
PC Scheme–Geneva:

User’s documentation

Larry Bartholdi Marc Vuilleumier

December 22, 1993

Abstract

“My English is worse than the garden of my uncle”
—Unknown Chinese philosopher, about 4000 years ago

This document describes various major extensions to PcScheme by the Geneva Scheme Team. These
include BGI, a graphics package based on the interface developed by Borland, and Mouse support. More
documentation about Ed will be added here as soon as available.

BGI is distributed by Borland as C and Pascal libraries. Our adaptation to Scheme preserves the
spirit of Borland’s original product.

Other documentat about PC Scheme/Geneva are: SCHEME.TEX, the release log file. You should
read it, as it contains the most recent informations about PC Scheme/Geneva; REFCARD.TEX, our
Quick Reference Card. It contains all about PC Scheme/Geneva, including default key sequences for
Edwin and Ed.

The authors’ work is supported by the University of Geneva. They can be reached at their E-Mail
address “schemege@cui.unige.ch”. This document was typeset by LaTEX.

Contents

I Ed: a Generic Editor 2

1 Keystrokes 3
1.1 Basic Editor Commands . 3
1.2 Enhanced Editor Commands . 4
1.3 Scheme Editor Commands . 4

2 Driving an Editor 5

II Mouse Support in PcScheme 7

3 The interfacing 8

4 A simple example 12

III BGI: The Graphics Package 18

5 User’s manual 19
5.1 What is BGI? . 19
5.2 What is different in PcScheme’s implementation of BGI? 19
5.3 Coordinate systems . 20
5.4 And further. 20
5.5 The PS and SPY drivers . 22

5.5.1 How to use SPY . 22
5.5.2 How to use PS . 22

6 PcScheme BGI primitives reference 24
6.1 The Graphics Control System . 24
6.2 Drawing . 26
6.3 Filling . 28
6.4 Bitmapping . 30
6.5 Writing text . 31
6.6 Using Color . 32
6.7 Miscellaneous queries . 35

Index 35

1

Part I

Ed: a Generic Editor

Ed is an object-oriented editor toolkit using a subset of Brief’s key sequences; you can drive it
from your programs or simply use it as a text editor. You can easily remap any key sequence to
any function, or even implement new features. Basically, Ed provides four levels of editor that you
access through four creators (meta-functions):

(make-editor [window] [’EXIT-FREELY]) =⇒ a basic editor object
(make-enhanced-editor . . .) =⇒ ditto, with additional features
(make-color-editor . . .) =⇒ ditto, with block highlight
(make-scheme-editor . . .) =⇒ ditto, with scheme-specific rules

Typical use:
(define ed (make-[. . .-]editor)) ; create a full-screen editor
(ed ’REMAP-KEY 27 ’@GOTO-LINE) ; remap Esc to ”go to line”
(ed [filename]) ; open the editor

If you want a multi-window editor, you can define two or more editors in different window ports;
scrapbook and keystroke assignements will be shared by all.

This part has been written by Marc Vuilleumier.

2

Chapter 1

Keystrokes

1.1 Basic Editor Commands

Step ↑ Jump PgUp

← ↔l → Ctrl-← ↔l Ctrl-→
↓ PgDn

∞ Ctrl-PgUp Delete
Home ↔l End BackSpace ↔l Del

Ctrl-PgDn

Alt-I toggle insert/overwrite mode
Alt-G go to line
Alt-K kill to end of line
Alt-D delete current line
Ctrl-L refresh display
F7 record a keystroke sequence
F8 replay a keystroke sequence
F10 execute a command by name

Alt-E edit another file
Alt-W write file to disk
Alt-O choose new output name
Alt-R read a file into current
Alt-X exit editor

3

1.2 Enhanced Editor Commands

Use a Color Editor if you want block highlight features.

Alt-M mark block
Alt-L line block
Alt-C column block
〈Keypad −〉 cut block/line to scrap
〈Keypad +〉 copy block/line to scrap
〈Keypad /〉 invert block bounds (swap anchor)
Ins insert scrap into text
Del delete block
Alt-W write block/file to disk

Alt-[1 . . . 3] drop a bookmark
Alt-J [1 . . . 3]jump to bookmark
Ctrl-R replicate a command

Ctrl-F5 toggle case sensivity
Alt-S or F5 search string
Shift-F5 repeat previous search
Alt-T or F6 translate string
Shift-F6 repeat previous translate

1.3 Scheme Editor Commands

Autoindent is active and color changes on each parenthesis level.

Ctrl-A enlarge mark around Scheme expression
Ctrl-Z mark the biggest Scheme expression
Ctrl-F10 evaluate marked expression
Alt-F10 evaluate current file
Tab complete symbol or reindent line/block
Shift-Tab prepare to add a comment
Alt-Q 〈key〉 use key’s basic definition

4

Chapter 2

Driving an Editor
(ed [message] [arguments]) message defaults to ’OPEN

’OPEN [filename] pop-up the editor, handle commands
’SAFE ensure current buffer is saved
’CLEAR clear buffer
’NAME [new-value]⇒ name of buffer
’BUFFER [new-value]⇒ a list of strings
’POSITION [new-value]⇒ cursor position
’INSERT [new-value]⇒ #F when in overwrite mode
’TAB [new-value] .⇒ tab expansion width
’TABULIZE-MODE [new-value]⇒ ’COMPRESS, ’NORMAL or ’EXPAND
’SEPARATORS [new-value]⇒ string (used for word move)
’CASE-SENSIVITY [new-value]⇒ #F when disabled
’COLORS [new-value]⇒ associative color list
’COMMENT-COLUMN [new-value]⇒ column #
’INDENT-TOKENS [new-value]⇒ list of special tokens
’INPUT-PORT [new-value]⇒ port used for input
’DO-STRING string feed editor with keystrokes
’READ-ACTION .⇒ an action: the next event
’HANDLE-ACTION action process one command
’REMAP-KEY key function
key is (list* [. . . Ascii2] Ascii1)

function if (list* [(context action) . . .] default-action)
context is λ(ed) −→ boolean
action is a character, a string, or a symbol:

’@LEFT ’@WORD-LEFT ’@HOME ’@RIGHT

’@WORD-RIGHT ’@END ’@UP ’@PAGE-UP

’@TOP-OF-BUFFER ’@DOWN ’@PAGE-DOWN ’@END-OF-BUFFER

’@DEL ’@DELETE-TO-EOL ’@DELETE-LINE ’@BACKSPACE

’@TAB ’@ENTER ’@QUOTE

’@INSERT-MODE ’@GOTO-LINE ’@REFRESH ’@RECORD

’@PLAY ’@EXECUTE ’@LOAD ’@READ-INTO

’@WRITE ’@RENAME ’@EXIT

’@SEARCH ’@REPEAT-SEARCH ’@CASE-SENSITIVITY ’@TRANSLATE

’@REPEAT-TRANSLATE ’@REPLICATE ’@BOOKMARK-[1. . .3] ’@JUMP-TO-[1. . .3]

’@MARK-BLOCK ’@LINE-BLOCK ’@COLUMN-BLOCK ’@CUT-BLOCK

’@COPY-BLOCK ’@INSERT-BLOCK ’@CANCEL-BLOCK ’@SWAP-ANCHOR

’@MARK-EXPR ’@MARK-DEF ’@SCHEME-PARENTHESIS ’@COMPLETION

’@INDENT ’@COMMENT ’@EVAL ’@EVAL-BLOCK

’@SCHEME-ENTER

5

Part II

Mouse Support in PcScheme

Microsoft(TM) specified a standard interface to drive the mouse from within applications. Prac-
tically all mouse vendors adhered to this interface, so it made sense to access the mouse though
it from within PcScheme. Unfortunately, the standard was designed for interfacing to assembly
language and thus contains some peculiarities, like event handlers, that have carefully to be dealt
with.

