
Chapter
5

This chapter contains information about how Microsoft Windows 3.1
interacts with memory. You can use this information to manage memory
while running Windows and to troubleshoot various problems related to
memory management. For specific information about optimizing your
system configuration, see Chapter 6, “Tips for Configuring Windows 3.1.”

Related information

·
“Optimizing Windows”

·
Applications,” and Chapter 13, “Troubleshooting Windows 3.1”

·
Specification, multitasking, page frame, protected mode, virtual memory

Contents of this chapter

About Memory

Types of Memory: An Overview

The Windows 3.1 Memory Device Drivers

Expanded Memory: A Technical Discussion

Windows Standard Mode and Memory

Extended Memory and Standard Mode

Expanded Memory and Standard Mode

Windows 386 Enhanced Mode and Memory

WINA20.386 and 386 Enhanced Mode

Extended Memory and 386 Enhanced Mode

Expanded Memory and 386 Enhanced Mode

Virtual Memory and 386 Enhanced Mode

228

Other Memory Management Issues

DPMI and VCPI Specifications

MS-DOS 5.0 and Windows 3.1

Memory and Windows Startup Requirements

Memory and the Windows System Resources

SMARTDrive 4.0: A Technical Discussion

About SMARTDrive 4.0

SMARTDrive 4.0: Frequently Asked Questions

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

About Memory

Your computer’s random access memory (RAM) is a volatile medium
where applications and data are stored while you are working with them.
When you finish working, the information is transferred back to
permanent storage on the hard disk or floppy disks.

Windows applications such as Microsoft Word and Microsoft Excel have
to be loaded into memory before they can run. Generally, when you run
Windows, the more memory your system has available, the more
applications you can run at the same time, and the faster the applications
will run.

This section describes the types of memory in a PC and provides a
technical overview of expanded memory. Other sections in this chapter
present issues specific to using memory in Windows standard mode and
386 enhanced mode.

Note
Chapter 14, “Optimizing Windows,” in the Windows User’s Guide.

Types of Memory: An Overview

Your computer system can have three different kinds of memory:
conventional memory, extended memory, and expanded memory.
Windows also creates a fourth type of memory, virtual memory, which is
discussed in “Virtual Memory and 386 Enhanced Mode” later in this
chapter.

·
your machine. Most PCs have at least 256K of conventional memory.
Your system must have 640K of conventional memory to run Windows.

listed in the CONFIG.SYS and AUTOEXEC.BAT files. These files often
use conventional memory to function. The remaining memory is available
for running other applications such as Windows.

·
original one megabyte address space available in the memory of 80286
and 80386 machines. Extended memory always starts exactly at 1024K,
where the upper memory area ends. The first 64K of extended memory is
referred to as the high memory area (HMA).

230

·
80386 machine, emulated by an expanded memory manager (EMM). The
EMM software maps pages of expanded memory onto the system’s upper
memory area (from 640K to 1024K). Applications must be designed to
interact with EMM software to take advantage of expanded memory.

Expanded memory is slower and more cumbersome to use than extended
memory, because the expanded memory manager gives applications access
to only a limited amount of expanded memory at a time.

An 80286 processor can address 16 megabytes of total memory, and an
80386 processor can address 4 gigabytes of memory. The 8086 and 8088
machines have hardware limitations that exclude use of extended memory.
For such machines, expanded memory is the only option for extra
memory.

Working with conventional and extended memory under Windows 3.1 is a
straightforward process that seldom demands your attention, because
Windows handles it automatically through HIMEM.SYS. If you want to
run non-Windows applications that require expanded memory, you need a
deeper understanding of how it is structured and how to access it. For
more details, see “Expanded Memory: A Technical Discussion” later in
this chapter.

Figure 5.1 shows the relative addresses of conventional memory, the upper
memory area (used by expanded memory), and extended memory.

Figure 5.1

Extended memory goes from 1024K to 16 MB for 80286 PCs, or
to 4 GB for 80386 PCs

Expanded memory uses page frames in the upper memory area

Conventional memory goes from 0K to 640K

To see the kind and amount of memory in your system:

·
that is installed with Windows 3.1. This utility prepares an extensive report
on the memory and drivers installed in your system.

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

·
command prompt to see a brief summary of your system’s memory.

You can also use parameters with the MS-DOS 5.0 mem command. The
mem /c command reports free memory for both conventional and upper
memory addresses, and lists the decimal and hexadecimal sizes of all
programs loaded into conventional and upper memory. The mem /p
command presents a detailed listing of memory use, including load order,
size, and address information for programs (listed separately from the
environment). For more information, see your MS-DOS 5.0
documentation.

Note If you use the mem command to view memory from within a
Windows 3.1 virtual machine, you will only see the amount of memory
available to the virtual machine.

The Windows 3.1 Memory Device Drivers

Both Windows 3.1 and MS-DOS 5.0 provide these device drivers for
managing memory:

·
extended memory it provides conforms to XMS 3.0.

·
and uses it to emulate expanded memory or to provide UMBs, or both.
EMM386.EXE is DPMI-compliant and emulates expanded memory that
conforms to LIM 3.2 or LIM 4.0.

·

·

In addition, Windows 3.1 has two built-in memory managers:

·
application code in both standard and 386 enhanced modes.

·
temporary or permanent swap file in 386 enhanced mode.

Expanded Memory: A Technical Discussion

232

Note This discussion is relevant if you want to take advantage of
expanded memory installed in your system, or if you are running
Windows 3.1 with non-Windows applications that require expanded
memory. If your system doesn’t have expanded memory, or if you are not
running applications designed to use expanded memory, you can skip this
discussion.

The original IBM PC design, based on the Intel 8086/8088 CPU, restricts
usable memory to about 640K. A Lotus/Intel/Microsoft (LIM)
collaboration developed a technique for adding memory to PC systems.
The LIM Expanded Memory Specification (EMS) bypasses the memory
limits by supporting memory cards that contain 16K pages (or banks) of
RAM that must be enabled or disabled by software, but that cannot
normally be addressed by the CPU. Instead, each page is mapped into the
address space of the processor.

