
*** DRAFT n August 31, 1989 ***
[

Revised Report on the Algorithmic
Language

Scheme

WILLIAM CLINGER

AND JONATHAN REES

(Editors)
H. ABELSON R. K. DYBVIG C. T. HAYNES G. J. ROZAS

N. I. ADAMS IV D. P. FRIEDMAN E. KOHLBECKER G. L. STEELE JR.
D. H. BARTLEY R. HALSTEAD D. OXLEY G. J. SUSSMAN

G. BROOKS C. HANSON K. M. PITMAN M. WAND

Dedicated to the Memory of ALGOL 60
]

Chapter

Summary
The report gives a defining description of the programming language Scheme. Scheme
is a statically scoped and properly tail-recursive dialect of the Lisp programming
language invented by Guy Lewis Steele Jr. and Gerald Jay Sussman. It was designed
to have an exceptionally clear and simple semantics and few different ways to form
expressions. A wide variety of programming paradigms, including imperative,
functional, and message passing styles, find convenient expression in Scheme.

The introduction offers a brief history of the language and of the report.
The first three chapters present the fundamental ideas of the language and describe

the notational conventions used for describing the language and for writing programs
in the language.

Chapters 4 and 5 describe the syntax and semantics of expressions, programs, and
definitions.

Chapter 6 describes Schemejs built-in procedures, which include all of the
languagejs data manipulation and input/output primitives.

Chapter 7 provides a formal syntax for Scheme written in extended BNF, along
with a formal denotational semantics.

The report concludes with an example of the use of the language and an alphabetic
index.

*** DRAFT***

August 31, 1989

Contents

[

Introduction

]
Programming languages should be designed not by piling feature on

top of feature, but by removing the weaknesses and restrictions that
make additional features appear necessary. Scheme demonstrates that a
very small number of rules for forming expressions, with no restrictions
on how they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support most of the

major programming paradigms in use today.
Scheme was one of the first programming languages to incorporate first
class procedures as in the lambda calculus, thereby proving the
usefulness of static scope rules and block structure in a dynamically
typed language. Scheme was the first major dialect of Lisp to
distinguish procedures from lambda expressions and symbols, to use a
single lexical environment for all variables, and to evaluate the operator
position of a procedure call in the same way as an operand position. By
relying entirely on procedure calls to express iteration, Scheme
emphasized the fact that tail-recursive procedure calls are essentially
gotojs that pass arguments. Scheme was the first widely used
programming language to embrace first class escape procedures, from
which all known sequential control structures can be synthesized. More
recently, building upon the design of generic arithmetic in Common

Lisp, Scheme introduced the concept of exact and inexact numbers.

Background
The first description of Scheme was written in 1975 [51]. A revised report [46]
appeared in 1978, which described the evolution of the language as its MIT
implementation was upgraded to support an innovative compiler [43]. Three distinct
projects began in 1981 and 1982 to use variants of Scheme for courses at MIT, Yale,
and Indiana University [31, 24, 10]. An introductory computer science textbook using
Scheme was published in 1984 [1].

As Scheme became more widespread, local dialects began to diverge until students
and researchers occasionally found it difficult to understand code written at other sites.
Fifteen representatives of the major implementations of Scheme therefore met in
October 1984 to work toward a better and more widely accepted standard for Scheme.
Their report [4] was published at MIT and Indiana University in the summer of 1985.
Another round of revision took place in the spring of 1986 [33]. The present report
reflects further revisions agreed upon in a meeting that preceded the 1988 ACM
Conference on Lisp and Functional Programming and in subsequent electronic mail.

We intend this report to belong to the entire Scheme community, and so we grant
permission to copy it in whole or in part without fee. In particular, we encourage
implementors of Scheme to use this report as a starting point for manuals and other
documentation, modifying it as necessary.