The solution proposed is a slight extension of PcScheme’s core—the virtual machine. An op-code
has been added to support the int 33h calls, as well as an assembly-language event handler that
dispatches requests to a Scheme closure. The solution is not perfect in the sense event handling
cannot be honored in the middle of a basic instruction (for instance, during a call to readline).
The slowdown due to Scheme handling of even the most simple events (like recording a move),
and the context switching required, may render event handling unpractical on slow processors; the
system has nevertheless successfully been used on a fast 80486 PC.

This part has been written by Larry Bartholdi.

6

Chapter 3

The interfacing

The most important differences between the assembly level interface and the Scheme procedures are:

• PcScheme has an Object-Oriented interface

• PcScheme uses symbolic constants abundantly (and list of constants instead of bit masks)

On the lowest level, all requests are executed through

(%MOUSE ax bx cx dx si di [es:dx])

which returns a list: (ax bx cx dx) of the CPU registers after the call has been effected. Fortunately you
will never have to call this function directly; but this is how PcScheme’s interface works.

The high-level interface (in MOUSE.FSL) works with a single “mouse” object,

(MOUSE message [parameters]) ←֓

that translates the message to (%mouse) calls. The messages mouse recognises are:

Message Args ⇒ Result Comments

’RESET

⇒ #-buttons
This message should be the first sent when dealing with the mouse.
It returns −1 if no mouse is avaliable.

’SHOW Increments the mouse’s visibility count. The count initially is −1,
can be incremented or decremented, but can never become positive
(calls to ’SHOW are without effect if the count is ≥ 0). The pointer
is visible only when the count is = 0.

’HIDE Decrements the mouse’s visiblity count.
’INQ

⇒ (buttons-down x y)
buttons-down is a list containing any of ’LEFT, ’RIGHT and CENTER.
The x– and y-positions are thought in 640 × 200 units, although
they can be redefined to any scaling. They are always in linear
correspondence with the “Mickeys”.

7

Message Args ⇒ Result Comments

’MOVE x y Moves the pointer to an absolute location. As always, (0, 0) is the
upper left corner. The values are clipped to the limiting rectangle.

’PRESS button
⇒ (buttons-down count x y)

There is an additional field compared to ’INQ: the number of times
the button has been pressed. All other values refer to the mouse
state when the last “press” occured. The count is reset to 0 after
this call.
button is a symbol.

’RELEASE button
⇒ (buttons-down count x y)

Just like ’PRESS, except it returns the release count.

’LIMITS ’HORIZONTAL x0 x1 Sets the mouse’s horizontal viewport. It will not be able to move
out of that area. If it is outside at the moment of the call, it will be
projected to the border.

’LIMITS ’VERTICAL y0 y1 Sets the mouse’s vertical viewport.
’LIMITS ’BOTH x0 x1 y0 y1 Sets the mouse’s viewport.
’SHAPE shape Sets the graphics pointer. shape is a list: (x-hot-spot y-hot-spot

and-mask xor-mask), where the masks are lists of 16 integers. This
function does not affect the text-mode pointer.

’CURSOR name
⇒ cursor

Returns a predefined pointer for ’SHAPE. Two sources were used
to grab bitmapped pointers: the X Windows shared library (in
openwin/share/lib/include/bitmaps), and an MsDos package
called “Precise Point”. Both sources were used without permission.
name is a symbol, and can have values ’CENTER, ’KEYBOARD,
’LEFT, ’RIGHT, ’STAR6, ’TARGET (X Windows) and ’ARROW, ’BLOCK,
’CIRCLE, ’EXCLAIM, ’HAND, ’HOURGLAS, ’KITE, ’MESH, ’SMALL,
’SQUARE, ’STAR4, ’TEXT, ’X (Precise Point).

’TEXT-TYPE ’SOFTWARE and xor Sets the text-mode pointer to software, i.e. to modification of char-
acters on the screen. and and xor are pairs: (character . attribute).
As a simple example,

(mouse ’TEXT-TYPE ’SOFTWARE

(cons (integer->char \#xff) \#xff)

(cons (integer->char 0) \#x80))}

would make the character under the pointer blink.
’TEXT-TYPE ’HARDWARE start
end

Sets the text-mode pointer to hardware, i.e. uses the cursor generator
of the graphics adapter. start and end are the start– and end-rows of
the cursor, usually in range 0–8 or 0–16. Note that the cursor then
serves two uses; this mode should be useful especially in an editor,
if the mouse moves are interpreted as cursor positioning.

’MICKEYS

⇒ (x y)
Returns the mouse’s movement in Mickeys since the previous call
to this function. A Mickey is the mouse’s fundamental unit, ≈
1/200inch.

8

Message Args ⇒ Result Comments

’HANDLER handler
⇒ old-handler

Installs an event handler. A handler is a list: (events . proce-
dure), where events is a list containing any of ’MOVE, ’LEFT-DOWN,
’LEFT-UP, ’LEFT (both left-button messages), ’RIGHT-DOWN,
’RIGHT-UP, ’RIGHT, ’CENTER-DOWN, ’CENTER-UP, ’CENTER, ’DOWN,
’UP, and ’BUTTONS. When one of these events occurs, procedure will
be called. procedure’s arguments are (triggering-events buttons-down
x y mickeys-x mickeys-y event-time). Note that triggering-events is
a list, because it may contain more than one event.
An important thing to mention is that normally procedure will not
be reinvoked before it returns. Events that occur during procedure’s
execution are lost. In particular, if procedure does not return (in case
of error, for instance), mouse events remain disabled. They can be
re-enabled with the next command.

’ENABLE Re-enables event handling. With this, re-entrant mouse-handlers
can be written!
In its normal operating mode, mouse stacks up mouse messages and
dispatches them one at a time, sending the next message when the
dispatch of the previous one returned. If this function is called,
the message-dispatching system is spawned; in effect, calling this
function from within an event handler may result in the handler
being called “re-entrantly”.

’DISABLE This message suppresses re-entrancy by cancelling the effect of a
previous ’ENABLE.

