of this variable is irrelevant.

257$ $lterm variable
258# _lterm
259+ EVariables:lterm
260K $lterm

$261 #262 +263 K264 $lwidth
This variable contains the number of characters of the current line.

Attempts to set this variable are ignored.

261$ $lwidth variable
262# _lwidth
263+ EVariables:lwidth
264K $lwidth

$265 #266 +267 K268 $match
This variable contains the last string matched by a search operation.

Attempts to set this variable are ignored.

265$ $match variable
266# _match
267+ EVariables:match
268K $match

$269 #270 +271 K272 $mmove
If this variable it is equal to 2, any mouse movement results in a mouse action (MSm, S-MSm or
MS^m).

If this variable is set to 1, some mouse movement that are of marginal interest (like while a popup
buffer is being displayed or, under MS-Windows, while no mouse button is pressed) are ignored.

If $mmove is set to 0, all mouse movements are ignored.

Default value: 1

269$ $mmove variable
270# _mmove
271+ EVariables:mmove
272K $mmove;mouse

$273 #274 +275 K276 $modeflag
If this boolean variable is TRUE, mode lines are visible. If it is FALSE, mode lines are not
displayed (thus allowing one more line per window).

Default value: TRUE

273$ $modeflag variable
274# _modeflag
275+ EVariables:modeflag
276K $modeflag

$277 #278 +279 K280 $msflag
Under some operating systems, this boolean variable can be used to control the use of the
pointing device: when it is TRUE, the mouse (if present) is active. When it is FALSE, the mouse
cursor is not displayed, and mouse actions are ignored.

Under MS-Windows, setting this variable to FALSE does not cause the cursor to be hidden, but
mouse actions within text areas are ignored. However, the mouse remains useable to activate
menus or select, move and resize screens.

Default value: TRUE

277$ $msflag variable
278# _msflag
279+ EVariables:msflag
280K $msflag;mouse

$281 #282 +283 K284 $numwind
This variable contains the number of windows displayed within the current screen.

Attempts to set this variable are ignored.

281$ $numwind variable
282# _numwind
283+ EVariables:numwind
284K $numwind

$285 #286 +287 K288 $oldcrypt
If this boolean variable is TRUE, the CRYPT mode uses the old method of encryption (which had
a bug in it). This allows you to read files that were encrypted with a previous version of
MicroEMACS.

Default value: FALSE.

285$ $oldcrypt variable
286# _oldcrypt
287+ EVariables:oldcrypt
288K $oldcrypt

$289 #290 +291 K292 $orgrow
This variable contains the position of the current screen's top row on the desktop, starting at 0.

Setting this variable is equivalent to invoking the change-screen-row command.

Under MS-Windows, the value of this variable is irrelevant.

Default value: 0

289$ $orgrow variable
290# _orgrow
291+ EVariables:orgrow
292K $orgrow

$293 #294 +295 K296 $os
This variable contains a string that identifies the operating system. It is set to MSWIN in the
Microsoft Windows version of MicroEMACS.

Attempts to set this variable are ignored.

293$ $os variable
294# _os
295+ EVariables:os
296K $os

$297 #298 +299 K300 $orgcol
This variable contains the position of the current screen's left column on the desktop, starting at 0.

Setting this variable is equivalent to invoking the change-screen-column command.

Under MS-Windows, the value of this variable is irrelevant.

Default value: 0

297$ $orgcol variable
298# _orgcol
299+ EVariables:orgcol
300K $orgcol

$301 #302 +303 K304 $overlap
This variable contains the amount of overlapping, in number of lines, used when paging up and
down (using the next-page and previous-page commands).

Default value: 2

301$ $overlap variable
302# _overlap
303+ EVariables:overlap
304K $overlap

$305 #306 +307 K308 $pagelen
This variable contains the number of lines (including mode lines) displayed by the current screen.

Setting this variable is equivalent to invoking the change-screen-size command with a numeric
argument.

305$ $pagelen variable
306# _pagelen
307+ EVariables:pagelen
308K $pagelen

$309 #310 +311 K312 $palette
This variable contains a string that is used to control the color palette settings on graphics
versions of MicroEMACS.

Under MS-Windows, $palette is composed of up to 48 octal digits. Each group of three digits
redefines an entry of the palette, by specifying the red, green and blue levels of that color.

Default value: empty string

309$ $palette variable
310# _palette
311+ EVariables:palette
312K $palette

$313 #314 +315 K316 $paralead
A line starting with one of the characters in the $paralead variable is considered to be the first line
of a paragraph.