Acknowledgements

1

We would like to thank the following people for their help: Alan Bawden, Michael
Blair, George Carrette, Andy Cromarty, Pavel Curtis, Jeff Dalton, Olivier Danvy, Ken
Dickey, Andy Freeman, Richard Gabriel, Yekta Gürsel, Ken Haase, Robert Hieb, Paul
Hudak, Richard Kelsey, Morry Katz, Chris Lindblad, Mark Meyer, Jim Miller, Jim
Philbin, John Ramsdell, Mike Shaff, Jonathan Shapiro, Julie Sussman, Perry Wagle,
Daniel Weise, and Henry Wu. We thank Carol Fessenden, Daniel Friedman, and
Christopher Haynes for permission to use text from the Scheme 311 version 4
reference manual. We thank Texas Instruments, Inc. for permission to use text from
the TI Scheme Language Reference Manual. We gladly acknowledge the influence of
manuals for MIT Scheme, T, Scheme 84, Common Lisp, and Algol 60.

We also thank Betty Dexter for the extreme effort she put into setting this report in
TEX, and Donald Knuth for designing the program that caused her troubles.

The Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology, the Computer Science Department of Indiana University, and the
Computer and Information Sciences Department of the University of Oregon
supported the preparation of this report. Support for the MIT work was provided in
part by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-80-C-0505. Support for the Indiana
University work was provided by NSF grants NCS 83-04567 and NCS 83-03325.

1

[

Description of the language

]

Chapter 1

Overview of Scheme

1 Semantics
This section gives an overview of Schemejs semantics. A detailed informal semantics
is the subject of chapters 3 through 6. For reference purposes, section 7.2 provides a
formal semantics of Scheme.

Following Algol, Scheme is a statically scoped programming language. Each use
of a variable is associated with a lexically apparent binding of that variable.

Scheme has latent as opposed to manifest types. Types are associated with values
(also called objectsindexfile(index-entry "object" "rm" main 2)) rather than with
variables. (Some authors refer to languages with latent types as weakly typed or
dynamically typed languages.) Other languages with latent types are APL, Snobol,
and other dialects of Lisp. Languages with manifest types (sometimes referred to as
strongly typed or statically typed languages) include Algol 60, Pascal, and C.

All objects created in the course of a Scheme computation, including procedures
and continuations, have unlimited extent. No Scheme object is ever destroyed. The
reason that implementations of Scheme do not (usually!) run out of storage is that they
are permitted to reclaim the storage occupied by an object if they can prove that the
object cannot possibly matter to any future computation. Other languages in which
most objects have unlimited extent include APL and other Lisp dialects.

Implementations of Scheme are required to be properly tail-recursive. This allows
the execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive procedure. Thus with a tail-
recursive implementation, iteration can be expressed using the ordinary procedure-
call mechanics, so that special iteration constructs are useful only as syntactic sugar.

Scheme procedures are objects in their own right. Procedures can be created
dynamically, stored in data structures, returned as results of procedures, and so on.
Other languages with these properties include Common Lisp and ML.

One distinguishing feature of Scheme is that continuations, which in most other
languages only operate behind the scenes, also have kfirst-classl status. Continuations
are useful for implementing a wide variety of advanced control constructs, including
non-local exits, backtracking, and coroutines. See section 6.9.

Arguments to Scheme procedures are always passed by value, which means that
the actual argument expressions are evaluated before the procedure gains control,
whether the procedure needs the result of the evaluation or not. ML, C, and APL are
three other languages that always pass arguments by value. This is distinct from the
lazy-evaluation semantics of Haskell, or the call-by-name semantics of Algol 60,
where an argument expression is not evaluated unless its value is needed by the
procedure.

Schemejs model of arithmetic is designed to remain as independent as possible of
the particular ways in which numbers are represented within a computer. In Scheme,
every integer is a rational number, every rational is a real, and every real is a complex

2

number. Thus the distinction between integer and real arithmetic, so important to
many programming languages, does not appear in Scheme. In its place is a distinction
between exact arithmetic, which corresponds to the mathematical ideal, and inexact
arithmetic on approximations. As in Common Lisp, exact arithmetic is not limited to
integers.