’PEN-ON Microsoft Manual says “Light-Pen emulation: Enables light pen
emulation by the mouse driver for IBM BASIC. A “pen down” con-
dition is created by simultaneously pressing the left and right mouse
buttons.” I tried darn hard to understand this, without success.

’PEN-OFF ditto.
’MICKEY-RATIO x y Sets the number of Mickeys per 8 pixels for horizontal and vertical

mouse motion.
’EXCLUDE x0 x1 y0 y1 Defines a rectangle within which the mouse is invisible.
’SPEED-THRESHOLD speed Sets the speed limit between simple– and double-speed motion, in

Mickeys per second.
’SENSITIVITY [x y speed]

⇒ (x y speed)
Reads or sets the Mickey ratio and speed threshold.

’INTERRUPT-RATE rate rate can be ’NONE, 30, 50, 100 or 200, and governs the tradeoff be-
tween graphic resolution and application performance. It is applica-
ble only to the InPort mouse (see ’INFORMATION).

’POINTER-PAGE [page]
⇒ page

Reads or sets the display page for the mouse pointer.

’LANGUAGE [language]
⇒ language

Reads or sets the language for mouse driver messages. language
can be any of ’ENGLISH, ’FRENCH, ’DUTCH, ’GERMAN, ’SWEDISH,
’FINNISH, ’SPANISH, ’PORTUGESE or ’ITALIAN.

9

Message Args ⇒ Result Comments

’INFORMATION

⇒ (version type IRQ)
Returns information on the mouse driver. version is a floating-point
number. type is a symbol: ’BUS, ’SERIAL, ’INPORT, ’PS/2 or ’HP.
IRQ is an integer.

10

Chapter 4

A simple example

I include here a simple demo of what can be done with graphics and mouse: a program that draws lines
at random while the pointer (representing two eyes) winks at the user when he presses the buttons.

;* EYES.S

;**

;* *

;* PC Scheme/Geneva 4.00 Scheme code *

;* *

;* (c) 1985-1988 by Texas Instruments, Inc. See COPYRIGHT.TXT *

;* (c) 1992 by L. Bartholdi & M. Vuilleumier, University of Geneva *

;* *

;*--*

;* *

;* A Simple Mouse Demo *

;* *

;*--*

;* *

;* Created by: L. Bartholdi Date: 19930930 *

;* Revision history: *

;* - 18 Jun 92: Renaissance (Borland Compilers, ...) *

;* *

;* ‘‘In nomine omnipotentii dei’’ *

11

;**

; 0

; 1

; 2 . . o o o

; 3 . o . . . o

; 4 . o . . . o

; 5 o o

; 6 o o

; 7 o o

; 8 o o

; 9 o . o o o . o

;10 o o . . . o o

;11 . o . . . o

;12 . o . . . o

;13 . . o o o

;14

;15

; 151413121110 9 8 7 6 5 4 3 2 1 0

(define open-eye ’(0 0 (#b0000000011111111

#b0000000011110111

#b0000000011100011

#b0000000011000001

#b0000000011000001

#b0000000010000000

#b0000000010000000

#b0000000010000000

12

#b0000000010000000

#b0000000010000000

#b0000000010000000

#b0000000011000001

#b0000000011000001

#b0000000011100011

#b0000000011110111

#b0000000011111111)

(#b0000000000000000

#b0000000000000000

#b0000000000011100

#b0000000000100010

#b0000000000100010

#b0000000001000001

#b0000000001000001

#b0000000001000001

#b0000000001000001

#b0000000001011101

#b0000000001100011

#b0000000000100010

#b0000000000100010

#b0000000000011100

#b0000000000000000

#b0000000000000000)

))

(define closed-eye ‘(0 0 ,(caddr open-eye)

(#b0000000000000000

13

#b0000000000000000

#b0000000000011100

#b0000000000100010

#b0000000000100010

#b0000000001000001

#b0000000001000001

#b0000000001011101

#b0000000001111111

#b0000000001110111

#b0000000001100011

#b0000000000110110

#b0000000000111110

#b0000000000011100

#b0000000000000000

#b0000000000000000)

))

(define (right pattern)

(map (lambda (x) (* x #x100)) pattern))

(define (join p1 p2)

(map (lambda (x y) (bitwise-or x y))

p1 (right p2)))

(define m0 (list 0 0

(join (caddr open-eye) (caddr open-eye))

(join (cadddr open-eye) (cadddr open-eye))))

(define m1 (list 0 0

14

(join (caddr open-eye) (caddr closed-eye))

(join (cadddr open-eye) (cadddr closed-eye))))

(define m2 (list 0 0

(join (caddr closed-eye) (caddr open-eye))

(join (cadddr closed-eye) (cadddr open-eye))))

(define m3 (list 0 0

(join (caddr closed-eye) (caddr closed-eye))

(join (cadddr closed-eye) (cadddr closed-eye))))

(init-graph)

(mouse ’RESET)

(mouse ’SHOW)

(mouse ’SHAPE m0)

(mouse ’HANDLER ‘((LEFT RIGHT) .

,(lambda (event state . rest)

(mouse ’SHAPE

(cond

((equal? state ’()) m0)

((equal? state ’(LEFT)) m1)

((equal? state ’(RIGHT)) m2)

((equal? state ’(LEFT RIGHT)) m3))))))

(writeln "Press any key to abort...")

((rec loop

(lambda (count)

(when (not (char-ready?))

(let ((fade (* 100 (exp (/ (* count count) -40000.0)))))

(if (> (random 100) fade)

(begin

15

(mouse ’HIDE)

(mouse ’SHOW)

(set-color 0))

(set-color (1+ (random (-1+ (get-max-color)))))))

(line (cons (random (car (get-max-xy))) (random (cdr (get-max-xy))))

(cons (random (car (get-max-xy))) (random (cdr (get-max-xy)))))

(loop (1+ count)))))

0)

(read-char)

(close-graph)

(mouse ’RESET)

æ

16

Part III

BGI: The Graphics Package

Written by Marc Vuilleumier

Last change October 5, 1993. First draft November 27, 1992

17

Chapter 5

User’s manual

5.1 What is BGI?

BGI is a powerful, standard, device-adaptable interface for graphic output. It was introduced by Borland
compilers, and give programmers a complete set of graphic primitives, working on every device for which a
BGI driver exist. Included with this version of PcScheme, you’ll find drivers for Cga, Mcga, Att-400,
Ega, Vga, Hercules, Ibm-8514, Pc-3270, Hp95lx and true compatibles.

You may use any other BGI driver found on public sites or provided by your graphic hardware vendor
(such as the SVGA.BGI driver for Super-Vga designed for Borland C 3.0 to improve the resolution and
color capabilities.

You may also use the two drivers one of us (lb) has written, that are distributed with PcScheme:
SPY.BGI and PS.BGI. The former is a debugging aid that prints to the screen all the driver requests.
The latter creates a PostScript document that can then be incorporated in a text processor or sent to a
printer. See section 5.5 for more information.