Applications can use expanded memory to get around the memory
limitations of 8086/8088 processors by using a special area of the
machine’s memory called the upper memory area. This upper memory
area is always located in the same area of the computer’s address space:
from 640K to 1024K (A000 to FFFF hexadecimal). The upper memory
area (sometimes referred to as the “adapter segment” because that part of
memory is used by hardware adapters such as display adapters) is also
where the ROM BIOS read-only memory segment is located. Figure 5.2
shows the upper memory area, its address range, and the items that occupy
fixed portions of it.

An application must be specifically written to take advantage of expanded
memory. Many non-Windows applications use expanded memory:

·
applications such as spreadsheets and CAD programs.

·

This section describes the LIM expanded memory specifications and
discusses two operations for using expanded memory: bank switching and
backfilling.

Note The 80386 and higher microprocessors can emulate EMS hardware
by using extended memory with memory managers and special software
such as EMM386.EXE. For more information about using this device
driver with Windows 3.1, see Chapter 6, “Tips for Configuring
Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

Windows 3.1.”

The Expanded Memory Specifications

The two kinds of expanded memory are differentiated from one another by
their LIM expanded memory specification version numbers:

·
blocks, each made up of four contiguous 16K pages to form a 64K page
frame. The LIM 3.2 standard works well for storing data from
spreadsheets in expanded memory, but it is insufficient for multitasking.

·
in blocks of 1 to 64 pages (overcoming the LIM 3.2 limitations on size and
flexibility). LIM 4.0 also removes the restriction that the pages must be
contiguous, essentially abandoning the page frame requirement.

General
HEX Address

Specific
 HEX Address

Decimal Address

Figure 5.2

234

FFFF

1024

1024K

FC00

FC00

1008

The upper memory area

FBFF

1007

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

ROM BIOS

F800

F800

 992

(640K to 1024K)

F7FF

 991

(Basic

236

F400

F400

 976

Input/Output

F3FF

 975

System)

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

F000

F000

 960

EFFF

 959

EC00

EC00

238

 944

EBFF

 943

Not available

E800

E800

 928

on PS/2s

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

E7FF

 927

and some

E400

E400

 912

other machines

240

E3FF

 911

E000

E000

 896

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

DFFF

 895

DC00

DC00

 880

DBFF

 869

242

D800

D800

 864

D7FF

 863

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

D400

D400

 848

D3FF

 847

244

D000

D000

 832

CFFF

 831

CC00

CC00

 816

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

CBFF

 815

C800

C800

 800

246

C7FF

 799

8514/A

C400

C400

 784

Non-PS/2

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

C3FF

 783

VGA

C000

C000

 768

EGA

BFFF

248

 767

EGA/

BC00

BC00

 752

VGA

Hercules

BBFF

 751

Text/

Page 2

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

CGA

B800

B800

 736

Low Res

B7FF

 735

250

B400

B400

 720

B3FF

 719

MDA

B000

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

B000

 704

AFFF

 703

AC00

AC00

 688

252

ABFF

 687

EGA / VGA

A800

A800

 672

High Resolution

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

A7FF

 671

Display Memory

A400

A400

 656

254

A3FF

 655

A000

A000

 640

 640K

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

256

Figure 5.3 shows some key differences between the LIM 3.2 and LIM 4.0
specifications. If a non-Windows application requires expanded memory,
usually its documentation will describe the LIM version under which it
works.

Figure 5.3

LIM 3.2 EMS
allows applications
to move four
continguous
16K pages of data,
forming a 64K page frame

LIM 4.0 EMS
allows applications
to move up to 64
16K pages and
allows backfilling in conventional memory from 640K down
to 256K

Windows Resource Kit

Chapter 5 Windows 3.1 and Memory Management

Bank Switching in Expanded Memory

Application programs take advantage of expanded memory by making
calls to the expanded memory manager (EMM) to request blocks of
expanded memory. Bank switching is the process of mapping or
temporarily assigning memory from a pool of expanded memory to an
empty address space in the upper memory area.

For example, if an application needs more memory for data, it contacts the
EMM, which allocates expanded memory 16K at a time. The application
writes up to 64K of data to the address allocated by the EMM, then
requests another 64K allocation. This request is the bank switch request.
The EMM allocates another 64K of memory at a different address while
tracking where the first 64K of data was placed.

The EMM continues this bank switching activity, 16K at a time, until the
application makes no more request for memory space. With bank
switching, the EMM can manipulate several megabytes of data through the
single 64K space.

Backfilling in Expanded Memory

With LIM 4.0, the expanded memory manager can backfill conventional
memory addresses from 640K down to approximately 256K, using
memory that is usually reserved for MS-DOS, utilities, and TSRs. With
backfilling, the system can manipulate large amounts of data, which is
particularly important for multitasking. A rotating pool of backfilled
memory allows entire applications and considerable data to be loaded into
memory at once, greatly speeding operations.

One trick to maximize the benefit of backfilling on 80286 machines is to
disable as much of the motherboard memory as possible (down to the
256K level) and let the expanded memory card supply that memory.
Because the expanded memory card is supplying the memory, it can bank
switch freely and make the best use of available memory.

For 80386 machines, you can convert extended memory into expanded
memory by using an expanded memory manager such as EMM386.EXE.
If you are using an expanded memory card on an 80386 machine, read
your manual carefully before trying to backfill. Not all memory cards have
the register support to supply more than four 16K pages. Also, because
Windows 3.1 supports extended memory directly, backfilling expanded
memory will not give you any advantage for running Windows.

Difficulties with Expanded Memory

Expanded memory uses the upper memory area, which it shares with
hardware adapters such as SuperVGA video cards, network cards, 3270

emulation cards, and ESDI disk controllers. Several potential difficulties
can arise when expanded memory contends for address space with the
adapters:

·
64K of contiguous free space in which to place the page frame. Even
though LIM 4.0 technically doesn’t require a 64K page frame, most
expanded memory applications will not use expanded memory unless the
64K page frame is present. Frequently, the address areas of various adapter
cards need to be shuffled around to free enough space for a contiguous
64K page frame. This process gets complicated with boards such as the
IBM 3270 emulator, which has a nonmovable address in most machines.

