Hemlock Command Implementor’s Manual

Bill Chiles
Rob MacL achlan

February 1992

CMU-CS-89-134-R1

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thisisarevised version of Technical Report CMU-CS-87-159.

Abstract

This document describes how to write commands for the Hemlock text editor, as of version M3.2. Hemlock is a
customizable, extensible text editor whose initial command set closely resembles that of ITSTOPS-20 Emacs.
Hemlock iswritten in the CMU Common Lisp and has been ported to other implementations.

This research was supported by the Defense Advanced Research Projects Agency (DOD), and monitored by the
Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-
Patterson AFB, Ohio 45433-6543 under Contract F33615-87-C-1499, ARPA Order No. 4976, Amendment 20.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. government.

Chapter 1

| ntroduction

Hemlock is a text editor which follows in the tradition of editors such as EMACS and the Lisp Machine editor
ZWEI. In its basic form, Hemlock has almost the same command set as EMACS, and similar features such as
multiple buffers and windows, extended commands, and built in documentation.

Both user extensions and the origina commands are written in Lisp, therefore a command implementor will have
a working knowledge of this language. Users not familiar with Lisp need not despair however. Many users of
Multics EMACS, another text editor written in Lisp, came to learn Lisp simply for the purpose of writing their own
editor extensions, and found, to their surprise, that it was really pretty easy to write ssmple commands.

This document describes the Common Lisp functions, macros and data structures that are used to implement new
commands. The basic editor consists of a set of Lisp utility functions for manipulating buffers and the other data
structures of the editor as well as handling the display. All user level commands are written in terms of these
functions. To find out how to define commands see chapter 7.

Chapter 2

Representation of Text

2.1.Lines

In Hemlock all text isin some line. Text is broken into lines wherever it contains a newline character; newline

characters are never stored, but are assumed to exist between every pair of lines. The implicit newline character is
treated as a single character by the text primitives.

[inep line [Function]

Thisfunction returnst if lineisal i ne object, otherwiseni | .

i ne-string line [Function]

Given aline, this function returns as a simple string the charactersin the line. Thisisset f 'able to set
thel i ne- stri ng to any string that does not contain newline characters. It is an error to destructively
modify the result of | i ne- st ri ng or to destructively modify any string after the | i ne- stri ng of
some line has been set to that string.

ne- previ ous line [Function]
ne- next line [Function]

Given aline, | i ne- previ ous returns the previous line or ni | if thereis no previous line. Similarly,
I i ne- next returnsthelinefollowinglineor ni | .

i ne-buffer line [Function]

This function returns the buffer which contains this line. Since a line may not be associated with any
buffer, in which casel i ne- buf f er returnsni | .

i ne-1 ength line [Function]

This function returns the number of charactersin the line. This excludes the newline character at the end.

i ne-character line index [Function]

This function returns the character at position index within line. It isan error for index to be greater than
the length of the line or less than zero. If index is equal to the length of the line, this returns a
#\ new i ne character.

i ne-plist line [Function]

This function returns the property-list for line. setf, getf, putf andrenf can be used to change
properties. Thisistypically used in conjunction with | i ne- si gnat ur e to cache information about the
line's contents.

i ne-signature line [Function]
This function returns an object that serves as a signature for aline's contents. It is guaranteed that any
modification of text on the line will result in the signature changing so that it is not eql to any previous
value. The signature may change even when the text remains unmodified, but this does not happen often.

2.2. Marks

A mark indicates a specific position within the text represented by aline and a character position within that line.
Although a mark is sometimes loosely referred to as pointing to some character, it in fact points between characters.
If the char pos is zero, the previous character is the newline character separating the previous line from the mark’s
I i ne. If the charpos is equal to the number of characters in the line, the next character is the newline character
separating the current line from the next. 1f the mark’sline has no previous line, a mark with char pos of zero has
no previous character; if the mark’s line has no next line, a mark with char pos equal to the length of the line has
no next character.

This section discusses the very basic operations involving marks, but a lot of Hemlock programming is built on
altering some text at amark. For more extended uses of marks see chapter 4.

2.2.1. Kindsof Marks

A mark may have one of two lifetimes: temporary or permanent. Permanent marks remain valid after arbitrary
operations on the text; temporary marks do not. Temporary marks are used because less bookkeeping overhead is
involved in their creation and use. If atemporary mark is used after the text it points to has been modified results
will be unpredictable. Permanent marks continue to point between the same two characters regardless of insertions
and deletions made before or after them.

There are two different kinds of permanent marks which differ only in their behavior when text is inserted at the
position of the mark; text isinserted to the left of aleft-inserting mark and to the right of right-inserting mark.

2.2.2. Mark Functions

mar kp mark [Function]
Thisfunction returnst if markisanar k object, otherwiseni | .

mar k-1 i ne mark [Function]
This function returns the line to which mark points.

mar k- char pos mark [Function]
This function returns the character position of the character after mark. If mark's line has no next line,
this returns the length of the line as usual; however, there is actually is no character after the mark.

mar k- ki nd mark [Function]
Thisfunction returnsoneof : ri ght-i nserting,:left-insertingor:tenporary depending
on the mark’skind. A corresponding set f form changes the mark’ s kind.

previ ous- character mark [Function]
next - charact er mark [Function]
This function returns the character immediately before (after) the position of the mark, or ni | if thereis
no previous (next) character. These characters may be set with set f when they exist; the set f methods

for these forms signal errors when there is no previous or next character.

2.2.3. Making Marks

mar k line charpos &opti onal kind [Function]
This function returns a mark object that points to the charpos'th character of the line. Kind is the kind of
mark to create, one of : t enporary,:left-inserting,or:right-inserting. Thedefaultis

:tenporary.

copy- mar k mark &optional kind [Function]
This function returns a new mark pointing to the same position and of the same kind, or of kind kind if it
issupplied.

del et e- mar k mark [Function]

This function deletes mark. Delete any permanent marks when you are finished using it.

wi t h-mark ({(mark pos [kind])}*) {form}* [Macro]
This macro binds to each variable mark a mark of kind kind, which defaultsto : t enpor ar y, pointing to
the same position as the mark pos. On exit from the scope the mark is deleted. The value of the last form
isthe value returned.

2.2.4. Moving Marks

These functions destructively modify marks to point to new positions. Other sections of this document describe
mark moving routines specific to higher level text forms than characters and lines, such as words, sentences,
paragraphs, Lisp forms, etc.

nove-t o- posi tion mark charpos &opti onal line [Function]
This function changes the mark to point to the given character position on the line line. Line defaults to
mark’sline.

nove- mar k mark new-position [Function]

This function moves mark to the same position as the mark new-position and returnsiit.

line-start mark &optional line [Function]

i ne-end mark &opti onal line [Function]
This function changes mark to point to the beginning or the end of line and returns it. Line defaults to
mark’sline.

buffer-start mark &opti onal buffer [Function]

buf f er-end mark &opti onal buffer [Function]

These functions change mark to point to the beginning or end of buffer, which defaults to the buffer mark
currently points into. If buffer is unsupplied, then it is an error for mark to be disassociated from any

buffer.
mar k- bef or e mark [Function]
mar k- af t er mark [Function]

These functions change mark to point one character before or after the current position. If there is no
character before/after the current position, then they return ni | and leave mark unmodified.

character-offset mark n [Function]
This function changes mark to point n characters after (n before if n is negative) the current position. |If
there are less than n characters after (before) the mark, then thisreturnsni | and mark is unmodified.

i ne-of fset mark n &opti onal charpos [Function]
This function changes mark to point n lines after (n before if n is negative) the current position. The
character position of the resulting mark is

(mn (line-1ength resulting-line) (rmark-charpos mark))
if charposis unspecified, or

(mn (line-length resulting-line) charpos)
if itis. Aswith character - of f set, if there are not n lines then ni | is returned and mark is not
modified.

2.3. Regions

A region is simply a pair of marks: a starting mark and an ending mark. The text in a region consists of the
characters following the starting mark and preceding the ending mark (keep in mind that a mark points between
characters on aline, not at them).

By modifying the starting or ending mark in aregion it is possible to produce regions with a start and end which
are out of order or even in different buffers. The use of such regions is undefined and may result in arbitrarily bad
behavior.

2.3.1. Region Functions

regi on start end [Function]
This function returns a region constructed from the marks start and end. It is an error for the marks to
point to non-contiguous lines or for start to come after end.

regi onp region [Function]
Thisfunction returnst if regionisar egi on object, otherwiseni | .

make- enpt y-regi on [Function]
This function returns a region with start and end marks pointing to the start of one empty line. The start
markisa: right-inserting mark,andtheendisa: | eft-i nserti ng mark.

copy-regi on region [Function]
This function returns a region containing a copy of the text in the specified region. The resulting region
is completely disoint from region with respect to data references — marks, lines, text, etc.

regi on-to-string region [Function]

string-to-region string [Function]
These functions coerce regions to Lisp strings and vice versa. Within the string, lines are delimited by
newline characters.

line-to-region line [Function]
This function returns a region containing al the characters on line. The first mark is
:right-insertingandthelastis: | eft-inserting.

region-start region [Function]
regi on-end region [Function]
This function returns the start or end mark of region.

regi on- bounds region [Function]
This function returns as multiple-values the starting and ending marks of region.

set -regi on- bounds region start end [Function]
This function sets the start and end of region to start and end. It is an error for start to be after or in a
different buffer from end.

count -1 ines region [Function]
This function returns the number of lines in the region, first and last lines inclusive. A newline is
associated with the line it follows, thus a region containing some number of non-newline characters
followed by one newlineis oneline, but if a newline were added at the beginning, it would be two lines.

count - characters region [Function]
This function returns the number of characters in a given region. This counts line breaks as one
character.

check-regi on-query-si ze region [Function]

Region Query Size (initial value 30) [Hemlock Variabl€]

check-regi on-query-si ze counts the lines in region, and if their number exceeds the
Region Query Size threshold, it prompts the user for confirmation. This should be used in commands
that perform destructive operations and are not undoable. If the user responds negatively, then this
signals an editor-error, aborting whatever command was in progress.

Chapter 3

Buffers

A buffer is an environment within Hemlock consisting of:
1. A name.

2. A piece of text.

3. A current focus of attention, the point.

4. An associated file (optional).

5. A write protect flag.

6. Some variables (page 23).

7. Some key bindings (page 29).

8. Some collection of modes (page 35).

9. Some windows in which it is displayed (page 41).
10. A list of modeline fields (optional).

3.1. The Current Buffer

current-buffer [Function]
Set Buffer Hook [Hemlock Variable]
After Set Buffer Hook [Hemlock Variable]

current - buf f er returnsthe current buffer object. Usually thisisthe buffer that cur r ent - wi ndow
(page 41) is displaying. This value may be changed with setf, and the setf method invokes
Set Buffer Hook before the change occurs with the new value. After the change occurs, the method
invokes After Set Buffer Hook with the old value.

current - poi nt [Function]
This function returns the buf f er - poi nt of the current buffer. This is such a common idiom in
commands that it is defined despite itstrivial implementation.

current-mark [Function]
pop- buf f er - mar k [Function]
push- buf fer-mark mark &opti onal activate-region [Function]

cur r ent - mar k returns the top of the current buffer’s mark stack. There alwaysis at least one mark at
the beginning of the buffer’s region, and all marks returned are right-inserting.

pop- buf f er - mar k pops the current buffer's mark stack, returning the mark. If the stack becomes

10

empty, this pushes a new mark on the stack pointing to the buffer's start. This aways deactivates the
current region (see section 4.4).

push- buf f er - mar k pushes mark into the current buffer's mark stack, ensuring that the mark is
right-inserting. If mark does not point into the current buffer, this signals an error. Optionally, the
current region is made active, but this never deactivates the current region (see section 4.4). Mark is
returned.

puffer-list [Variable]
Thisvariable holds alist of all the buffer objects made with nake- buf f er .

puf f er - nanes [Variable]
This variable holds ast ri ng- t abl e (page 69) of all the names of the buffersin *buffer-1ist*.
The values of the entries are the corresponding buffer objects.

puf f er - hi st ory [Variable]
Thisis alist of buffer objects ordered from those most recently selected to those selected farthest in the
past. When someone makes a buffer, an element of Make Buffer Hook adds this buffer to the end of this
list. When someone deletes a buffer, an element of Delete Buffer Hook removes the buffer from this
list. Each buffer occursinthislist exactly once, but it never containsthe* echo- ar ea- buf f er *.

change-t o- buf f er buffer [Function]
This switches to buffer inthe cur r ent - wi ndowmaintaining buf f er - hi st ory.

previ ous- buf fer [Function]
Thisreturns the first buffer from * buf f er - hi st or y* that isnot thecur r ent - buf f er . If none can
be found, then thisreturnsni | .

3.2. Buffer Functions

make- buf f er name &ey :nodes :nodeline-fields :delete-hook [Function]
Make Buffer Hook [Hemlock Variable]
Default Modeline Fields [Hemlock Variable]

make- buf f er creates and returns a buffer with the given name. If a buffer named name aready exists,
ni | isreturned. Modes is a list of modes which should be in effect in the buffer, major mode first,
followed by any minor modes. If this is omitted then the buffer is created with the list of modes
contained in Default Modes (page 35). Modeline-fields is a list of modeline-field objects (see section
3.3) which may be nil. delete-hook is a list of delete hooks specific to this buffer, and
del et e- buf f er invokesthese along with Delete Buffer Hook.

Buffers created with nake- buf f er are entered into the list *buf fer-1i st *, and their names are
inserted into the string-table * buf f er - names*. When abuffer is created the hook Make Buffer Hook
isinvoked with the new buffer.

buf f er p buffer [Function]
Returnst if buffer isabuf f er object, otherwiseni | .

11

buf f er - name buffer [Function]

Buffer Name Hook [Hemlock Variable]
buf f er - name returns the name, which is a string, of the given buffer. The corresponding set f
method invokes Buffer Name Hook with buffer and the new name and then sets the buffer's name.
When the user supplies a name for which a buffer already exists, the set f method signals an error.

buf f er -regi on buffer [Function]
Returns the buffer’sregion. This can be set with set f. Note, this returns the region that contains all the
text in abuffer, not thecur r ent - r egi on (page 19).

buf f er - pat hname buffer [Function]

Buffer Pathname Hook [Hemlock Variable]
buf f er - pat hnane returns the pathname of the file associated with the given buffer, or nil if it has no
associated file. Thisisthe truename of the file as of the most recent time it was read or written. Thereis
aset f form to change the pathname. When the pathname is changed the hook Buffer Pathname Hook
isinvoked with the buffer and new value.

buffer-wite-date buffer [Function]
Returns the write date for the file associated with the buffer in universal time format. When this the
buf f er - pat hnane isset, useset f to set this to the corresponding write date, or to ni | if the dateis
unknown or thereisnofile.

buf f er - poi nt buffer [Function]
Returns the mark which is the current location within buffer. To move the point, use nove- mar k or
nove-t o- posi ti on (pageb5) rather than setting buf f er - poi nt withset f .

buf f er - mar k buffer [Function]
This function returns the top of buffer’s mark stack. There alwaysis at least one mark at the beginning of
buffer’ sregion, and all marks returned are right-inserting.

buffer-start-mark buffer [Function]
buf f er - end- mar k buffer [Function]
These functions return the start and end marks of buffer’s region:

(buffer-start-mark buffer) <==>
(region-start (buffer-region buffer))

and

(buffer-end-mark buffer) <==>
(region-end (buffer-region buffer))

buf fer-witabl e buffer [Function]

Buffer Writable Hook [Hemlock Variable]
This function returnst if you can modify the buffer, ni | if you cannot. If a buffer is not writable, then
any attempt to alter text in the buffer resultsin an error. Thereisaset f method to change this value.

The set f method invokes the functions in Buffer Writable Hook on the buffer and new value before
storing the new value.

12

buf f er - nodi fi ed buffer [Function]

Buffer Modified Hook [Hemlock Variable]
buf f er-nodi fi ed returnst if the buffer has been modified, ni | if it hasn’t. This attribute is set
whenever a text-altering operation is performed on a buffer. There is a set f method to change this
value.

Theset f method invokes the functions in Buffer Modified Hook with the buffer whenever the value of
the modified flag changes.

with-writabl e-buffer (buffer) & est forms [Macro]
This macro executes forms with buffer’s writable status set. After forms execute, this resets the buffer’s
writable and modified status.

buf f er - si gnat ur e buffer [Function]
This function returns an arbitrary number which reflects the buffer’s current signature. Theresult iseql
to apreviousresult if and only if the buffer has not been modified between the calls.

buf f er - vari abl es buffer [Function]
This function returns a string-table (page 69) containing the names of the buffer’s local variables. See
chapter 6.

buf f er - nodes buffer [Function]

This function returns the list of the names of the modes active in buffer. The major mode is firgt,
followed by any minor modes. See chapter 8.

buf f er - wi ndows buffer [Function]
This function returns the list of all the windows in which the buffer may be displayed. This list may
include windows which are not currently visible. See page 41 for a discussion of windows.

buf f er - del et e- hook buffer [Function]
This function returns the list of buffer specific functions del et e- buf f er invokes when deleting a
buffer. Thisisset f 'able.

del et e- buf f er buffer [Function]

Delete Buffer Hook [Hemlock Variable]
del et e- buf fer removes buffer from *buffer-list* (page 10) and its name from
puf f er - names (page 10). Before buffer is deleted, thisinvokes the functions on buffer returned by
buffer-del ete-hook and those found in Delete Buffer Hook. If buffer is the
current-buf fer, orifitisdisplayed in any windows, then this function signals an error.

del et e-buffer-if-possibl e buffer [Function]
Thisusesdel et e- buf f er to delete buffer if at all possible. If buffer isthecurr ent - buf f er, then
thissetsthecur r ent - buf f er to thefirst distinct buffer in buf f er - hi st ory. If buffer is displayed
in any windows, then this makes each window display the same distinct buffer.

3.3. Moddlines

A Buffer may specify a modeline, a line of text which is displayed across the bottom of a window to indicate
status information. Modelines are described as a list of nodel i ne-fi el d objects which have individual update

13

functions and are optionally fixed-width. These have an eql name for convenience in referencing and updating, but
the name must be unique for all created modeline-field objects. When creating a modeline-field with a specified
width, the result of the update function is either truncated or padded on the right to meet the constraint. All
modeline-field functions must return simple strings with standard characters, and these take a buffer and a window
as arguments. Modeline-field objects are typically shared amongst, or aliased by, different buffers modeline fields
lists. These lists are unique alowing fields to behave the same wherever they occur, but different buffers may
display these fieldsin different arrangements.

Whenever one of the following changes occurs, all of a buffer’s modeline fields are updated:
« A buffer’'smagjor modeis set.

* One of abuffer’s minor modesis turned on or off.
* A buffer is renamed.

* A buffer’s pathname changes.

« A buffer’'s modified status changes.

« A window’s buffer is changed.

The policy isthat whenever one of these changes occurs, it is guaranteed that the modeline will be updated before
the next trip through redisplay. Furthermore, since the system cannot know what modeline-field objects the user has
added whose update functions rely on these values, or how he has changed Default Modeline Fields, we must
update all the fields. When any but the last occurs, the modeline-field update function is invoked once for each
window into the buffer. When a window’s buffer changes, each modeline-field update function is invoked once;
other windows modeline fields should not be affected due to a given window’ s buffer changing.

The user should note that modelines can be updated at any time, so update functions should be careful to avoid
needless delays (for example, waiting for alocal area network to determine information).

nmake- nodel i ne-field &ey :nane :wi dth :function [Function]
nodel i ne-fi el d-p modeline-field [Function]
nodel i ne-fi el d- name modeline-field [Function]

make- nodel i ne-fi el d returns a modeline-field object with name, width, and function. Width
defaultsto ni | meaning that the field is variable width; otherwise, the programmer must supply this as a
positive integer. Function must take a buffer and window as arguments and return asi npl e-stri ng
containing only standard characters. If name already names a modeline-field object, then this signals an
error.

nodel i ne-fi el d- name returns the name field of a modeline-field object. If thisis set with set f,
and the new name already names a modeline-field, then the set f method signals an error.

nodel i ne-fiel d-p returnst or ni |, depending on whether its argument is anodel i ne-fi el d
object.

nodel i ne-field name [Function]
This returns the modeline-field object named name. If none exists, this returns nil.

nodel i ne-fiel d-functi on modedinefield [Function]
Returns the function called when updating the modeline-field. When this is set with set f , the set f
method updates modeline-field for all windows on all buffers that contain the given field, so the next trip
through redisplay will reflect the change. All modeline-field functions must return simple strings with
standard characters, and they take a buffer and a window as arguments.