2 Syntax
Scheme, like most dialects of Lisp, employs a fully parenthesized prefix notation for
programs and (other) data; the grammar of Scheme generates a sublanguage of the
language used for data. An important consequence of this simple, uniform
representation is the susceptibility of Scheme programs and data to uniform treatment
by other Scheme programs.

The indexfile(index-entry "read" "tt" aux 2)read procedure performs syntactic as
well as lexical decomposition of the data it reads. The indexfile(index-entry "read" "tt"
aux 2)read procedure parses its input as data (section 7.1.2), not as program.

The formal syntax of Scheme is described in section 7.1.

3 Notation and terminology

3.1 Essential and non-essential features
It is required that every implementation of Scheme support features that are marked as
being indexfile(index-entry "essential" "rm" main 2)essential. Features not explicitly
marked as essential are not essential. Implementations are free to omit non-essential
features of Scheme or to add extensions, provided the extensions are not in conflict
with the language reported here. In particular, implementations must support portable
code by providing a syntactic mode that preempts no lexical conventions of this report
and reserves no identifiers other than those listed as syntactic keywords in section 2.1.

3.2 Error situations and unspecified behavior
indexfile(index-entry "error" "rm" main 2) When speaking of an error situation, this
report uses the phrase kan error is signalledl to indicate that implementations must
detect and report the error. If such wording does not appear in the discussion of an
error, then implementations are not required to detect or report the error, though they
are encouraged to do so. An error situation that implementations are not required to
detect is usually referred to simply as kan error.l

For example, it is an error for a procedure to be passed an argument that the
procedure is not explicitly specified to handle, even though such domain errors are
seldom mentioned in this report. Implementations may extend a procedurejs domain
of definition to include such arguments.

This report uses the phrase kmay report a violation of an implementation
restrictionl to indicate circumstances under which an implementation is permitted to
report that it is unable to continue execution of a correct program because of some
restriction imposed by the implementation. Implementation restrictions are of course
discouraged, but implementations are encouraged to report violations of
implementation restrictions.indexfile(index-entry "implementation restriction" "rm"
main 2)

For example, an implementation may report a violation of an implementation
restriction if it does not have enough storage to run a program.

If the value of an expression is said to be kunspecified,l then the expression must
evaluate to some object without signalling an error, but the value depends on the
implementation; this report explicitly does not say what value should be returned.
indexfile(index-entry "unspecified" "rm" main 2)

3.3 Entry format

2

Chapters 4 and 6 are organized into entries. Each entry describes one language feature
or a group of related features, where a feature is either a syntactic construct or a built-
in procedure. An entry begins with one or more header lines of the form
i`=13=0.5em template essential categoryif the feature is an essential feature, or
simplyi`=13=0.5em template categoryif the feature is not an essential feature.If
category is ksyntaxl, the entry describes an expression type, and the header line gives
the syntax of the expression type. Components of expressions are designated by
syntactic variables, which are written using angle brackets, for example, **
expression, **variable. Syntactic variables should be understood to denote segments
of program text; for example, **expression stands for any string of characters which is
a syntactically valid expression. The notation
**thing ?
indicates zero or more occurrences of a **thing, and
**thing **thing ?
indicates one or more occurrences of a **thing.If category is kprocedurel, then the
entry describes a procedure, and the header line gives a template for a call to the
procedure. Argument names in the template are italicized. Thus the header linei`=13=
0.5em (vector-ref vector k) essential procedureindicates that the
essential built-in procedure vector-ref takes two arguments, a vector vector and
an exact non-negative integer k (see below). The header linesi`=13=0.5em (make-
vector k) essential procedure i`=13=0.5em (make-vector k fill)
 procedureindicate that in all implementations, the make-vector procedure must
be defined to take one argument, and some implementations will extend it to take two
arguments. It is an error for an operation to be presented with an argument that it is
not specified to handle. For succinctness, we follow the convention that if an argument
name is also the name of a type listed in section

2