·
use a search algorithm to find unused memory between the hexadecimal
addresses C000 through DFFF. The EMM then uses this memory as page
frames. Some cards don’t reserve their address space until the card is
accessed, so the EMM can inadvertently map expanded memory pages on
top of the adapter, causing crashes and intermittent operation. This
problem is fairly rare, because the page search routine can locate almost all
popular adapters.

If problems occur, start by disabling expanded memory to see if a page
conflict is causing the problem. If the problem goes away, then the EMM
needs to be told to exclude the adapter address from consideration as a
page location. The adapter might also have to be moved. You do this in
different ways with different EMMs. For information on how to exclude
an address range, consult the documentation for your expanded memory
manager.

For more information about taking advantage of memory in the UMBs,
see “Optimizing Use of the UMBs” in Chapter 6, “Tips for Configuring
Windows 3.1.” For related troubleshooting tips, see “Troubleshooting
EMS Memory Problems” in Chapter 13, “Troubleshooting Windows 3.1.”

Windows Standard Mode and Memory

Standard mode is the normal operating mode for Windows on 80286
machines, providing direct access to extended memory.

Conventional memory takes no special consideration for Windows in
standard mode. Windows running in standard mode treats the total free
conventional and extended memory as one contiguous memory block. This
section describes how standard mode Windows takes advantage of
extended memory.

Standard mode does not use expanded memory for Windows operations,

but can work with expanded memory for non-Windows applications
running under Windows, as described at the end of this section.

For information about entries in SYSTEM.INI that affect performance in
Windows standard mode, see the description of the entries in the
[standard] section in Chapter 4, “The Windows Initialization Files.”

Extended Memory and Standard Mode

Flowchart 5.9
 Cannot Run Windows in Standard Mode

Standard mode Windows accesses extended memory directly through
HIMEM.SYS (or through a third-party XMS driver), providing the total
free conventional and extended memory for Windows applications to use.
Any non-Windows applications that uses extended memory can run under
standard mode Windows.

Standard mode Windows takes advantage of extended memory by:

·

·

Using Extended Memory for Code Caching

Standard mode Windows can speed up its operations by caching code in
extended memory through HIMEM.SYS. To perform code caching,
Windows takes advantage of certain attributes of Windows applications.
The code for each Windows application is divided into segments with
specific attributes, including:

·
around in memory.

·
overwritten and then reloaded from disk when necessary.

·

Each Windows application keeps a minimum amount of code (its
“swapsize”) loaded in memory. If Windows runs out of memory when a
new application executes, Windows discards part of an old application
from active memory and overwrites it with new code from the new
executable file.

Using Extended Memory

with Non-Windows Applications

Non-Windows applications that use extended memory can run under
standard mode Windows. The amount of extended memory that the
application requires should be specified in the application’s program
information file (PIF).

For example, your system might have 2048K of extended memory, and
you might specify in the PIF that the non-Windows application requires
1024K of extended memory. If standard mode Windows is already using
all of the extended memory when you run the non-Windows application,
then the information in the first megabyte of extended memory is swapped
to disk, and the non-Windows application is given access to the newly free
extended memory. When you switch back to Windows from the non-
Windows application, the data in the original 1024K of extended memory
is reloaded from disk.

Because this file-swapping process can be slow, don’t request any more
extended memory in a PIF than is absolutely necessary to run the non-
Windows application.

Some non-Windows applications use MS-DOS Extender technology such
as VCPI or DPMI to run in protected mode. If you are running such
applications under standard mode Windows, you must allocate extended
memory in the application’s PIF, as described in Chapter 7, “Setting Up
Non-Windows Applications.” For more information about VCPI, see
“DPMI and VCPI Specifications” later in this chapter.

Expanded Memory and Standard Mode

Windows running in standard mode does not use expanded memory at all
for its operations. But non-Windows applications running under standard
mode Windows can access expanded memory if the system has a physical
EMS card such as AST RAMPage! or the Intel Above Board.

The expanded memory manager for the EMS card uses upper memory
blocks (UMBs) in the upper memory area. If you suspect a UMB conflict
is causing a problem in your system, remove the expanded memory
manager to see if that solves the problem. For more information, see
“Troubleshooting EMS Memory Problems” in Chapter 13,
“Troubleshooting Windows 3.1.”

Because non-Windows applications running under standard mode can only
use expanded memory with a physical EMS card, an external 386
expanded memory manager such as EMM386.EXE cannot provide the
required expanded memory support in Windows. However, an external
386 memory manager can provide expanded memory support for non-
Windows applications when you aren’t running Windows.

If you want to use memory in the upper memory area, or if you have an
application that requires expanded memory but you don’t have a physical
EMS card, you must run Windows in 386 enhanced mode. For more
information about using EMM386.EXE, see Chapter 6, “Tips for
Configuring Windows 3.1.”

Windows 386 Enhanced Mode and Memory

Windows 386 enhanced mode is the normal operating mode for systems
with 80386 and higher processors.

Flowcharts 5.1 and 5.2
 Cannot Run 386 Enhanced Mode

When Windows runs in 386 enhanced mode, it adds up the amount of free
conventional and extended memory and treats the total amount as an avail-
able block of memory, in much the same way as standard mode. The
entries in the [386enh] section of SYSTEM.INI that control how Windows
allocates conventional memory are PerformBackfill=,
ReservePageFrame=, WindowKBRequired=, and WindowMemSize=. For
more information, see these entries in Chapter 4, “The
Windows Initialization Files.”

Although 386 enhanced mode doesn’t use expanded memory for Windows
operations, it can simulate expanded memory for use by non-Windows
applications, as described later in this section.

You can also create a swap file so that Windows 386 enhanced mode can
take advantage of the virtual memory capabilities of the 80386 and higher
processors, as described at the end of this section.

WINA20.386 and 386 Enhanced Mode

The MS-DOS 5.0 Setup program installs a virtual device driver that
resolves conflicts between Windows 3.0 and MS-DOS 5.0 when both try
to access the HMA. This driver is a read-only file named WINA20.386,
which is automatically installed in your root directory. Windows 3.0 will
not run in 386 enhanced mode without this file.

·
with Windows 3.0, you can remove the WINA20.386 file by changing its
read-only attribute, then deleting it in the usual way.

·
different directory, you must ensure that Windows can find this file by
adding a switches=/w command to CONFIG.SYS and also adding a
device=[new path]\wina20.386 entry to the [386enh] section of
SYSTEM.INI.