14

nodel i ne-fi el d-w dt h moddinefield [Function]
Returns the width to which modeline-field is constrained, or ni | indicating that it is variable width.
When thisis set with set f , the set f method updates all modeline-fields for al windows on al buffers
that contain the given field, so the next trip through redisplay will reflect the change. All the fields for
any such modeline display must be updated, which is not the case when setting a modeline-field’s
function.

buf f er - nodel i ne-fi el ds buffer [Function]
Returns a copy of the list of buffer’s modeline-field objects. This list can be destructively modified
without affecting display of buffer’s modeline, but modifying any particular field's components (for
example, width or function) causes the changes to be reflected the next trip through redisplay in every
modeline display that uses the modified modeline-field. ~ When this is set with setf,
updat e- nodel i ne-fi el ds iscalled for each window into buffer.

buf f er - nodel i ne-fi el d-p buffer field [Function]
If field, a modeline-field or the name of one, is in buffer’s list of modeline-field objects, it is returned;
otherwise, this returns nil.

updat e- nodel i ne-fi el ds buffer window [Function]
This invokes each modeline-field object’s function from buffer’s list, passing buffer and window. The
results are collected regarding each modeline-field object’s width as appropriate, and the window is
marked so the next trip through redisplay will reflect the changes. |If window does not display modelines,
then no computation occurs.

updat e- nodel i ne-fi el d buffer window field-or-name [Function
This invokes the modeline-field object’s function for field-or-name, which is a modeline-field object or
the name of one for buffer. This passes buffer and window to the update function. The result is applied to
the window' s modeline display using the modeline-field object’ s width, and the window is marked so the
next trip through redisplay will reflect the changes. |If the window does not display modelines, then no
computation occurs. If field-or-name is not found in buffer’s list of modeline-field objects, then this
signalsan error. Seebuf f er - nodel i ne-fi el d- p above.

15

Chapter 4

Altering and Searching Text

4.1. Altering Text

A note on marks and text alteration: : t enrpor ar y marks are invalid after any change has been made to the text
the mark pointsto; it isan error to use atemporary mark after such a change has been made. If text is deleted which
has permanent marks pointing into it then they are left pointing to the position where the text was.

i nsert-character mark character [Function]
i nsert-string mark string [Function]
i nsert-region mark region [Function]

Inserts character, string or region at mark. i nsert-charact er signals an error if character is not
string-char-p. If string or region is empty, and mark is in some buffer, then Hemlock leaves
buf f er - nodi fi ed of mark’s buffer unaffected.

ni nsert-regi on mark region [Function]
Likei nsert-regi on, inserts the region at the mark’s position, destroying the source region. This
must be used with caution, since if anyone else can refer to the source region bad things will happen. In
particular, one should make sure the region is not linked into any existing buffer. If region is empty, and
mark isin some buffer, then Hemlock leaves buf f er - nodi f i ed of mark’s buffer unaffected.

del ete-characters mark n [Function]
This deletes n characters after the mark (or -n before if nis negative). If n characters after (or -n before)
the mark do not exist, then this returns ni | ; otherwise, it returnst . If nis zero, and mark is in some
buffer, then Hemlock leaves buf f er - modi f i ed of mark’s buffer unaffected.

del et e-regi on region [Function]
This deletes region. This is faster than del et e- and- save-r egi on (below) because no lines are
copied. If region is empty and contained in some buffer's buf f er - r egi on, then Hemlock leaves
buf f er - nodi f i ed of the buffer unaffected.

del et e- and- save-r egi on region [Function]
This deletes region and returns a region containing the original region’s text. If region is empty and
contained in some buffer'sbuf f er - r egi on, then Hemlock leaves buf f er - nodi f i ed of the buffer
unaffected. In this case, this returns a distinct empty region.

16

filter-regi on function region [Function]
Destructively modifies region by replacing the text of each line with the result of the application of
function to a string containing that text. Function must obey the following restrictions:
1. The argument may not be destructively modified.

2. The return value may not contain newline characters.

3. Thereturn value may not be destructively modified after it is returned from function.
The strings are passed in order, and are always simple strings.

Using this function, a region could be uppercased by doing:
(filter-region # string-upcase region)

4.2. Text Predicates

start-line-p mark [Function]
Returnst if the mark points before the first character in aline, ni | otherwise.

end-1ine-p mark [Function]
Returnst if the mark points after the last character in aline and before the newline, ni | otherwise.

enpty-1line-p mark [Function]
Returnt of the line which mark points to contains no characters.

bl ank-1i ne-p line [Function]
Returnst if line contains only characters with a Whitespace attribute of 1. See chapter 9 for discussion
of character attributes.

bl ank- bef ore-p mark [Function]

bl ank- aft er-p mark [Function]
These functions test if all the characters preceding or following mark on the line it is on have a
Whitespace attribute of 1.

same-1ine-p markl mark2 [Function]
Returnst if markl and mark2 point to the sameline, or ni | otherwise; That is,
(sanme-line-p a b) <==> (eq (mark-line a) (mark-line b))

mar k< markl mark2 [Function]
mar k<= markl mark?2 [Function]
mar k= markl mark2 [Function]
mar k/ = markl mark2 [Function]
mar k>= markl mark2 [Function]
mar k> markl mark2 [Function]

These predicates test the relative ordering of two marksin a piece of text, that isamark ismar k> another
if it points to a position after it. If the marks point into different, non-connected pieces of text, such as
different buffers, then it is an error to test their ordering; for such marks mar k= is always false and
mar k/ = isawaystrue.

17

i ne< linel line2 [Function]
I i ne<= linel line2 [Function]
I i ne>= linel line2 [Function]
line> linel line2 [Function]

These predicates test the ordering of linel and line2. If the lines are in unconnected pieces of text it isan
error to test their ordering.

[ines-rel ated linel line2 [Function]
Thisfunction returnst if linel and line2 are in the same piece of text, or ni | otherwise.

first-line-p mark [Function]

[ast-1ine-p mark [Function]
first-line-preturnst if thereisno line before the line mark ison, and ni | otherwise. Last-line-p
similarly tests tests whether there is no line after mark.

4.3. Kill Ring

Kill-ring [Variable]
Thisis aring (see section 16.2) of regions deleted from buffers. Some commands save affected regions
on the kill ring before performing modifications. You should consider making the command undoable
(see section 16.3), but thisis a simple way of achieving aless satisfactory means for the user to recover.

kill-region region current-type [Function]
This kills region saving it in *kill-ring*. Current-type is either :kill-forward or
ckill-backward. Whenthel ast - comrand-t ype (page 31) isone of these, this adds region to
the beginning or end, respectively, of thetop of *ki | | -ri ng*. The result of calling thisis undoable
using the command Undo (see the Hemlock User's Manual). This sets | ast - conmrand-t ype to

current-type, and it interactswith ki | | - char act ers.
kill-characters mark count [Function]
Character Deletion Threshold (initial value 5) [Hemlock Variable]
kill-characters kills count characters after mark if count is positive, otherwise before mark if

count is negative. When count is greater than or equal to Character Deletion Threshold, the killed
charactersaresaved on* ki | | - ri ng*. Thismay be called multiple times contiguously (that is, without
| ast - command-t ype (page 31) being set) to accumulate an effective count for purposes of com-
parison with the threshold.

This sets| ast - conmand- t ype, and it interacts with ki | | - r egi on. When this adds a new region
to *kil I -ring*, it sets | ast-conmand-type to : kill-forward (if count is positive) or
tkill-backward (if count is negative). When | ast - command-type is:kill-forward or
: ki 'l - backwar d, this adds the killed characters to the beginning (if count is negative) or the end (if
count is positive) of thetop of *ki | | -ri ng*, and it sets| ast - conmand-t ype asif it added a new
region to *kill-ring*. When the kill ring is unaffected, this sets | ast - conmand-t ype to
:char-kill-forward or : char-Kkill-backward depending on whether count is positive or
negative, respectively.

This returns mark if it deletes characters. If there are not count characters in the appropriate direction,
this returns nil.

18

4.4. Active Regions

Every buffer has a mark stack (page 9) and a mark known as the point where most text altering nominally occurs.
Between the top of the mark stack, the current-nark, and the current-buffer’s point, the
current - poi nt, iswhat is known as the cur r ent - r egi on. Certain commands signal errors when the user
tries to operate on the cur r ent - r egi on without its having been activated. If the user turns off this feature, then
thecur rent - r egi on iseffectively always active.

When writing a command that marks a region of text, the programmer should make sure to activate the region.
This typically occurs naturally from the primitives that you use to mark regions, but sometimes you must explicitly
activate the region. These commands should be written this way, so they do not require the user to separately mark
an area and then activate it. Commands that modify regions do not have to worry about deactivating the region
since modifying a buffer automatically deactivates the region. Commands that insert text often activate the region
ephemerally; that is, the region is active for the immediately following command, allowing the user wants to delete
the region inserted, fill it, or whatever.

Once a marking command makes the region active, it remains active until:
» acommand uses the region,

« acommand modifies the buffer,
« acommand changes the current window or buffer,
« acommand signals an editor-error,

* or the user types C-g.

Active Regions Enabled (initia valuet) [Hemlock Variabl€]
When this variable is non-ni | , some primitives signal an editor-error if the region is not active. This
may be settoni | for more traditional Emacs region semantics.

epheneral | y-acti ve- conmand-t ypes [Variable]
This is a list of command types (see section 7.3), and its initial value is the list of
:epheneral | y-active and : unki | | . When the previous command’s type is one of these, the

current-region is active for the currently executing command only, regardless of whether it does
something to deactivate the region. However, the current command may activate the region for future
commands. : epheneral |l y-acti ve is a default command type that may be used to ephemerally
activatetheregion, and : unki I | isthetype used by two commands, Un-kill and Rotate Kill Ring (what
userstypically think of as C-y and M-y).

activate-region [Function]
Thismakesthecur r ent - r egi on active.

deacti vat e-regi on [Function]
After invoking thisthecur r ent - r egi on isno longer active.

regi on-active-p [Function]
Returns whether the current-region is active, including ephemeraly. This ignores
Active Regions Enabled.

19

check-regi on-active [Function]
This signals an editor-error when active regions are enabled, and the cur r ent - r egi on isnot active.

current-region &optional error-if-not-active deactivate-region [Function]
This returns a region formed with current - mar k and cur rent - poi nt, optionaly signaling an
editor-error if the current region is not active. Error-if-not-active defaults to t . Each call returns a
distinct region object. Depending on deactivate-region (defaults to t), fetching the current region deac-
tivates it. Hemlock primitives are free to modify text regardless of whether the region is active, so a
command that checks for this can deactivate the region whenever it is convenient.

4.5. Sear ching and Replacing

Before using any of these functions to do a character search, look at character attributes (page 37). They provide
afacility similar to the syntax table in real EMACS. Syntax tables are a powerful, general, and efficient mechanism
for assigning meanings to charactersin various modes.

search-char-code-limt [Constant]
An exclusive upper limit for the char-code of characters given to the searching functions. The result of
searches for characters with a char-code greater than or equal to this limit is ill-defined, but it is not an
error to do such searches.

new search-pattern kind direction pattern &opti onal result-search-pattern [Function]
Returns a search-pattern object which can be given to the fi nd- pattern and r epl ace-pattern
functions. A search-pattern is a specification of a particular sort of search to do. direction is either
: forward or : backwar d, indicating the direction to search in. kind specifies the kind of search
pattern to make, and pattern is a thing which specifies what to search for.

The interpretation of pattern depends on the kind of pattern being made. Currently defined kinds of
search pattern are:

:string-insensitive
Does a case-insensitive string search, pattern being the string to search for.

:string-sensitive
Does a case-sensitive string search for pattern.

: character Finds an occurrence of the character pattern. Thisis case sensitive.

:not - character
Find a character which is not the character pattern.

‘test Finds a character which satisfies the function pattern. This function may not be
applied an any particular fashion, so it should depend only on what its argument is,
and should have no side-effects.

:test-not Similartoas: t est, except it finds a character that fails the test.
;any Finds a character that isin the string pattern.
: not - any Finds a character that is not in the string pattern.

result-search-pattern, if supplied, is a search-pattern to destructively modify to produce the new pattern.
Where reasonable this should be supplied, since some kinds of search patterns may involve large data
structures.

20

sear ch-pattern-p search-pattern [Function]
Returnst if search-patternisasear ch- pat t er n object, otherwiseni | .

get -search-pattern string direction [Function]
| ast - sear ch- pattern [Variable]
| ast -search-string [Variable]

get - search- pattern interfaces to a default search string and pattern that search and replacing
commands can use. These commands then share a default when prompting for what to search or replace,
and save on consing a search pattern each time they execute. This uses Default Search Kind (see the
Hemlock User’s Manual) when updating the pattern object. This returns the pattern, so you probably
don't need to refer to *| ast - sear ch- pattern*, but *| ast - sear ch-stri ng* is useful when
prompting.

find-pattern mark search-pattern [Function]
Find the next match of search-pattern starting at mark. If amatch isfound then mark is altered to point
before the matched text and the number of characters matched is returned. If no match isfound then ni |
isreturned and mark is not modified.

repl ace- pattern mark search-pattern replacement &opti onal n [Function]
Replace n matches of search-pattern with the string replacement starting at mark. If nisnil (the
default) then replace all matches. A mark pointing before the last replacement done is returned.

21

Chapter 5

The Current Environment

5.1. Different Scopes

In Hemlock the values of variables (page 23), key-bindings (page 29) and character-attributes (page 37) may
depend on the current - buf fer (page 9) and the modes active in it. There are three possible scopes for
Hemlock values:

buffer local Thevalueis present only if the buffer it islocal toisthecurrent - buf f er.

mode local The valueis present only when the modeit islocal toisactiveinthecurr ent - buf f er.
global The valueis always present unless shadowed by a buffer or mode local value.

5.2. Shadowing

It is possible for there to be a conflict between different values for the same thing in different scopes. For
example, there be might a global binding for a given variable and also a local binding in the current buffer.
Whenever there is a conflict shadowing occurs, permitting only one of the values to be visible in the current
environment.

The process of resolving such a conflict can be described as a search down a list of places where the value might
be defined, returning the first value found. The order for the search is as follows:
1. Local valuesin the current buffer.

2. Mode local values in the minor modes of the current buffer, in order from the highest precedence
mode to the lowest precedence mode. The order of minor modes with equal precedencesis undefined.

3. Mode local valuesin the current buffer’s major mode.
4. Global values.

22

23

Chapter 6

Hemlock Variables

Hemlock implements a system of variables separate from normal Lisp variables for the following reasons:
1. Hemlock has different scoping rules which are useful in an editor. Hemlock variables can be local to
abuffer (page 9) or amode (page 35).

2. Hemlock variables have hooks (page 25), lists of functions called when someone sets the variable.
Seevari abl e- val ue for the arguments Hemlock passes to these hook functions.

3. There is a database of variable names and documentation which makes it easier to find out what
variables exist and what their values mean.

6.1. Variable Names

To the user, a variable name is a case insensitive string. This string is referred to as the string name of the
variable. A string name is conventionally composed of words separated by spaces.

In Lisp code a variable name is a symbol. The name of this symbol is created by replacing any spaces in the
string name with hyphens. This symbol name is always interned in the Hemlock package and referring to a symbol
with the same name in the wrong package is an error.

gl obal - vari abl e- nanes [Variable]
This variable holds a string-table of the names of al the global Hemlock variables. The value of each

entry isthe symbol name of the variable.

current-vari abl e-tabl es [Function]
This function returns a list of variable tables currently established, globally, in the cur r ent - buf f er,
and by the modes of the current-buffer. This list is suitable for use with

pronpt-for-variable.

6.2. Variable Functions

In the following descriptions name is the symbol name of the variable.

def hvar string-name documentation &ey : node : buffer :hooks :val ue [Function]
This function defines a Hemlock variable. Functions that take a variable name signal an error when the

variable is undefined.

string-name The string name of the variable to define.

24

documentation The documentation string for the variable.

: mode, : buf f er [f buffer issupplied, the variableislocal to that buffer. If modeis supplied, itislocal
to that mode. If neither issupplied, itisglobal.

:val ue Thisistheinitial value for the variable, which defaultstoni | .

: hooks This is the initial list of functions to call when someone sets the variable' s value.
These functions execute before Hemlock establishes the new vaue. See
vari abl e- val ue for the arguments passed to the hook functions.

If avariable with the same name already exists in the same place, then def hvar setsits hooks and value
from hooks and value if the user supplies these keywords.

vari abl e-val ue name &optional kind where [Function]
This function returns the value of a Hemlock variable in some place. The following values for kind are
defined:
scurrent Return the value present in the current environment, taking into consideration any

mode or buffer local variables. Thisisthe default.

: gl obal Return the global value.
: node Return the value in the mode named where.
s buffer Return the value in the buffer where.

When set with set f, Hemlock sets the value of the specified variable and invokes the functions in its
hook list with name, kind, where, and the new value.

vari abl e-docunent ati on name &opti onal kind where [Function]
vari abl e- hooks name &opti onal kind where [Function]
vari abl e-nane name &opti onal kind where [Function]

These function return the documentation, hooks and string name of a Hemlock variable. The kind and
where arguments are the same as for var i abl e- val ue. The documentation and hook list may be set
usingset f .

string-to-variabl e string [Function]
This function converts a string into the corresponding variable symbol name. Sring need not be the
name of an actual Hemlock variable.

val ue name [Macro]

setv name new-value [Macro]
These macros get and set the current value of the Hemlock variable name. Name is not evaluated. There
isaset f formforval ue.

hl et ({(var value)}*) {form}* [Macro]
This macro is very similar to | et in effect; within its scope each of the Hemlock variables var have the
respective values, but after the scope is exited by any means the binding isremoved. This does not cause
any hooksto beinvoked. The value of the last formis returned.

hem ock- bound-p name &opti onal kind where [Function]
Returnst if name is defined as a Hemlock variable in the place specified by kind and where, or ni |
otherwise.

25

del et e-vari abl e name &opti onal kind where [Function]

Delete Variable Hook [Hemlock Variabl€]
del et e- var i abl e makes the Hemlock variable name no longer defined in the specified place. Kind
and where have the same meanings as they do for vari abl e- val ue, except that : cur rent is not
available, and the default for kind is: gl obal

An error will be signaled if no such variable exists. The hook, Delete Variable Hook is invoked with
the same arguments before the variable is deleted.

6.3. Hooks

Hemlock actions such as setting variables, changing buffers, changing windows, turning modes on and off, etc.,
often have hooks associated with them. A hook is alist of functions called before the system performs the action.
The manual describes the object specific hooks with the rest of the operations defined on these objects.

Often hooks are stored in Hemlock variables, Delete Buffer Hook and Set Window Hook for example. This
leads to a minor point of confusion because these variables have hooks that the system executes when someone
changes their values. These hook functions Hemlock invokes when someone sets a variable are an example of a
hook stored in an object instead of a Hemlock variable. These are all hooks for editor activity, but Hemlock keeps
them in different kinds of locations. Thisiswhy some of the routines in this section have a special interpretation of
the hook place argument.

add- hook place hook-fun [Macro]
renove- hook place hook-fun [Macro]
These macros add or remove a hook function in some place. If hook-fun aready exists in place, this call
has no effect. If placeisasymbol, then it is a Hemlock variable; otherwise, it is a generalized variable
or storage location. Here are two examples:
(add- hook del et e-buf fer-hook 'renove-buffer-from nmenu)

(add- hook (vari abl e-hooks ’'check-mail -interval)
"reschedul e- mai | - check)

i nvoke- hook place &rest args [Macro]
Thismacro calls al the functionsin place. If placeisasymbol, then it isaHemlock variable; otherwise,
itisageneralized variable.

26

27

Chapter 7

Commands

7.1. Introduction

The way that the user tells Hemlock to do something is by invoking a command. Commands have three
attributes:

name A command’s name provides a way to refer to it. Command names are usualy capitalized
words separated by spaces, such as Forward Word.

documentation The documentation for acommand is used by on-line help facilities.
function A command isimplemented by a Lisp function, which is callable from Lisp.

command- nanes [Variable]
Holds a string-table (page 69) associating command names to command objects. Whenever a new
command is defined it is entered in this table.

7.1.1. Defining Commands

def command {command-name | (command-name function-name) } lambda-list

command-doc function-doc {form}* [Macro]
Defines a command named name. def comrand creates a function to implement the command from the
lambda-list and form's supplied. The lambda-list must specify one required argument, see section 7.4,
which by convention is typically named p. If the caller does not specify function-name, def command
creates the command name by replacing all spaces with hyphens and appending "- conmand".
Function-doc becomes the documentation for the function and should primarily describe issues involved
in calling the command as a function, such as what any additional arguments are. Command-doc
becomes the command documentation for the command.

make- command name documentation function [Function]
Defines a new command named name, with command documentation documentation and function
function. The command in entered in the string-table * conmmand- names* (page 27), with the com-
mand object as its value. Normally command implementors will use the def command macro, but this
permits access to the command definition mechanism at alower level, which is occasionally useful.

conmandp command [Function]
Returnst if command isaconmand object, otherwiseni | .

28

conmand- docunent ati on command [Function]
command- f uncti on command [Function]
conmand- nane command [Function]

Returns the documentation, function, or name for command. These may be set withset f .

7.1.2. Command Documentation

Command documentation is a description of what the command does when it isinvoked as an extended command
or from akey. Command documentation may be either a string or a function. If the documentation is a string then
the first line should briefly summarize the command, with remaining linesfilling the details. Example:

(def command "Forward Character" (p)
"Move the point forward one character.
Wth prefix argunent nove that many characters, with negative
argurment go backwards. "
"Move the point of the current buffer forward p characters.”

-)

Command documentation may also be afunction of one argument. The function is called with either : short or
:ful |, indicating that the function should return a short documentation string or do something to document the
command fully.

