
University of Florida's

Mach I386 Installation Notes

Carnegie Mellon University

Pittsburgh, PA 15213

Edited for the University of Florida

by

Philip A. Kufeldt

Engineering Computing Services

College of Engineering

pak@eng.u
.edu

May 3, 1992

1 Introduction

The Mach i386 release is a complete system release that comes with a "Mach 2.5" macro kernel.

This system has a newer kernel than the Vax, Sun3 and IBMRT platforms and a system environment

that is closer to BSD 4.3-Tahoe. This system can be used to build the Mach 3.0 micro-kernel and

Unix server. Most of the user level programs provided in this release will run with either the Mach

2.5 kernel or the Mach 3.0 kernel plus Unix server.

The programs and libraries come from the 4.3BSD-TAHOE release. Additionally, all of the

Mach speci�c programs, include �les, and libraries (libmach and libthreads) are provided. The

CMUCS library and some of the CMUCS programs (most noteably rfs and sup) are included. This

release does not support NFS. Lastly, since the Mach 2.5 kernel does not support �le system labels,

most �le system tools are CMU tools derived from 4.3BSD. This system has been distributed during

the 1990 calendar year.

All the releases that are made by UF's College of Engineering are done only by an electronic

transfer protocol called SUP (Software Update Protocol). If your site is not on the university

network then call UFNET.

This document assumes a working knowledge of the installation and maintainence of a 4.3BSD

system. If you are unfamiliar with the 4.3BD system, you should read the system maintainers

documentation for 4.3BSD.

2 Hardware Requirements

We only support machines with:

� Either an i386 or i486 processor

1

� at least 5 Meg of memory. We strongly suggest use 8Meg - 16Meg.

� an AT compatible bus.

� WD 1007 compatible disk controllers. You should get at least 100Meg of disk. We use 300Meg

ESDI drives but ST506 drives work [although slowly]. IDE drives work as well.

� E,C,VGA displays in 25 x 80 character mode. X11R5 support for wide variety of color vga

adapters at resolutions up to 1024x768.

� high density 3

1

2

" and/or 5

1

4

"
oppies at 1.44Meg and 1.2Meg, respectively.

� several ethernet boards: Intel's iMX586 or PC586/ENET586 ethernet board, 3COM's Ether-

Link I and EtherLink II (sometimes known as 3c501 and 3c503), and Western Digital's

WD8003E and WD8013E ethernet boards.

We support but do not require:

� Intel 80387 hardware
oating point. (recommended)

� The built-in serial line: COMi

� The built-in parallel port: LPTi

� Wangtek 1/4" standard 3M streamer.

� Adaptec SCSI adapters and devices.

We Do Not Support:

� The microchannel bus: IBM PS 2/70 and PS 2/80 and some NCR machines

Note: Engineering Computing Services provides this Mach release in electronic form only.

Hence, the requirement of an ethernet card. equipment.

3 The Bootstrap Disks

This distribution is intended to be loaded onto an empty disk; it contains all the binaries and

sources that are needed. The Mach bootstrap kit consists of a pair of High Density (HD)
oppy

disks which can be anonymously ftp from eng.u
.edu. In pub/mach/installation there are two �les:

disk1 and disk2. These two �les are dd'ed 3

1

2

" high density
oppy images. At a nominal cost, ECS

will provide these
oppies if they cannot be retrieved from the net.

The �rst disk contains a bootstrap program and a copy of the Mach Kernel. The second disk

contains a �le system with Unix binaries. The �le system disk is intended to be used not only

during the boot process, but also to recover from problems that might prevent you from being able

to boot o� the hard disk.