Extended Memory and 386 Enhanced Mode

Windows 386 enhanced mode uses HIMEM.SYS, the extended memory
device driver, to load itself and its drivers into extended memory. As in
standard mode, Windows 386 enhanced mode provides the total free
conventional and extended memory for Windows applications to use
directly. So code caching for Windows applications can also be performed
in 386 enhanced mode.

Windows 386 enhanced mode also allows non-Windows applications to
run in protected mode if the application uses the DOS Protected Mode
Interface (DPMI) specification (as described later in this chapter). Lotus 1-
2-3 version 3.1 is an example of a DPMI application.

Windows 386 enhanced mode provides access to extended memory for
non-Windows applications by creating virtual machines up to 640K in
size, or the size defined by the CommandEnvSize= entry in the
[NonWindowsApp] section of SYSTEM.INI.

Each virtual machine inherits the environment present before you started
Windows. This means that every driver and terminate-and-stay-resident
program (TSR) loaded before running Windows consumes memory in
every subsequent virtual machine. The memory available within each
virtual machine under 386 enhanced mode is slightly less than the free
memory available at the command prompt before you start Windows,
depending on your system configuration.

When creating virtual machines for non-Windows applications,
Windows 386 enhanced mode uses the upper memory area for two
purposes:

·
and the network.

·

Frequently, all of the free pages in the upper memory area are used by 386
enhanced mode. The memory conflicts that can result are discussed in the
next section.

Expanded Memory and 386 Enhanced Mode

Windows 386 enhanced mode does not use expanded memory for itself,
and Windows applications don’t need expanded memory, because they run
in protected mode and can access extended memory directly. However,
Windows 386 enhanced mode can create expanded memory for use by
non-Windows applications such as Lotus 1-2-3 that require or can take
advantage of expanded memory.

Windows 386 enhanced mode automatically provides expanded memory
for non-Windows applications that require it when you run such
applications under Windows. It cannot provide this memory, however, if
you load EMM386.EXE with the noems switch. Use the ram switch when
loading EMM386.EXE in CONFIG.SYS, or use the x=mmmm-nnnn
parameter to allocate enough space in the upper memory area for Windows
to create an EMS page frame.

Note The expanded memory required by a non-Windows application
should be allocated with PIF parameters as described in Chapter 7,
“Setting Up Non-Windows Applications.”

Page-Frame Conflicts in 386 Enhanced Mode

Windows 386 enhanced mode provides additional page frames for LIM
4.0 expanded memory in all virtual machines. But most non-Windows
applications use only the 64K page frame itself, not the additional
bankable pages in conventional memory that LIM 4.0 EMS supplies. So to
use expanded memory to run non-Windows applications, you must have a
contiguous 64K page frame, made up of four contiguous 16K pages in the
upper memory area. The key issue, therefore, for expanded memory under
Windows is page-frame conflicts.

The adapters installed on a system can break up the free area in the upper
memory area so that there is no 64K contiguous area to place the page
frame, and hence no free expanded memory for running non-Windows
applications. If this problem occurs, you might have to rearrange the
adapter memory locations.

This is easiest to do on a Micro Channel machine such as the IBM
Personal System/2, which allows you to change adapter memory locations
by booting with the PS/2 Reference Disk and choosing Change
Configuration. A similar procedure is available on most Extended Industry
Standard Architecture (EISA) bus machines, such as the Compaq
SystemPro and HP Vectra 486.

For Industry Standard Architecture (ISA) bus machines, such as the IBM
AT and Compaq 386, you might have to open the case and flip DIP
switches on the cards to change their memory addresses. Refer to your
hardware manual, and use Figure 5.2 (page 232) as a reference when
readdressing adapters to open a 64K page frame.

You can also disable expanded memory entirely (and 64K page frame
support) in Windows 386 enhanced mode by setting NoEMMDriver=yes
in the [386enh] section of SYSTEM.INI.

Other related entries in the [386enh] section of SYSTEM.INI are
EMMSize= and IgnoreInstalledEMM=. For more information, see the
descriptions of these entries in Chapter 4, “The Windows Initialization
Files.”

Placing Translation Buffers in the Upper Memory Area

In 386 enhanced mode, Windows allocates buffers in the upper memory
area to translate MS-DOS and network application program interface
(API) calls from Windows protected mode to MS-DOS real mode.
(Because the upper memory area is within the first megabyte of address
space, it can be accessed by MS-DOS in real mode on an 80386 and higher
processor.) Ideally, there will be enough free space in the upper memory
area to place both the translation buffers and any expanded memory page
frame required. But on many systems there isn’t enough room, and you
must choose to eliminate the expanded memory page frame or allocate the
translation buffers in conventional memory (instead of in the upper
memory area).

If the translation buffers are allocated in conventional memory, they take
up memory in every virtual machine Windows creates, leaving less space
in the virtual machines to run non-Windows applications. To compound
the problem, the translation buffers can be allocated either in the upper
memory area or in conventional memory, but never half-and-half.

To specify a preference, set the value for the ReservePageFrame= entry in
the [386enh] section of SYSTEM.INI. If ReservePageFrame=true (the
default), then Windows allocates the page frame first and the translation
buffers second. Usually, on machines with full UMBs, the translation
buffers are forced into conventional memory, but this lets you use
expanded memory for non-Windows applications.

If ReservePageFrame=false, the translation buffers are allocated in the
UMBs first, followed by the page frame if there is still room. This setting
gives you the most free memory in virtual machines, but you might not
have enough expanded memory for non-Windows applications.

Controlling UMB Mapping in 386 Enhanced Mode

You can control the placement of expanded memory page frames and the
translation-buffer mapping with the EMMExclude= or
ReservedHighArea= entries in the [386enh] section of SYSTEM.INI. To
explicitly exclude an area of the upper memory area from mapping by
Windows 386 enhanced mode, set a value for EMMExclude=, for
example, EMMExclude=E000-EFFF. Because there is no standard for
hardware implementation of the E000-EFFF area, it is frequently
necessary to exclude this range, so that 386 enhanced mode can function
properly. Windows 386 enhanced mode detects and excludes the area for
most adapter cards automatically.