5.2 What is different in PcScheme’s implementation of BGI?

• The name of primitives and constants is “Scheme-like” splitted in words:

Borland C 3.0 PcScheme

initgraph(...) =⇒ (init-graph ...)

setcolor(LIGHTBLUE) =⇒ (set-color ’LIGHT-BLUE)

• Since graphic constants are contextual (which is not the case in C), we have removed redundancy
in symbol names:

Borland C 3.0 PcScheme

setlinestyle(DOTTED LINE, ...) =⇒ (set-line-style ’DOTTED ...)

settextstyle(GOTHIC FONT, HORIZ DIR, 4) =⇒ (set-text-style ’GOTHIC HORIZ 4)

• Some parameters are optional. The following commands, for instance, are all equivalent:

(init-graph ’DETECT 0 "")

(init-graph ’DETECT 0)

(init-graph ’DETECT)

(init-graph)

18

• Static structures have been replaced by lists. For instance, a polygon is not an integer and an array,
but simply a list of points.

• The coordinate system can be completely adapted by the user.

• Twin-functions returning X and Y values have been joined and produce a point (i.e. a pair). This
is true for text measurement, too.

• Special memory allocation functions have not been included.

5.3 Coordinate systems

Most graphic primitives have to place objects, on the screen for instance, given some coordinates; we call
a “point” the information necessary to explicit a location on the output device.

By default, a point is a pair of whole numbers, the X and Y coordinates, and therefore it is highly
device-dependent: using a Color Graphic Adapter (Cga) mode, for instance, the valid coordinate range
is ’(0 . 0) through ’(319 . 199) in 4-color mode, and ’(0 . 0) and ’(639 . 199) in Black&White
mode. With a Hercules-monochrome adapter, the range becomes ’(0 . 0) through ’(719 . 347), and
so on; ’(0 . 0) is always the upper left corner of the screen, contrary to mathematical tradition. Note
that BGI routines usually clip their parameters to the screen rectangle.

Now PcScheme allows you to freely define the coordinate system you’d like to use. You only need to
specify the desired coordinates of the upper left and bottom right corner, no matter which video adapter
or other device is present. A typical sequence would be:

(init-graph) ; detect and initialize video adapter
(set-world! ’(-100 . -100) ’(100 . 100)) ; set the screen coordinates with origin centered
(put-pixel ’(0 . 0) ’BLUE) ; plot a blue pixel at center of screen

Note that the X and Y coordinates are now real numbers, so you are allowed to call SET-WORLD! with
parameters like:

(set-world! ‘((- ,pi) . 1) ‘(,pi . -1)) ; ideal to plot a sine. . .

Of course, if you need to scan every pixel, you can use GET-MAX-XY to obtain the actual resolution of
your screen adapter.

If you are urging to try BGI by yourself, skip to part 6, page 24. What follows is an extension to the
BGI standard.

5.4 And further. . .

For type checking of point parameters, you are allowed to use the SET-POINT?-! primitive to change
the point type. For instance, the following code would allow points to be a pair of real (this is done
automatically when you use SET-WORLD!).

(define (real-point point) ; Type-checking for points
(and (pair? point)

(number? (car point))

(number? (cdr point))))

(set-point?-! real-point) ; Use the real-coordinates system

Now imagine you want to draw a bar chart using an exponential scale. Instead of adding a call
to the LOG function before each call to BGI routine, you can define your own coordinates-conversion
function. Call SET-COORDINATES! with three functions as parameters, one extracting the device’s X-
coordinate from a point, one extracting the Y-coordinate, and the reverse procedure which returns the
point corresponding to given device coordinates:

19

(define (my-x point) ; X-coord scaled from 0 to 1
(round ; Return a whole number
(* (car point) ; Multiply the given X-coordinate. . .

(car (get-max-xy))))) ; . . . by the maximum X-coordinate

(define (my-y point) ; Y-coord log: 1 (bottom) to 1000
(round ; Return a whole number
(* (- 1 (log (cdr point) 1000)) ; Log of reversed y-coordinate. . .

(cdr (get-max-xy))))) ; . . . times the maximum y-coordinate

(define (reverse-xy xy) ; Reverse procedure, used when BGI
(let ((max-xy (get-max-xy))) ; wants to return a coordinate
(cons ; Return a point (a pair)

(/ (car xy) (car max-xy))

(expt 1000 (- 1 (/ (cdr xy) (cdr max-xy)))))))

(set-coordinates! my-x my-y reverse-xy) ; Use the vertical-logarithmic system

Don’t forget to call SET-POINT?-!, because SET-COORDINATES! won’t call it for you (the example
above assumes you’ve already typed in the SET-POINT?-! example).

Note that using this coordinate system, the same call to a function such as LINE-REL can have
different results, depending on where the pen is:

(move-to ’(0.5 . 1))

(line-rel ’(0 . 10)) ; length = 1/3 of total height

(move-to ’(0.5 . 100)) ; goes up into log scale. . .
(line-rel ’(0 . 10)) ; length = 1/72 of total height

Of course, you don’t need to assume that a point is a pair; why not a list of numbers, in a three- or
four-dimensional space? Just write the functions that extract a projection out of a vector, and you’re
done!

Do you like Euclid? If you don’t, you can also define how to calculate distances, almost the same way
you defined the coordinates. SET-DISTANCES! accepts three parameters: the X distance extractor, the Y
distance extractor and the unary distance extractor. These three functions receive the point from which
the distance is to be calculated and the user-desired distance. X & Y distances are used for the following
functions: MOVE-REL, LINE-REL, ELLIPSE, FILL-ELLIPSE and SECTOR, while the unary distance is used
by ARC, CIRCLE and PIE-SLICE (“unary” means that the function receives distances as a number and
returns a number; while X and Y distances receive a fictive point which is the displacement between two
points).

All these coordinate-manipulation primitives return the previous version of all the procedures they
change, so you can restore them later. In particular, SET-WORLD! returns all of seven procedures, in
the order POINT?, X, Y, REVERSE-XY, X-DIST, Y-DIST, and UNARY-DIST; and all can be restored in
one single call to RESTORE-WORLD!:

(let ((old-sys (set-world! ’(0 . 0) ’(1 . 1)))) ; change and remember
...

(restore-world! old-sys))

If you want to restore procedures by yourself, note the following example:

(let* ((old-sys (set-world! ’(0 . 0) ’(1 . 1))) ; change and remember
(old-point? (car old-sys))

(old-coord (cdr old-sys))

20

(old-dist (cdddr old-coord)))

...

(set-point?-! old-point?)

(set-coordinates! (car old-coord) (cadr old-coord) (caddr old-coord))

(set-distances! (car old-dist) (cadr old-dist) (caddr old-dist))

Always restore procedures in this order, since SET-COORDINATES! modifies the distance-functions to
adapt them to the new given system.