The second disk contains (approximately):

2

UFMACHBASE

bin:

[dd ls setup tar

cat echo mkdir setup.new

chmod ed mv sh

cp hostname pwd stty

date ln rm sync

dev:

MAKEDEV and devices

etc:

badblocks fdisk ifconfig passwd route

badsect fsck init rc services

clri group mkfs reboot termcap

diskutil halt mknod resolv.conf umount

dump hosts mount rfshost vtoc

restore

mnt:

tmp:

usr/bin:

rfs sup

usr/games:

rain

usr/ucb:

ftp telnet

The installation process presumes that you are going to boot your target i386 machine from

the
oppy disks that we have provided and then transfer the �les from ECS onto the target i386.

In this document, we presume that you are going to access the Mach binaries and sources via the

campus network. tar and dump/restore are also provided, here, to allow you to copy the sources

into some other local machine and then to transfer them to the i386 machine by tape,
oppies or

lan access.

You will be requesting binaries and sources from a database machine at ECS using the sup

database update program/protocol. (See the sup manual page). Your machine will authenticate

to the database machine; it must explicitly supply an encryption key (CRYPT) in the procotol

negotiations.

To get this distribution you must �rst contact ECS and register your new mach host. At this

time the point of contact for this new machine will be added to a campus wide mach mailing list.

It is on this list that updates and information dealing with Mach on campus will occur. If you

3

would like there is also a national mailing expressly for Mach on i386's. To register, send a request

to machi386-request@mach.cs.cmu.edu.

4 Before You SUP

4.1 Low Level Disk Formatting

You must perform a low level format of your hard disk. This procedure partitions the disk into

sectors and then looks for bad areas of the disk. It usually takes several hours. Some manufacturers

(HP, Toshiba, ...) ship the disks preformatted. Also, some computer stores will format the disk for

you before they ship the system.

The documentation you got with your disk or machine or DOS will tell you how to format your

disk. The procedures vary widely and are beyond the scope of this discussion. Please do not call

us if you are having problems with this step.

4.2 Manual Pages

You should acquaint yourself with the attached manual pages for the programs: diskutil, fdisk,

vtoc, badblocks and sup.

4.3 Booting to Single User mode

In the guide below, we presume that nothing will go wrong. In our experience, 80common set

of pitfalls. We annotate problem areas with superscripts; these numbers refer to comments in

Appendix I.

We will presume for the discussion below that you are performing a "simple" installation. In

particular, that you do not want to preserve part of the disk for other systems (like DOS), you do

not have excessive bad blocks in inopportune places (where the system would put the bad block

table) and that you do not have to override the disk geometry parameters that are maintained

internal to BIOS. We will discuss all these matters in the section DONT CLOBBER MY DISK.

You use the
oppies to bring up Mach 2.5 in single user mode. Insert the Mach Kernel disk

(disk 1)and boot (or power toggle) the machine. The system should

1. Print out a 8 hexadecimal digits

2. It then should type boot:

At this prompt, you type a carriage return (or enter). Then, you will see a number printed

out, a pause, a +, etc. The bootstrap is reading in the kernel.

Shortly, you will be instructed to insert file system. At this point, you remove the Mach

Kernel disk and insert the Mach �le system disk (disk 2). Once you have switched
oppies,

you proceed with the boot process by typing a carriage return (or enter).

3. Next, you will see several lines of printout; the Mach kernel is describing the hardware that

it �nds.

Then you will see a lot of activity on the
oppy as fsck is run. And �nally, you will get the #

prompt, indicating that you are executing at single user level and may now type commands.

4

You might want to do an ls -R at this point and play with the system a bit. Note: operat-

ing/loading from
oppies is rather slow and not indicative of the true system performance.

4.4 Initializing your Disk

Now you use the Mach procedures on the installation
oppy to initialize your hard disk.

type

diskutil clobber_my_disk

This initializes a disk for use under Mach. It will destroy all/any data on the disk. If you do

not wish to trash all the data on your disk, read the section "DONT CLOBBER MY DISK". On

an ESDI disk, this procedure takes about 15 minutes per 100Meg. On an ST506 disk, it is much

slower. Note: when this operation completes you do not have �le systems; you must run the setup

program (below).