Any values set with the x= switch in the line that loads EMM386.EXE in
CONFIG.SYS will override the value set for EMMExclude= in
SYSTEM.INI.

The ReservedHighArea= entry provides the same support, but for 4K
ranges, rather than 16K. Other entries related to UMB mapping in the
[386enh] section of SYSTEM.INI are EMMInclude=, EMMPageFrame=,
EMMSize=, and UseableHighArea=. If you suspect conflicting use of the
upper memory area, use EMMExclude=. Because Windows will use all
free pages in the upper memory area automatically, there are few uses for
EMMInclude=, EMMPageFrame=, and UseableHighArea=. For more
information, see the descriptions of these entries in Chapter 4, “The
Windows Initialization Files,” and see also “Troubleshooting EMS
Memory Problems” in Chapter 13, “Troubleshooting Windows 3.1.”

Windows/386 2.x did not use the E000-EFFF area of the adapter segment
unless specifically instructed to do so. Windows 386 enhanced mode uses
this segment unless the machine identifies itself as a PS/2. As a side note,
most of the entries in the [386enh] section of SYSTEM.INI that begin with
the letters “EMM” control both placement of the expanded memory page
frames and the translation-buffer mapping. The letters “EMM” are used
only for backward compatibility; except for the EMMPageFrame= entry,
they no longer apply only to the expanded memory page frame. The
LastEMMSeg= parameter used in Windows/386 2.x has been dropped for
Windows 3.x.

About 386 Expanded Memory Managers

An expanded memory manager such as EMM386.EXE can provide
expanded memory for non-Windows applications on 80386 and higher
machines without a physical EMS card when you aren’t running Windows.
For more information about EMM386.EXE, see Chapter 6, “Tips for
Configuring Windows 3.1,” in the Windows Resource Kit; see also
“Freeing Expanded Memory” in Chapter 12 of the MS-DOS 5.0 User’s
Guide and Reference.

Some 386 expanded memory managers such as EMM386.EXE and
CEMM.EXE allow Windows to turn them off when Windows is run.
CEMM.EXE requires that no expanded memory be in use when you start
Windows. (That is, set NoEMMDriver=yes in the [386enh] section of
SYSTEM.INI.)

W
mechanisms defined for the LIM 3.2 and LIM 4.0, so 386 expanded
memory managers such as EMM386.EXE, 386MAX.SYS, and
QEMM.SYS can load network drivers and other software devices in the
upper memory area and still run with Windows 386 enhanced mode.

Virtual Memory and 386 Enhanced Mode

Virtual memory has been widely used for years with mainframes, but first
came to PCs with the introduction of the IBM/Microsoft OS/2 operating
system. Windows 386 enhanced mode goes beyond OS/2 to offer virtual
memory using the special demand-paging capabilities of the Intel 80386
processor.

When virtual memory is used with Windows 386 enhanced mode, some of
the program code and data are kept in physical memory while the rest is
swapped to the hard disk in a swap file. Whenever a reference is made to a
memory address, it can be used without interruption if the information is
currently in physical memory. If the information isn’t in physical memory,
a page fault occurs and the Windows Virtual Memory Manager (VMM)
takes control, pulling the required information back into physical memory
and, if necessary, swapping other information to the disk. All of this
activity is invisible to the user, who only sees some hard disk activity.

Windows applications can use virtual memory without being specially
written to take advantage of it, because Windows handles the memory
management, allocating however much memory the application requests.
With Windows managing virtual memory, you will see much more
memory available than is installed in your machine when you choose
About Program Manager or About File Manager from the Help menu.

A major benefit of using virtual memory is that you can run more
programs simultaneously than your system’s physical memory would
usually allow. The drawbacks are the disk space required for the virtual
memory swap file and the decreased execution speed when page swapping
is required. However, it’s usually better to run a program slowly in virtual
memory than to not be able to run it at all.

Creating Swap Files for Virtual Memory

W
Setup, or you can choose the 386 Enhanced icon in Control Panel to
change the swap file at any time. For details about using the 386 Enhanced
Mode dialog box, see Chapter 14, “Optimizing Windows,” in the
Windows User’s Guide.

Figure 5.4

Virtual Memory
dialog box

To display this dialog,
click the Virtual Memory button in the 386 Enhanced dialog

Click the Change button to display this extended dialog box

You can create either a temporary or a permanent swap file. A permanent
swap file improves the speed of the Windows virtual memory system
because the file is contiguous, so accessing it requires less overhead than
the normal MS-DOS file created for a temporary swap file.

·
while Windows is running, then deleted automatically when you exit
Windows. This swap file is not a hidden or system file, and it can shrink
or grow in size as necessary. The entry for PagingFile= in the [386enh]
section of SYSTEM.INI defines the filename and path for the temporary
swap file. You need about 1.5 MB of free hard disk space on the paging
drive for a temporary swap file.

·
a system attribute and is always created in the root directory of the
specified drive. Windows also creates a read-only SPART.PAR file in the
WINDOWS directory that tells Windows where and how large the
permanent swap file is. Because a permanent swap file must be
contiguous, you cannot create a permanent swap file bigger than the
largest contiguous free segment of your hard disk. You cannot create a
permanent swap file if Stacker is running on your system.

You can specify the type and size of a swap file and the drive where it’s
located in the Virtual Memory dialog box. A permanent swap file is
always created in the root directory. But you can specify a subdirectory as

the location for a temporary swap file as a PagingFile= value in the
[386enh] section of SYSTEM.INI.

When you install Windows, Setup checks whether your hard-disk
controller is compatible with 32-bit disk access. If so, the 32-Bit Disk
Access check box appears. Select this check box if your system has only
a small amount of free memory and you want to increase performance for
the MS-DOS Prompt. When this option is checked, you can run more
instances of MS-DOS Prompt and switch between them faster. If you
have multiple instances of MS-DOS Prompt running and the applications
in them all access disk drives, the access time is faster with 32-bit disk
access. For a technical discussion of this features see “FastDisk: An
Introduction to 32-Bit Disk Access” in Appendix D, “Articles.”

The Windows virtual memory utility that creates swap files supports only
hard disks that use 512-byte sectors. If 512-byte sectors are not being used,
this indicates a nonstandard configuration, such as a third-party driver.
Never create a permanent swap file on a drive that uses a partitioning
driver, with the exception of the Compaq ENHDISK.SYS utility.