7.2. The Command Interpreter

The command interpreter is a function which reads key-events (see section 7.2.1) from the keyboard and dis-
patches to different commands on the basis of what the user types. When the command interpreter executes a
command, we say it invokes the command. The command interpreter also provides facilities for communication
between commands contiguously running commands, such as a last command type register. It also takes care of
resetting communication mechanisms, clearing the echo area, displaying partia keystyped slowly by the user, etc.

i nvoke- hook [Variable]
This variable contains a function the command interpreter calls when it wants to invoke acommand. The
function receives the command and the prefix argument as arguments. The initial value is a function
which simply funcalls the command- f unct i on of the command with the supplied prefix argument.
Thisisuseful for implementing keyboard macros and similar things.

Command Abort Hook [Hemlock Variable]
The command interpreter invokes the function in this variable whenever someone aborts a command (for
example, if someone called edi t or - error).

When Hemlock initially starts the command interpreter isin control, but commands may read from the keyboard
themselves and assign whatever interpretation they will to the key-events read. Commands may call the command
interpreter recursively using the functionr ecur si ve-edit (page 32).

7.2.1. Editor Input

The canonical representation of editor input is a key-event structure. Users can bind commands to keys (see
section 7.2.2), which are non-zero length sequences of key-events. A key-event consists of an identifying token
known as a keysym and afield of bits representing modifiers. Users define keysyms, integers between 0 and 65535
inclusively, by supplying names that reflect the legends on their keyboard's keys. Users define modifier names
similarly, but the system chooses the bit and mask for recognizing the modifier. Y ou can use keysym and modifier

29

names to textually specify key-events and Hemlock keysin a#k syntax. The following are some examples:
#k" C-u"
#k" Control - u"
#k"c-m z"
#k"control -x neta-d"
#k" a"
#k" A"
#k" Li nef eed"

Thisis convenient for use within code and in init files containing bi nd- key calls.

The #k syntax is delimited by double quotes, but the system parses the contents rather than reading it as a
Common Lisp string. Within the double quotes, spaces separate multiple key-events. A single key-event optionally
starts with modifier names terminated by hyphens. Modifier names are alphabetic sequences of characters which the
system uses case-insensitively. Following modifiers is a keysym name, which is case-insensitive if it consists of
multiple characters, but if the name consists of only asingle character, then it is case-sensitive.

Y ou can escape special characters — hyphen, double quote, open angle bracket, close angle bracket, and space —
with a backslash, and you can specify a backslash by using two contiguously. Y ou can use angle brackets to enclose
a keysym name with many specia charactersin it. Between angle brackets appearing in a keysym name position,
there are only two special characters, the closing angle bracket and backslash.

For more information on key-events see section 18.1.

7.2.2. Binding Commandsto Keys

The command interpreter determines which command to invoke on the basis of key bindings. A key binding isan
association between a command and a sequence of key-events (see section 7.2.1. A sequence of key-eventsis called
akey and is represented by a single key-event or a sequence (list or vector) of key-events.

Since key bindings may be local to a mode or buffer, the current environment (page 21) determines the set of key
bindings in effect at any given time. When the command interpreter tries to find the binding for akey, it first checks
if thereisalocal binding inthecurrent - buf f er (page9), thenif thereisabinding in each of the minor modes
and the major mode for the current buffer (page 35), and finally checks to see if there is a global binding. If no
binding is found, then the command interpreter beeps or flashes the screen to indicate this.

bi nd- key name key &opti onal kind where [Function]
This function associates command name and key in some environment. Key is either a key-event or a
sequence of key-events. There are three possible values of kind:

: gl obal The default, make a global key binding.
: node Make a mode specific key binding in the mode whose name is where.
s buffer Make abinding which isloca to buffer where.

This processes key for key trand ations before establishing the binding. See section 7.2.3.

If the key is some prefix of a key binding which already exists in the specified place, then the new one
will override the old one, effectively deleting it.

ext : do- al pha- key- event s isuseful for setting up bindingsin certain new modes.

30

conmand- bi ndi ngs command [Function]
This function returns alist of the places where command is bound. A placeis specified asalist of the key
(always a vector), the kind of binding, and where (either the mode or buffer to which the binding is local,
or ni | if itisaglobal).

del et e- key- bi ndi ng key &optional kind where [Function]
This function removes the binding of key in some place. Key is either a key-event or a sequence of
key-events. kind isthe kind of binding to delete, one of : gl obal (the default), : rode or : buf fer. If
kind is: node, whereisthe mode name, and if kind is: buf f er , then where is the buffer.

Thisfunction signals an error if key is unbound.

This processes key for key tranglations before deleting the binding. See section 7.2.3.

get - command key &optional kind where [Function]
This function returns the command bound to key, returning ni | if it is unbound. Key is either a
key-event or a sequence of key-events. If key isan initial subsequence of some keys, then this returns the
keyword : pr ef i x. There arefour cases of kind:

»current Return the current binding of key using the current buffer’s search list. If there are
any transparent key bindings for key, then they are returned in alist as a second value.

: gl obal Return the global binding of key. Thisisthe default.

: mode Return the binding of key in the mode named where.

tbuffer Return the binding of key local to the buffer where.

This processes key for key tranglations before looking for any binding. See section 7.2.3.

map- bi ndi ngs function kind &opti onal where [Function]
This function maps over the key bindings in some place. For each binding, this passes function the key
and the command bound to it. Kind and where are the same asin bi nd- key. Thekey is not guaranteed
to remain valid after agiven iteration.

7.2.3. Key Trandlation

Key trandation is a process that the command interpreter applies to keys before doing anything else. There are
two kinds of key trandations: substitution and bit-prefix. In either case, the command interpreter trandates a key
when a specified key-event sequence appearsin akey.

In a substitution tranglation, the system replaces the matched subsequence with another key-event sequence. Key
trangdlation is not recursively applied to the substituted key-events.

In a bit-prefix tranglation, the system removes the matched subsequence and effectively sets the specified bitsin
the next key-event in the key.

While tranglating a key, if the system encounters an incomplete final subsequence of key-events, it aborts the
trandation process. This happens when those last key-events form a prefix of some trandlation. It also happens
when they translate to a bit-prefix, but there is no following key-event to which the system can apply the indicated
modifier. If there is a binding for this partially untranslated key, then the command interpreter will invoke that
command; otherwise, it will wait for the user to type more key-events.

31

key-transl ati on key [Function]
Thisformisset f ’'able and allows users to register key translations that the command interpreter will use
as users type key-events.

This function returns the key translation for key, returning ni | if thereis none. Key is either a key-event
or asequence of key-events. If key isaprefix of atrandation, then thisreturns: pr efi x.

A key trandation is either a key or modifier specification. The bits trandations have a list form:
(: bits {bit-name}*) .

Whenever key appears as a subsequence of a key argument to the binding manipulation functions, that
portion will be replaced with the trandation.

7.2.4. Transparent Key Bindings

Key bindings local to a mode may be transparent. A transparent key binding does not shadow less local key
bindings, but rather indicates that the bound command should be invoked before the first normal key binding.
Transparent key bindings are primarily useful for implementing minor modes such as auto fill and word abbrevia-
tion. There may be several transparent key bindings for a given key, in which case all of the commands bound are
invoked in the order they were found. If there no normal key binding for a key typed, then the command interpreter
acts as though the key is unbound even if there are transparent key bindings.

The: t ranspar ent - p argument to def nrode (page 36) determines whether the key bindings in a mode are
transparent or not.

7.2.5. Interactive

Hemlock supports keyboard macros. A user may enter a mode where the editor records his actions, and when the
user exits this mode, the command Last Keyboard Macro plays back the actions. Some commands behave
differently when invoked as part of the definition of a keyboard macro. For example, when used in a keyboard
macro, a command that message’s useless user confirmation will slow down the repeated invocations of
Last Keyboard Macro because the command will pause on each execution to make sure the user sees the message.
This can be eliminated with the use of i nt er acti ve. Asanother example, some commands conditionally signal
an editor-error versus simply beeping the device depending on whether it executes on behalf of the user or a
keyboard macro.

i nteractive [Function]
Thisreturnst when the user invoked the command directly.

7.3. Command Types

In many editors the behavior of a command depends on the kind of command invoked before it. Hemlock
provides a mechanism to support this known as command type.

| ast - command-t ype [Function]
This returns the command type of the last command invoked. If thisis set with set f , the supplied value
becomes the value of | ast - command-type until the next command completes. If the previous
command did not set | ast - conmand- t ype, then its value is ni | . Normally a command type is a
keyword. The command type is not cleared after acommand isinvoked due to a transparent key binding.

32

7.4. Command Arguments

There are three ways in which a command may be invoked: It may be bound to a key which has been typed, it
may be invoked as an extended command, or it may be called as a Lisp function. Ideally commands should be
written in such a way that they will behave sensibly no matter which way they are invoked. The functions which
implement commands must obey certain conventions about argument passing if the command is to function

properly.

7.4.1. The Prefix Argument

Whenever a command is invoked it is passed as its first argument what is known as the prefix argument. The
prefix argument is always either an integer or ni | . When a command uses this value it is usually as a repeat count,
or some conceptually similar function.

prefi x-ar gunment [Function]
This function returns the current value of the prefix argument. When set with set f, the new value
becomes the prefix argument for the next command.

If the prefix argument is not set by the previous command then the prefix argument for acommand isni | . The
prefix argument is not cleared after acommand is invoked due to atransparent key binding.

7.4.2. Lisp Arguments

It is often desirable to call commands from Lisp code, in which case arguments which would otherwise be
prompted for are passed as optional arguments following the prefix argument. A command should prompt for any
arguments not supplied.

7.5. Recursive Edits

use- buf f er buffer {form}* [Macro]
The effect of thisis similar to setting the current-buffer to buffer during the evaluation of forms. There
are restrictions placed on what the code can expect about its environment. In particular, the value of any
global binding of a Hemlock variable which is a'so a mode local variable of some mode is ill-defined; if
the variable has a global binding it will be bound, but the value may not be the global value. It is also
impossible to nest use- buf f er’s in different buffers. The reason for using use- buf f er is that it
may be significantly faster than changing cur r ent - buf f er to buffer and back.

recursive-edit &optional handle-abort [Function]

Enter Recursive Edit Hook [Hemlock Variable]
recursive-edit invokes the command interpreter. The command interpreter will read from the
keyboard and invoke commands until it is terminated with either exit-recursive-edit or
abort-recursive-edit.

Normally, an editor-error or C-g aborts the command in progress and returns control to the top-level
command loop. If recursive-edit isused with handle-abort true, then edi t or - error or C-g
will only abort back to the recursive command loop.

Before the command interpreter is entered the hook Enter Recursive Edit Hook is invoked.

33

i n-recursive-edit [Function]
This returns whether the calling point is dynamically within arecursive edit context.

exit-recursive-edit &optional valueslist [Function]

Exit Recursive Edit Hook [Hemlock Variable]
exit-recursive-edit exitsarecursive edit returning as multiple values each element of values-list,
which defaults to ni | . This invokes Exit Recursive Edit Hook after exiting the command interpreter.
If no recursive edit isin progress, then this signals an error.

abort-recursive-edit &rest args [Function]

Abort Recursive Edit Hook [Hemlock Variable]
abort-recursive-edit terminates a recursive edit by applying edi t or-error (page 60) to
args after exiting the command interpreter. This invokes Abort Recursive Edit Hook with args before
aborting the recursive edit . If no recursive edit isin progress, then this signals an error.

35

Chapter 8

M odes

A mode is a collection of Hemlock values which may be present in the current environment (page 21) depending
on the editing task at hand. Examples of typica modes are Lisp, for editing Lisp code, and Echo Area, for
prompting in the echo area.

8.1. Mode Hooks

When a mode is added to or removed from a buffer, its mode hook is invoked. The hook functions take two
arguments, the buffer involved and t if the mode is being added or ni | if it is being removed.

Mode hooks are typically used to make a mode do something additional to what it usually does. One might, for
example, make atext mode hook that turned on auto-fill mode when you entered.

8.2. Major and Minor M odes

There are two kinds of modes, major modes and minor modes. A buffer always has exactly one major mode, but
it may have any number of minor modes. Major modes may have mode character attributes while minor modes may
not.

A major mode is usually used to change the environment in some major way, such as to install special commands
for editing some language. Minor modes generally change some small attribute of the environment, such as whether
lines are automatically broken when they get too long. A minor mode should work regardless of what major mode
and minor modes are in effect.

Default Modes (initial value (" Fundanent al " " Save")) [Hemlock Variable]
This variable contains a list of mode names which are instantiated in a buffer when no other information
isavailable.

node- names [Variable]

Holds a string-table of the names of all the modes.

lllegal [Command]
This is a useful command to bind in modes that wish to shadow global bindings by making them
effectively illegal. Also, although less likely, minor modes may shadow major mode bindings with this.
Thiscommand callsedi t or - error.

36

8.3. Mode Functions

def node name &ey :setup-function :cleanup-function :major-p [Function]
. precedence :transparent-p :docunentation
This function defines a new mode named name, and entersit in * node- nanes* (page 35). If major-p
issupplied and isnot ni | then the mode is a major mode; otherwise it is a minor mode.

Setup-function and cleanup-function are functions which are invoked with the buffer affected, after the
mode is turned on, and before it is turned off, respectively. These functions typically are used to make
buffer-local key or variable bindings and to remove them when the mode is turned off.

Precedence is only meaningful for aminor mode. The precedence of a minor mode determines the order
in which it in a buffer’'s list of modes. When searching for values in the current environment, minor
modes are searched in order, so the precedence of a minor mode determines which value is found when
there are several definitions.

Transparent-p determines whether key bindings local to the defined mode are transparent. Transparent
key bindings are invoked in addition to the first normal key binding found rather than shadowing less
local key bindings.

Documentation is some introductory text about the mode. Commands such as Describe Mode use this.

node- docunent ati on name [Function]
This function returns the documentation for the mode named name.

buf f er - maj or - node buffer [Function]

Buffer Major Mode Hook [Hemlock Variable]
buf f er - maj or - node returns the name of buffer’'s major mode. The major mode may be changed
with set f ; then Buffer Major Mode Hook isinvoked with buffer and the new mode.

buf f er - m nor - node buffer name [Function]

Buffer Minor Mode Hook [Hemlock Variable]
buf f er - m nor - node returnst if the minor mode name is active in buffer, ni | otherwise. A minor
mode may be turned on or off by using set f ; then Buffer Minor Mode Hook is invoked with buffer,
name and the new value.

node- vari abl es name [Function]
Returns the string-table of mode local variables.

node- naj or-p name [Function]
Returnst if name is the name of a major mode, or ni | if it is the name of a minor mode. It is an error
for name not to be the name of a mode.

37

Chapter 9

Character Attributes

9.1. Introduction

Character attributes provide a global database of information about characters. Thisfacility is similar to, but more
general than, the syntax tables of other editors such as EMACS. For example, you should use character attributes for
commands that need information regarding whether a character is whitespace or not. Use character attributes for
these reasons:

1. If thisinformation is al in one place, then it is easy the change the behavior of the editor by changing
the syntax table, much easier than it would be if character constants were wired into commands.

2. This centralization of information avoids needless duplication of effort.

3. The syntax table primitives are probably faster than anything that can be written above the primitive
level.

Note that an essential part of the character attribute scheme is that character attributes are global and are there
for the user to change. Information about characters which isinternal to some set of commands (and which the user
should not know about) should not be maintained as a character attribute. For such uses various character searching
abilities are provided by the function f i nd- pat t er n (page 20).

synt ax-char-code-limt [Constant]
The exclusive upper bound on character codes which are significant in the character attribute functions.
Font and bits are aways ignored.

9.2. Character Attribute Names

Asfor Hemlock variables, character attributes have a user visible string name, but are referred to in Lisp code as
asymbol. The string name, which is typically composed of capitalized words separated by spaces, is trandated into
a keyword by replacing all spaces with hyphens and interning this string in the keyword package. The attribute
named Ada Syntax would thus become : ada- synt ax.

character-attribute-nanmes [Variable]
Whenever a character attribute is defined, its name is entered in this string table (page 69), with the
corresponding keyword as the value.

38

9.3. Character Attribute Functions

defattri bute name documentation &opti onal type initial-value [Function]
This function defines a new character attribute with name, a simple-string. Character attribute operations
take attribute arguments as a keyword whose name is name uppercased with spaces replaced by hyphens.

Documentation describes the uses of the character attribute.

Type, which defaultsto (mod 2) , specifies what type the values of the character attribute are. Values of
a character attribute may be of any type which may be specified to nake- ar r ay. Initial-value (default
0) isthe value which al characterswill initially have for this attribute.

character-attri bute-nane attribute [Function]
character-attribute-docunmentation attribute [Function]
These functions return the name or documentation for attribute.

character-attribute attribute character [Function]

Character Attribute Hook [Hemlock Variable]
character-attri but e returns the value of attribute for character. This signals an error if attribute
is undefined.

setf will set a character's attributes. This setf method invokes the functions in
Character Attribute Hook on the attribute and character before it makes the change.

If character isni | , then the value of the attribute for the beginning or end of the buffer can be accessed
or set. The buffer beginning and end thus become a sort of fictitious character, which simplifies the use
of character attributesin many cases.

character-attribute-p symbol [Function]
Thisfunction returnst if symbol isthe name of a character attribute, ni | otherwise.

shadow attri but e attribute character value mode [Function]

Shadow Attribute Hook [Hemlock Variable]
This function establishes value as the value of character’s attribute attribute when in the mode mode.
Mode must be the name of a major mode. Shadow Attribute Hook is invoked with the same arguments
when this function is called. If the value for an attribute is set while the value is shadowed, then only the
shadowed value is affected, not the global one.

unshadow- at tri but e attribute character mode [Function]

Unshadow Attribute Hook [Hemlock Variable]
Make the value of attribute for character no longer be shadowed in mode. Unshadow Attribute Hook is
invoked with the same arguments when this function is called.

find-attribute mark attribute &opti onal test [Function]

reverse-find-attribute mark attribute &pti onal test [Function]
These functions find the next (or previous) character with some value for the character attribute attribute
starting at mark. They pass Test one argument, the value of attribute for the character tested. If the test
succeeds, then these routines modify mark to point before (after for r ever se-fi nd-attri but e) the
character which satisfied the test. If no characters satisfy the test, then these return ni | , and mark
remains unmodified. Test defaultsto not zer op. Thereis no guarantee that the test is applied in any
particular fashion, so it should have no side effects and depend only on its argument.

39

9.4, Character Attribute Hooks

It is often useful to use the character attribute mechanism as an abstract interface to other information about
characterswhich in fact is stored el sewhere. For example, some implementation of Hemlock might decide to define
a Print Representation attribute which controls how a character is displayed on the screen.

To make this easy to do, each attribute has a list of hook functions which are invoked with the attribute, character
and new value whenever the current value changes for any reason.

character-attribute-hooks attribute [Function]
Return the current hook list for attribute. This may be set with setf. The add- hook and
renove- hook (page 25) macros should be used to manipulate these lists.

9.5. System Defined Character Attributes

These are predefined in Hemlock:

Whitespace A value of 1 indicates the character is whitespace.
Word Delimiter A value of 1 indicates the character separates words (see section 15.3).

Digit A value of 1 indicates the character is a base ten digit. This may be shadowed in modes or
buffers to mean something else.

Space Thisislike Whitespace, but it should not include Newline. Hemlock uses this primarily for
handling indentation on aline.

Sentence Terminator
A value of 1 indicates these characters terminate sentences (see section 15.3).

Sentence Closing Char
A vaue of 1 indicates these delimiting characters, such as
Sentence Terminator (see section 15.3).

Paragraph Delimiter
A value of 1 indicates these characters delimit paragraphs when they begin a line (see section
15.3).

Page Delimiter A value of 1 indicates this character separates logical pages (see section 15.4) when it begins a
line.

or), may follow a

Scribe Syntax This uses the following symbol values:

nil These characters have no interesting properties.
. escape Thisis @ for the Scribe formatting language.
:open-paren These characters begin delimited text.

: cl ose- paren Thesecharacters end delimited text.

. space These characters can terminate the name of a formatting command.

:new i ne These characters can terminate the name of a formatting command.
Lisp Syntax This uses symbol values from the following:

nil These characters have no interesting properties.

. space These characters act like whitespace and should not include Newline.

:new i ne Thisisthe Newline character.

:open-paren Thisis(character.
: cl ose- paren Thisis) character.

40

tprefix

: char-quote
: conment
:constituent

Thisis a character that is a part of any form it precedes — for example, the
single quote, ’.

: string- quot e Thisisthe character that quotes a string literal, ™.

Thisisthe character that escapes a single character, \.
Thisisthe character that makes a comment with the rest of theline, ;.
These characters are constitute symbol names.

41

Chapter 10

Controlling the Display

10.1. Windows

A window is a mechanism for displaying part of a buffer on some physical device. A window isaway to view a
buffer but is not synonymous with one; a buffer may be viewed in any number of windows. A window may have a
modeline which is a line of text displayed across the bottom of a window to indicate status information, typically
related to the buffer displayed.