5.5 The PS and SPY drivers

This part has been written by Larry Bartholdi.
One one the restrictions of BGI was that it could handle displays, but not printers. To overcome this

limitation, some people developed “printer packages” for BGI. Although they derive from a real need, they
are almost useless in that the force a complete re-write of the high-level code, linking with extra libraries,
etc. By contrast, the solution I propose is a simple “plug-and-play”: the driver should be recoginsed by
any system using BGI that allows user-supplied drivers to be installed (see INSTALL-USER-DRIVER). The
price to pay is, of course, that the driver produces only PostScript output. This postScript can then be
send to a laser printer, inserted in a text document, or converted to another format or device. See for
instance GNU’s “ghostscript”.

The drivers are written in C. This makes them very easy to change, while requiring very little extra
space. An interface to the C code, written in assembly language is provided. Users are free to write their
own BGI drivers using this system.

5.5.1 How to use SPY

SPY is really a very simple driver, that was written mostly to debug the C interfacing (whence the name).
It has only one mode, 1 color (really two—black and white) and a fictive resolution of 100× 100. All it
does is write the graphics requests it receives to the standard output.

5.5.2 How to use PS

PS basically operates like SPY: it translates graphics requests to text, which it then writes to a file (or
the standard output if none is specified). The environment variable “PS$” specifies on which file the
output should go. Beware that the variable cannot be changed from within PcScheme. This is a strange
behaviour I don’t really care to deal with; but it is due to duplication of the environment.

PS accepts a wide variety of display modes, because the Postscript language is by nature pixel-
independent while BGI is pixel-oriented; and the lines’ width, points’ size etc. are determined by the
device’s resolution. There are 6 normal modes, and 6 encapsulated modes. The former create output
ready to send to a printer, while the latter are best suited to create images to be inserted in a document.

There is an eternal problem with color and display versus hardcopy. The colors are not changed, but
the greytones are swapped. This is logical since a screen is black by default, while a blank sheet of paper
is white. The driver accepts the same color requests as a Super-Vga card: 16 colors by default and a
user-settable 256-entry palette. Here are the first preset 16 colors:

21

Index Color Red Green Blue

0 White 100% 100% 100%
1 Dark Blue 0% 0% 50%
2 Dark Green 0% 50% 0%
3 Dark Cyan 0% 50% 50%
4 Dark Red 50% 0% 0%
5 Dark Magenta 50% 0% 50%
6 Dark Brown 50% 50% 0%
7 Dark Grey 50% 50% 50%
8 Light Grey 75% 75% 75%
9 Blue 0% 0% 100%

10 Green 0% 100% 0%
11 Cyan 0% 100% 100%
12 Red 100% 0% 0%
13 Magenta 100% 0% 100%
14 Brown 100% 100% 0%
15 Black 0% 0% 0%

If your printer has no color capabilities, these values are converted to greytones by combining linearly
the RGB percentages.

Mode Type Resolution Page Size [inches]

0 Postscript 100× 100 7× 7
1 Postscript 320× 200 11.2× 7
2 Postscript 640× 480 9.333× 7
3 Postscript 1024× 768 9.333× 7
4 Postscript 1024× 1024 7× 7
5 Postscript 2048× 2048 7× 7
6 Encapsulated 100× 100 7× 7
7 Encapsulated 320× 200 11.200× 7
8 Encapsulated 640× 480 9.333× 7
9 Encapsulated 1024× 768 9.333× 7

10 Encapsulated 1024× 1024 7× 7
11 Encapsulated 2048× 2048 7× 7

An example of PS can be seen in the Hershey sample code. PS has been used there to insert sample
displays in a TEX document.

There are no restrictions nor royalties associated to the use, distibution or modification of PS and
SPY.

22

Chapter 6

PcScheme BGI primitives reference

This section is a list of recognized BGI primitives, by category. In each category, they are sorted by
“logical” order, that is, the simplest is at the beginning and the most seldom used or complex at the end.
Essential procedures are marked with a harpoon (←֓) in the margin. Optional parameters are enclosed
in square brackets ([]).

Color, video modes and some other types of parameters for which symbols are listed in this list can be
entered either as symbol or as the corresponding number; numbers exist only for BGI compatibility, but
you should only use symbols, as they are more “human”. When a function such as GET-TEXT-SETTINGS
is used, a symbol is returned. The only exceptions are GET-COLOR which returns a number to avoid
confusion when re-mapping the palette, and GET-GRAPH-MODE because the corresponding symbol depends
on the currently loaded driver and might be not available when using an user-installed driver. Equivalence
tables can be found in the BGI-ENVIRONMENT.

6.1 The Graphics Control System

(INIT-GRAPH [driver [graph-mode [path-for-BGI-files]]]) ←֓

Init-graph loads the BGI driver into memory, initialize all to the defaults values and turn the graphic
device into graphic mode. You cannot issue any graphic command prior to calling INIT-GRAPH. In
addition to these standard operations, PcScheme also reduces the ’CONSOLE window to the bottom 4
lines of screen, i.e. calls (SPLIT-SCREEN 4). Use (FULL-SCREEN) to use the whole text screen.

Driver can be any symbol returned by INSTALL-USER-DRIVER, or one of the following:

’DETECT

’CGA

’MCGA

’EGA

’EGA64

’EGAMONO

’IBM8514

’HERCMONO

’ATT400

’VGA

’PC3270

’DETECT causes auto-detection of graphic hardware. It works only for all the original Borland drivers
except Ibm-8514.

The graph-mode range depends of the BGI driver. It can be obtained using the GET-MAX-MODE

primitive (see below). You can use the following symbols, or a valid number:

’CGA-C0 320× 200, 4 colors
’CGA-C1 320× 200, 4 colors
’CGA-C2 320× 200, 4 colors
’CGA-C3 320× 200, 4 colors

’CGA-HI 640× 200, 2 colors

’MCGA-C0 320× 200, 4 colors
’MCGA-C1 320× 200, 4 colors
’MCGA-C2 320× 200, 4 colors

1if 256K on board

23

’MCGA-C3 320× 200, 4 colors
’MCGA-MED 640× 200, 2 colors
’MCGA-HI 640× 480, 2 colors

’ATT400-C0 320× 200, 4 colors
’ATT400-C1 320× 200, 4 colors
’ATT400-C2 320× 200, 4 colors
’ATT400-C3 320× 200, 4 colors
’ATT400-MED 640× 200, 2 colors
’ATT400-HI 640× 400, 2 colors

’EGA-LO 640× 200, 16 colors, 4 pages

’EGA-HI 640× 350, 16 colors, 2 pages
’EGA64-LO 640× 200, 16 colors
’EGA64-HI 640× 350, 16 colors
’EGAMONO-HI 640× 350, 2 colors, 2 pages1

’VGA-LO 640× 200, 16 colors, 2 pages
’VGA-MED 640× 350, 16 colors, 2 pages
’VGA-HI 640× 480, 16 colors