Before you can create a large permanent swap file, you should compact
your hard disk with a disk compacting utility. If an error message reports
that your swap file is corrupted, delete the current swap file and create a
new one.

The related entries for swap files in the [386enh] section of SYSTEM.INI
are MaxPagingFileSize=, MinUserDiskSpace=, PagingDrive=, and
PagingFile=. For more information, see the descriptions of these entries
in Chapter 4, “The Windows Initialization Files.”

Note
created on a RAM disk is self-defeating, because you sacrifice physical
memory to create virtual memory.

Demand Paging and Virtual Memory Management

Windows 386 enhanced mode manages virtual memory as a demand-
paged system that uses a virtual memory manager (VMM) and a pageswap
device (which is built into the WIN386.EXE file). This means that pages
of data are brought into physical memory when they are referenced, and
the system does not try to predict which pages will be required in the
future.

The Windows VMM maintains the virtual memory page table that lists the
pages currently in physical memory and those swapped to disk. Because
386 enhanced mode is a multitasking environment, the VMM page table
also lists which memory pages belong to which processes. When the VMM
needs a page not currently in physical memory, it calls the pageswap

device, which allocates virtual memory and maps pages into and out of
physical memory.

Some virtual memory systems rely on program segmentation to do their
work. Although the code for a Windows application is segmented as
described earlier, Windows virtual memory management is not related to
this segmentation. All virtual and physical memory is divided into 4K
pages, and the system is managed on this basis. Page mapping starts at
0000K and works its way up.

Two kinds of pages can be allocated: physical pages and virtual pages.
The possible amount of physical pages is the amount of physical memory
in the machine divided by 4K. Memory allocated to an application is made
up of virtual pages, and at any time a virtual page can be in physical
memory or swapped to the hard disk.

The entries in the [386enh] section of SYSTEM.INI that control paging
for virtual memory are:

LocalLoadHigh=
SysVMEMSLimit=
MaxBPs=
SysVMEMSLocked=
MaxPhysPage=
SysVMV86Locked=
MinUnlockMem=
SysVMXMSLimit=

For more information, see the descriptions of these entries in Chapter 4,
“The Windows Initialization Files.”

The LRU Algorithm for Virtual Memory Management

The Windows VMM swaps pages using a Least Recently Used (LRU)
page replacement algorithm. This means pages that have not been accessed
for the longest period of time are the first ones to be swapped to the disk.

The VMM page table contains flags for the Accessed and Dirty attributes
of each page. Accessed means that a process has made a reference to the
page since it was originally loaded. Dirty means that a “write” has been
made to the page since it was loaded. Because a “write” qualifies as an
“access,” the Dirty attribute implies the Accessed attribute.

If physical memory space cannot be found when a process requests
additional memory, Windows uses the LRU algorithm to decide which
pages to swap to the hard disk to fulfill the request. This decision is a
three-step process:

1.

Accessed nor a Dirty attribute. During the scanning process, Windows
clears the Accessed attribute from all the pages.

2.
requirement, it swaps those pages to the hard disk and gives the resulting
free memory to the process.

3.
scan. Theoretically, more pages will meet the requirements because the
Accessed attribute was cleared in the first scan. If the second scan doesn’t
find the required pages, then Windows swaps pages to the hard disk
regardless of their attributes.

The related entries in the [386enh] section of SYSTEM.INI are
LRULowRateMult=, LRURateChngTime=, LRUSweepFreq=,
LRUSweepLen=, LRUSweepLowWater=, and LRUSweepReset=.
For more information, see the descriptions of these entries in Chapter 4,
“The Windows Initialization Files.”

Swapping Pages to a Network Drive

We recommend that you do not swap pages to a network drive. Paging to
a network drive is possible, but it’s extremely slow. If you must page to a
network drive, use a permanent swap file. Also, the directory must not
have an MS-DOS read-only attribute, and you must have both create and
write access to the directory. Do not set the value for PagingDrive= or
PagingFile= in SYSTEM.INI to a Novell network drive, because Novell
networks are not compatible with MS-Net Redirector.

Other Memory Management Issues

This section provides brief information on various memory management
issues:

·

·

·

·

DPMI and VCPI Specifications

The DOS Protected Mode Interface (DPMI) was developed by a group of
industry leaders. Several members of the DPMI committee also helped
create the Virtual Control Program Interface (VCPI). DPMI is primarily a

creation of Microsoft, and VCPI was formulated primarily by Phar Lap
Systems. DPMI and VCPI solve two different problems.

Applications that use MS-DOS Extenders can execute code in the
protected mode of the 80286 or 80386 processor. DPMI provides a
standard method for such applications to switch the 80286 processor to
protected mode and to allocate extended memory. Hundreds of
applications use various types of MS-DOS Extenders, and those that do
not already support DPMI require minor modifications to do so.

VCPI provides an interface that allows applications using MS-DOS
Extenders on 80386 machines to run simultaneously with 386 expanded
memory managers. For example, QEMM.EXE, 386MAX.EXE, and
CEMM.EXE support the VCPI specification. Windows 3.1 supports VCPI
in both standard mode and 386 enhanced mode. Windows 3.0 does not
support VCPI.

MS-DOS 5.0 and Windows 3.1

Many of the changes in MS-DOS 5.0 make it a more robust platform for
Microsoft Windows, enhancing its ability to make the best use of your
system’s memory. For the best performance from Windows 3.1 (and other
applications), we suggest that you upgrade your PC’s operating system to
MS-DOS 5.0 if you haven’t already done so.

On 80386 and 80486 PCs, with MS-DOS 5.0 you can load memory-
resident programs such as device drivers, TSRs, and network software into
the upper memory area, thereby freeing conventional memory. To do this,
you must load HIMEM.SYS and EMM386.EXE, then load the memory-
resident programs using the devicehigh command in CONFIG.SYS and
the loadhigh command in AUTOEXEC.BAT.

For more information about taking advantage of MS-DOS 5.0 to optimize
your system configuration, see Chapter 6, “Tips for Configuring Windows
3.1.”