5 Installation and System Setup

5.1 Supping �les

Installing Mach is a simple cook book process. You follow the recipe below to bootstrap over the

internet.

1. Type

setup -init

Called with -init argument setup will create a root �le system and mount it under /mnt.

It will then create a usr �le system and mount it under /mnt/RFS/.LOCALROOT/usr. The

pathname RFS/.LOCALROOT is explained further in the section "Root, Super-root and

RFS". If later on, the system needs to be rebooted from the
oppies and you do not wish to

re{initialize the disk then,

setup -mount

The -mount argument causes the root and usr �le systems to be mount under /mnt as above

without re{initializing the disk.

2. Type

setup -net <machine name> <internet address> [<netmask> <broadcast>]

setup -gateway <internet_gateway>

5

Now you should be on the network. You might try to telnet by IP address somewhere, to verify

that your network connection is active. The -gateway <internet gateway> is necessary for

your machine/site to �nd a path to the ECS mach server. At this time you might also want

to edit the resolv.conf �le in the /etc directory to identify the nameserver nearest you. This

is not strictly necessary.

3. Type

setup -sup

This invokes sup on the control �le /UFMACHBASE . Your machine will be requesting from

ECS all the binaries for the i386 distribution. On our local ethernet, this takes about 1/2

hour; over the internet, we have seen times in the 2 to 3 hour range. If there are failures, just

restart this step by retyping

setup -sup

Repeat this until everything completes. The sup protocol records what it has successfully

brought over from previous attempts and transfers any �les still required. When sup has

successfully completed there will be the following three directories mach.�rst, mach.root, and

mach.usr in /mnt/RFS/.LOCALROOT/sup.

4. Before booting from your hard disk,

cd /mnt/RFS/.LOCALROOT/etc

and edit the �le rc.custom (use ed as the editor). Fill in your machine name, ip address and

gateway in the appropriate places. You also should verify that your machine name and ip

address are in the hosts �le.

5. Now it is time to reboot o� the hard disk. Type

reboot

After you get the message "syncing disks ...", remove the
oppy disk or you will attempt to

boot o� the
oppy again | not the hard disk.

6. Note that the template passwd �le allows root to login with no passwd. This is so that you

will be able to add yourself as a user and change the root passwd after you boot o� the hard

disk. You should not leave the root without a password after you have set up your machine.

7. The
oppy devices may be wrong for the type of drive on your machine. They are setup for

5 1/4"
oppies via the installation process. You make the devices for the 3 1/2"
oppy by

typing

6

cd /dev

rm -f *floppy *fd0

./MAKEDEV fh0

or for the 5 1/4"
oppy by

typing

cd /dev

rm -f *floppy *fd0

./MAKEDEV fd0

MAKEDEV fh1 or MAKEDEV fd1 can be used to make devices for a second disk drive. It

will be known by the names fd1 and rfd1.

8. Edit all the site dependent BSD �les below. You should look at the BSD installation manual

for exact details.

� /etc/rc.custom

� /etc/hosts

� /etc/motd

� /etc/termcap

� /etc/sendmail.cf,fc

� /etc/passwd

� /etc/group

� /etc/resolv.conf

� /etc/printcap - if you have printers

5.2 The Environment

Mach 2.5 I386 has the same kernel features as the Mach 2.5 for all the other supported platforms.

The software environment starts with 4.3BSD-TAHOE environment, with one major exception.

The Mach 2.5 kernel does not support �le system labels; so most �le system tools are CMU tools

derived from 4.3BSD.

You are also provided with all the Mach programs, include �les and libraries and the CMUCS

library and some programs (most notably rfs and sup). However, these �les are not in the /usr/mach

tree or /usr/cs tree as is the case with Mach on other hardware, but are integrated into the BSD

tree. (Eventually all Mach systems will have a merged tree.)