’HERCMONO-HI 720× 348, 2 colors, 2 pages
’PC3270-HI 720× 350, 2 colors
’IBM8514-LO 1024× 768, 256 colors
’IBM8514-HI 640× 480, 256 colors

’CGA-C〈n〉 are modes with same resolution but different palettes:

• Mode 0 allows BACKGROUND, LIGHT-GREEN, LIGHT-RED and YELLOW

• Mode 1 allows BACKGROUND, LIGHT-CYAN, LIGHT-MAGENTA and WHITE

• Mode 2 allows BACKGROUND, GREEN, RED and BROWN

• Mode 3 allows BACKGROUND, CYAN, MAGENTA and LIGHT-GRAY

This is true for ’MCGA-C〈n〉 and ’ATT400-C〈n〉 too.
The default values are:

driver ’DETECT

mode Best colors, best resolution
path-for-BGI-files PCS-SYSDIR, the directory containing BOOTSTRP.APP

(SET-WRITE-MODE wmode)

←֓

This global setting allows you to choose what to do when drawing overwrite a previously plotted object.
Wmode can be one of the following:

’COPY (this is the default)
’XOR

This function currently works only for lines, rectangles, polygons and text. PUT-IMAGE has his own
setting, with other possible modes.

(RESTORE-CRT-MODE) ←֓

This brings the display back to the text mode when INIT-GRAPH was used, but doesn’t unload BGI
drivers from memory. It is useful with SET-GRAPH-MODE to toggle between graphic and text mode.

(SET-GRAPH-MODE [mode]) ←֓

This changes the current video mode to the one given as parameter. Correct values are listed un-
der INIT-GRAPH, or can be obtained by a call to GET-MAX-MODE. SET-GRAPH-MODE can be used with
RESTORE-CRT-MODE to toggle between graphics and text.

The default value for mode is the previously used graph mode.

(CLOSE-GRAPH) ←֓

This turns the video adapter back to text mode, and unloads the driver from memory. You should always
use CLOSE-GRAPH at the end of your graph programs, or you have risks to load another copy of BGI driver
into memory each time you start it, which would cause sooner or later a fatal out-of-memory error.

24

(GRAPH-DEFAULTS)

This resets all graphics settings to their default values:

• Sets the viewport to entire screen

• Moves the pen to upper left corner

• Sets the default colors and palette

• Sets all default style, patterns, text fonts and justification

(DETECT-GRAPH)

Tries to recognize the video hardware present in the computer, and returns the detected adapter with
the best mode available. See the list of adapters and modes under INIT-GRAPH. The returned driver and
mode (in a pair) can be used to find out what would be the result of a call to (INIT-GRAPH ’DETECT).
User drivers and ’IBM8514 cannot be auto-detected.

(GET-MODE-RANGE [driver])

Returns the range of values acceptable as graphics mode for a given video hardware. If driver is not
valid, returns ’(-1 . -1); otherwise returns a pair made of the smallest and the largest mode.

This works with Borland “factory” drivers only. Preferably use GET-MAX-MODE.
The default value for driver is the current driver.

(GET-GRAPH-MODE)

Returns the current graphic mode number. Can be used with SET-GRAPH-MODE to remember and restore
the video mode from a session to the other, but should be used carefully in order to maintain device-
independence of programs.

(INSTALL-USER-DRIVER name)

Installs the driver whose name is specified as user BGI driver. The HP95LX driver should be used this
way, since it is not part of the standard BGI drivers. INSTALL-USER-DRIVER establishes a link between
the driver and the list of known drivers. It returns a symbol, made of name, which can then be used
when calling INIT-GRAPH. The argument name is a string.

(INSTALL-USER-FONT name)

Installs the font whose name is specified as user font, and returns its symbolic equivalent in same manner
as INSTALL-USER-DRIVER.

6.2 Drawing

(LINE start-point end-point) ←֓

Draws a line using current color, line-style and write-mode. Start-point and end-point are points for the
current coordinate system, i.e. pairs by default.

(RECTANGLE upper-left-point lower-right-point) ←֓

Draws an empty rectangle using current color, line-style, write-mode.

25

(DRAW-POLY list-of-points) ←֓

Draws a polygon, i.e. lines from points to points. If you want the polygon to be closed, you need to put
the first point again at the end of the list.

(CIRCLE center-point radius) ←֓

Draws a circle using current color and thickness (part of line-style). If your circles look oval, use
SET-ASPECT-RATIO to correct them.

(ARC center-point start-angle end-angle radius)

Draws an arc of circle using color and thickness (see CIRCLE). Angles are given in degrees, using whole
numbers. ARC returns the coordinates of the arc as GET-ARC-COORDS would have do it.

(ELLIPSE center-point start-angle end-angle distances)

Exactly the same as ARC, but distances is a pair of X and Y radius. To draw a whole ellipse, let
start-angle = 0 and end-angle = 360.

(GET-ARC-COORDS)

Returns a list of three points: the center-point of the last arc drawn, the starting-point and the ending-
point (i.e. 3 pairs). This command is useful if you want to join lines and arc curves.

(SET-ASPECT-RATIO factor)

Factor is a pair of integers p and q representing a rational number, p/q, a coefficient by which the radius
is multiplied to obtain the y-radius when drawing a circle or an arc. Use this function either to adjust
circles when your video adapter makes circles oval, or to draw ellipses of given proportion but of different
sizes.

(GET-ASPECT-RATIO)

Returns the factor as described in SET-ASPECT-RATIO.

(SET-LINE-STYLE line-style user-pattern thickness) ←֓

Sets the line drawing parameters: style and width. If line-style is ’USER-BIT, user-pattern is a 16-
bit integer specifying the pattern used to draw straight lines. For instance, a user-defined pattern of
#b1110001110001010 would draw “ ”.

Line-style is one of the following:

’SOLID

’DOTTED

’CENTER

’DASHED

’USER-BIT

Thickness can be any positive integer, and in particular:

’NORMAL which is 1
’THICK which is 3

Other values are not illegal, but do not necessarily produce different results.

26

(GET-LINE-SETTINGS)

Returns the list made of the three settings described in SET-LINE-STYLE.

(MOVE-TO point)

Moves the “pen” to the given position, without changing anything on the screen.

(LINE-TO point)

Draws a line from the current “pen” position to point, using the current line style, color and thickness

(MOVE-REL distances)

Same as MOVE-TO, except the move is done relatively to the current pen position.

(LINE-REL distances)

You make a soup with LINE-TO and MOVE-REL and you’ll get it right.

6.3 Filling

(FLOOD-FILL start-point stop-color) ←֓

Fills a region of the screen starting from start-point until stop-color is encountered. When used with
open shapes, the whole screen might get filled.

FLOOD-FILL is not yet supported for Ibm-8514 and Hp95lx drivers. Where possible, avoid using
FLOOD-FILL.

(BAR upper-left-point lower-right-point) ←֓

Draws a solid 2-dimensional bar without outlet, using the current fill pattern and fill color.