10.2. The Current Window

current-w ndow [Function]

Set Window Hook [Hemlock Variable]
cur r ent - wi ndow returns the window in which the cursor is currently displayed. The cursor always
tracks the buffer-point of the corresponding buffer. If the point is moved to a position which would be
off the screen the recentering process is invoked. Recentering shifts the starting point of the window so
that the point is once again displayed. The current window may be changed with set f. Before the
current window is changed, the hook Set Window Hook isinvoked with the new value.

wWi ndow | i st [Variable]
Holds alist of al the window objects made with make- wi ndow (page 41).

10.3. Window Functions

make-wi ndow mark &ey :nodelinep :w ndow : ask-user [Function]
:X 1y :width :height

Default Window Width [Hemlock Variable]

Default Window Height [Hemlock Variable]

Make Window Hook [Hemlock Variable]

make- wi ndow returns a window displaying text starting at mark, which must point into a buffer. If it
could not make a window on the device, it returns nil. The default action is to make the new window a
proportion of the cur r ent - wi ndow s height to make room for the new window.

Modelinep specifies whether the window should display buffer modelines.

Window is a device dependent window to be used with the Hemlock window. The device may not
support this argument. Window becomes the parent window for a new group of windows that behavein a
stack orientation as windows do on the terminal.

42

If ask-user isnon-ni | , Hemlock prompts the user for the missing dimensions (x, y, width, and height) to
make a new group of windows, as with the window argument. The device may not support this argument.
Non-null values other thant may have device dependent meanings. X and y are in pixel units, but width
and height are characters units. Default Window Width and Default Window Height are the default
values for the width and height arguments.

Proportion determines what proportion of the cur r ent - wi ndow' s height the new window will use.
Thecurr ent - wi ndow retains whatever space |eft after accommodating the new one. The default isto
split the window in half.

Thisinvokes Make Window Hook with the new window.

wi ndowp window [Function]
Thisfunction returnst if window isawi ndow object, otherwiseni | .

del et e- wi ndow window [Function]
Delete Window Hook [Hemlock Variable]
del et e- wi ndow makes window go away, first invoking Delete Window Hook with window.

wi ndow- buf f er window [Function]
Window Buffer Hook [Hemlock Variable]
wi ndow- buf f er returns the buffer from which the window displays text. This may be changed with
set f, in which case the hook Window Buffer Hook is invoked beforehand with the window and the

new buffer.
wi ndow- di spl ay-start window [Function]
wi ndow- di spl ay- end window [Function]

wi ndow- di spl ay- st art returnsthe mark that points before the first character displayed in window.
Note that if window is the current window, then moving the start may not prove much, since recentering
may move it back to approximately where it was originally.

wi ndow- di spl ay- end is similar, but points after the last character displayed. Moving the end is
meaningless, since redisplay always movesit to after the last character.

wi ndow- di spl ay-recent eri ng window [Function]
This function returns whether redisplay will ensure the buffer’s point of window’'s buffer is visible after
redisplay. Thisisset f "able, and changing window' s buffer setsthistoni | viaWindow Buffer Hook.

wi ndow- poi nt window [Function]
This function returns as a mark the position in the buffer where the cursor is displayed. This may be set
with set f. If window is the current window, then setting the point will have little effect; it is forced to
track the buffer point. When the window is not current, the window point is the position that the buffer
point will be moved to when the window becomes current.

cent er -wi ndow window mark [Function]
This function attempts to adjust window’s display start so the that mark is vertically centered within the
window.

43

scrol | -wi ndow window n [Function]
This function scrolls the window down n display lines; if n is negative scroll up. Leave the cursor at the
same text position unless we scrall it off the screen, in which case the cursor is moved to the end of the
window closest to its old position.

di spl ayed- p mark window [Function]
Returnst if either the character before or the character after mark is being displayed in window, or ni |
otherwise.

wi ndow hei ght window [Function]

wi ndow wi dt h window [Function]

Height or width of the area of the window used for displaying the buffer, in character positions. These
values may be changed with set f , but the setting attempt may fail, in which case nothing is done.

next - wi ndow window [Function]

previ ous-w ndow window [Function]
Return the next or previous window of window. The exact meaning of next and previous depends on the
device displaying the window. It should be possible to cycle through al the windows displayed on a
device using either next or previous (implying that these functions wrap around.)

10.4. Cursor Positions

A cursor position is an absolute position within a window’s coordinate system. The origin is in the upper-left-
hand corner and the unit is character positions.

mar k-t o- cur sor pos mark window [Function]
Returns as multiple values the X and Y position on which mark is being displayed in window, or ni | if it
is not within the bounds displayed.

cursorpos-to-mark X Y window [Function]
Returns as a mark the text position which corresponds to the given (X, Y) position within window, or ni |
if that position does not correspond to any text within window.

| ast - key- event - cur sor pos [Function]
Interprets mouse input. It returns as multiple values the (X, Y) position and the window where the
pointing device was the last time some key event happened. If the information is unavailable, this returns
nil.

mar k- col utm mark [Function]
This function returns the X position at which mark would be displayed, supposing its line was displayed
on an infinitely wide screen. Thistakesinto consideration strange characters such as tabs.

nmove-t o-col utm mark column &optional line [Function]
This function is analogous to nove- t o- posi ti on (pageb5), except that it moves mark to the position
on line which corresponds to the specified column. Line defaults to the line that mark is currently on. If
the line would not reach to the specified column, then ni | is returned and mark is not modified. Note
that since a character may be displayed on more than one column on the screen, several different values
of column may cause mark to be moved to the same position.

show mar k mark window time [Function]
This function highlights the position of mark within window for time seconds, possibly by moving the
cursor there. The wait may be aborted if there is pending input. If mark is positioned outside the text
displayed by window, then thisreturnsni | , otherwiset .

10.5. Redisplay

Redisplay trandates changes in the internal representation of text into changes on the screen. Ideally this process
finds the minimal transformation to make the screen correspond to the text in order to maximize the speed of

redisplay.

redi spl ay [Function]

Redisplay Hook [Hemlock Variabl€]
r edi spl ay executes the redisplay process, and Hemlock typically invokes this whenever it looks for
input. The redisplay process frequently checks for input, and if it detects any, it aborts. The return value
isinterpreted as follows:

nil No update was needed.
t Update was needed, and completed successfully.
:edi tor-input Update isneeded, but was aborted due to pending input.

This function invokes the functions in Redisplay Hook on the current window after computing screen
transformations but before executing them. After invoking the hook, this recomputes the redisplay and
then executes it on the current window.

For the current window and any window with wi ndow di spl ay-recent eri ng set, r edi spl ay
ensures the buffer’ s point for the window’ s buffer is visible after redisplay.

redi spl ay-al | [Function]
This causes all editor windows to be completely redisplayed. For the current window and any window
withwi ndow- di spl ay-recent eri ng set, this ensures the buffer’s point for the window’s buffer is
visible after redisplay. The return values are the same as for redisplay, except that ni | is never returned.

edi tor-fini sh-out put window [Function]
This makes sure the editor is synchronized with respect to redisplay output to window. This may do
nothing on some devices.

45

Chapter 11

L ogical Key-Events

11.1. Introduction

Some primitives such as pr onpt - f or - key (page 50) and commands such as EMACS query replace read
key-events directly from the keyboard instead of using the command interpreter. To encourage consistency between
these commands and to make them portable and easy to customize, there is a mechanism for defining logical
key-events.

A logical key-event is a keyword which stands for some set of key-events. The system globally interprets these
key-events as indicators a particular action. For example, the : hel p logical key-event represents the set of
key-events that request help in a given Hemlock implementation. This mapping is a many-to-many mapping, not
one-to-one, so a given logical key-event may have multiple corresponding actual key-events. Also, any key-event
may represent different logical key-events.

11.2. Logical Key-Event Functions

| ogi cal - key- event - nanes [Variable]
This variable holds a string-table mapping all logical key-event names to the keyword identifying the
logical key-event.

defi ne-1 ogi cal - key-event string-name documentation [Function]

This function defines a new logical key-event with name string-name, a simple-string. Logical key-event
operations take logical key-events arguments as a keyword whose name is string-name uppercased with
spaces replaced by hyphens.

Documentation describes the action indicated by the logical key-event.

| ogi cal - key-event - key-events keyword [Function]
Thisfunction returns the list of key-events representing the logical key-event keyword.

| ogi cal - key-event - nane keyword [Function]

| ogi cal - key- event -docunent ati on keyword [Function]
These functions return the string name and documentation given to def i ne- | ogi cal - key- event
for logical key-event keyword.

46

| ogi cal - key-event -p key-event keyword [Function]
This function returns t if key-event is the logical key-event keyword. Thisis set f 'able establishing or
disestablishing key-events as particular logical key-events. It is a error for keyword to be an undefined
logical key-event.

11.3. System Defined Logical Key-Events

There are many default logical key-events, some of which are used by functions documented in this manual. If a
command wants to read a single key-event command that fits one of these descriptions then the key-event read
should be compared to the corresponding logical key-event instead of explicitly mentioning the particular key-event
in the code. In many cases you can use the conmmand- case (page 48) macro. It makeslogical key-events easy to
use and takes care of prompting and displaying help messages.

‘yes Indicates the prompter should take the action under consideration.

: no Indicates the prompter should NOT take the action under consideration.

. do-all Indicates the prompter should repeat the action under consideration as many times as possible.

: do-once Indicates the prompter should execute the action under consideration once and then exit.

rexit Indicates the prompter should terminate its activity in anormal fashion.

:abort Indicates the prompter should terminate its activity without performing any closing actions of
convenience, for example.

: keep Indicates the prompter should preserve something.

“help Indicates the prompter should display some help information.

.confirm Indicates the prompter should take any input provided or use the default if the user entered
nothing.

:quot e Indicates the prompter should take the following key-event as itself without any sort of com-

mand interpretation.

‘recursive-edit
Indicates the prompter should enter arecursive edit in the current context.

: cancel Indicates the prompter should cancel the effect of a previous key-event input.

: forward-search
Indicates the prompter should search forward in the current context.

: backwar d- sear ch
Indicates the prompter should search backward in the current context.

Define anew logical key-event whenever:

1. The key-event concerned represents a general class of actions, and several commands may want to
take asimilar action of thistype.

2. The exact key-event a command implementor chooses may generate violent taste disputes among
users, and then the users can trivially change the command in their init files.

3. You are using conmand- case which prevents implementors from specifying non-standard charac-
ters for dispatching in otherwise possibly portable code, and you can define and set the logical
key-event in a site dependent file where you can mention implementation dependent characters.

47

Chapter 12

The Echo Area

Hemlock provides a number of facilities for displaying information and prompting the user for it. Most of these
work through a small window displayed at the bottom of the screen. Thisis called the echo area and is supported by
a buffer and awindow. This buffer’s modeline (see section 3.3) is referred to as the status line, which, unlike other
buffers' modelines, is used to show general status about the editor, Lisp, or world.

Default Status Line Fields [Hemlock Variable]
Thisistheinitial list of modeline-field objects stored in the echo area buffer.

Echo Area Height (initia value 3) [Hemlock Variabl€]
This variable determines the initial height in lines of the echo area window.

12.1. Echo Area Functions
It is considered poor taste to perform text operations on the echo area buffer to display messages; the nessage
function should be used instead. A command must use this function or set buf f er - modi fi ed (page 12) for the

Echo Area buffer toni | to cause Hemlock to leave text in the echo area after the command’ s execution.

cl ear - echo- area [Function]
Clearsthe echo area

nmessage control-string & est format-arguments [Function]
| oud- nessage control-string & est format-arguments [Function]
Message Pause (initial value 0. 5) [Hemlock Variable]

Displays a message in the echo area. The message is always displayed on afresh line. message pauses
for Message Pause seconds before returning to assure that messages are not displayed too briefly to be
seen. Because of this, message isthe best way to display text in the echo area.

| oud- nessage islikenessage, but it first clears the echo area and beeps.

echo- ar ea- wi ndow [Variable]

echo- ar ea- buffer [Variable]
echo- ar ea- buf f er contains the buffer object for the echo area, which is named Echo Area. This
buffer is usually in Echo Area mode. echo-area-w ndow contains a window displaying
echo- ar ea- buf f er. Itsmodelineisthe status line, see the beginning of this chapter.

48

*echo- ar ea- st r eant [Variable]
Thisisabuffered Hemlock output stream (59) which inserts text written to it at the point of the echo area
buffer. Since this stream is buffered af or ce- out put must be done when output is complete to assure
that it is displayed.

12.2. Prompting Functions

Most of the prompting functions accept the following keyword arguments:

: must - exi st

cdefaul t

If : must - exi st has a non-ni | value then the user is prompted until a valid response is
obtained. If ; must - exi st isni | thenreturn asastring whatever isinput. The defaultist .

If null input is given when the user is prompted then this value is returned. If no default is given
then some input must be given before anything interesting will happen.

sdefaul t-string

If a: def aul t isgiven then thisis a string to be printed to indicate what the default is. The
default is some representation of the value for : def aul t, for example for a buffer it is the
name of the buffer.

. prompt Thisisthe prompt string to display.

:hel p Thisissimilar to: pr onpt , except that it is displayed when the help command is typed during
input.
This may aso be a function. When called with no arguments, it should either return a string
which isthe help text or perform some action to help the user, returning ni | .

prompt -for-buffer &ey :pronpt :help :nust-exist :default [Function]

cdefaul t-string

Prompts with completion for a buffer name and returns the corresponding buffer. If must-exist isni | ,
then it returns the input string if it is not a buffer name. This refuses to accept the empty string as input

when : default and: default-stringaenil. :defaul t-string may beused to supply a
default buffer name when : def aul t isni |, but when : must - exi st is non-ni | , it must name an
already existing buffer.

comand- case ({key value}*) {({({tag}*) | tag} help {form}*)}* [Macro]

This macro is analogous to the Common Lisp case macro. Commands such as Query Replace usethis
to get a key-event, trandlate it to a character, and then to dispatch on the character to some case. In
addition to character dispatching, this supports logical key-events (page 45) by using the input key-event
directly without translating it to a character. Since the description of this macro is rather complex, first
consider the following example:

49

(def command "Save All Buffers" (p)
"G ve the User a chance to save each nodified buffer."
"G ve the User a chance to save each nodified buffer."
(dolist (b *buffer-1list*)
(sel ect-buffer-comand () b)
(when (buffer-nodified b)
(command- case (:pronpt "Save this buffer: [Y]
“help "Save buffer, or do something else:")
((:yes :confirm
"Save this buffer and go on to the next."
(save-file-conmand () b))
(:no "Skip saving this buffer, and go on to the next.")
(:recursive-edit
"Go into a recursive edit in this buffer."
(do-recursive-edit) (repronpt))
((:exit #\p) "Punt this silly loop."
(return nil))))))

conmand- case prompts for a key-event and then executes the code in the first branch with a logical
key-event or a character (called tags) matching the input. Each character must be a standard-character,
one that satisfies the Common Lisp st andar d- char - p predicate, and the dispatching mechanism
compares the input key-event to any character tags by mapping the key-event to a character with
ext: key-event-char. If thetag is alogica key-event, then the search for an appropriate case
compares the key-event read with thetag using | ogi cal - key- event - p.

All uses of conmmand- case have two default cases, : hel p and : abort. You can override these
easily by specifying your own branches that include these logical key-event tags. The : hel p branch
displays in a pop-up window the a description of the valid responses using the variously specified help
strings. The: abort branch signals an editor-error.

The key/value arguments control the prompting. The following are valid values:

:hel p The default : hel p case displays this string in a pop-up window. In addition it
formats a description of the valid input including each case’s help string.
. pr onpt Thisisthe prompt used when reading the key-event.

: change-wi ndow
If this is non-nil (the default), then the echo area window becomes the current win-
dow while the prompting mechanism reads a key-event. Sometimesit is desirable to
maintain the current window since it may be easier for users to answer the question if
they can see where the current point is.

: bi nd This specifies a variable to which the prompting mechanism binds the input key-
event. Any case may reference this variable. If you wish to know what character
corresponds to the key-event, use ext : key- event - char .

Instead of specifying atag or list of tags, you may uset . This becomes the default branch, and its forms
execute if no other branch is taken, including the default : hel p and : abort cases. This option has no
help string, and the default : hel p case does not describe the default branch. Every command- case
has a default branch; if none is specified, the macro includes one that syst em beep’s and
repr onpt ’s (see below).

Within the body of command- case, there is a defined r epr onpt macro. It causes the prompting
mechanism and dispatching mechanism to immediately repeat without further execution in the current
branch.

50

pronpt - f or - key- event &key : pronpt :change-w ndow [Function]

This function prompts for a key-event returning immediately when the user types the next key-event.
conmand- case (page 48) is more useful for most purposes. When appropriate, use logical key-events

(page 45).

pronpt - for-key &ey :pronpt :help :nust-exist :default [Function]

sdefaul t-string
This function prompts for a key, a vector of key-events, suitable for passing to any of the functions that
manipulate key bindings (page 29). If must-exist is true, then the key must be bound in the current
environment, and the command currently bound is returned as the second value.

prompt-for-file &ey :pronpt :help :nust-exist :default [Function]

:default-string
This function prompts for an acceptable filename in some system dependent fashion. "Acceptable"
means that it is alegal filename, and it exists if must-exist isnon-ni | . pronpt-for-fil e returnsa
Common Lisp pathname.

If the file exists as entered, then this returns it, otherwise it is merged with default as by
ner ge- pat hnanes.

prompt -for-integer &key :pronpt :help :nust-exist :default [Function]

;default-string
This function prompts for a possibly signed integer. If must-existisni | , then pronpt - f or - i nt eger
returns the input as a string if it isnot avalid integer.

pronpt - f or - keywor d string-tables &key : pronpt :hel p :nust-exist [Function]

:default :default-string
This function prompts for a keyword with completion, using the string tables in the list string-tables. If
must-exist is non-ni |, then the result must be an unambiguous prefix of a string in one of the
string-tables, and the returns the complete string even if only a prefix of the full string was typed. In
addition, this returns the value of the corresponding entry in the string table as the second value.

If must-exist is ni | , then this function returns the string exactly as entered. The difference between
pronpt - f or - keywor d with must-exist ni | , and pr onpt - f or - st ri ng, is the user may complete
the input using the Complete Parse and Complete Field commands.

prompt - f or - expressi on &ey :pronpt :help :nust-exist :default [Function]

cdefaul t-string
This function reads a Lisp expression. If must-exist isni | , and aread error occurs, then this returns the
string typed.

prompt-for-string &ey :pronpt :help :default :default-string [Function]

This function prompts for a string; this cannot fail.

prompt -for-variable &ey :pronmpt :help :nust-exist :default [Function]

cdefaul t-string
This function prompts for a variable name. If must-exist is hon-ni | , then the string must be a variable
defined in the current environment, in which case the symbol name of the variable found is returned as
the second value.

51

pronpt-for-y-or-n &ey :pronpt :help :nust-exist :default [Function]
sdefaul t-string
This prompts for y, Y, n, or N, returning t or ni | without waiting for confirmation. When the user
types a confirmation key, this returns default if it is supplied. If must-exist isni |, this returns whatever
key-event the user first types, however, if the user types one of the above key-events, this returnst or
ni | . Thisisanaogousto the Common Lisp functiony- or - n- p.

prompt -for-yes-or-no &ey :pronpt :help :nust-exist :default [Function]
cdefaul t-string
This function isto pronpt - for-y-or-n asyes-or-no-p istoy-or-n-p. "Yes' or "NoO" must
be typed out in full and confirmation must be given.

12.3. Control of Parsing Behavior

Beep On Ambiguity (initial valuet) [Hemlock Variable]
If this variable is true, then an attempt to complete a parse which is ambiguous will result in a"beep".

12.4. Defining New Prompting Functions

Prompting functions are implemented as a recursive edit in the Echo Area buffer. Completion, help, and other
parsing features are implemented by commands which are bound in Echo Area Mode.

A prompting function passes information down into the recursive edit by binding a collection of special variables.

parse-verification-function [Variabl€]
The system binds this to a function that Confirm Parse (page 52) cals. It does most of the work when
parsing prompted input. Confirm Parse (page 52) passes one argument, which is the string that was in
par se-i nput - r egi on when the user invokes the command. The function should return a list of
values which are to be the result of the recursive edit, or ni | indicating that the parse failed. In order to
return zero values, anon-ni | second value may be returned along with ani | first value.

par se-string-tabl es [Variable]
Thisisthelist of st ri ng-t abl es, if any, that pertain to this parse.

*par se-val ue- must - exi st * [Variable]
This is bound to the value of the : must - exi st argument, and is referred to by the verification
function, and possibly some of the commands.

par se-defaul t [Variable]
When prompting the user, this is bound to a string representing the default object, the value supplied as
the : def aul t argument. Confirm Parse supplies this to the parse verification function when the
par se-i nput - r egi on isempty.

par se-defaul t-string [Variable]
When prompting the user, if *par se- def aul t * isni |, Hemlock displays this string as a represen-
tation of the default object; for example, when prompting for a buffer, this variable would be bound to the
buffer name.

52

par se-type [Variable]
The kind of parse in progress, one of : fil e, : keyword or : string. This tells the completion
commands how to do completion, with : st ri ng disabling completion.