The compile environment/tools, i.e. cc, as, ld, size, nm, strip, ar, and gdb all come from the

GNU products of the Free Software Foundation (FSF). There is one exception, cpp; we use a CMU

modi�ed 4.3BSD cpp. All of the program and library sources have been compiled without using

the "traditional" switch and only a few programs needed "writable-strings". You should be aware

of what these two features do; see the gcc manual page. You may need them to successfully port

your applications.

7

Finally, one feature about the load/execution function should be noted. Program text starts at

0x10000 (64K). This means that you can not dereference a pointer to 0 or any small integer value.

This will cause programs to core dump that were "accidentally" working on other architectures.

Only a small number of 4.3BSD-TAHOE programs that had to be �xed to deal with this. (SunOS

and Mach on the Sun Architecture machines have a similar restriction.)

5.3 BSD4.3-TAHOE Source Compilation

Since the system sources, /usr/src, are basically 4.3BSD-TAHOE, the BSD standard compilation

procedures applies. The typical way to build a program is to go to the appropriate directory and

type make. You install it by typing make install. Note: If the program <foo>.cmucs exists, it was

used in preference to the original BSD program <foo>. Also, the compile tools mentioned above,

should be taken from /usr/src/gnu; the BSD version has been left for reference purposes.

5.4 Building Kernels

To build a new kernel, go to the kernel source tree. Then type make CONFIG=STD+WS-afs-nfs

doconf con�g This will create a directory, STD+WS-afs-nfs. You can go into this directory and

type ./make. This will initiate a standard BSD style kernel build.

5.5 Installing/Booting Kernels

The kernel that you have built should be placed on the root of the �le system. Give it some name

other than /mach [or /vmunix], initially, so you can fall back to the old kernel if necessary. To

invoke your kernel type

/etc/reboot

The old kernel will shutdown, then the hardware performs self test, and lastly, you are prompted

for a kernel to boot. The system types out:

boot:

If you type nothing, mach is booted. (If you type carriage return (or enter), mach is also booted.)

You may type a �le name of a kernel to boot. If you had put your kernel in the �le /mach.new,

you would type

/RFS/.LOCALROOT/mach.new

to boot this kernel. Note: From the section on Root, Super-root and RFS, you should understand

why the /RFS/.LOCALROOT is necessary. (Aside: you may also supply
ags on the boot line,

above. -s causes the system to boot "single user". -d causes symbols for the debugger to be loaded.)

Once you are happy with your kernel, you want to install it as /mach. The old /mach has a

link count of three; the three �les /mach, /vmunix and /../../mach have to be linked together. You

also want to save the old kernel. My preference for doing this is to:

cp -p /mach /mach.old

cp -p /mach.new /mach

8

This way after you set up the links once and never worry about them again. Alternatively, you

might

rm -f /mach.old /../../mach.old /../../vmunix.old

mv /mach /mach.old

mv /vmunix /vmunix.old

mv /../../mach /../../mach.old

mv /mach.new /mach

ln /mach /vmunix

ln /mach /../..

5.6 Root, Super-Root and RFS

Since 1982, CMUCS kernels have had a facility that lets you access �les and devices on other

machines. We call this the remote �le system, RFS. The client side exists in every Mach kernel;

the server is a privileged program, rfsd, that is run on each machine that will permit access to its

local �les. We have even ported the server to non-Mach operating systems.

RFS refers to remote �les/devices in a very location dependent way. The remote �le name should

not look strange to Mach/Unix programs that parse �le names. Thus, the generic name is /../<re-

mote machine name>/<path on that machine> for example /../wb1/etc/passwd /../wb1/dev/rmt0

What this implies is that in Mach, the root �le system, "/", is not inode 2. The kernel automat-

ically "chroots" (changes the root) to /RFS/.LOCALROOT as it boots. Thus "/.." and "/../.."

are well de�ned and not equal to "/".