(BAR-3D upper-left-point lower-right-point depth top?)

Draws a solid 3-dimensional bar with outlets, using the current fill pattern and fill color for the front
face, and current line width and color for outlet. Depth is the 3rd dimension, given in the X-dimension
coordinate system. Top? is #T if a top should be drawn, and #F if not. #T and #F can be replaced by 1
and 0). This function is very useful for drawing bar charts.

(FILL-POLY list-of-points)

Draws a filled polygon using the current fill pattern and color. See DRAW-POLY.

(FILL-ELLIPSE center-point distances) ←֓

Draws a filled ellipse using the current fill pattern and color.

(PIE-SLICE center-point start-angle end-angle radius)

Fills a slice of pie. Angles are given in degrees. Use SET-ASPECT-RATIO if your pie looks sad.

27

(SECTOR center-point start-angle end-angle distances)

Draws a slice of a filled ellipse using current fill pattern and fill color (most general function).

(SET-FILL-STYLE fill-style color) ←֓

Sets the current fill pattern to one of the defined pattern and selects the fill color. Fill-style can be one
of the following:

’EMPTY all background color
’SOLID all fill color

’LINE continuous

’LTSLASH light ��������

’SLASH thick ����������

’LTBKSLASH light ❅❅❅❅❅❅❅❅

’BKSLASH thick ❅❅❅❅❅❅❅❅❅❅
’HATCH hatch

’XHATCH X-hatch ❅❅❅❅❅❅❅❅❅❅����������
’INTERLEAVE 50% grey
’CLOSE-DOT 20% grey
’WIDE-DOT 10% grey
’USER-FILL

Don’t use (SET-FILL-STYLE ’USER-FILL ...), but use SET-FILL-PATTERN instead, or you might get
unpredictable results.

For a table of color constants, see SET-COLOR below.

(SET-FILL-PATTERN fill-pattern color) ←֓

This call is similar to SET-FILL-STYLE, except that it sets a user-defined pattern instead of a predefined
one. A fill-pattern is an 8x8 matrix used to fill surfaces; at the PcSchemelevel, it is a list of 8-bit
integers, each coding one row. Normally there will be 8 elements in the list but if you put less, PCS will
assume you want to repeat periodically the given ones. For example, the chain pattern

(SET-FILL-PATTERN ’(#b01000100

#b00111000

#b01000100

#b01000100

#b01000100

#b00111000

#b01000100

#b01000100) ’BLUE)

will produce the same result as

(SET-FILL-PATTERN ’(#b00111000

#b01000100

#b01000100

#b01000100) ’BLUE)

(GET-FILL-SETTINGS)

This returns a pair containing the standard fill style number and the fill color. If the fill style number is
12 (’USER-FILL), you can issue a call to GET-FILL-PATTERN to get the exact pattern.

28

(GET-FILL-PATTERN)

This returns a string containing the fill pattern.

6.4 Bitmapping

(CLEAR-DEVICE) ←֓

Fills the whole screen with the background color and moves the pen to the upper-left corner.

(PUT-PIXEL point color) ←֓

Plots a single pixel at coordinates specified by point, using the desired color (see SET-COLOR below for
color names).

(GET-PIXEL point) ←֓

Returns the color number of the selected pixel.

(GET-IMAGE upper-left-point lower-right-point) ←֓

Returns an image-string containing all bitmap data for the rectangle enclosed between the two given
points. Don’t try to look at too big strings of this type, or you might have to wait for a long time until
you reach the end, especially if there is a bell every two chars. . .

You should use IMAGE-SIZE to figure out how much memory a bitmap needs, and never allocate an
image of 32Kb or more.

(PUT-IMAGE new-upper-left-point image-string put-mode) ←֓

Rewrites (very quickly!) the whole image saved in image-string, with the upper left corner at new-upper-
left-point. You can use various displaying methods:

’COPY ’XOR ’OR ’AND ’NOT

This function can be used to animate a small shape on the screen.

(IMAGE-SIZE upper-left-point lower-right-point)

Returns the size in bytes required to store the bitmap enclosed between the two given points.

(SET-VIEWPORT upper-left-point lower-right-point clip?)

Translates the coordinate system so that the coordinates of screen upper-left corner before a call are the
same as the coordinates of upper-left-point after the call; moves the pen to this point; if clip? is #T or 1,
clip all incoming function calls to the rectangle between the two points (i.e. no drawing will occur outside
of this zone).

The redefinition of viewport is always relative to the whole screen, using the global (user- or not)
coordinates system.

(CLEAR-VIEWPORT)

Fills the active viewport with the background color and moves the pen to the upper left corner of the
viewport.

29

(GET-VIEW-SETTINGS)

Returns the list of SET-VIEWPORT’s three parameters (where clip? is either 1 or 0).

(SET-ACTIVE-PAGE page)

For graphic adapters which support more than one page (see the table at INIT-GRAPH), this functions
allows one to choose on which page the next drawings should have effect.

It doesn’t have to be the visual page, so one can draw off-screen and then bring the prepared page
using just one command (see SET-VISUAL-PAGE).

(SET-VISUAL-PAGE page)

For graphic adapters which support more than one page this functions allows one to choose which page
is to be displayed on the screen.

It doesn’t have to be the active page, so one can draw off-screen and then bring the prepared page
using just one command (see SET-ACTIVE-PAGE).

6.5 Writing text

(OUT-TEXT-XY start-point text-string) ←֓

Writes text-string starting from start-point according to current justification (see SET-TEXT-JUSTIFY) and
text style (see SET-TEXT-STYLE). The current color and write mode are used.

(OUT-TEXT text-string)

Writes text-string starting at the current pen position, according to current justification, style, color and
write mode. If the current direction is ’HORIZ and the text justification is ’LEFT, the pen is moved to
the right of the text; otherwise, it is left unchanged.

(SET-TEXT-STYLE font direction size) ←֓

Sets text appearance properties. Font can be either a number returned by INSTALL-USER-FONT or one of
the following, where ’DEFAULT is the only bit-mapped font:

’DEFAULT

’TRIPLEX

’SMALL

’SANS-SERIF

’GOTHIC

’SCRIPT

’SIMPLEX

’TRIPLEX-SCR

’COMPLEX

’EUROPEAN

’BOLD

Direction is ’HORIZ or ’VERT.
Size is either a number from 1 to 10, or 0 for the default size. The default size will produce a size of

4, but will also enable user character sizes (see SET-USER-CHAR-SIZE below).

(SET-TEXT-JUSTIFY horiz-just vert-just) ←֓

Choose where to align the text. Horiz-just is one of the following:

’LEFT ’CENTER ’RIGHT

Vert-just is one of the following:

’BOTTOM ’CENTER ’TOP

For example, ’LEFT means that the starting-point is on the top left edge of the text.

30

(GET-TEXT-SETTINGS)

Returns a list of the five text settings: font, direction, size, horizontal and vertical justification.