Default value: Space and TAB characters

313$ $paralead variable
314# _paralead
315+ EVariables:paralead
316K $paralead;paragraph

$317 #318 +319 K320 $pending
This boolean variable is TRUE if there are type ahead keystrokes waiting to be processed.

Attempts to set this variable are ignored.

317$ $pending variable
318# _pending
319+ EVariables:pending
320K $pending

$321 #322 +323 K324 $popflag
If this boolean variable is TRUE, popup buffers are used instead of opening a window for building
completion lists and by the following commands:

apropos
describe-bindings
describe-functions
describe-variables
list-buffers
list-screens
show-files

Default value: TRUE

321$ $popflag variable
322# _popflag
323+ EVariables:popflag
324K $popflag

$325 #326 +327 K328 $posflag
If this boolean variable is TRUE, the position of the point (row and column) is displayed in the
current window's mode line.

Default value: FALSE

325$ $posflag variable
326# _posflag
327+ EVariables:posflag
328K $posflag

$329 #330 +331 K332 $progname
This variable contains the string "MicroEMACS" for standard MicroEMACS. It can be something
else if MicroEMACS is incorporated as part of someone else's program.

Attempts to set this variable are ignored. Changing it requires recompiling.

329$ $progname variable
330# _progname
331+ EVariables:progname
332K $progname

$333 #334 +335 K336 $readhook
The command or macro named in this variable is run when a file is read into a buffer. This can be
used to implement modes which are specific to a particular file or file type.

Default value: nop

333$ $readhook variable
334# _readhook
335+ EVariables:readhook
336K $readhook;hook;read

$337 #338 +339 K340 $region
This variable contains the first 255 characters of the current region. If the region is not defined
(because the mark is not set), this variable contains the string: "ERROR".

Attempts to set this variable are ignored.

337$ $region variable
338# _region
339+ EVariables:region
340K $region

$341 #342 +343 K344 $replace
This variable contains the current default replace string. That is the replace string that was
specified in the last replace-string or query-replace-string command and will be used as default
value for the next such command.

341$ $replace variable
342# _replace
343+ EVariables:replace
344K $replace;replace

$345 #346 +347 K348 $rval
This variable contains the returned value from the last subprocess which was invoked from
MicroEMACS's commands: execute-program, filter-buffer, i-shell, pipe-command.and shell-
command.

Under MS-Windows, this variable always has the value 0.

Attempts to set this variable are ignored.

345$ $rval variable
346# _rval
347+ EVariables:rval
348K $rval

$349 #350 +351 K352 $scrname
This variable contains the current screen's name.

Setting this variable causes the specified screen to be made the current one. If that screen does
not exist, nothing happens. To change the name of a screen, use the rename-screen command.

349$ $scrname variable
350# _scrname
351+ EVariables:scrname
352K $scrname

$353 #354 +355 K356 $search
This variable contains the current default search string. That is the search string that was
specified in the last search-forward, search-reverse, incremental-search, reverse-incremental-
search, replace-string or query-replace-string command and will be used as default value for the
next such command or as the target for hunt-forward and hunt-backward.

353$ $search variable
354# _search
355+ EVariables:search
356K $search;search;replace

$357 #358 +359 K360 $searchpnt
The value of this variable specifies the positioning of the of the point at the end of a successful
search:

- If $searchpnt = 0, the cursor is placed at the end of the matched text on forward searches,
and at the beginning of this text on reverse searches.

- If $searchpnt = 1, the cursor is placed at the beginning of the matched text regardless of the
search direction.

- If $searchpnt = 2, the cursor is placed at the end of the matched text regardless of the search
direction.

Setting this variable to a value other than one of the above causes the value 0 to be used.

Default value: 0

357$ $searchpnt variable
358# _searchpnt
359+ EVariables:searchpnt
360K $searchpnt

$361 #362 +363 K364 $seed
This variable contains the integer seed of the random number generator. This is used by the &rnd
function and also to compute temporary file names (if $ssave is TRUE).

Initial value: 0

361$ $seed variable
362# _seed
363+ EVariables:seed
364K $seed

$365 #366 +367 K368 $softtab
The value of this variable relates to the number of spaces inserted by MicroEMACS when the
handle-tab command (which is normally bound to the TAB key) is invoked:

If $softtab is n, strictly positive, tabs stops are located at every nth column and the handle-tab
command inserts space characters in sufficient number to move the point to the next tab
stop.

If $softtab is zero, the handle-tab command inserts true tab characters.

If $softtab is strictly negative, the handle-tab command fails.

This variable can be set by passing a numeric argument to handle-tab or by directly using the set
command.