*par se- pronpt * [Variable]
The prompt being used for the current parse.

par se- hel p [Variable]
The help string or function being used for the current parse.

par se-starting-mark [Variable]
Thisvariable holdsamark inthe* echo- ar ea- buf f er* (page 47) which is the position at which the
parse began.

par se-i nput - regi on [Variable]

This variable holds a region with * par se- st arti ng- mar k* asits start and the end of the echo-area
buffer asitsend. When Confirm Parse is called, thetext in thisregion is the text that will be parsed.

12.5. Some Echo Area Commands

These are some of the Echo Area commands that coordinate with the prompting routines. Hemlock binds other
commands specific to the Echo Area, but they are uninteresting to mention here, such as deleting to the beginning
of the line or deleting backwards aword.

Help On Parse (boundto Home, C-_ in Echo Area mode) [Command]
Display the help text for the parse currently in progress.

Complete Keyword (bound to Escape in Echo Area mode) [Command]
This attempts to complete the current region as a keyword in *stri ng-tabl es*. It signals an
editor-error if the input is ambiguous or incorrect.

Complete Field (bound to Space in Echo Area mode) [Command]
Similar to Complete Keyword, but only attempts to complete up to and including the first character in
the keyword with anon-zero : par se-fi el d- separ at or attribute. If thereisno field separator then
attempt to complete the entire keyword. If it is not a keyword parse then just self-insert.

Confirm Parse (bound to Return in Echo Area mode) [Command]
If *string-tables* is non-nil find the string in the region in them. Call
parse-verification-function withthe currentinput. If it returnsanon-ni | value then that
isreturned as the value of the parse. A parse may returnani | valueif the verification function returns a
non-ni | second value.

53

Chapter 13

Files

This chapter discusses ways to read and write files at various levels — at marks, into regions, and into buffers.
This also treats automatic mechanisms that affect the state of buffersin which files are read.

13.1. File Options and Type Hooks

The user specifies file options with a special syntax on the first line of afile. If the first line contains the string
"-*." then Hemlock interprets the text between the first such occurrence and the second, which must be contained
inoneline, asalist of "option: value" pairs separated by semicolons. The following isatypical example:

;;, -*- Mode: Lisp, Editor; Package: Hem ock -*-
See the Hemlock User’s Manual for more details and predefined options.

File type hooks are executed when Hemlock reads afile into a buffer based on the type of the pathname. When
the user specifies a Mode file option that turns on a major mode, Hemlock ignores type hooks. This mechanism is
mostly used as a simple means for turning on some appropriate default major mode.

define-fil e-option name (buffer value) {declaration}* {form}* [Macro]
This defines a new file option with the string name name. Buffer and value specify variable names for the
buffer and the option value string, and fornT s are evaluated with these bound.

define-fil e-type-hook typelist (buffer type) {declaration}* {form}* [Macro]
This defines some code that pr ocess-fi | e- opti ons (below) executes when the file options fail to
set amajor mode. This associates each type, asi npl e- st ri ng, in type-list with a routine that binds
buffer to the buffer the fileisin and type to the type of the pathname.

process-fil e-options buffer &ptional pathname [Function]
This checks for file options in buffer and invokes handlersif there are any. Pathname defaults to buffer’s
pathname but may be ni | . If there is no Mode file option that specifies a major mode, and pathname
has atype, then thistriesto invoke the appropriate file type hook. r ead- buffer-fil e calsthis.

13.2. Pathnames and Buffers

There is no good way to uniquely identify buffer names and pathnames. However, Hemlock has one way of
mapping pathnames to buffer names that should be used for consistency among customizations and primitives.
Independent of this, Hemlock provides a means for consistently generating prompting defaults when asking the user
for pathnames.

pat hnane-t o- buf f er - nane pathname [Function]
This function returns a string of theform "f i | e- namest ri ng di r ect ory- namestri ng".

Pathname Defaults (initial value (pat hname "gazonk. del ")) [Hemlock Variabl€]
Last Resort Pathname Defaults Function [Hemlock Variable]
Last Resort Pathname Defaults (initial value (pat hnane "gazonk")) [Hemlock Variable]

These variables control the computation of default pathnames when needed for promting the user.
Pathname Defaults is asticky default. See the Hemlock User’s Manual for more details.

buf f er - def aul t - pat hname buffer [Function]
This returns Buffer Pathname if it isbound. If it isnot bound, and buffer’s name is composed solely of
alphnumeric characters, then return a pathname formed from buffer’s name. If buffer’s name has other
charactersinit, then return the value of Last Resort Pathname Defaults Function called on buffer.

13.3. File Groups

File groups provide a simple way of collecting the files that compose a system and naming that collection.
Hemlock supports commands for searching, replacing, and compiling groups.

active-file-group [Variable]
This is the list of files that congtitute the currently selected file group. If thisis ni |, then there is no
current group.

do-active-group {form}* [Macro]

Group Find File (initia valueni |) [Hemlock Variable]

Group Save File Confirm (initial valuet) [Hemlock Variable]

do- acti ve- group iteratesover *acti ve-fil e- gr oup* executing the forms once for each file.
While the forms are executing, the file is in the current buffer, and the point is at the beginning. If there
is no active group, this signals an editor-error.

This reads each file into its own buffer using fi nd-fil e-buffer. Since unwanted buffers may
consume large amounts of memory, Group Find File controls whether to delete the buffer after execut-
ing the forms. When the variable is fase, this deletes the buffer if it did not previously exist; however,
regardless of this variable, if the user leaves the buffer modified, the buffer persists after the forms have
completed. Whenever this processes a buffer that already existed, it saves the location of the buffer's
point before and restoresit afterwards.

After processing a buffer, if it is modified, do-active-group tries to save it. If
Group Save File Confirm isnon-ni | , it asksfor confirmation.

13.4. File Reading and Writing

Common Lisp pathnames are used by the file primitives. For probing, checking write dates, and so forth, all of
the Common Lisp file functions are available.

read-fil e pathname mark [Function]
Thisinserts the file named by pathname at mark.

55

wite-file region pathname &key : keep-backup :access :append [Function]

Keep Backup Files (initial valueni |) [Hemlock Variable]
This function writes the contents of region to the file named by pathname. This writes region using a
stream asif it were opened with : i f - exi st s supplied as: r enane- and- del et e.

When keep-backup, which defaults to the value of Keep Backup Files, is non-ni |, this opens the
stream as if ;i f-exists were:renane. If append is non-ni |, this writes the file as if it were
opened with : i f - exi st s supplied as: append.

Thissignals an error if both append and keep-backup are supplied as non-ni | .

Access is an implementation dependent value that is suitable for setting pathname’s access or protection

bits.
wite-buffer-file buffer pathname [Function]
Write File Hook [Hemlock Variable]
Add Newline at EOF on Writing File (initial value: ask- user) [Hemlock Variable]

write-buffer-fil e writesbuffer to the file named by pathname including the following:

* It assumes pathname is somehow related to buffer’ s pathname: if the buffer’ s write date is not
the same as pathname’s, then this prompts the user for confirmation before overwriting the
file.

« It consults Add Newline at EOF on Writing File (see Hemlock User’s Manual for possible
values) and interacts with the user if necessary.

« It sets Pathname Defaults, and after usingwr i t e- f i | e, marks buffer unmodified.
« It updates Buffer’s pathname and write date.
« It renames the buffer according to the new pathname if possible.

¢ |t invokes Write File Hook.

Write File Hook isalist of functions that take the newly written buffer as an argument.

read- buffer-fil e pathname buffer [Function]

Read File Hook [Hemlock Variable]
read- buf fer-fil e deletesbuffer’sregion and usesr ead-fi | e to read pathname into it, including
the following:

« It sets buffer’s write date to the file's write date if the file exists; otherwise, it mnessage’s
that thisisanew file and sets buffer’ swrite datetoni | .

« It moves buffer’s point to the beginning.
* It sets buffer’s unmodified status.

« It sets buffer’s pathname to the result of probing pathname if the file exists; otherwise, this
function sets buffer's pathname to the result of merging pathname with
defaul t-directory.

* It sets Pathname Defaults to the result of the previous item.
« It processes the file options.

* |t invokes Read File Hook.

Read File Hook is alist functions that take two arguments — the buffer read into and whether the file
existed, t if so.

56

find-file-buffer pathname [Function]
This returns a buffer assoicated with the pathname, reading the file into a new buffer if necessary. This

returns a second value indicating whether a new buffer was created, t if so. If the file has already been

read, this checks to see if the file has been modified on disk since it was read, giving the user various
recovery options. Thisisthe basis of the Find File command.

57

Chapter 14

Hemlock’s Lisp Environment

This chapter is sort of a catch all for any functions and variables which concern Hemlock’s interaction with the
outside world.

14.1. Entering and L eaving the Editor

ed &optional X [Function]

Entry Hook [Hemlock Variable]
ed enters the editor. It is basically as specified in Common Lisp. If x is supplied and is a symbol, the
definition of x is put into a buffer, and that buffer is selected. If x is a pathname, the file specified by x is
visited in a new buffer. If x is not supplied or ni | , the editor is entered in the same state as when last
exited.

The Entry Hook isinvoked each time the editor is entered.

exit-hem ock &optional value [Function]

Exit Hook [Hemlock Variable]
exi t-henl ock leaves Hemlock and return to Lisp; value is the value to return, which defaultsto t .
The hook Exit Hook (page 57) isinvoked before thisis done.

pause- hen ock [Function]
pause- hem ock suspends the editor process and returns control to the shell. When the process is
resumed, it will still be running Hemlock.

14.2. Keyboard I nput

Keyboard input interacts with a number of other parts of the editor. Since the command loop works by reading
from the keyboard, keyboard input is the initial cause of everything that happens. Also, Hemlock redisplays in the
low-level input loop when thereis no available input from the user.

editor-input [Variable]
real -editor-input [Variable]
Input Hook [Hemlock Variable]
Abort Hook [Hemlock Variable]

edi tor-input isan object on which Hemlock’s I/O routines operate. You can get input, clear
input, return input, and listen for input. Input appears as key-events.

58

real - edi tor-input holds the initial value of *edi t or-i nput *. This is useful for reading
from the user when * edi t or - i nput * isrebound (such as within akeyboard macro.)

Hemlock invokes the functions in Input Hook each time someone reads a key-event from
real - edi tor-input. Thesetake no arguments.

get - key-event editor-input &opti onal ignore-abort-attempts-p [Function]
This function returns a key-event as soon as it is available on editor-input. Editor-input is either
editor-input or *real -editor-input*. Ignore-abort-attempts-p indicates whether C-g
and C-G throw to the editor’s top-level command loop; when this is non-nil, this function returns those
key-events when the user types them. Otherwise, it aborts the editor’s current state, returning to the
command |oop.

When the user aborts, Hemlock invokes the functions in Abort Hook. These functions take no ar-
guments. When aborting, Hemlock ignores the Input Hook.

unget - key- event key-event editor-input [Function]
This function returns key-event to editor-input, so the next invocation of get - key- event will return
key-event. If key-event is#k" C- g" or #k" G- G', then whether get - key- event returnsit depends on
that function's second argument. Editor-input is either *editor-input* or
real -editor-input.

cl ear-editor-input editor-input [Function]
This function flushes any pending input on editor-input. Editor-input is either *edi t or - i nput * or
real -editor-input.

i sten-editor-input editor-input [Function]
This function returns whether there is any input available on editor-input. Editor-input is either
editor-input or*real -editor-input*.

editor-sleep time [Function]
Return either after time seconds have elapsed or when input is availableon * edi t or - i nput *.

Kkey- event - hi story [Variable]
ThisisaHemlock ring buffer (see page 70) that holds the last 60 key-events read from the keyboard.

| ast - key- event - t yped [Variable]
Commands use this variable to realize the last key-event the user typed to invoke the commands. Before
Hemlock ever reads any input, the valueisni | . Thisvariable usually holds the last key-event read from
the keyboard, but it is also maintained within keyboard macros allowing commands to behave the same
on each repetition as they did in the recording invocation.

input-transcript [Variable]
If this is non-ni | then it should be an adjustable vector with a fill-pointer. When it is non-ni | ,
Hemlock pushes all input read onto this vector.

59

14.3. Hemlock Streams

It is possible to create streams which output to or get input from a buffer. This mechanism is quite powerful and
permits easy interfacing of Hemlock to Lisp.

make- hem ock- out put - st ream mark &opti onal buffered [Function]

hem ock- out put - stream p object [Function]
make- hem ock- out put - st r eamreturns a stream that inserts at the permanent mark mark all output
directed to it. Buffered controls whether the stream is buffered or not, and its valid values are the
following keywords:

: none No buffering is done. Thisisthe default.

:line The buffer is flushed whenever a newline is written or when it is explicitly done with
force-out put.

cfull The screen is only brought up to date when it is explicitly done with
f or ce- out put

hem ock- out put - st ream p returnst if objectisahem ock- out put - st r eamobject.

make- hem ock-regi on-stream region [Function]

hem ock-regi on-stream p object [Function]
make- hem ock-r egi on- st r eam returns a stream from which the text in region can be read.
hem ock-regi on- stream p returnst if objectisahem ock-r egi on- st r eamobject.

wi t h-input-fromregion (var region) {declaration}* {form}* [Macro]
While evaluating forms, binds var to a stream which returns input from region.

wi t h-out put-to-mark (var mark [buffered]) {declaration}* {form}* [Macro]
During the evaluation of the forms, binds var to a stream which inserts output at the permanent mark.
Buffered has the same meaning as for make- hem ock- out put - st ream

Wi t h- pop-up-di splay (var &ey height name) {declaration}* {form}* [Macro]

randomt ypeout - buf f er s [Variable]
This macro executes forms in a context with var bound to a stream. Hemlock collects output to this
stream and tries to pop up a display of the appropriate height containing all the output. When height is
supplied, Hemlock creates the pop-up display immediately, forcing output on line breaks. The system
saves the output in a buffer named name, which defaults to Random Typeout. When the window is the
incorrect height, the display mechanism will scroll the window with more-style prompting. Thisis useful
for displaying information of temporary interest.

When a buffer with name name already exists and was not previoudy created by
Wi t h- pop- up- di spl ay, Hemlock signals an error.

randomt ypeout - buf f er s is an association list mapping random typeout buffers to the streams
that operate on the buffers.

14.4. Interfacetothe Error System

The error system interface is minimal. There is a ssmple editor-error condition which is a subtype of error and a
convenient means for signaling them. Hemlock also provides a standard handler for error conditions while in the
editor.

60

editor-error-format-string condition [Function]
editor-error-format-argunments condition [Function]
Handlers for editor-error conditions can access the condition object with these.

editor-error &rest args [Function]
This function is called to signal minor errors within Hemlock; these are errors that a normal user could
encounter in the course of editing such as a search failing or an attempt to delete past the end of the
buffer. This function si gnal 's an editor-error condition formed from args, which are nil or a
f or mat string possibly followed by f or mat arguments. Hemlock invokes commands in a dynamic
context with an editor-error condition handler bound. This default handler beeps or flashes (or both) the
display. If the condition passed to the handler has a non-ni | string dot, the handler also invokes
nmessage onit. Thecommand in progress is aways aborted, and this function never returns.

handl e- i sp-errors {form}* [Macro]
Within the body of this macro any Lisp errors that occur are handled in some fashion more gracefully
than simply dumping the user in the debugger. This macro should be wrapped around code which may
get an error due to some action of the user — for example, evaluating code fragments on the behalf of and
supplied by the user. Using this in a command allows the established handler to shadow the default
editor-error handler, so commands should take care to signal user errors (calls to edi t or-errors)
outside of this context.

14.5. Definition Editing

Hemlock provides commands for finding the definition of a function, macro, or command and placing the user at
the definition in a buffer. This, of course, isimplementation dependent, and if an implementation does not associate
a source file with aroutine, or if Hemlock cannot get at the information, then these commands do not work. If the
Lisp system does not store an absolute pathname, independent of the machine on which the maintainer built the
system, then users need away of translating a source pathname to one that will be able to locate the source.

add-definition-dir-translation dirl dir2 [Function]
This maps directory pathname dirl to dir2. Successive invocations using the same dirl push into a
trandation list. When Hemlock seeks a definition source file, and it has a trandlation, then it tries the
trandations in order. This is useful if your sources are on various machines, some of which may be
down. When Hemlock tries to find a trandation, it first looks for trandations of longer directory
pathnames, finding more specific translations before shorter, more general ones.

del ete-definition-dir-translation dir [Function]
This deletes the mapping of dir to all directories to which it has been mapped.

14.6. Event Scheduling

The mechanism described in this chapter is only operative when the Lisp process is actually running inside of
Hemlock, within the ed function. The designers intended its use to be associated with the editor, such as with
auto-saving files, reminding the user, etc.

61

schedul e- event time function &opti onal repeat [Function]
This causes Hemlock to call function after time seconds have passed, optionally repeating every time
seconds. Repeat defaultstot . Thisis arough mechanism since commands can take an arbitrary amount
of time to run; Hemlock invokes function at the first possible moment after time has elapsed. Function
takes the time in seconds that has elapsed since the last time it was called (or since it was scheduled for
the first invocation).

renove- schedul ed- event function [Function]
This removes function from the scheduling queue. Function does not have to be in the queue.

14.7. Miscellaneous

in-1isp {form}* [Function]
This evaluates form's inside handl e-1i sp-errors. It aso binds *package* to the package
named by Current Package if itisnon-ni | . Use thiswhen evaluating Lisp code on behalf of the user.

do- al pha-chars (var kind [result) {form}*] [Macro]
This iterates over alphabetic characters in Common Lisp binding var to each character in order as
specified under character relations in Common Lisp the Language. Kind isone of : | ower, : upper, or
: bot h. When the user supplies: bot h, lowercase characters are processed first.

62

63

Chapter 15

High-Level Text Primitives

This chapter discusses primitives that operate on higher level text forms than characters and words. For English
text, there are functions that know about sentence and paragraph structures, and for Lisp sources, there are functions
that understand this language. This chapter also describes mechanisms for organizing file sections into logical
pages and for formatting text forms.

15.1. Indenting Text

Indent Function (initial valuet ab-t o- t ab- st op) [Hemlock Variable]
The value of this variable determines how indentation is done, and it is a function which is passed a mark
asits argument. The function should indent the line that the mark points to. The function may move the
mark around on the line. The mark will be : | eft-inserting. The default simply inserts a tab
character at the mark. A function for Lisp mode probably moves the mark to the beginning of the line,
deletes horizontal whitespace, and computes some appropriate indentation for Lisp code.

Indent with Tabs (initial valuei ndent - usi ng-t abs) [Hemlock Variable]
Spaces per Tab (initial value 8) [Hemlock Variable]
Indent with Tabs holds a function that takes a mark and a number of spaces. The function will insert a
maximum number of tabs and a minimum number of spaces at mark to move the specified humber of
columns. The default definition uses Spaces per Tab to determine the size of a tab. Note,
Spaces per Tab is not used everywhere in Hemlock yet, so changing this variable could have un-

expected results.
i ndent -regi on region [Function]
i ndent - r egi on-f or - conmands region [Function]

i ndent-region invokes the value of Indent Function on every line of region.
i ndent - regi on-f or-commands usesi ndent - r egi on but first saves the region for the Undo
command.

del et e- hori zont al - space mark [Function]
This deletes all characters with a Space attribute (see section 9.5) of 1.

15.2. Lisp Text Buffers

Hemlock bases its Lisp primitives on parsing a block of the buffer and annotating lines as to what kind of Lisp
syntax occurs on the line or what kind of form a mark might be in (for example, string, comment, list, etc.). These

64

do not work well if the block of parsed forms is exceeded when moving marks around these forms, but the block
that gets parsed is somewhat programmable.

Thereis aso anotion of atop level form which this documentation often uses synonymously with defun, meaning
a Lisp form occurring in a source file delimited by parentheses with the opening parenthesis at the beginning of
some line. The names of the functions include this inconsistency.

pr e- conmand- par se- check mark for-sure [Function]
Parse Start Function (initial valuest ar t - of - par se- bl ock) [Hemlock Variable]
Parse End Function (initial value end- of - par se- bl ock) [Hemlock Variabl€]
Minimum Lines Parsed (initial value 50) [Hemlock Variable]
Maximum Lines Parsed (initial value 500) [Hemlock Variable]
Defun Parse Goal (initial value 2) [Hemlock Variabl€]

pr e- conmand- par se- check calls Parse Start Function and Parse End Function on mark to get
two marks. It then parses all the lines between the marks including the complete lines they point into.
When for-sure is non-ni | , this parses the area regardless of any cached information about the lines.
Every command that uses the following routines calls this before doing so.

