
Using Schematik Graphics:

User interface
Graphics windows can be selected, printed, resized, scrolled, etc. 
just like any other window.    A close button appears when the 
corresponding ªgraphics deviceº is closed in scheme (indicating that 
no more drawing is possible).

Functional graphics
Currently the functional graphics package is only available in SICP 
mode.    It provides procedures for producing images which are 
automatically displayed by the read-eval-print loop (REPL).      All 
images are rectangular, with a definite width and height.    The width 
and height are measured in printer's points and must be exact 
integers.    (There are about 72 points to the inch.)

(line x0 y0 x1 y1 #!optional width height)



Produces an image of the specified dimensions with a single line 
segment.    If the height isn't specified, it is assumed to be the 
same as the width.    If the width is also unspecified, a default 
value is used.    The line segment runs from (x0, y0) to (x1, y1) in 
a coordinate system running from ±1 to 1 in each dimension.

(ps-image string #!optional width height)
Produces an image with contents specified by the PostScript 
string. The width and height are defaulted as for line.    The 
PostScript string is invoked in the context of the same 
coordinate system as for line.

(resize-image image #!optional width height)
Produces an image with a suitably scaled version of the same 
contents as the specified image.    The width and height are 
defaulted as for line.



(quarter-turn-right image)
Produces a new image formed by turning the specified image 
clockwise 90°.

(mirror-image image)
Produces a new image by reflecting the specified image about its 
vertical axis.

(invert image)
Produces a new image by reversing black and white in the 
specified image.

(overlay image . more-images)
Produces a new image by combining one or more specified 
images.    It's as though they were on transparencies that were 



layered together.    The images must be of identical width and 
height.

(stack top-image . more-images)
Produces a new image by adjoining the images vertically, with the 
first one on top and the last on the bottom.    The images must be 
of the same width.

SICP graphics
In the SICP compatibility package, all the usual ªchipmunk styleº 
graphics operations will work just as in any other implementation.    If 
(init-graphics) is not done explicitly, the first graphics 
operation will implicitly do it.

MIT Scheme graphics
See Chapter 17 of the MIT Scheme Reference Manual    for general 



information on graphics.    See also the following sections on 
implementation limitations and custom operations.    The information 
specific to creating a Schematik device is as follows:
      ± The ªgraphics device typeº is schematik-style-graphics-

device-type 

      ± The additional arguments for make-graphics-device are a 
symbol indicating the unit of measure, which may be pixels or 
points (pixel or point also work) and then two numbers 
indicating the width and height of the desired drawing area in 
that unit.    For example, to create a 2 inch wide by 3 inch high 
drawing area (given that there are 72 points to an inch) one 
would do (make-graphics-device

 schematik-style-graphics-device-type
 'points (* 2 72) (* 3 72))

Limitations



      ± The only drawing modes that approximately work are 0, 3, 7, 
and 15.    0 draws in the background color, the others draw in the 
foreground color.

      ± If you use the undocumented timer-interrupt feature of MIT 
Scheme for anything else, the best-case outcome is that 
graphics will be much slower unless buffering is enabled.

  
      ± Dotted and/or dashed lines will look funny if the scaling ratio 

between device and virtual coordinates isn't the same in the x 
and y directions.

Custom operations
      ± Performing the print operation on a graphics device is 

identical to selecting the corresponding graphics window in 
Schematik and doing a Print command. 



      ± The draw-postscript operation takes one string argument, 
which is arbitrary Display PostScript, and executes it in the 
appropriate context.    A space character is automatically 
appended to the end to delimit the last token of the text; this 
implies that you can not split one token across two draw-
postscript operations.    If any PostScript error results, it will 
be reported on the console log and the graphics device will be 
summarily closed.    An error may be reported in scheme, or then 
again it may not.    (Of course, if any further attempt is made to 
use the closed device, an error will be reported.)    Any output 
from PostScript (e.g. the == operator) will once flushed also 
appear on the console.

      ± The foreground color can be set using any of three alternative 
custom operations: set-foreground-hsb, set-
foreground-rgb, and set-foreground-gray.    Of these, 
the first two are fully general (i.e. can specify any color), while 



the third is limited to shades of gray including white and black.    
All use real numbers in the range 0±1 to specify the colors.    The 
first two take three arguments in this range, while only one is 
needed to specify a shade of gray.    See the section below for a 
description of the three color specification systems.    Changing 
the foreground color does not change any existing graphics, but 
all new drawing will be in the new color (except in drawing mode 
0, i.e. erase).

      ± The background color can be set in the same three ways as the 
foreground color, using the operations set-background-hsb, 
set-background-rgb, and set-background-gray.    
Changing the background color does not change any existing 
graphics, but when a graphics-clear is done, the entire drawing 
area will be filled with the current background color.    Additionally, 
any new drawing done in drawing mode 0 (i.e., erase) will be in 
the new background color.



Color systems
    ± The three arguments to the HSB operations specify hue, 

saturation, and brightness in that order.    If the brightness is 0, 
then the color will be black regardless of the other two 
coordinates.    If the brightness is 1, the color will be maximally 
bright.    If the saturation is 0, then the color will be a shade of 
gray determined by the brightness, independent of the hue.    If 
the saturation is 1, a pure color will result; if you decrease the 
saturation towards 0, the color gets diluted with progressively 
more white light.    The hue coordinate should be viewed as 
circular in nature, with both 0 and 1 being red, 1/3 being green, 
and 2/3 being blue.    Intermediate values are mixtures of the 
neighboring primaries.

    ± The three arguments to the RGB operations specify the 
brightness of the red, green, and blue components of the color, 



respectively.    If all three are equal, a shade of gray results.    In 
particular, all three being 1 is white, while all three being 0 is 
black.

    ± The single argument to the set-xxx-gray operations specifies 
just the brightness, with 1 being white, 0 being black.