Default value: 0

365$ $softtab variable
366# _softtab
367+ EVariables:softtab
368K $softtab

$369 #370 +371 K372 $sres
This variable contains a string that identifies the current screen resolution (CGA, MONO, EGA or
VGA on the IBM-PC, LOW, MEDIUM, HIGH or DENSE on the Atari ST1040, MSWIN under
Microsoft Windows and NORMAL on most others).

Depending on the hardware and operating system MicroEMACS is running on, setting this
variable may allow you to change the screen resolution. Not that under MS-Windows, attempts to
set this variable are ignored.

369$ $sres variable
370# _sres
371+ EVariables:sres
372K $sres

$373 #374 +375 K376 $ssave
If this boolean variable is TRUE, MicroEMACS perform "safe saves": when it is asked to save the
current buffer to disk, it writes it out to a temporary file, deletes the original file, and then renames
the temporary to the old file name.

If $ssave is FALSE, MicroEMACS performs saves by directly overwriting the original file, thus
risking loss of data if a system crash occurs before the end of the save operation. On the other
hand, this mode insures that the original file attributes (ownership and access rights) are
preserved on systems that support these (like UNIX).

Default value: TRUE.

373$ $ssave variable
374# _ssave
375+ EVariables:ssave
376K $ssave

$377 #378 +379 K380 $sscroll
If this boolean variable is TRUE, MicroEMACS is configured for smooth vertical scrolling: when
the cursor moves off the top or bottom of the current window, the window's contents scroll up or
down one line at a time.

If $sscroll is FALSE, scrolling occurs by half pages.

Default value: FALSE

377$ $sscroll variable
378# _sscroll
379+ EVariables:sscroll
380K $sscroll

$381 #382 +383 K384 $status
This boolean variable contains the status returned by the last command. This is usually used with
the !FORCE directive to check on the success of a search, or a file operation.

Setting this variable can be used to return a FALSE status from a macro.

381$ $status variable
382# _status
383+ EVariables:status
384K $status

$385 #386 +387 K388 $sterm
This variable contains the character used to terminate search string inputs.

Default value: the last key bound to meta-prefix (initially: Escape character)

385$ $sterm variable
386# _sterm
387+ EVariables:sterm
388K $sterm;replace;search

$389 #390 +391 K392 $target
This variable contains the column position where the point will attempt to move after a next-line or
previous-line command. Unless the previous command was next-line or previous-line, the default
value for this variable is the current column.

389$ $target variable
390# _target
391+ EVariables:target
392K $target

$393 #394 +395 K396 $time
This variable contains a string corresponding to the current date and time. Usually this is given in
a form like to "Mon May 09 10:10:58 1988". Not all operating systems support this.

393$ $time variable
394# _time
395+ EVariables:time
396K $time

$397 #398 +399 K400 $timeflag
If this boolean variable is TRUE, the current time is displayed on the bottom mode line of each
screen.

Default value: FALSE.

Note: Under MS-Windows, this feature currently does not operate properly because MicroEMACS
makes incorrect assumptions about the format of the time string (see $time).

397$ $timeflag variable
398# _timeflag
399+ EVariables:timeflag
400K $timeflag

$401 #402 +403 K404 $tpause
This variable contains the length of the pause used to show a matched fence when the current
buffer is in CMODE and a closing fence (a character among ")}]") has been typed.

On most systems, this pause is performed by a CPU loop and therefore, the value of $tpause
may need to be adjusted to compensate for the processor's speed.

Under MS-Windows, the pause is performed by a bona-fide timer and $tpause is expressed in
milliseconds. The default value is 1000.

401$ $tpause variable
402# _tpause
403+ EVariables:tpause
404K $tpause

$405 #406 +407 K408 $version
This variable contains the current MicroEMACS version number (i.e. "3.11c").

Attempts to set this variable are ignored.

405$ $version variable
406# _version
407+ EVariables:version
408K $version

$409 #410 +411 K412 $vscrlbar
This boolean variable exists only under the MS-Windows version of MicroEMACS. If it is TRUE, a
vertical scroll bar is available at the right end of each screen, allowing you to scroll the text in the
current window up and down.

If $vscrlbar is FALSE, the vertical scroll bar is not present.

Default value: TRUE

409$ $vscrlbar variable
410# _vscrlbar
411+ EVariables:vscrlbar
412K $vscrlbar;scroll bar

$413 #414 +415 K416 $wchars
This variable is used to define what a word is for MicroEMACS. It contains the list of all the
characters that can be considered part of a word.

If $wchar is empty, a word is defined as composed of upper and lower case letters, numerals (0
to 9) and the underscore character.