Running Windows Standard Mode with MS-DOS 5.0

·
Using the MS-DOS 5.0 Task Swapper while running Windows is
redundant, incurring unnecessary conventional memory overhead.

·
80286, 80386, or 80486. This will provide more conventional memory for
non-Windows applications running under Windows standard mode.

Running Windows 386 Enhanced Mode with MS-DOS 5.0

·
upper memory area. The conventional memory you free by loading MS-
DOS 5.0 into the HMA is also free in every virtual machine, giving more
memory to every non-Windows application you run in Windows 386
enhanced mode.

·
press ALT+TAB). Windows 386 enhanced mode allows multitasking, so
that multiple applications can run in the background. The MS-DOS 5.0
Task Swapper can only task-switch, which means that the swapped
application is suspended.

Memory and Windows Startup Requirements

Flowchart 1.1
System Requirements

Windows starts automatically in the appropriate Windows operating mode,
depending on your system configuration. However, you can start Windows
in a particular operating mode by using one of these command-line
switches:

·

·

Standard Mode Startup Requirements

For Windows to start automatically in standard mode, the system must
have:

·

·

·

·

Conventional and extended memory requirements are mutually dependent
for standard mode and are not fixed.

386 Enhanced Mode Startup Requirements

For Windows to start in 386 enhanced mode, the system must have:

·

·

·

·

Windows 386 enhanced mode requires between 580K and 624K combined
conventional and extended memory to run. A typical installation requires a
minimum of 192K free conventional memory at the command prompt plus
sufficient extended memory available to run in 386 enhanced mode.
Windows can start under low memory in 386 enhanced mode because it
provides virtual memory support, but it can be extremely slow because of
the extra disk swapping that Windows must perform.

All numbers are approximate and can vary widely depending on the
Windows device drivers present, the MS-DOS version, the display adapter,
and other factors. For example, on Compaq 386 machines, 128K of
extended memory is recovered from shadow RAM. Memory requirements
take into account memory that can be recovered from SMARTDrive, down
to the minimum cache size specified.

Windows checks for a minimum of 1 MB of free extended memory before
it automatically starts in 386 enhanced mode. If it finds less, it tries to run
in standard mode. On an 80386 with 2 MB or less system memory, if
Windows doesn’t find enough free extended memory, it runs in standard
mode. To free more extended memory so that you can run in 386 enhanced
mode, you might try reducing the amount of extended memory that
SMARTDrive uses by setting its MinCacheSize parameter to 0.

The entries in the [386enh] section of SYSTEM.INI that control how
Windows allocates conventional memory for startup and for use in 386
enhanced mode are SysVMEMSRequired=, SysVMXMSRequired=,
WindowKBRequired=, and WindowMemSize=. For details, see the
descriptions of these entries in Chapter 4, “The Windows Initialization
Files.”

Memory and the Windows System Resources

Flowchart 5.8
Out-of-Memory Errors

The Help About dialog box in Program Manager and File Manager (and in
many other Windows applications) shows the percentage of free system
resources and the amount of free memory. The system resources
percentage reflects the memory used by the core Windows internal
structure.

Three core files make up the part of Windows that runs Windows
applications:

·
Windows applications and handles their memory management.

·

·
mouse, sound driver, timer, communications ports, and window
management.

In Windows 3.x, these files are in the Windows SYSTEM subdirectory.
(In Windows 2.x these modules were linked into the files WIN200.BIN
and WIN200.OVL, so you didn’t see them in the WINDOWS directory.)

W
64K in size. GDI has a local heap; User has a menu heap and a user heap,
each with 64K storage space. The available system resources reflect the
remaining free percentage after combining the GDI local heap and the user
and menu heaps in User. This increases by 64K the amount of heap space
that was available in Windows 3.0. In Windows 3.1, Program Manager
icons are handled separately and do not use the User heap space.

To see how much of the system resources a particular application uses,
note the amount of system resources available before and after the
application runs. (Choose About Program Manager from the Help menu
and check the amount of system resources listed in the dialog box.)

Although Windows 3.1 allows you to run many more simultaneous
Windows applications than any previous Windows version, you may get
an out-of-memory message that indicates your system is low on system
resources. This is because every window and sub-window created requires
User and GDI local heap space. The system resources can be exhausted if
enough objects are created by the Windows applications.

An important element of memory management for Windows applications
that is not included in the system resources percentage is the number of
selectors. A selector is a memory pointer that is consumed with each
memory allocation made by a Windows application. If a Windows
application allocates many small data objects, it is possible to run out of
selectors, resulting in an out-of-memory message.

The efficiency with which a Windows application handles its data objects
can help in this situation. If you experience a chronic problem with a
particular application while few other applications are loaded, contact the
application vendor so the company becomes aware of the problem and
corrects it.

For more information about low-memory and out-of-memory conditions,
see Chapter 13, “Troubleshooting Windows 3.1.”

SMARTDrive 4.0: A Technical Discussion

W
which replaces SMARTDrive version 3.x. The section is written for
experienced technical users who want a deeper understanding of the
utility.

About SMARTDrive 4.0

SMARTDrive 3.x is a read-only track cache that caches on a track basis
and for read operations only. The internal data structures are tied to the
logical geometry of the disk. It caches at the ROM BIOS Int 13 level and
uses the BIOS specified disk geometry to decide the size of its caching
element (that is, track size). This leads to problems (described below), so
Microsoft chose to implement a new cache in SMARTDrive 4.0.

Figure 5.5

SMARTDrive 3.x

SMARTDrive 4.0 is designed as a block-oriented disk cache. It hooks into
the system at the MS-DOS device driver level rather than the ROM BIOS
Int 13 level. Each block device driver on the MS-DOS device driver chain
is “front-ended” by a SMARTDrive 4.0 module that provides the actual
caching. This yields the following benefits:

·
interface. This means that SMARTDrive 4.0 can cache these devices
where SMARTDrive 3.x could not. Examples are Bernoulli, some hard
cards, and many SCSI and WORM drives.