The local machine must have an "RFS link" to the remote machine. To make a link in /.., type:

cd /..

rfshost <IP ADDRESS> <host name> <host nic names>

For example:

rfshost 128.2.250.16 wb1.cs.cmu.edu wb1

or even

rfshost `grep wb1.cs.cmu.edu /etc/hosts`

You may create as many entries as you like and as many aliases as you like. A special quoting

mechanism is necessary to remove an RFS link. If you are in the directory containing the RFS link,

link,

rm .///<link>

9

will remove the RFS link, link.

By default, RFS accesses �les on the server using the user id, rfsd, and group id, system.

However, the server must be told that your machine may access its �les. The �le /etc/rfsd-hosts,

on the server, should contain single lines indicating the internet address of machines allowed to

contact this machine. (If you change the �le, you must kill and restart rfsd.)

You can also authenticate yourself to RFS, using the program, rfs. rfs will prompt you for a

user, group, account, password, and "Identify?" Give the default answer for account and "Identify".

After running rfs, you will have a shell that will allow you to access �les on any remote RFS hosts

using the speci�ed uid and group. Note: you must create a local magic �le for authentication to

work. You must type

cd /..

rfshost 0.0.0.0 CONTROL

5.7 Paging

The kernel pages out to inodes. There is no need for special dedicated paging area, but there must

be free space on the disk to page out to. The program /etc/swapon can be run at boot time to

specify partitions to prefer to swap to and those to never swap to. (see mach swapon.8)

5.8 Changing Time Zones

As distributed the time zone is set to eastern standard time, i.e. EST5EDT. If you need to change

time zones you will need to perform two tasks. First, you will need to re-link /etc/zoneinfo/localtime

as follows (do this as root):

cd /etc/zoneinfo

rm localtime

ln xxx localtime (substitute appropriate timezone file for xxx)

Second, you will need to patch time zone variable (i.e. tz) in the kernel.

Prior to doing this you will need to calculate the appropriate patch value in hex of the di�erence

in minutes between your local zone time and GMT (universal time). The value of this constant for

eastern standard time, for example is x12c hex (i.e. 300 decimal). This is the value that you will

initially see for tz. To change to Paci�c Daylight Time, as an example, tz should be patched to

x1e0 hex (i.e. 480 decimal).

5.9 The Kernel Debugger

Mach has a version of "adb" in the kernel. The key sequence "control-alt d" will enter the kernel

debugger. As you would expect, ":c" gets you back. Once in the kernel debugger, you are on your

own. You might look at the BSD documentation on adb and kdb for a list of the commands. A

laconic description of the debugger may be found in Appendix V. Symbols have to be loaded with

the kernel, for kdb to be able to use them. If the kernel �le is executable (determined by the �le's

permission bits), the boot program always loads the symbols. The boot line
ag, -d, will force

symbols to be loaded.

10

6 DONT CLOBBER MY DISK

6.1 Minor Variations

Three simple cases of disk setup arise that can still be handled by diskutil clobber my disk. In the

�rst case, you might need/want to override what BIOS believes the disk geometry to be. BIOS

allows only 10 bits of cylinder numbers. If you have more, either you can not use them, or you have

to lie about the number of sectors per track and number of heads so that the "virtual" number

of cylinders falls under 1024. If you specify the "-p" option to diskutil clobber my disk, it will

interactively prompt you for the geometry information.

In the second case, you have bad blocks in what would be the bad block area. diskutil clob-

ber my disk will abort very early on. You �x this by moving the start of the "Mach (BIOS)

partition" forward (see section The Disk Layout below). You type:

diskutil clobber_my_disk -o <offset in sectors>

The Mach (BIOS) partition will start at <o�set in sectors> on the disk. This quantity should

be an integral number of cylinders. NOTE: You specify the number in SECTORS.

In the last case, you might have a stupid low level format program which marks all the sectors

of a track bad if any sector is bad. diskutil clobber my disk has a heuristic; it looks for several

sector errors before it labels the track as bad. This will cause a lot of needless rattling of the disk

(error retries and recalibration), before the track is marked bad by diskutil clobber my disk. The

"-t" option to diskutil clobber by disk (and badblocks) will cause the program to mark the entire

track bad if there is one bad sector.