The default values of the start and end variables use Minimum Lines Parsed,
Maximum Lines Parsed, and Defun Parse Goal to determine how big a region to parse. These two
functions always include at least the minimum number of lines before and after the mark passed to them.
They try to include Defun Parse Goal number of top level forms before and after the mark passed them,
but these functions never return marks that include more than the maximum number of lines before or
after the mark passed to them.

form of fset mark count [Function]
This tries to move mark count forms forward if positive or -count forms backwards if negative. Mark is
always moved. If there were enough formsin the appropriate direction, this returns mark, otherwise nil.

top- I evel - of f set mark count [Function]
This tries to move mark count top level forms forward if positive or -count top level forms backwards if
negative. If there were enough top level forms in the appropriate direction, this returns mark, otherwise
nil. Mark is moved only if thisis successful.

mar k-t op- 1 evel - f or m markl mark2 [Function]
This moves markl and mark2 to the beginning and end, respectively, of the current or next top level
form. Markl is used as a reference to start looking. The marks may be altered even if unsuccessful. If
successful, return mark2, elsenil. Mark2 is left at the beginning of the line following the top level form if
possible, but if the last line has text after the closing parenthesis, this leaves the mark immediately after
the form.

def un-regi on mark [Function]
This returns a region around the current or next defun with respect to mark. Mark is not used to form the
region. If there is no appropriate top level form, this signals an editor-error. This calls
pr e- conmand- par se- check first.

i nsi de-defun-p mark [Function]

start-defun-p mark [Function]
These return, respectively, whether mark is inside a top level form or at the beginning of a line im-
mediately before a character whose Lisp Syntax (see section 9.5) valueis: openi ng- par en.

65

forward-up-1list mark [Function]

backwar d- up-1ist mark [Function]
Respectively, these move mark immediately past a character whose Lisp Syntax (see section 9.5) value
is :closing-paren or immediately before a character whose Lisp Syntax value is
: openi ng- par en.

val i d- spot mark forwardp [Function]
This returns t or ni | depending on whether the character indicated by mark is a valid spot. When
forwardp is set, use the character after mark and vice versa. Valid spots exclude commented text, inside
strings, and character quoting.

def i ndent name count [Function]
This defines the function with name to have count special arguments. i ndent - f or - | i sp, the value of
Indent Function (see section 15.1) in Lisp mode, uses this to specially indent these arguments. For
example, do hastwo, wi t h- open-fi | e hasone, etc. There are many of these defined by the system
including definitions for special Hemlock forms. Name is a simple-string, case insensitive and purely
textual (that is, not read by the Lisp reader); therefore, "wi t h- a- nunbl e" is distinct from
"munbl e: wi t h-a- nunbl e".

15.3. English Text Buffers

This section describes some routines that understand basic English language forms.

wor d- of f set mark count [Function]
This moves mark count words forward (if positive) or backwards (if negative). If mark isin the middle
of aword, that counts as one. If there were count (-count if negative) words in the appropriate direction,
this returns mark, otherwise nil. This always moves mark. A word lies between two characters whose
Word Delimiter attribute valueis 1 (see section 9.5).

sent ence- of f set mark count [Function]
This moves mark count sentences forward (if positive) or backwards (if negative). If mark is in the
middle of a sentence, that counts as one. If there were count (-count if negative) sentences in the
appropriate direction, this returns mark, otherwise nil. This always moves mark.

A sentence ends with a character whose Sentence Terminator attribute is 1 followed by two spaces, a
newline, or the end of the buffer. The terminating character is optionally followed by any number of
characters whose Sentence Closing Char attribute is 1. A sentence begins after a previous sentence
ends, at the beginning of a paragraph, or at the beginning of the buffer.

par agr aph- of f set mark count &opti onal prefix [Function]

Paragraph Delimiter Function [Hemlock Variabl€]
This moves mark count paragraphs forward (if positive) or backwards (if negative). If mark is in the
middle of a paragraph, that counts as one. If there were count (-count if negative) paragraphs in the
appropriate direction, this returns mark, otherwise nil. This only moves mark if there were enough
paragraphs.

Paragraph Delimiter Function holds a function that takes a mark, typically at the beginning of a line,
and retuns whether or not the current line should break the paragraph.
defaul t-para-delimfunction retuns t if the next character, the first on the line, has a
Paragraph Delimiter attribute value of 1. This is typically a space, for an indented paragraph, or a

66

newline, for a block style. Some modes require a more complicated determinant; for example, Scribe
modes adds some characters to the set and special cases certain formatting commands.

Prefix defaults to Fill Prefix (see section 15.5), and the right prefix is necessary to correctly skip
paragraphs. If prefixisnon-ni | , and aline begins with prefix, then the scanning process skips the prefix
before invoking the Paragraph Delimiter Function. Note, when scanning for paragraph bounds, and
prefix is non-ni |, lines are potentially part of the paragraph regardiess of whether they contain the
prefix; only the result of invoking the delimiter function matters.

The programmer should be aware of an idiom for finding the end of the current paragraph. Assume
par agr aphp is the result of moving mar k one paragraph, then the following correctly determines
whether there actually is a current paragraph:
(or paragraphp
(and (last-1line-p mark)

(end-line-p mark)

(not (blank-line-p (mark-line mark)))))
In this example mar k is at the end of the last paragraph in the buffer, and there is no last newline
character in the buffer. par agr aph- of f set would have returned ni | since it could not skip any
paragraphs since mar k was at the end of the current and last paragraph. However, you still have found a
current paragraph on which to operate. mar k- par agr aph understands this problem.

mar k- par agr aph mar k1 mar k2 [Function]
This marks the next or current paragraph, setting mark1 to the beginning and mark2 to the end. This uses
Fill Prefix (see section 15.5). Markl isaways on the first line of the paragraph, regardless of whether the
previous lineisblank. Mark2 istypically at the beginning of the line after the line the paragraph ends on,
this returns mark2 on success. If this cannot find a paragraph, then the marks are left unmoved, and ni |
isreturned.

15.4. Logical Pages

Logical pages are a way of dividing a file into coarse divisions. This is analogous to dividing a paper into
sections, and Hemlock provides primitives for moving between the pages of afile and listing a directory of the page
titles. Pages are separated by Page Delimiter characters (see section 9.5) that appear at the beginning of aline.

got o- page mark n [Function]
This moves mark to the absolute page numbered n. If there are less than n pages, it signals an editor-
error. If it returns, it returns mark. Hemlock numbers pages starting with one for the page delimited by
the beginning of the buffer and the first Page Delimiter (or the end of the buffer).

page-of f set mark n [Function]
This moves mark forward n (-n backwards, if n is negative) Page Delimiter characters that are in the
zero'th line position. If a Page Delimiter is the immediately next character after mark (or before mark,
if nisnegative), then skip it before starting. This always moves mark, and if there were enough pages to
move over, it returns mark; otherwise, it returnsni | .

page-di rectory buffer [Function]
Thisreturns alist of each first non-blank line in buffer that follows a Page Delimiter character that isin
the zero'th line position. Thisincludes the first line of the buffer as the first pagetitle. If apageis empty,
then itstitle is the empty string.

67

di spl ay- page-di rectory stream directory [Function]
This writes the list of strings, directory, to stream, enumerating them in a field three wide. The number
and string are separated by two spaces, and the first line contains headings for the page numbers and title
strings.

15.5. Filling

Filling is an operation on text that breaks long lines at word boundaries before a given column and merges shorter
lines together in an attempt to make each line roughly the specified length. Thisis different from justification which
tries to add whitespace in awkward places to make each line exactly the same length. Hemlock’s filling optionally
inserts a specified string at the beginning of each line. Also, it eliminates extra whitespace between lines and words,
but it knows two spaces follow sentences (see section 15.3).

Fill Column (initial value 75) [Hemlock Variable]

Fill Prefix (initial valueni |) [Hemlock Variable]
These variables hold the default values of the prefix and column arguments to Hemlock’s filling primi-
tives. If Fill Prefix isni | , then thereisno fill prefix.

fill-region region &ptional prefix column [Function]
This deletes any blank lines in region and fills it according to prefix and column. Prefix and column
default to Fill Prefix and Fill Column.

fill-regi on-by-paragraphs region &optional prefix column [Function]
This finds paragraphs (see section 15.3) within region and fillsthem with fi | | - r egi on. Thisignores
blank lines between paragraphs. Prefix and column default to Fill Prefix and Fill Column.

68

69

Chapter 16

Utilities

This chapter describes a number of utilities for manipulating some types of objects Hemlock uses to record
information. String-tables are used to store names of variables, commands, modes, and buffers. Ring lists can be
used to provide akill ring, recent command history, or other user-visible features.

16.1. String-table Functions

String tables are similar to Common Lisp hash tables in that they associate a value with an object. There are a
few useful differences: in a string table the key is always a case insensitive string, and primitives are provided to
facilitate keyword completion and recognition. Any type of string may be added to a string table, but the string table
functions awaysreturn si npl e-stri ng’s.

A string entry in one of these tables may be thought of as being separated into fields or keywords. The interface
provides keyword completion and recognition which is primarily used to implement some Echo Area commands.
These routines perform a prefix match on afield-by-field basis allowing the ambiguous specification of earlier fields
while going on to enter later fields. While string tables may use any stri ng- char as a separator, the use of
characters other than space may make the Echo Area commands fail or work unexpectedly.

make-string-table &ey :separator :initial-contents [Function]
This function creates an empty string table that uses separator as the character, which must be a
st ri ng-char, that distinguishes fields. Initial-contents specifies an initial set of strings and their
valuesin theform of adotted a- | i st , for example:

'(("Gobal" . t) ("Mde" . t) ("Buffer” . t))

string-tabl e-p string-table [Function]
Thisfunction returnst if string-tableisast ri ng-t abl e object, otherwiseni | .

string-tabl e-separator string-table [Function]
This function returns the separator character givento make- st ri ng-t abl e.

del ete-string string table [Function]

clrstring table [Function]
del et e- stri ng removes any entry for string from the st ri ng-t abl e table, returning t if there
wasanentry. cl rstring removesal entriesfrom table.

70

getstring string table [Function]
This function returns as multiple values, first the value corresponding to the string if it is found and ni |
if itisn't,and secondt if itisfound and ni | if itisn't.

This may be set with set f to add a new entry or to store a new value for astring. It isan error to try to
insert a string with more than one field separator character occurring contiguously.

conpl ete-string string tables [Function]
This function completes string as far as possible over the list of tables, returning five values. It isan error
for tables to have different separator characters. The five return values are as follows:
» The maximal completion of the string or ni | if thereisnone.

* Anindication of the usefulness of the returned string:

: none There is no completion of string.

.conpl ete The completion is a valid entry, but other valid completions exist too.
This occurs when the supplied string is an entry as well as initial substr-
ing of another entry.

Juni que The completionisavalid entry and unique.

: ambi guous The completion isinvalid; get - st ri ng would returnni | and ni | if
given the returned string.

« The vaue of the string when the completionis: uni que or: conpl et e, otherwiseni | .

< Anindex, or nil, into the completion returned, indicating where the addition of asingle field
to string ends. The command Complete Field uses this when the completion contains the
addition to string of more than one field.

* An index to the separator following the first ambiguous field when the completion is
: ambi guous or : conpl et e, otherwiseni | .

find-anbi guous string table [Function]

find-containi ng string table [Function]
fi nd-anbi guous returns a list in alphabetical order of al the strings in table matching string. This
considers an entry as matching if each field in string, taken in order, is an initial substring of the entry’s
fields; entry may have fields remaining.

find-contai ni ng is similar, but it ignores the order of the fields in string, returning all strings in
table matching any permutation of the fieldsin string.

do-strings (string-var value-var table [result]) {declaration}* {tag | statement}* [Macro]
This macro iterates over the strings in table in alphabetical order. On each iteration, it binds string-var to
an entry’ s string and value-var to an entry’s value.

16.2. Ring Functions

There are various purposes in an editor for which aring of values can be used, so Hemlock provides a genera
ring buffer type. It is used for maintaining a ring of killed regions (see section 4.3), a ring of marks (see section
3.1), or aring of command strings which various modes and commands maintain as a history mechanism.

71

make-ri ng length &opti onal delete-function [Function]
Makes an empty ring object capable of holding up to length Lisp objects. Delete-function is a function
that each object is passed to before it falls off the end. Length must be greater than zero.

ringp ring [Function]
Returnst if ringisari ng object, otherwiseni | .

ring-length ring [Function]
Returns as multiple-values the number of elements which ring currently holds and the maximum number
of elementswhich it may hold.

ring-ref ring index [Function]
Returns the index'th item in the ring, where zero is the index of the most recently pushed. This may be
set withset f.

ri ng- push object ring [Function]

Pushes object into ring, possibly causing the oldest item to go away.

ri ng- pop ring [Function]
Removes the most recently pushed object from ring and returnsiit. If the ring contains no elements then
an error issignalled.

rotate-ring ring offset [Function]
With a positive offset, rotates ring forward that many times. In a forward rotation the index of each
element is reduced by one, except the one which initially had a zero index, which is made the last
element. A negative offset rotates the ring the other way.

16.3. Undoing commands

save-for-undo name method &opti onal cleanup method-undo buffer [Function]
This saves information to undo a command. Name is a string to display when prompting the user for
confirmation when he invokes the Undo command (for example, "ki | | " or"Fi Il | Paragraph").

Method is the function to invoke to undo the effect of the command. Method-undo is a function that
undoes the undo function, or effectively re-establishes the state immediately after invoking the command.
If there is any existing undo information, this invokes the cleanup function; typically method closes over
or uses permanent marks into a buffer, and the cleanup function should delete such references. Buffer
defaultstothecur r ent - buf f er , and the Undo command only invokes undo methods when they were
saved for the buffer that is current when the user invokes Undo.

nmake-r egi on-undo kind name region &opti onal mark-or-region [Function]
This handles three common cases that commands fall into when setting up undo methods, including
cleanup and method-undo functions (see save-f or-undo). These cases are indicated by the kind
argument:

ctwiddle Use this kind when a command modifies a region, and the undo information in-
dicates how to swap between two regions — the one before any modification occurs
and the resulting region. Region is the resulting region, and it has permanent marks
into the buffer. Mark-or-region is a region without marks into the buffer (for ex-
ample, the result of copy- r egi on). Asaresult of caling this, afirst invocation of
Undo deletes region, saving it, and inserts mark-or-region where region used to be.

72

sinsert

:del ete

The undo method sets up for a second invocation of Undo that will undo the effect of
the undo; that is, after two calls, the buffer is exactly as it was after invoking the
command. This activity is repeatable any number of times. This establishes a
cleanup method that deletes the two permanent marks into the buffer used to locate
the modified region.

Use this kind when a command has deleted a region, and the undo information
indicates how to re-insert the region. Region is the deleted and saved region, and it
does not contain marks into any buffer. Mark-or-region is a permanent mark into the
buffer where the undo method should insert region. As aresult of caling this, afirst
invocation of Undo inserts region at mark-or-region and forms a region around the
inserted text with permanent marks into the buffer. This allows a second invocation
of Undo to undo the effect of the undo; that is, after two calls, the buffer is exactly as
it was after invoking the command. This activity is repeatable any number of times.
This establishes a cleanup method that deletes either the permanent mark into the
buffer or the two permanent marks of the region, depending on how many times the
user used Undo.

Use this kind when a command has inserted a block of text, and the undo information
indicates how to delete the region. Region has permanent marks into the buffer and
surrounds the inserted text. Leave Mark-or-region unspecified. Asaresult of caling
this, afirst invocation of Undo deletes region, saving it, and establishes a permanent
mark into the buffer to remember where the region was. This alows a second
invocation of Undo to undo the effect of the undo; that is, after two calls, the buffer is
exactly asit was after invoking the command. This activity is repeatable any number
of times. This establishes a cleanup method that deletes either the permanent mark
into the buffer or the two permanent marks of the region, depending on how many
times the user used Undo.

Name in all casesis an appropriate string indicating what the command did. Thisis used by Undo when
prompting the user for confirmation before calling the undo method. The string used by Undo alternates
between this argument and something to indicate that the user is undoing an undo.

73

Chapter 17

Miscellaneous

This chapter is somewhat of a catch-all for comments and features that don’t fit well anywhere else.

17.1. Generic Pointer Up

Generic Pointer Up isaHemlock command bound to mouse up-clicks. It invokes a function supplied with the
interface described in this section. This command allows different commands to be bound to the same down-click in
various modes with one command bound to the corresponding up-click.

suppl y-generi c- poi nt er-up-function function [Function]
This function supplies afunction that Generic Pointer Up invokes the next time it executes.

17.2. Using View Mode

View mode supports scrolling through files automatically terminating the buffer at end-of-file as well as com-
mands for quitting the mode and popping back to the buffer that spawned the View mode buffer. Modes such as
Dired and Lisp-Lib usethisto view files and description of library entries.

Modes that want similar commands should use vi ew- f i | e- conmand to view a file and get a handle on the
view buffer. To allow the View Return and View Quit commands to return to the originating buffer, you must set
the variable View Return Function in the viewing buffer to a function that knows how to do this. Furthermore,
since you now have a reference to the originating buffer, you must add a buffer local delete hook to it that will clear
the view return function’s reference. This needs to happen for two reasons in case the user deletes the originating
buffer:

1. You don’t want the return function to go to a non-existing, invalid buffer.

2. Since the viewing buffer still exists, its View Return Function buffer local variable still exists. This
means the function still references the deleted originating buffer, and garbage collection cannot
reclaim the memory locked down by the deleted buffer.

The following is a piece of code that could implement part of Dired View File that uses two closures to
accomplish that described above:

74

(let* ((dired-buf (current-buffer))
(buffer (viewfile-conmand nil pathnane)))
(push # (1l anmbda (buffer)
(decl are (ignore buffer))
(setf dired-buf nil))
(buf fer-del et e-hook dired-buf))
(setf (variable-value "viewreturn-function :buffer buffer)
(lanmbda ()
(i f dired-buf
(change-to-buffer dired-buf)
(dired-frombuffer-pathnanme-comand nil)))))

The Dired buffer's delete hook clears the return function’s reference to the Dired buffer. The return function
tests the variable to see if it still holds a buffer when the function executes.

75

Chapter 18

Auxiliary Systems

This chapter describes utilities that some implementations of Hemlock may leave unprovided or unsupported.

18.1. Key-events

These routines are defined in the " EXTENSI ONS" package since other projects have often used Hemlock’ sinput
trandations for interfacing to CLX.

18.1.1. Introduction

The canonical representation of editor input is a key-event structure. Users can bind commands to keys (see
section 7.2.2), which are non-zero length sequences of key-events. A key-event consists of an identifying token
known as a keysym and afield of bits representing modifiers. Users define keysyms, integers between 0 and 65535
inclusively, by supplying names that reflect the legends on their keyboard's keys. Users define modifier names
similarly, but the system chooses the bit and mask for recognizing the modifier. Y ou can use keysym and modifier
names to textually specify key-events and Hemlock keysin a#k syntax. The following are some examples:

#k" C-u"
#k" Control - u"
#k"c-m z"
#k"control -x neta-d"
#k" a"
#k" A"
#k" Li nef eed"
Thisis convenient for use within code and in init files containing bi nd- key calls.

The #k syntax is delimited by double quotes, but the system parses the contents rather than reading it as a
Common Lisp string. Within the double quotes, spaces separate multiple key-events. A single key-event optionally
starts with modifier names terminated by hyphens. Modifier names are alphabetic sequences of characters which the
system uses case-insensitively. Following modifiers is a keysym name, which is case-insensitive if it consists of
multiple characters, but if the name consists of only asingle character, then it is case-sensitive.

Y ou can escape special characters — hyphen, double quote, open angle bracket, close angle bracket, and space —
with a backslash, and you can specify a backslash by using two contiguously. Y ou can use angle brackets to enclose
a keysym name with many specia charactersin it. Between angle brackets appearing in a keysym name position,
there are only two special characters, the closing angle bracket and backslash.

76

18.1.2. Interface
All of the following routines and variables are exported from the "EXTENSIONS" ("EXT") package.

def i ne- keysym keysym preferred-name &r est other-names [Function]

This function establishes a mapping from preferred-name to keysym for purposes of #k syntax.
Other-names also map to keysym, but the system uses preferred-name when printing key-events. The
names are case-insensitive simple-strings; however, if the string contains a single character, then it is used
case-sensitively. Redefining a keysym or re-using names has undefined effects.

Y ou can use this to define unused keysyms, but primarily this defines keysyms defined in the X Window
System Protocol, MIT X Consortium Sandard, X Version 11, Release 4. transl at e- key- event
uses this knowledge to determine what keysyms are modifier keysyms and what keysym stand for
alphabetic key-events.

def i ne- nobuse- keysym button keysym name shifted-bit event-key [Function]

This function defines keysym named name for key-events representing the X button cross the X event-key
(button-press or :button-release). Shifted-bit is a defined modifier name that
transl at e- nrouse- key- event setsin the key-event it returns whenever the X shift bit is set in an
incoming event.

Note, by default, there are distinct keysyms for each button distinguishing whether the user pressed or
released the button.

Keysym should be an one unspecified in X Window System Protocol, MIT X Consortium Sandard, X
Version 11, Release 4.

nane- keysym name [Function]

This function returns the keysym named name. |f name isunknown, thisreturnsni | .

keysym names keysym [Function]

This function returnsthe list of all names for keysym. If keysymis undefined, thisreturnsni | .

keysym pr ef err ed- nane keysym [Function]

This returns the preferred name for keysym, how it is typically printed. If keysym is undefined, this
returnsni | .

def i ne- key- event - nodi fi er long-name short-name [Function]

This establishes long-name and short-name as modifier names for purposes of specifying key-events in
#k syntax. The names are case-insensitive simple-strings. If either name is already defined, this signals
an error.