(SET-USER-CHAR-SIZE x-ratio y-ratio)

When font-size is set to 0, this allows you to give the font any width and height. The font’s X and Y
sizes are multiplied by the x- and y-ratios. Ratios are rational numbers, i.e. pairs of integers.

(TEXT-SIZE text-string) ←֓

Returns a pair containing the width and height of text-string using the current font. It doesn’t care about
text direction. The height is independent of the character written, i.e. an “I” has the same height as an
“x”.

6.6 Using Color

(SET-COLOR color) ←֓

Sets the current color for all drawing functions. If you are have 16 or more colors, color can be one of
the following:

Symbol Equivalent number

’BLACK 0
’BLUE 1
’GREEN 2
’CYAN 3
’RED 4
’MAGENTA 5
’BROWN 6
’LIGHT-GRAY 7
’DARK-GRAY 8
’LIGHT-BLUE 9
’LIGHT-GREEN 10
’LIGHT-CYAN 11
’LIGHT-RED 12
’LIGHT-MAGENTA 13
’YELLOW 14
’WHITE 15

If you are usingCga, Mcga orAtt-400 four-color modes, you should use instead the following constants,
depending on your palette:

0 ’BACKGROUND ’CGA-LIGHT-GREEN ’CGA-LIGHT-RED ’CGA-YELLOW

1 ’BACKGROUND ’CGA-LIGHT-CYAN ’CGA-LIGHT-MAGENTA ’CGA-WHITE

2 ’BACKGROUND ’CGA-GREEN ’CGA-RED ’CGA-BROWN

3 ’BACKGROUND ’CGA-CYAN ’CGA-MAGENTA ’CGA-LIGHT-GRAY

You can change the effect of SET-COLOR using SET-PALETTE. With Cga-style adapters, only the first color
(i.e. black, the background color) can be changed (it is best to use SET-BK-COLOR).

If you totally re-map the palette with a Ega or Vga adapter, use SET-COLOR with numbers rather
than with symbols, since it doesn’t make programs very clear when (SET-COLOR ’BLUE) turns color to
green for example. . .

31

(SET-BK-COLOR color) ←֓

Sets the background color to the specified color. Color can be any of the following (for Cga-likes too):

Symbol Equivalent number

’BLACK 0
’BLUE 1
’GREEN 2
’CYAN 3
’RED 4
’MAGENTA 5
’BROWN 6
’LIGHT-GRAY 7
’DARK-GRAY 8
’LIGHT-BLUE 9
’LIGHT-GREEN 10
’LIGHT-CYAN 11
’LIGHT-RED 12
’LIGHT-MAGENTA 13
’YELLOW 14
’WHITE 15

On Cga-ish and Ega systems, SET-BK-COLOR only changes the entry 0 of the palette.
If you totally re-map the palette with a Ega or Vga adapter, use SET-BK-COLOR with numbers rather

than symbols.

(GET-COLOR)

Returns current color number (not symbol, since a palette change would mix-up everything).

(GET-BK-COLOR)

Returns current background color number.

(GET-MAX-COLOR) ←֓

Returns the number of the greatest acceptable color for current video mode (i.e. #-of-colors minus 1).

(SET-PALETTE entry color)

Re-map the given entry of the palette to the specified color. It is useful for Ega and Vga (for Cga, it
works only with entry 0, i.e. background color). Entry is an integer between 0 and (GET-PALETTE-SIZE),
and color is an integer between 0 and a constant depending on the hardware device. The following
constants are defined:

32

Symbol Equivalent number

’EGA-BLACK 0 (#b000000)
’EGA-BLUE 1 (#b000001)
’EGA-GREEN 2 (#b000010)
’EGA-CYAN 3
’EGA-RED 4 (#b000100)
’EGA-MAGENTA 5
’EGA-LIGHT-GRAY 7
’EGA-BROWN 20
’EGA-DARK-GRAY 56
’EGA-LIGHT-BLUE 57 (#b001001)
’EGA-LIGHT-GREEN 58 (#b010010)
’EGA-LIGHT-CYAN 59
’EGA-LIGHT-RED 60 (#b100100)
’EGA-LIGHT-MAGENTA 61
’EGA-YELLOW 62
’EGA-WHITE 63 (#b111111)

These are the values of the standard Ega and Vga palette. With these adapters, the following code
would be equivalent to (SET-ALL-PALETTE (GET-DEFAULT-PALETTE)):

(SET-PALETTE ’BLACK ’EGA-BLACK)

(SET-PALETTE ’BLUE ’EGA-BLUE)

(SET-PALETTE ’RED ’EGA-RED)

(SET-PALETTE ’GREEN ’EGA-GREEN)

. . .
(SET-PALETTE ’WHITE ’EGA-WHITE)

SET-PALETTE doesn’t works with the Ibm-8514. Use SET-RGB-PALETTE instead.

(SET-RGB-PALETTE entry red green blue)

This function has the same effect as SET-PALETTE, except that it works only with the Vga 256k, the
Ibm-8514, and the Super-Vga adapters. Red, green and blue are the strength of each color component.
The 6 most significants bits of the least significant byte are used.

(SET-ALL-PALETTE color-list)

Color-list is a list of length (GET-PALETTE-SIZE). This remaps all colors at the same time. There is no
“entry” parameter as there was with SET-PALETTE, since all colors are re-mapped in the normal order.

(GET-PALETTE)

Returns a color-list corresponding to current palette.

(GET-DEFAULT-PALETTE)

Returns a list with the default palette values.

(GET-PALETTE-SIZE)

Returns the number of entries in the palette.

33

6.7 Miscellaneous queries

(GET-MAX-XY) ←֓

Returns the maximum screen coordinates using pixel dimensions. (1 unit = 1 pixel). It doesn’t depend
of SET-WORLD! settings, so it can be used to determine the actual resolution of the current video mode,
in order to write your own coordinate conversion routine or to scan the screen pixel per pixel.

(GET-XY)

Returns the current pen location.

(GET-DRIVER-NAME) ←֓

Returns the name of the currently loaded driver, without path and without its ”.BGI” extension. When
no driver is loaded, returns ””. Can be used to know if a call to INIT-GRAPH is necessary or not. A good
startup code would be:

(if (= (GET-DRIVER-NAME) "")

(INIT-GRAPH)

(SET-GRAPH-MODE))

Thus you can abort your program as often as you want, and restart it without filling the memory with
copies of the graphics driver.

(GET-MODE-NAME mode)

Returns a string corresponding to the real name of the specified video mode.

(GET-MAX-MODE)

Returns the maximum possible value for the video mode for the BGI driver currently loaded in memory.
The minimum value is 0.

(GRAPH-ERROR-MSG error-id)

Returns the complete text message corresponding to a detected BGI error (actually used in the debugger;
you shouldn’t need it, except if you want to handle yourself BGI errors).

(GRAPH-RESULT)

Returns the error-id corresponding to last BGI call. Use it with GRAPH-ERROR-MSG to signal an error
(already done for you).

34