Lastly, you can combine any or all of the options described above.

6.2 Room Enough for DOS

If you are starting out with an emtpy disk and want to leave room for a DOS partition at the front

of the disk, there is a very easy way to do this. Use

diskutil clobber_my_disk -o <offset in sectors>

as noted in the previous section and specify the number of sectors you want to leave for the

DOS paritition. (This should be a integral number of cylinders.)

Next, you boot up DOS from a
oppy and run DOS's fdisk to create a primary DOS partition

that uses ONLY the initial cylinders of the disk that you have set aside. Then you run DOS format

to format the DOS c drive. Lastly, you populate the c drive. NOTE: in our experience fdisk from

DOS 3.3 is very easy to allocate the right number of cylinders. DOS 4.0 fdisk is harder to use for

this purpose.

If DOS partitions are already on the disk, or you need several, the next section will explain

what you need to do.

6.3 The Disk Layout

At the start of the disk (sector 0), there is a BIOS boot block that has code and a partition table.

(NOTE: BIOS calls this table a partition table. Unix refers to regions of the disk that are separate

11

�le systems as partitions. To try to avoid the obvious confusion, we call to the former a "(BIOS)

partition", and the latter a partition.) The table has four entries; one is designated as "active".

The boot process �nds the active partition and invokes it. This table makes it possible to divide

the disk up into several disjoint areas. Thus Mach and DOS can both coexist on the same disk.

The "Mach (BIOS) partition" begins with a boot program that can occupy up to 29 sectors.

This is followed by one sector for a vtoc (volume table of contents). The vtoc speci�es the override

disk geometry and then divides the "Mach (BIOS) partition" into the standard Mach/Unix �le

system partitions. The vtoc is followed by four sectors that record bad blocks and a number of

sectors that are used as bad block replacements. At the next cylinder boundary, the �rst Mach

partition begins; this is typically the "root".

All the structures described above need to be initialized for Mach to be able to use the disk.

The programs, fdisk, vtoc, and badblocks, edit the necessary structures. They will let you edit

every �eld in every structure. We will not describe them in detail; see the manual pages for more

information.

We also provide a simpler interface:

diskutil clobber_my_disk

This initializes the structures to use the whole disk for Mach. It is equivalent to the following

three commands:

diskutil finit

badblocks -w

diskutil fs

The �rst step, diskutil �nit, does a quick and basic initialization of the structures to an empty

state. Then, you run badblocks to scan the disk for bad spots. Finally, you put the basic Mach

partitions, "a" - "e" on the disk, with diskutil fs. (This uses the Mach default layout.)

You may replace diskutil �nit with diskutil init. This DOES NOT initialize the sector 0 disk

layout information. You MUST use fdisk to pick a "(BIOS) partition" for Mach, before you run

this alternate sequence. You should put the sector start address for the "Mach (BIOS) partition"

on a cylinder boundary.

7 Known Features/Problems/Bugs

7.1 gas

To be compatible with the AT&T assembler, the gas assembler has been generated to accept "#"

and "/" as comment characters. This means that, at present, there is no way to indicate division

in assembler expressions.

8 In Trouble?

If during the installation or setup you run into di�culties, ECS will be happy to assist. Just drop

a line to ecs-help@eng.u
.edu and we will get back to you.

12

Appendix

A A Few More Anomalies

� If you can not low level format your disk, talk to the manufacturer or sales o�ce. This is a

routine "BIOS/DOS" procedure. We can not help you.

� If you personally installed a 80387, make sure that there are not switches to change or a setup

program, to run to tell the machine about the fpu.

� Unless you are running X, Mach will use a "monochrome 80 x 25" mode of character display.

Some vga cards misbehave; you might be better o� with a simple monochrome board if you

have one. Also, be sure you have initialized your vga board for this mode; some boards require

special setup.