The system defines the following default modifiers (first the long name, then the short name):
e "Hyper","H'
* " Super","S"
«"Meta","M
«"Control","C'
«"Shift","Shift"
* "Lock","Lock"

77

al | -modi fi er-nanes [Variable]
This variable holds all the defined modifier names.

define-cl x-nodi fier clx-mask modifier-name [Function]
This function establishes a mapping from clx-mask to a defined key-event modifier-name.
transl at e- key-event and transl at e- nbuse- key-event can only return key-events with
bits defined by this routine.

The system defines the following default mappings between CLX modifiers and key-event modifiers:
e (xlib:mke-state-mask :nod-1) --> "Meta"

e (xlib: make-state-mask :control) --> "Control"
e (xlib: make-state-mask :lock) --> "Lock"

e (xlib:mke-state-mask :shift) --> "Shift"

make- key-event-bits & est modifier-names [Function]
This function returns bits suitable for make- key- event from the supplied modifier-names. If any
name is undefined, this signals an error.

key- event - nodi fi er - mask modifier-name [Function]
This function returns a mask for modifier-name. This mask is suitable for use with key- event - bi t s.
If modifier-name is undefined, this signals an error.

key-event-bits-nodifiers bits [Function]
Thisreturns alist of key-event modifier names, one for each modifier set in bits.

transl at e- key- event display scan-code bits [Function]
This function trandates the X scan-code and X bits to a key-event. First this maps scan-code to an X
keysym using x| i b: keycode- >keysymlooking at bits and supplying index as 1 if the X shift bit is
on, 0 otherwise.

If the resulting keysym is undefined, and it is not a modifier keysym, then this signals an error. If the
keysym is amodifier key, then thisreturnsni | .

If these conditions are satisfied
* The keysym is defined.

* The X shift bit is off.
* The X lock bit ison.

« The X keysym represents a lowercase | etter.
then this maps the scan-code again supplying index as 1 this time, treating the X lock bit as a caps-lock
bit. If this resultsin an undefined keysym, this signals an error. Otherwise, this makes a key-event with
the keysym and bits formed by mapping the X bits to key-event hits.

Otherwise, this makes a key-event with the keysym and bits formed by mapping the X bits to key-event
bits.

transl at e- nouse- key- event scan-code bits event-key [Function]
This function translates the X button code, scan-code, and modifier bits, bits, for the X event-key into a
key-event. Seedef i ne- nobuse- keysym

78

nmake- key- event object hits [Function]
This function returns a key-event described by object with bits. Object is one of keysym, string, or
key-event. When object is a key-event, this uses key- event - keysym You can form bits with
nmake- key- event - bi t s or key- event - nodi fi er - mask.

key- event - p object [Function]
This function returns whether object is a key-event.

key-event - bi ts key-event [Function]
This function returns the bits field of a key-event.

key- event - keysym key-event [Function]
This function returns the keysym field of a key-event.

char - key- event character [Function]
This function returns the key-event associated with character. You can associate a key-event with a
character by set f 'ing thisform.

key- event - char key-event [Function]
This function returns the character associated with key-event. You can associate a character with a
key-event by set f 'ing this form. The system defaultly translates key-events in some implementation
dependent way for text insertion; for example, under an ASCII system, the key-event #k" C- h", as well
as#k" backspace" would map to the Common Lisp character that causes a backspace.

key-event - bi t-p key-event bit-name [Function]
This function returns whether key-event has the bit set named by bit-name. This signals an error if
bit-name is undefined.

do- al pha- key-events (var kind &optional result) {form}* [Macro]
This macro evaluates each form with var bound to a key-event representing an alphabetic character. Kind
isoneof : | ower, : upper, or : bot h, and this binds var to each key-event in order as specified in X
Window System Protocol, MIT X Consortium Sandard, X Version 11, Release 4. When : bot h is
specified, this processes lowercase letters first.

print-pretty-key key &optional stream long-namesp [Function]
This prints key, a key-event or vector of key-events, in a user-expected fashion to stream. Long-names-p
indicates whether modifiers should print with their long or short name. Sream defaults to
*st andar d- out put *.

print-pretty-key-event key-event &opti onal stream long-names-p [Function]

This prints key-event to stream in a user-expected fashion. Long-names-p indicates whether modifier
names should appear using the long name or short name. Stream defaultsto * st andar d- out put *.

18.2. CL X Interface

79

18.2.1. Graphics Window Hooks

This section describes a few hooks used by Hemlock’s internals to handle graphics windows that manifest
Hemlock windows. Some heavy users of Hemlock as a tool have needed these in the past, but typically functions
that replace the default values of these hooks must be written in the "HEMLOCK- | NTERNALS" package. All of
these symbols are internal to this package.

If you need this level of control for your application, consult the current implementation for code fragments that
will be useful in correctly writing your own window hook functions.

creat e- wi ndow hook [Variable]
This holds a function that Hemlock calls when make- wi ndow executes under CLX. Hemlock passes
the CLX display and the following arguments from make- wi ndow: starting mark, ask-user, x, y, width,
height, and modelinep. The function returns a CL X window or nil indicating one could not be made.

del et e- wi ndow hook [Variable]
This holds a function that Hemlock calls when del et e- wi ndow executes under CLX. Hemlock
passes the CLX window and the Hemlock window to this function.

randomt ypeout - hook [Variable]
This holds a function that Hemlock calls when random typeout occurs under CLX. Hemlock passesit a
Hemlock device, a pre-existing CLX window or ni | , and the number of pixels needed to display the
number of lines requested in the wi t h- pop- up- di spl ay form. It should return a window, and if a
new window is created, then a CL X gcontext must be the second value.

create-initial-w ndows-hook [Variable]
This holds a function that Hemlock calls when it initializes the screen manager and makes the first
windows, typically windows for the Main and Echo Area buffers. Hemlock passes the function a
Hemlock device.

18.2.2. Entering and L eaving Windows

Enter Window Hook [Hemlock Variable]
When the mouse enters an editor window, Hemlock invokes the functions in this hook. These functions
take a Hemlock window as an argument.

Exit Window Hook [Hemlock Variable]
When the mouse exits an editor window, Hemlock invokes the functions in this hook. These functions
take a Hemlock window as an argument.

18.2.3. How to L ose Up-Events

Often the only useful activity user’s design for the mouse is to click on something. Hemlock sees a character
representing the down event, but what do you do with the up event character that you know must follow? Having
the command eat it would be tasteless, and would inhibit later customizations that make use of it, possibly adding on
to the down click command’ s functionality. Bind the corresponding up character to the command described here.

80

Do Nothing [Command]
This does nothing as many times as you tell it.

18.3. Slave Lisps

Some implementations of Hemlock feature the ability to manage multiple slave Lisps, each connected to one
editor Lisp. The routines discussed here spawn slaves, send evaluation and compilation requests, return the current
server, etc. Thisis very powerful because without it you can lose your editing state when code you are developing
causes afatal error in Lisp.

The routines described in this section are best suited for creating editor commands that interact with slave Lisps,
but in the past users implemented several independent Lisps as nodes communicating viathese functions. Thereisa
better level on which to write such code that avoids the extra effort these routines take for the editor’s sake. Seethe
CMU Common Lisp User’s Manual for ther enpt e and wi r e packages.

18.3.1. The Current Save

There is a dave-information structure that these return which is suitable for passing to the routines described in
the following subsections.

create-slave &optional name [Function]
This creates a slave that tries to connect to the editor. When the slave connects to the editor, this returns a
dave-information structure, and the interactive buffer is the buffer named name. This generates a name if

nameisni | . In casethe slave never connects, this will eventually timeout and signal an editor-error.
get-current-eval -server &optional errorp [Function]
Current Eval Server [Hemlock Variabl€]

This returns the server-information for the Current Eval Server after making sure it isvalid. Of course,
a dlave Lisp can die at anytime. [f this variable is ni | , and errorp is non-ni | , then this signals an
editor-error; otherwise, it tries to make a new slave. If there is no current eval server, then this tries to
make a new slave, prompting the user based on afew variables (see the Hemlock User’s Manual).

get-current-conpil e-server [Function]

Current Compile Server [Hemlock Variabl€]
This returns the server-information for the Current Compile Server after making sure it isvalid. This
may return nil. Since multiple slaves may exist, it is convenient to use one for developing code and one
for compiling files. The compilation commands that use slave Lisps prefer to use the current compile
server but will fall back on the current eval server when necessary. Typically, users only have separate
compile servers when the slave Lisp can live on a separate workstation to save cycles on the editor
machine, and the Hemlock commands only use this for compiling files.

18.3.2. Asynchronous Operation Queuing

The routines in this section queue requests with an eval server. Reguests are always satisfied in order, but these
do not wait for notification that the operation actually happened. Because of this, the user can continue editing
while his evaluation or compilation occurs. Note, these usually execute in the slave immediately, but if the
interactive buffer connected to the slave is waiting for a form to return a value, the operation requested must wait
until the daveisfree again.

81

string-eval string &ey :server :package :context [Function]
regi on-eval region &ey :server :package :context [Function]
regi on-conpi |l e region &ey :server :package [Function]

string-eval queuestheevaluation of the form read from string on eval server server. Server defaults
to the result of get - current-server, and string is a smple-string. The evaluation occurs with
package bound in the slave to the package named by package, which defaults to Current Package
or the empty string; the empty string indicates that the slave should evaluate the form in its current
package. The slave reads the form in string within this context as well. Context is a string to use when
reporting start and end notifications in the Echo Area buffer; it defaults to the concatenation of
"eval uati on of " andstring.

regi on- eval isthesame asstri ng-eval , but context defaults differently. If the user leaves this
unsupplied, then it becomes a string involving part of thefirst line of region.

regi on-conpi |l e is the same as the above. Server defaults the same; it does not default to
get-current-conpi | e-server since this compiles the region into the slave Lisp's environment,
to affect what you are currently working on.

file-conpile file &ey :output-file :error-file :load :server [Function]
: package
Remote Compile File (initial valueni |) [Hemlock Variable]

This compiles filein a dlave Lisp. When output-file ist (the default), this uses a temporary output file
that is publicly writable in case the client is on another machine, which allows for file systems that do not
permit remote write access. This renames the temporary file to the appropriate binary name or deletes it
after compilation. Setting Remote Compile File to ni | , inhibitsthis. If output-fileisnon-ni | and not
t , then it is the name of the binary file to write. The compilation occurs with * package* bound in the
dave to the package named by package, which defaults to Current Package or the empty string; the
empty string indicates that the slave should evaluate the form in its current package. Error-fileisthefile
in which to record compiler output, and ani | value inhibits this file's creation. Load indicates whether
to load the resulting binary file, defaults to nil. Server defaults to
get-current-conpil e-server, but if this returns nil, then server defaults to
get-current-server.

18.3.3. Synchronous Operation Queuing

The routines in this section queue requests with an eval server and wait for confirmation that the evaluation
actually occurred. Because of this, the user cannot continue editing while the slave executes the request. Note,
these usually execute in the slave immediately, but if the interactive buffer connected to the slave is waiting for a
form to return avalue, the operation requested must wait until the slave is free again.

eval -formin-server server-info string &opti onal package [Function]
This function queues the evaluation of a form in the server associated with server-info and waits for the
results. The server r ead’s the form from string with * package* bound to the package named by
package. This returns the results from the slave Lisp in alist of string values. You can r ead from the
strings or simply display them depending on the pr i nt ’ing of the evaluation results.

Package defaults to Current Package. If thisisni |, the server uses the value of * package* in the
server.

While the slave executes the form, it binds *t er mi nal - i o* to a stream that signals errors when read
from and dumps output to a bit-bucket. This prevents the editor and slave from dead locking by waiting
for each other to reply.

82

eval -formin-server-1 server-info string &opti onal package [Function]
This function callseval - f orm i n- server and r ead’s the result in the first string it returns. This
result must be r ead’ ablein the editor’s Lisp.

18.4. Spelling

Hemlock supports spelling checking and correcting commands based on the ITS Ispell dictionary. These com-
mands use the following routines which include adding and deleting entries, reading the Ispell dictionary in a
compiled binary format, reading user dictionary files in a text format, and checking and correcting possible spell-
ings.

spel | : maybe-read- spel | -di cti onary [Function]
This reads the default binary Ispell dictionary. Users must call this before the following routines will
work.

spel | : spel |l -read-di ctionary filename [Function]

This adds entries to the dictionary from the lines in the file filename. Dictionary files contain line
oriented records like the following:

entryl/flagl/flag2

entry2

entry3/flagl
The flags are the Ispell flags indicating which endings are appropriate for the given entry root, but these
are unnecessary for user dictionary files. You can consult Ispell documentation if you want to know
more about them.

spel | : spel | -add-entry line &pti onal word-end [Function]
This takes a line from a dictionary file, and adds the entry described by line to the dictionary. Word-end
defaults to the position of the first slash character or the length of the line. Lineis destructively modified.

spel | : spel |l -renpve-entry entry [Function]
This removes entry, a simple-string, from the dictionary, so it will be an unknown word. This destruc-
tively modifies entry. If it is a root word, then all words derived with entry and its flags will also be
deleted. If entry is a word derived from some root word, then the root and any words derived from it
remain known words.

spel | : correct-spelling word [Function]
This checks the spelling of word and outputs the results. If this finds word is correctly spelled due to
some appropriate suffix on aroot, it generates output indicating this. If thisfinds word as aroot entry, it
simply outputs that it found word. If this cannot find word at all, then it outputs possibly correct close
spellings. This writes to * st andar d- out put *, and it calls maybe-r ead-spel | -di cti onary
before attempting any lookups.

spel | : spell-try-word word word-len [Function]

max-entry-1ength [Constant]
This returns an index into the dictionary if it finds word or an appropriate root. Word-len must be
inclusively in the range 2 through max- ent r y- | engt h, and it is the length of word. Word must be
uppercase. This returns a second value indicating whether it found word due to a suffix flag, ni | if word
isaroot entry.

83

spel | : spel | -root -word index [Function]
This returns a copy of the root word at dictionary entry index. This index is the same as returned by
spel | -try-word.

spel | :spell-collect-cl ose-words word [Function]
This returns a list of words correctly spelled that are close to word. Word must be uppercase, and its
length must be inclusively in the range 2 through max- entry-1 engt h. Close words are determined
by the Ispell rules:
1. Two adjacent letters can be transposed to form a correct spelling.

2. One letter can be changed to form a correct spelling.
3. One letter can be added to form a correct spelling.

4. One letter can be removed to form a correct spelling.

spel | : spell -root-flags index [Function]
This returns a list of suffix flags as capital letters that apply to the dictionary root entry at index. This
index isthe same asreturned by spel | -t ry- wor d.

18.5. File Utilities

Some implementations of Hemlock provide extensive directory editing commands, Dired, including a single
wildcard feature. An asterisk denotes a wildcard.

dired: copy-file specl spec2 &ey :update :clobber :directory [Function]
This function copies specl to spec?. It accepts a single wildcard in the filename portion of the specifica-
tion, and it accepts directories. This copies files maintaining the source’' s write date.

If specl and spec2 are both directories, this recursively copies the files and subdirectory structure of
specl; if spec2 is in the subdirectory structure of specl, the recursion will not descend into it. Use
"/ specl/ *" tocopy only thefiles from specl to directory spec?.

If spec2 is a directory, and specl is a file, then this copies specl into spec2 with the same
pat hname- namne.

When : updat e is non-ni | , then the copying process only copies files if the source is newer than the
destination.

When : updat e and : cl obber areni | , and the destination exists, the copying process stops and asks
the user whether the destination should be overwritten.

When the user supplies : di rectory, it is alist of pathnames, directories excluded, and specl is a
pattern containing one wildcard. This then copies each of the pathnames whose pat hnane- name
matches the pattern. Spec2 is either a directory or a pathname whose pat hname- nane contains a
wildcard.

dired:renane-file specl spec2 &key :cl obber :directory [Function]
This function renames specl to spec2. It accepts a single wildcard in the filename portion of the
specification, and spec2 may be a directory with the destination specification resulting in the merging of
spec2 with specl. If : cl obber is nil, and spec2 exists, then this asks the user to confirm the
renaming. When renaming a directory, end the specification without the trailing slash.

When the user supplies : di rectory, it is alist of pathnames, directories excluded, and specl is a

dired:

di red:

di red:

pattern containing one wildcard. This then copies each of the pathnames whose pat hnane- nane
matches the pattern. Spec? is either a directory or a pathname whose pat hnane- nane contains a
wildcard.

delete-file spec &ey :recursive :clobber [Function]
This function deletes spec. It accepts a single wildcard in the filename portion of the specification, and it
asks for confirmation on each fileif : cl obber isnil. If: recursi ve isnon-ni | , then spec may be

a directory to recursively delete the entirety of the directory and its subdirectory structure. An empty
directory may be specified without : r ecur si ve being non-ni | . Specify directories with the trailing
slash.

find-file name &optional directory find-all [Function]
This function finds the filewith f i | e- namest r i ng name, recursively looking in directory. If find-all
isnon-ni | (defaultsto ni |), then this continues searching even after finding a first occurrence of file.
Name may contain a single wildcard, which causes find-all to default tot instead of ni | .

nmake-di rect ory name [Function]
This function creates the directory with name. If it already exists, this signals an error.

di red: pat hnames-from pattern pattern files [Function]
This function returns alist of pathnames from the list fileswhosef i | e- nanmest r i ng’s match pattern.
Pattern must be a non-empty string and contain only one asterisk. Files contains no directories.

di red: *updat e- def aul t * [Variable]

di red: *cl obber - def aul t* [Variable]

di red: *recursive-defaul t* [Variable]
These are the default values for the keyword arguments above with corresponding names. These default
tonil,t,andnil respectively.

di red: *report-function* [Variable]

dired: *error-functi on* [Variable]

di red: *yesp-function* [Variable]
These are the function the above routines call to report progress, signal errors, and prompt for yes or no.
These all take format strings and arguments.

nmer ge-rel ati ve- pat hnanmes pathname default-directory [Function]
This function merges pathname with default-directory. If pathname is not absolute, this assumes it is
relative to default-directory. Theresult isaways adirectory pathname.

di rectoryp pathname [Function]
This function returns whether pathname names a directory: it has no name and no type fields.

18.6. Beeping

hem ock- beep [Function]

Hemlock binds syst em *beep- f uncti on* to this function to beep the device. It is different for
different devices.

85

Bell Style (initial value: bor der-f 1 ash) [Hemlock Variabl€]
Beep Border Width (initial value 20)

[Hemlock Variable]
Bell Style determines what * henml ock- beep* does in Hemlock under CLX. Acceptable values are

:border-flash, :feep, : border-flash-and-feep, :flash, :flash-and-feep, and
ni | (do nothing).

Beep Border Width is the width in pixels of the border flashed by border flash beep styles.