·
use a disk geometry mapping scheme that causes the “logical” geometry
(that is, what MS-DOS sees) to be different from the physical geometry.
Examples are many PS/2 systems, Ontrack Disk Manager, and several disk
controllers. Int 13-based caches are sensitive to this and often have
problems. For example, Ontrack Disk Manager will actually change the
ROM BIOS-specified disk geometry on the fly and thus confuse
SMARTDrive 3.x.

detection and generally complicates matters. Often logical tracks will
actually cross physical track boundaries, which then causes track caches to
incur performance penalties (intertrack seeks and rotational latencies).
Also, to get around the ROM BIOS 1024 cylinder limitation, disk
managers and controllers will “fold” multiple tracks into one logical track.

This yields the above problem, as well as forcing track caches to have a
very large track buffer. In some cases, this is as large as 31.5K and must
reside in low memory. The design of SMARTDrive 4.0 eliminates the
geometry mismatch problem.

Figure 5.6

SMARTDrive 4.0

SMARTDrive 4.0 is also a write-behind cache. It adds significant
performance improvement where files are being written and implements a
“valid” bits scheme to avoid thrashing the disk in case of random access
I/O.

SMARTDrive 4.0 currently uses a FIFO replacement algorithm and
implements a shrink algorithm that frees memory for Windows in a way
similar to SMARTDrive 3.x. The difference is that SMARTDrive 4.0
watches for the Windows startup broadcast while SMARTDrive 3.x
provides an IOCTL interface. The net effect is identical, but SMARTDrive
4.0 is much simpler. When Windows quits, the process is reversed and the
memory is reacquired by SMARTDrive 4.0.

The following table summarizes the SMARTDrive 3.x design problems,
what other disk-cache software does, and the solutions employed in
SMARTDrive 4.0.

Feature

SMARTDrive 3.x

Other disk caches

SMARTDrive 4.0

Read-Only Cache

Causes writes to proceed at the same or slower speed as with no cache.

All others solve this.

Lazy write caching. Valid bits to avoid thrashing.

Track Cache

Tied to “logical” disk geometry, which disk managers and some disk
controllers change, causing a “single” track read to actually be multiple §
performance hit.

All others have configurable cache element size.

Support configurable cache element size.

Some disks have very large track sizes
(56 on some mapping controllers), which forces a very large track buffer
into low memory and thus a large low memory footprint.

Same

Same

Internal data structures and algorithms are tied to the size of track and thus
it is very hard to retrofit variable block size.

Same

Same

Int 13 based

Many popular device drivers do not go through Int 13 interface and
therefore don’t get cached. Bernoulli, WORM drives, and SCSI are some
examples of non-Int 13 devices that SMARTDrive does not cache.

Mixed. Some cache Int 13; some cache at device driver level.

Front-end MS-DOS device drivers. This means that block device in MS-
DOS will be cached.

Disk manager drivers and some controllers cause a geometry mismatch.

Some DM drivers provide DDI, which Int 13 caches need to call (PC-
KWIK).

Above solution eliminates need to know true geometry.

SMARTDrive 4.0: Frequently Asked Questions

Q:

A:
the actual disk controller takes over the bus to transfer data to or from
system RAM. Some SCSI controllers have this feature. A problem occurs
when running in the virtual 8086 mode that Windows 3.x virtual machines
provide. Popular memory managers also use virtual 8086 mode. The read
or write address that is passed to MS-DOS is often not the same as the
actual physical memory address. This can cause data to be read from the
wrong location or, worse, can cause data to be written to the wrong RAM.
The result can be erratic system behavior.

Microsoft created a standard called Virtual DMA Services, which provides
an interface that allows these bus master controllers to get the correct
address and avoid the problem. However, some older bus master controller
cards do not support this standard. So we have added a feature to
SMARTDrive that provides a memory buffer with physical and virtual
addresses that are the same, so we avoid the problem at the cost of 2.5K of
conventional memory and a small amount of performance (the cost of
moving the data to and from the buffer). This feature is used by placing
the line device=smartdrv.exe /double_buffer in CONFIG.SYS. This only
installs the double-buffer driver, not the cache. (The cache must be
installed in AUTOEXEC.BAT.)

Q:

A:
system needs double buffering, and if so, installs SMARTDRV.EXE in
your CONFIG.SYS file for double buffering. Most disk controllers do not
need double buffering. These include all MFM, RLL, and IDE controllers
as well as many ESDI and SCSI devices. In the cases where Setup is
unable to determine whether double buffering is needed, it will install the
driver in CONFIG.SYS, possibly erring on the side of safety. We have
added a feature to SMARTDrive to help you determine if double buffering
is unneeded and to allow you to remove the driver. After your system is
running with SMARTDrive loaded, type smartdrv at the command prompt
and press ENTER. You will see something similar to the following screen.

Disk Caching Status

yes
no

yes
no

yes
yes

yes
 -

Notice the column labeled “buffering.” For each drive that is being cached,
it can have one of three values: Yes to indicate that double buffering is
needed. No to indicate that buffering is not needed, and the “—” symbol to
indicate that SMARTDrive has not yet determined the necessity of double
buffering. If the buffering column has all No’s in it, the double buffer
driver is not needed.

Q:
files?

A:
double buffer driver. See above for a description of double buffering. The
cache component of SMARTDRV.EXE is installed in AUTOEXEC.BAT
and the double buffer driver is installed in CONFIG.SYS.

Q:

Flowchart 1.8
 Stacker

A:
aware of Stacker and will automatically cache the underlying drive that
Stacker uses. This provides significantly better cache utilization by
increasing the effective size of the cache by the compression ratio of
Stacker. However, do not cache the actual “stacked” volume. Only the
underlying (uncompressed) drive should be cached.

Q:
screen?

A:
should see the underlying drive letter listed.

Q:
and not still in the cache when I reboot my machine? Won’t my data get
lost when I reboot?

A:
the CTRL+ALT+DEL reboot key sequence, SMARTDrive takes control
and makes sure that all data has been written to the actual disk. You might
see a box in the upper left corner of the display asking you to wait while
this happens. SMARTDrive also writes all data to the disk when an
application calls the MS-DOS reset disk function to make sure that all data
in the MS-DOS buffers gets written to disk.

To force all data to be written to the disk, type smartdrv /c at the command
prompt and press ENTER.

If you use a third-party program to reboot your machine from a batch file,
you should make sure that you have the above line in the batch file before
the reboot program. Failure to do so may cause loss of data.