� Believe it or not, we have found at least one keyboard that does not work with Mach { it

does work with DOS. What will happen is that after you get the single user prompt on the

oppy boot, you will not be able to type.

� The X server as currently distributed, cannot return the terminal back to a 80x25 mode.

Therefore, once you run X be prepared to always run X (xdm) or to reboot when you log out.

B Ethernet

In the presentation below, you will see that we prefer IRQ 9 for the ethernet interrupt level. On

some cards, mostly 8 bit cards, there is no option for IRQ 9; you should IRQ 2 instead { which

just happens to map to IRQ 9 on an AT BUS machine.

B.1 PC586

We can accept:

PORT IRQ MEMORY

0x0d0000 9 0x0d0000

0x0c0000 5 0x0c0000

0xf00000 12 0xf00000

A schematic of the board jumpers is shown below with one acceptible/prefered jumper arrange-

ment. NOTE: This is not the speci�cation for an iMX586 which is the equivalent board but layed

out di�erently.

Jumper 1: E27-E32 selects 8 Mhz bus.

The board static ram must be jumpered to address 0xD0000

Jumper 2: E28-E33

Jumper 3: E29-E24

Jumper 4: E30-E25

13

Jumper 5: E31-E26

Jumper 6 thru jumper 13 choose one: The board must be con�gured for interrupt request line

9. This is jumper 10 set to E41-E49.

Jumper 14: E54-E55 selects 0WS mode.

Jumper 15: is left alone.

Jumpers 16 thru Jumpers 21: E1-E18 control whether the board uses cheapnet or standard

ethernet. The �gure below shows it using cheapernet. Move the jumpers down for standard

ethernet.

The �gure below visually shows the jumper pins of interest. Those pins marked with X's are

the jumpered pins. E56 | E58 may be missing from older cards.

J J J J J J

1 1 1 1 2 2

6 7 8 9 0 1

E1 X X X X X X E6

E7 X X X X X X E12

E13 E18

J15

X E19

X E20

. E21

J J J J J

1 2 3 4 5

E56 X . . X X X E22-E26

E57 X X X X X X E27-E31

E58 . X X . . . E32-E36

. . . . X . . . E37-E44

. . . . X . . . E45-E52

J J J J J J J J

0 0 0 0 1 1 1 1

6 7 8 9 0 1 2 3

J14

E53 . X X E55

14

B.2 WD8003 & Etherlink II

Both these boards use the NS 8390 ethernet chip; they are programmed "basically" the same with

a few localized di�erences to account for the board logic.

B.2.1 WD8003 & WD8013

We can accept:

port irq memory

0x280 9 0xd0000

0x2A0 9 0xd0000

0x2E0 5 0xd0000

0x300 5 0xd0000

The WD8013 is the 16 bit card. It is very nicely layed out and all the jumpers are labelled.

Select a set of options consistent with the above table.

For the WD8003, there are �ve sets of jumpers that must be set. A schematic of the board

jumpers is shown later with one acceptible/prefered jumper arrangement. NOTE: with the DELL

320SLT, you must use a setting with IRQ 5.

W1: Sets the Port address. We use 280 which is indicated in the �gure below. If you interpret

(jumper) shorts as 1 then the map of 16 possible port ranges is given below: (The *'d ports are

the ones we support.)

port 0x200 0x220 0x240 0x260

pattern 0xF 0x7 0xB 0x3

port 0x280* 0x2A0* 0x2C0 0x2E0*

pattern 0xD 0x5 0x9 0x1

port 0x300* 0x320 0x340 0x360

pattern 0xE 0x6 0xA 0x2

port 0x380 0x3A0 0x3C0 0x3E0

pattern 0xC 0x4 0x8 0x0

The jumper labeled 2 in the W1 set, reduces the number of board wait states from 4 to 2.