86

| ndex

87

88

| ndex

Abort Hook Hemlock varigble 57
Abort Recursive Edit Hook Hemlock variable 33
abort-recursive-edit function 33
aborting 32,57
:access keyword

for wite-file 55
activate-regi on function 18
Activeregions 18
Active Regions Enabled Hemlock variable 18
active-fil e-group variable 54

Add Newline at EOF on Writing File Hemlock variable 55

add-definition-dir-translation function 60
add- hook macro 25
After Set Buffer Hook Hemlock variable 9
al | - nodi fi er-nanes variable 77
Alteringtext 15
:append keyword
for wite-file 55
:ask-user keyword
for make-w ndow 41

backwar d- up-1i st function 65
Beep Border Width Hemlock variable 85
Beep On Ambiguity Hemlock variable 51
Bell Style Hemlock variable 85
bi nd- key function 29
bit-prefix keys 30
bl ank-after-p function 16
bl ank- bef ore-p function 16
bl ank-1ine-p function 16
:buf fer keyword

for def hvar 23
Buffer Major Mode Hook Hemlock variable 36
Buffer mark stack 9, 11
Buffer Minor Mode Hook Hemlock variable 36
Buffer Modified Hook Hemlock variable 12
Buffer Name Hook Hemlock variable 11
Buffer Pathname Hook Hemlock variable 11
Buffer Writable Hook Hemlock variable 11
buf f er - def aul t - pat hname function 54
buf f er - del et e- hook function 12
buf fer-end function 5
buf f er - end- mar k function 11
puf f er- hi story variable 10
puffer-list variable 10,12
buf f er - maj or - nrode function 36
buf f er- mark function 11
buf f er - mi nor - node function 36
buf f er - nodel i ne-fiel d-p function 14
buf f er - nodel i ne-fi el ds function 14
buf f er - nrodes function 12
buf fer-nodi fied function 12,47
buf f er - name function 11
puf f er - nanes variable 10, 12
buf f er - pat hnanme function 11
buf f er - poi nt function 11
buf f er-regi on function 11
buf f er - si gnat ure function 12
buf fer-start function 5
buffer-start-mark function 11
buf f er-vari abl es function 12
buf f er - wi ndows function 12
buf fer-witable function 11
buffer-wite-date function 11
buf ferp function 10
Buffers 9

cent er -wi ndow function 42

89

change-t o- buf f er function 10
: change- wi ndow keyword

for pronpt-for-key-event 50
char - key-event function 78
Character Attribute Hook Hemlock variable 38
Character attributes 37
Character Deletion Threshold Hemlock variable 17
character-attribute function 38
character-attribute-docunentati on function
character-attri bute-hooks function 39
character-attribute-nane function 38
character-attribute-nanmes variable 37
character-attribute-p function 38
charact er-of fset function 6
check-regi on-active function 19
check-regi on- query-si ze function 7
: ¢l eanup-function keyword

for def node 36
cl ear - echo-area function 47
cl ear-editor-input function 58
. cl obber keyword

for copy-file 83

for delete-file 84

for rename-file 83
cl obber-defaul t variable 84
clrstring function 69
Command Abort Hook Hemlock variable 28
Command interpreter 28
Command types 31
command- bi ndi ngs function 30
conmmand- case macro 46, 48, 50
command- docunent ati on function 28
command- f uncti on function 28
command- nane function 28
comuand- nanes variable 27,27
commandp function 27
Commands 27
Complete Field Command 52
Complete Keyword Command 52
conpl et e-string function 70
Confirm Parse Command 51, 52
:cont ext keyword

for regi on-eval 81

for string-eval 81
copy-file function 83
copy- mark function 5
copy-regi on function 6
correct-spelling function 82
count -characters function 7
count-1ines function 7
Counting lines and characters 7
create-initial-w ndows-hook variable 79
creat e-sl ave function 80
cr eat e- wi ndow hook variable 79
Current buffer 9
Current Compile Server Hemlock variable 80
Current environment 21
Current Eval Server Hemlock variable 80
Current window 41
current-buffer function 921,29
current-mark function 9
current-point function 9
current-regi on function 11,19
current-vari abl e-tabl es function 23
current-w ndow function 9,41
Cursor positions 43
cursorpos-to-mark function 43

38

90

deacti vat e-regi on function 18
defattribute function 38
:default keyword

for prompt-for-buffer 48

for pronpt-for-expression 50

for prompt-for-file 50

for prompt-for-integer 50

for prompt-for-key 50

for pronpt-for-keyword 50

for prompt-for-string 50

for prompt-for-variable 50

for prompt-for-y-or-n 51

for pronmpt-for-yes-or-no 51
Default Modeline Fields Hemlock variable 10
Default Modes Hemlock variable 10, 35
Default Status Line Fields Hemlock varigble 47
Default Window Height Hemlock variable 41
Default Window Width Hemlock variable 41
:defaul t-string keyword

for prompt-for-buffer 48

for pronpt-for-expression 50

for prompt-for-file 50

for prompt-for-integer 50

for prompt-for-key 50

for pronpt-for-keyword 50

for prompt-for-string 50

for prompt-for-variable 50

for prompt-for-y-or-n 51

for pronmpt-for-yes-or-no 51
def command macro 27
def hvar function 23
defindent function 65
define-cl x-nodi fier function 77
define-file-option macro 53
define-file-type-hook macro 53
defi ne- key-event-nodi fier function 76
def i ne- keysym function 76
define-1ogical - key-event function 45
def i ne- mouse- keysym function 76
Definition editing 60
def node function 31,36
Defun Parse Goal Hemlock variable 64
def un-regi on function 64
Delete Buffer Hook Hemlock variable 12
Delete Variable Hook Hemlock variable 25
Delete Window Hook Hemlock variable 42
del et e- and- save-regi on function 15
del et e-buf fer function 12
del et e-buffer-if-possible function 12
del et e-characters function 15

del ete-definition-dir-translation function 60

del ete-file function 84
. del et e- hook keyword
for make-buffer 10
del et e-hori zont al - space function 63
del et e- key- bi ndi ng function 30
del et e-mark function 5
del et e-regi on function 15
del ete-string function 69
del et e-vari abl e function 25
del et e- wi ndow function 42
del et e-wi ndow hook variable 79
Deleting 15
;directory keyword
for copy-file 83
for rename-file 83
directoryp function 84
di spl ay- page-directory function 67
di spl ayed-p function 43
Do Nothing Command 80

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

do-active-group macro 54
do- al pha-chars macro 61
do- al pha- key-events macro 78
do-strings macro 70
: docunent ati on keyword

for def rode 36

Echoarea 48

Echo Area Height Hemlock variable 47
echo- ar ea- buf f er variable 47,52
*echo- area- streant variable 48
echo- ar ea- W ndow variable 47
ed function 57

editor-error function 33,60

editor-error-format-argunments function 60

editor-error-format-string function 60
editor-finish-output function 44

edi tor-input variable 57

edi tor-sl eep function 58

enpty-1line-p function 16

end-1ine-p function 16

English text functions 65

Enter Recursive Edit Hook Hemlock variable 32
Enter Window Hook Hemlock variable 79
Entry Hook Hemlock variable 57

epheneral | y-acti ve- command-t ypes variable 18

cerror-file keyword

for file-conpile 81
error-function variable 84
eval -formin-server function 81
eval -formin-server-1 function 82
Evaluating Lisp code 61
Event scheduling 60
Exit Hook Hemlock variable 57,57
Exit Recursive Edit Hook Hemlock variable 33
Exit Window Hook Hemlock variable 79
exi t-hem ock function 57
exit-recursive-edit function 33

Filegroups 54

Fileoptions 53

Filetypehooks 53
file-conpile function 81
Files 53

Fill Column Hemlock variable 67
Fill Prefix Hemlock variable 67

fill-region function 67
fill-region-by-paragraphs function 67
filling 67

filter-region function 16
fi nd- anbi guous function 70
find-attribute function 38
find-contai ni ng function 70
find-file function 84
find-file-buffer function 56
find-pattern function 20,37
first-line-p function 17
formof fset function 64
forward-up-1ist function 65
:function keyword

for make-nmodel ine-field 13

Generic Pointer Up 73

get - command function 30
get-current-conpil e-server function 80
get-current-eval -server function 80
get - key- event function 58

get -search-pattern function 20
getstring function 70

gl obal - vari abl e- names variable 23

INDEX 91

got o- page function 66 key-transl ation function 31
Group Find File Hemlock variable 54 keyboard input 57, 75
Group Save File Confirm Hemlock variable 54 Keyboard macro vs. interactive 31
keysym nanes function 76
handl e-1isp-errors macro 60 keysym pr ef er r ed- nanme function 76
: hei ght keyword Kill ring 17
for make-w ndow 41 ki Il -characters function 17
- hel p keyword ki Il -region function 17
for prompt-for-buffer 48 *Kill -ring* variable 17
for pronpt-for-expression 50
for prompt-for-file 50 Last Resort Pathname Defaults Function Hemlock variable
for pronpt-for-integer 50 54
for prompt-for-key 50 Last Resort Pathname Defaults Hemlock variable 54
for pronpt-for-keywrd 50 | ast - command-type function 17,31
for prompt-for-string 50 | ast - key- event - cur sor pos function 43
for pronpt-for-variable 50 *| ast - key-event-typed* variable 58
for prompt-for-y-or-n 51 last-1ine-p function 17
for prompt-for-yes-or-no 51 *| ast - search- pattern* variable 20
Help On Parse Command 52 *| ast - search-string* variable 20
Hemlock variables 23 I'i ne-buffer function 3
hem ock- beep function 84 I'i ne-character function 3
hem ock- bound-p function 24 i ne-end function 5

hem ock- out put - stream p function 59
hem ock-regi on-stream p function 59
hl et macro 24
Hooks 25
- hooks keyword

for def hvar 23

ne- | ength function 3
ne- next function 3
ne- of f set function 6
ne-plist function 3

ne- previ ous function 3
ne-si gnature function 4
ne-start function 5
ne-string function 3
ne-to-region function 7
ne< function 17

ne<= function 17

ne> function 17

ne>= function 17

i nep function 3

110 57,75

lllegal Command 35

in-1isp function 61
in-recursive-edit function 33
Indent Function Hemlock variable 63
Indent with Tabs Hemlock variable 63
i ndent -regi on function 63

i ndent - r egi on-f or - commands function 63 Lines 3
Indenting 63 lines-rel ated function 17
cinitial-contents keyword Lisp environment 57

for make-string-table 69 Lisp text functions 63
Input Hook Hemlock variable 57 listen-editor-input function 58
input, keyboard 57, 75 ;1 oad keyword
input, mouse 75 for file-conpile 81
input-transcript variable 58 Logical key-events 45
i nsert-character function 15 Logica pages 66
i nsert-region function 15 | ogi cal - key-event -docunment ati on function 45
insert-string function 15 | ogi cal - key-event -key-events function 45
Inserting 15 | ogi cal - key-event - nane function 45
i nsi de- def un-p function 64 *| ogi cal - key- event - nanes* variable 45
interactive function 31 | ogi cal - key-event-p function 46
Interactive vs. keyboard macro 31 | oud- nessage function 47
Interpreter, command 28
Invocation, command 28 :maj or-p keyword
i nvoke- hook macro 25 for def rode 36
i nvoke- hook variable 28 Make Buffer Hook Hemlock varigble 10

Make Window Hook Hemlock varigble 41

Keep Backup Files Hemlock variable 55 make- buf f er function 10
: keep- backup keyword make- conmmand function 27

for wite-file 55 make-di rectory function 84
Key Bindings 29 make- enpt y-regi on function 6
key trandation 30 make- hem ock- out put - st r eam function 59
key-event-bit-p function 78 make- hem ock-r egi on- st ream function 59
key-event - bits function 78 make- key- event function 78
key-event - bi ts-nodi fiers function 77 make- key- event - bi ts function 77
key-event - char function 78 make- nodel i ne-field function 13
key-event - hi story variable 58 make-regi on-undo function 71
key- event - keysym function 78 make-ring function 71
key-event - nodi fi er-mask function 77 make- string-tabl e function 69
key-event -p function 78 make-w ndow function 41,41

key-events 28 map- bi ndi ngs function 30

92

mar k function 5

Mark stack 9, 11

mar k- aft er function 5

mar k- bef ore function 5

mar k- char pos function 4

mar k- col utm function 43

mar k- ki nd function 4

mar k-1i ne function 4

mar k- par agr aph function 66
mar k-t o- cur sor pos function 43
mar k-t op- | evel - f or m function 64
mar k/ = function 16

mar k< function 16

mar k<= function 16

mar k= function 16

mar k> function 16

mar k>= function 16

mar kp function 4

Marks 4

max-entry-l ength constant 82
Maximum Lines Parsed Hemlock variable 64

maybe-read-spel | -di cti onary function 82

mer ge-rel ati ve- pat hnames function 84
message function 47
Message Pause Hemlock variable 47
Minimum Lines Parsed Hemlock variable 64
:node keyword
for def hvar 23
nmode- docunment ati on function 36
node- maj or - p function 36
nmode- nanes variable 35, 36
node- vari abl es function 36
nmodel i ne-field function 13
nodel i ne-fi el d-function function 13
nmodel i ne-fi el d- nane function 13
nodel i ne-fiel d-p function 13
nmodel i ne-fi el d-w dth function 14
:nodel i ne-fiel ds keyword
for make-buffer 10
:nodel i nep keyword
for make-wi ndow 41
Modelines 12,41
Modes 35
:nodes keyword
for make-buffer 10
mouseinput 75
nmove- mar k function 5
nove-t o- col um function 43
nmove-to- position function 511,43
Moving marks 5
s must - exi st keyword
for prompt-for-buffer 48
for pronpt-for-expression 50
for prompt-for-file 50
for prompt-for-integer 50
for pronpt-for-key 50
for pronpt-for-keyword 50
for prompt-for-variable 50
for prompt-for-y-or-n 51
for pronpt-for-yes-or-no 51

:name keyword

for make-nmodel ine-field 13
nane- keysym function 76
new sear ch-pattern function 19
next - character function 4
next - wi ndow function 43
ni nsert-region function 15

coutput-file keyword

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

for file-conpile 81

. package keyword
for file-conpile 81
for regi on-conpile 81
for regi on-eval 81
for string-eval 81
Page functions 66
page-di rectory function 66
page- of f set function 66

Paragraph Delimiter Function Hemlock variable 65

par agr aph- of f set function 65

Parse End Function Hemlock variable 64
Parse Start Function Hemlock variable 64
par se-defaul t variable 51
parse-defaul t-string variable 51
par se- hel p variable 52

par se-i nput -regi on variable 52
*par se- pronpt * variable 52

par se-starting-nmark variable 52
par se-string-tabl es variable 51
par se-type variable 52

*par se-val ue- nust - exi st * variable 51

parse-verification-function variable 51

Pathname Defaults Hemlock variable 54
pat hname- t o- buf f er - name function 54
pat hnames-from pattern function 84
pause- hem ock function 57
Permanent marks 4
pop- buf f er-mar k function 9
pr e- command- par se- check function 64
. precedence keyword

for def rode 36
Prefix arguments 32
prefix-argunent function 32
previ ous-buffer function 10
previ ous- character function 4
pr evi ous-wi ndow function 43
print-pretty-key function 78
print-pretty-key-event function 78
process-fil e-options function 53
: pronpt keyword

for prompt-for-buffer 48

for pronpt-for-expression 50

for prompt-for-file 50

for prompt-for-integer 50

for pronmpt-for-key 50

for pronpt-for-key-event 50

for pronpt-for-keyword 50

for prompt-for-string 50

for prompt-for-variable 50

for prompt-for-y-or-n 51

for prompt-for-yes-or-no 51
pronpt - for-buffer function 48
pronpt - f or - expr essi on function 50
pronpt-for-file function 50
pronpt -for-integer function 50
pronpt - for-key function 45,50
pronpt - f or - key- event function 50
pronpt - for-keyword function 50
pronpt-for-string function 50
pronpt-for-variabl e function 50
pronpt-for-y-or-n function 51
pronpt-for-yes-or-no function 51
Prompting functions 48
push- buf f er-mark function 9

random t ypeout - buf f er s variable 59
random t ypeout - hook variable 79
Read File Hook Hemlock varigble 55

INDEX

read-buffer-file function 55
read-file function 54
real -editor-input variable 57
Recursive edits 32
:recursive keyword

for delete-file 84
recursive-defaul t variable 84
recursive-edit function 28,32
redi spl ay function 44
Redisplay Hook Hemlock varigble 44
redi spl ay-al | function 44
regi on function 6
Region Query Size Hemlock variable 7
regi on-active-p function 18
regi on- bounds function 7
regi on- conpi | e function 81
regi on-end function 7
regi on-eval function 81
region-start function 7
region-to-string function 6
regi onp function 6
Regions 6
Remote Compile File Hemlock variable 81
renove- hook macro 25,39
renmove- schedul ed- event function 61
renane-file function 83
repl ace- pattern function 20
Replacing 19
report-functi on variable 84
reverse-find-attribute function 38
ring-length function 71
ri ng-pop function 71
ring-push function 71
ring-ref function 71
ringp function 71
Rings 70
rotate-ring function 71

sane-1|ine-p function 16
save-for-undo function 71
schedul e- event function 61
Scheduling events 60
scrol | -wi ndow function 43
search-char-code-limt constant 19
search-pattern-p function 20
Searching 19
sent ence- of f set function 65
: separ at or keyword

for make-string-table 69
:server keyword

for file-conpile 81

for regi on-conpile 81

for regi on-eval 81

for string-eval 81
Set Buffer Hook Hemlock variable 9
Set Window Hook Hemlock variable 41
set -regi on- bounds function 7
: setup-function keyword

for def rode 36
setv macro 24
Shadow Attribute Hook Hemlock variable 38
shadow attri bute function 38
show mar k function 44
Slavelisp interface functions 80
Spaces per Tab Hemlock variable 63
spel | -add-entry function 82

spel |l -col | ect-cl ose-words function 83

spel | -read-di ctionary function 82
spel | -renove-entry function 82
spell -root-flags function 83

93

spel | -root-word function 83

spel |l -try-word function 82

Spelling checking 82

start-defun-p function 64
start-1line-p function 16
string-eval function 81
string-tabl e-p function 69
string-tabl e-separator function 69
String-tables 69

string-to-region function 6
string-to-variabl e function 24
suppl y- generi c- poi nt er-up-functi on function
Syntax tables 37

synt ax- char-code-limt constant 37

Temporary marks 4
top-1 evel - of f set function 64
transl at e- key- event function 77
transl at e- rouse- key- event function 77
trandating keys 30
Transparent key bindings 31
:transparent-p keyword
for def rode 36
Type hooks 53

Undo functions 71
unget - key- event function 58
Unshadow Attribute Hook Hemlock variable 38
unshadow attri bute function 38
: updat e keyword

for copy-file 83
*updat e- def aul t * variable 84
updat e- nodel i ne-fi el d function 14
updat e- nodel i ne-fi el ds function 14
use-buffer macro 32
Utilities 69

val i d-spot function 65
:val ue keyword
for def hvar 23
val ue macro 24
vari abl e-docunent ati on function 24
vari abl e- hooks function 24
vari abl e- name function 24
vari abl e-val ue function 24

:wi dt h keyword

for make-nodeline-field 13

for make-wi ndow 41
Window Buffer Hook Hemlock variable 42
:wi ndow keyword

for make-wi ndow 41
wi ndow- buf f er function 42
wi ndow- di spl ay-end function 42
wi ndow- di spl ay-recentering function 42
wi ndow- di spl ay-start function 42
wi ndow hei ght function 43
wi ndow | i st variable 41
wi ndow- poi nt function 42
wi ndow wi dt h function 43
wi ndowp function 42
Windows 41
Wi t h-input-fromregi on macro 59
with-nmark macro 5
Wi t h- out put -t o-mark macro 59
Wi t h- pop- up-di spl ay macro 59
with-witabl e-buffer macro 12
wor d- of f set function 65
Write File Hook Hemlock variable 55
wite-buffer-file function 55

73

94

write-file function 55

: X keyword
for make-w ndow 41

1y keyword
for make-w ndow 41
yesp-function variable 84

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

INDEX

Table of Contents

1. Introduction
2. Representation of Text

2.1.Lines
2.2. Marks
2.2.1. Kindsof Marks
2.2.2. Mark Functions
2.2.3. Making Marks
2.2.4. Moving Marks
2.3. Regions
2.3.1. Region Functions

3. Buffers

3.1. The Current Buffer
3.2. Buffer Functions
3.3. Modédlines

4. Altering and Sear ching Text

4.1. Altering Text

4.2. Text Predicates

4.3. Kill Ring

4.4. Active Regions

4.5. Searching and Replacing

5. The Current Environment

5.1. Different Scopes
5.2. Shadowing

6. Hemlock Variables

6.1. Variable Names
6.2. Variable Functions
6.3. Hooks

7. Commands

7.1. Introduction
7.1.1. Defining Commands
7.1.2. Command Documentation
7.2. The Command Interpreter
7.2.1. Editor Input
7.2.2. Binding Commandsto Keys
7.2.3. Key Trandation
7.2.4. Transparent Key Bindings
7.2.5. Interactive
7.3. Command Types
7.4. Command Arguments
7.4.1. The Prefix Argument
7.4.2. Lisp Arguments
7.5. Recursive Edits

8. Modes

8.1. Mode Hooks
8.2. Major and Minor Modes
8.3. Mode Functions

9. Character Attributes

9.1. Introduction
9.2. Character Attribute Names

O oocovuiuhrhhAphw WK

ii HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

9.3. Character Attribute Functions 38
9.4. Character Attribute Hooks 39
9.5. System Defined Character Attributes 39
10. Controlling the Display 41
10.1. Windows 41
10.2. The Current Window 411
10.3. Window Functions 41
10.4. Cursor Positions 43
10.5. Redisplay 44
11. Logical Key-Events 45
11.1. Introduction 45
11.2. Logical Key-Event Functions 45
11.3. System Defined Logical Key-Events 46
12. The Echo Area 47
12.1. Echo Area Functions 47
12.2. Prompting Functions 48
12.3. Control of Parsing Behavior 51
12.4. Defining New Prompting Functions 51
12.5. Some Echo Area Commands 52
13. Files 53
13.1. File Options and Type Hooks 53
13.2. Pathnames and Buffers 53
13.3. File Groups 54
13.4. File Reading and Writing 54
14. Hemlock’s Lisp Environment 57
14.1. Entering and L eaving the Editor 57
14.2. Keyboard Input 57
14.3. Hemlock Streams 59
14.4. Interfaceto the Error System 59
14.5. Definition Editing 60
14.6. Event Scheduling 60
14.7. Miscellaneous 61
15. High-Level Text Primitives 63
15.1. Indenting Text 63
15.2. Lisp Text Buffers 63
15.3. English Text Buffers 65
15.4. Logical Pages 66
15.5. Filling 67
16. Utilities 69
16.1. String-table Functions 69
16.2. Ring Functions 70
16.3. Undoing commands 71
17. Miscellaneous 73
17.1. Generic Pointer Up 73
17.2. Using View Mode 73
18. Auxiliary Systems 75
18.1. Key-events 75
18.1.1. Introduction 75

18.1.2. Interface 76

18.2. CL X Interface 78

INDEX

18.2.1. Graphics Window Hooks
18.2.2. Entering and L eaving Windows
18.2.3. How to L ose Up-Events
18.3. Slave Lisps
18.3.1. The Current Slave
18.3.2. Asynchronous Oper ation Queuing
18.3.3. Synchronous Oper ation Queuing
18.4. Spelling
18.5. File Utilities
18.6. Beeping

I ndex
I ndex