Default value: empty

413$ $wchars variable
414# _wchars
415+ EVariables:wchars
416K $wchars;word

$417 #418 +419 K420 $wline
This variable contains the number of lines displayed in the current window, excluding the mode
line.

Setting this variable is equivalent to using the resize-window command with a numeric argument.

417$ $wline variable
418# _wline
419+ EVariables:wline
420K $wline

$421 #422 +423 K424 $wraphook
This variable contains the name of a command or macro which is executed when a buffer is in
WRAP mode and it is time to wrap the current line.

Default value: wrap-word

421$ $wraphook variable
422# _wraphook
423+ EVariables:wraphook
424K $wraphook;hook;wrap

$425 #426 +427 K428 $writehook
This variable contains the name of a command or macro which is invoked whenever
MicroEMACS attempts to write a file out to disk. This is executed before the file is written,
allowing you to process a file on the way out.

Default value: nop

425$ $writehook variable
426# _writehook
427+ EVariables:writehook
428K $writehook;hook;write

$429 #430 +431 K432 $xpos
This variable contains the horizontal screen coordinate where the mouse was located the last
time a mouse button was pressed or released.

The leftmost column is considered to be 0 in screen coordinates.

429$ $xpos variable
430# _xpos
431+ EVariables:xpos
432K $xpos;mouse

$433 #434 +435 K436 $yankflag
This boolean variable controls the placement of the point after a yank, yank-pop, insert-file or
insert-clip command.

If $yankflag is FALSE, the point is moved to the end of the yanked or inserted text.

If $yankflag is TRUE, the cursor remains at the start of the yanked or inserted text.

Default value: FALSE

433$ $yankflag variable
434# _yankflag
435+ EVariables:yankflag
436K $yankflag

$437 #438 +439 K440 $ypos
This variable contains the vertical screen coordinate where the mouse was located the last time a
mouse button was pressed or released.

The top row is considered to be 0 in screen coordinates.

437$ $ypos variable
438# _ypos
439+ EVariables:ypos
440K $ypos;mouse

$441 #442 +443 K444 Interactive Variables
Interactive variables are actually a method to prompt the user for a string. This is done by using
an at sign "@" followed with a string argument. The string is displayed on the message line, and
the editor waits for the user to type in a string which is then returned as the value of the
interactive variable. For example:

find-file @"What file? "
will ask the user for a file name, and then attempt to find it. Note also that complex expressions
can be built up with these operators, such as:

set %default "file1"
@&cat &cat "File to decode[" %default "]: "

which prompts the user with the string:
File to decode[file1]:

441$ Interactive Variables
442# InteractiveVariables
443+ Variables:interactivevariables
444K interactive;variable

$445 #446 +447 K448 User Variables
User variables allow you to store strings and manipulate them. These strings can be pieces of
text, numbers (in text form), or the logical values TRUE and FALSE. These variables can be
combined, tested, inserted into buffers, and otherwise used to control the way your macros
execute. Up to 512 user variables may be in use in one editing session. All user variable names
must begin with a percent sign "%" and may contain any printing character. Only the first 10
characters are significant (i.e. differences beyond the tenth character are ignored).

When a user variable has not been set, it has the value: "ERROR".

445$ User Variables
446# UserVariables
447+ Variables:uservariables
448K variable

$449 #450 +451 K452 Functions
Functions are part of the MicroEMACS Macro language. They can be used wherever an
argument (number, string or boolean) is needed.

Function names always begin with the ampersand "&" character, and only the first three
characters after the ampersand are significant. Functions are always used in lower case.

Functions can be used to act on variables in various ways. Functions can have one, two, or three
arguments. These are always placed after the function, and they can include functions (with their
own arguments).

By topic:

Boolean functions
Numeric functions
String functions
Miscellaneous functions

By returned value:

Boolean: &and, &equal, &exist, &greater, &isnum, &less, ¬, &or,
&sequal, &sgreater and &sless

Numeric: &abs, &add, &ascii, &band, &bnot, &bor, &bxor, ÷,
&length, &mod, &negate, &rnd, &sindex, &sub and ×

String: &bind, &cat, &chr, &env, &find, &group, >c, >k, &indirect,
&left, &lower, &mid, &rev, &right, &slower, &supper, &trim,
&upper and &xlate

449$ Functions
450# Functions
451+ MacroLanguage:060
452K function

$453 #454 +455 K456 Boolean Functions
These functions perform operations on boolean arguments:

&and log1 log2 Returns TRUE if both boolean arguments are TRUE

¬ log Returns the opposite boolean value

&or log1 log2 Returns TRUE if either argument is TRUE

453$ Boolean Functions
454# BooleanFunctions
455+ Functions:booleanfunctions
456K function;∧¬&or

$457 #458 +459 K460 Numeric Functions
These functions perform operations on numerical arguments:

&abs num Returns the absolute value of num

&add num1 num2 Adds two numbers

&band num1 num2 Bitwise AND function

&bnot num Bitwise NOT function

&bor num1 num2 Bitwise OR function

&bxor num1 num2 Bitwise XOR function

&chr num Returns a string with the character represented by ASCII code
num. This function is the opposite of &ascii

÷ num1 num2 Divides num1 by num2,giving an integer result

&equal num1 num2 Returns TRUE if num1 and num2 are numerically equal

&greater num1 num2 Returns TRUE if num1 is greater than, or equal to num2

&isnum num Returns TRUE if the given argument is a legitimate number

&less num1 num2 Returns TRUE if num1 is less than num2

&mod num1 num2 Returns the reminder of dividing num1 by num2

&negate num Multiplies num by -1

&rnd num Returns a random integer between 1 and num

&sub num1 num2 Subtracts num2 from num1

× num1 num2 Multiplies num1 by num2

457$ Numeric Functions
458# NumericFunctions
459+ Functions:numericfunctions
460K
function;&abs;&add;&band;⌐&bor;&bxor;&chr;÷&equal;&greater;&isnum;&less;&mod;
&negate;⊂×

$461 #462 +463 K464 String Functions
These functions perform operations related to strings. All of them have at least one string
argument:

&ascii str Returns the ASCII code of the first character in str. This function
is the opposite of &chr

&cat str1 str2 Concatenates the two strings to form one

&indirect str Evaluate str as a variable.

&left str num Returns the num leftmost characters from str

&length str Returns length of string

&lower str Transforms str to lowercase

&mid str num1 num2 Starting from num1 position in str, returns num2 characters

&rev str Reverses the order of characters in str

&right str num Returns the num rightmost characters from str

&sequal str1 str2 Returns TRUE if the two strings are the same

&sgreater str1 str2 Returns TRUE if str1 is alphabetically greater
than or equal to str2

&sindex str1 str2 Returns the position of str2 within str1. Returns zero if not found

&sless str1 str2 Returns TRUE if str1 is less alphabetically than str2

&slower str1 str2 Translate the first char in str1 to the first char in str2 when
lowercasing.

&supper str1 str2 Translate the first char in str1 to the first char in str2 when
uppercasing.

&trim str Trims the trailing white space from a string

&upper str Transforms str to uppercase

&xlate source lookup transTranslate each character of source that appears in lookup to
the corresponding character from trans

461$ String Functions
462# StringFunctions
463+ Functions:stringfunctions
464K
function;&ascii;&cat;&left;&length;&lower;∣&right;&sequal;&sgreater;&sindex;&sless;&slower;
&supper;&trim;&upper;&xlate

$465 #466 +467 K468 Miscellaneous Functions
&bind str Returns the name of the command bound to the keystroke str

&env str If the operating system has this capability, this returns the
environment string associated with str

&exist str Returns TRUE if the named file str exists

&find str Finds the named file str along the path and return its full file
specification or an empty string if no such file exists

&group num Return group num as set by a MAGIC mode search.

>c Returns a string of characters containing a MicroEMACS
command input from the user

>k Returns a string containing a single keystroke from the user

465$ Miscellaneous Functions
466# MiscellaneousFunctions
467+ Functions:zzzmiscellaneousfunctions
468K function;&bind;&env;∃&find;&group;>c;>k

$469 #470 +471 K472 &indirect
The &indirect function evaluates its argument, takes the resulting string, and then uses it as a
variable name. For example, given the following piece of macro language:

; set up reference table
set %one "elephant"
set %two "giraffe"
set %three "donkey"
set %index "%two"
insert-string &ind %index

The string "giraffe" would have been inserted at the point in the current buffer. This indirection can
be safely nested up to about 10 levels.

469$ &indirect function
470# .indirect
471+ StringFunctions:indirect
472K &indirect;function

$473 #474 +475 K476 Comments
Within the macro language, a semicolon ";" signals the beginning of a comment. The text from
the semicolon to the end of the line is ignored by MicroEMACS.

A comment can be the only content of a line, in which case the semicolon must be the first non-
blank character on the line. A comment can also appear at the end of any statement.

Note that empty lines are legal (treated as comments).

473$ Comments
474# Comments
475+ MacroLanguage:070
476K comment