W2: selects the IRQ level that the board is to use. We use IRQ2 that gets remapped to IRQ9

on ISA bus machines. The possiblilties are:

� jumper 11 ! IRQ2

� jumper 9 ! IRQ3

� jumper 7 ! IRQ5

� jumper 5 ! IRQ5

� jumper 3 ! IRQ6

15

� jumper 1 ! IRQ7

W3: Is shorted for thin ether, otherwise all the jumpers are open.

W4: Is open for thin ether, otherwise shorted.

W5: Is only meaningful for thin ether and we wanted it shorted.

Below is a picture of the board and jumpers set up for thin ether.

W4

E

T

2468a W1 _ W3 H

|| | _ E

_ R

_

_ T

_ A

P

S

| W5

b97531 W2

|

B.2.2 EtherLinkII

This board, like the WD8013, has nicely labeled jumpers. There are only two jumpers: one for

the memory address and one for the port. You may use either 0xd8000 or 0xdc000 for the memory

address. Unfortunately, the thick/thin ether setting and IRQ are made by software. So we use the

port address to imply a setting of IRQ and thick vs thin ether.

PORT IRQ Ether Tranceiver

0x280 9 thin

0x2A0 9 thick

0x2E0 5 thin

0x300 5 thick

B.2.3 Etherlink I

We can accept:

port irq

0x300 2

16

A schematic of the board jumpers is shown below with one acceptible/prefered jumper arrange-

ment.

I/O ADDR MEM

4 5 6 7 8 9 EN

. . . . X X X

X X X X X X X

X X X X . . .

MEM 1 1 1 1 1 1 1 1

ADDR 2 3 4 5 6 7 8 9

. . X X . X X X

X X X X X X X X

X X . . X . . .

INTERRUPT DMA

2 3 4 5 6 7 1 2 3 1 2 3

| | |

C KDB commands

The following is a brief list of the kdb commands. kdb uses the same command format as adb and

expertise in adb is assumed. To enter the debugger:

ctrl-alt-d

The format commands: [addr]/[letters]

and write commands [addr]/w,W values function exactly as you would expect from adb. (And

note that / and ? are treated the same.) So you can use kdb to disassemble code, look at memory

locations and change memory locations.

$r will print out the register values

<rname/var accesses the value of register name/variable

>rname/var sets the value of register name/variable

The neat features are the "step/breakpoint" commands, which are again analogous to the adb

functions:

17

:s single step one instruction

:c,C continue until the next breakpoint

(these both takes counts ala adb syntax)

:p,P print the instructions while single stepping

:j step until the next call or return and count

the instructions

:J step until we return to this nesting level

(show functions entered and instruction

counts.)

:S step over the function call you are stopped at

:r,R set a temporary break at the return address, so

you e�ectively step out of this function. (Note:

make sure you have done the push %ebp, movl %esp, %ebp

before you try this.)

Breakpoints are set with [addr]:B and [addr]:D and listed with $B, just like adb. You may

not provide commands to execute when a breakpoint is hit. [addr]:b #, [addr]:d and $b are very

di�erent breakpoints. They use the i386 hardware match facilities. You can set up to 4 breakpoints

and you have to specify which one to ":b". Right now they work analogous to the "B" breakpoints.

But someday, I will implement access to the hardware break on read and break on write features;

all that is supported now is break on execute.

$l lists the state of all the threads

$L lists the state and stack of all the threads

$k does a stack trace

$c does a stack trace

<thread>$K does a stack trace for the give thread

<addres>$C does a stack trace at the given frame.

<map>$m prints the map at address <map>

<addres>$Pp prints port

<addres>$PO prints object

<addres>$PM prints map

<addres>$PP prints "page structure"

<function>! arg0 arg1 ... invokes function with the given arguments

R! invokes the function to sync the disk and reboot

Q! invokes the function to reboot

pb! invokes the playback function. The screen is small

compared to the info you might want to display; pb

will play back each line and wait for a space or

return before continuing. Any other character

terminates playback. The bu�er is 64k.

18

D Manual Pages

19

