Professional Workstation
Research Group Technical Report #7

[llinois FP User's Manual

Arch D. Robison
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

December 27, 1989

Ilinois FP 0.5 Users Manual?

1. Overview

Functional Programming (FP)[1] is a radically new form of programming. FP programs have nei-
ther the control flow nor variables of Von-Neumann languages. Instead programs are directly con-
structed from smaller programs. As a result, FP offers a new style of programming with numerous

advantages, including:

Modular Programming
Program Verification
Parallel Processing
Optimization

IFP (Illinois Functional Programming)[2] [3] is an interactive functional programming implemen-
tation for UNIX and MSDOS systems. The user may interactively create and execute functional pro-

grams. In addition to Backus' FP, IFP has the following features:

Hierarchical and Modular Function Organization
Block-Structured Syntax

Error Explanations

Graphics Display List Processor?

The interpreter is an order of magnitude more compact and faster than previous FP implementations.

2. Prerequisites

The rest of the manual assumes the reader has read Backus' original paper on FP. [1] Other refer-

ences on FP[4] [5] may be of help. Additionally, parts of the manual assume the reader understands

UNIX or MSDOS® file structure and paths.

2.1. Organization

IFP organizes functions in a tree structure analogous to UNIX/MSDOS files. In fact each func-

tion is a file. For UNIX systems, each user specifies the root (‘‘IFP root’’) of their function tree.

1Any resemblance to the real product is purely coincidenta.
20Once upon a time it worked. The code has since then not been maintained. So it is not implemented in most versions.

December 27, 1989 IFP 0.5 Users Manual 2

Within IFP, paths specify a path relative to the IFP root. The IFP root is set by a UNIX environment
variable. For MSDOS systems, the IFP root is identical to the current drive root. (see *‘Environment’’

below).

Each node on the tree is either a function definition (corresponding to a file), or a module

(corresponding to a directory). A function may reference another function via a path.

To avoid having to write out the entire path for a function every time, IFP has a function
identifier importation feature. Functions from other modules may be imported into a module. Once

imported, a function may be referenced as though it were defined in the module.

2.2. Environment (UNIX)

Before invoking IFP, two environment variables should be set. The *‘EDITOR’ variable should

be set to the name of your favorite editor. The **IFProot’” variable should be set to the absolute path of

your “‘IFP root”’.2 The **IFPprompt’’ is optional. If set, it changes the IFP prompt. The default prompt
is “‘ifp>"". Normally these variables will be set by your .login file. Below is an example of the com-
mands which would appear in your .login file.

setenv EDITOR = *‘/ust/ucb/vi”’

setenv |FProot = ‘‘/mnt/bonzo/fproot’”’
setenv |FPprompt = “‘ifp> "’

2.3. Environment (MSDOYS)

Before invoking IFP, two environment variables should be set. The ‘‘EDITOR’’ and ‘‘IFPDIR"
variables should be set to the names of your favorite editor and directory listers respectively. Normally
these should be set by your autoexec.bat file, e.g.:

set EDITOR=C.ED.EXE
set IFPDIR=C:SD2.COM

Unlike the UNIX version, there is no IFProot variable. The root of the IFP file system is the root of

the current drive.

Use the actual path, not a symbolic link. When IFP starts up, it assumes that the current directory path is a prefix of the
IFP root path.

December 27, 1989 IFP 0.5 Users Manual 3

3. Using IFP

3.1. Starting IFP

To start an IFP session, change your current working directory to a directory under your IFP root.
Then type "ifp". Your current working directory becomes your IFP current working module. When |FP
is ready, it will respond with the prompt *‘ifp>"". To end the IFP session, type control-D or enter the

command ‘‘exit’’.

3.2. Creating and Editing Definitions

To edit an IFP definition, type the command:
vi* foo
where foo is the name of the function to be edited. The function may be one local to the current work-
ing module, or one that is imported into the current working module. If the function name is neither
defined locally nor imported, then it is assumed to be a new local function. To delete an IFP definition,
type the command:

rm® foo

3.3. Applying Functions

To apply an FP function, type the command®:
show object : function
The interpreter evaluates the result of applying the function to the object. The result is then pretty-
printed at the terminal. Below are some example inputs and outputs.
show <a b ¢> : reverse
<c b a
show <1 2 3> : sum

6

4If your editor is not ‘‘vi’’ (as specified by the last element of your EDITOR path), replace ‘‘vi'* with your editor’'s name.
For MS-DOS, the command is always ‘‘ed’’, no matter what the editor is called.

SFor MS-DOS, the command is *‘del’’.
63ome earlier versions (before 0.4, e.g. the BY TE BIX release) require a semicolon after the function.

December 27, 1989 IFP 0.5 Users Manual 4

show <1 2 3> : EACH [id,id]* END | sum (* sum of sguares *)
14

show <1 2 3 4 5> : EACH iota END

<
<1>
<1,2>
<1,2,3>
<1,2,3,4>
<1,2,3,4,5>

>

exit

3.4. Executing UNIX Commands

If a command is not recognized by the IFP interpreter, then it is passed on to the UNIX shell
“*sh’’. Commands such as “‘Is’ and ‘‘more”’ work as expected. Commands which change environ-
ment do not work properly, as they change their environment (within **sh’”) but not your own. For

example, the ‘‘cd’”’ command does not work.

3.5. Executing MSDOS Commands

The only two MSDOS command that can be run from within the interpreter are *‘dir’’ and ‘*del’’.

Some systems seem to require ‘‘dir/”’. | don't know why.

4. Language

IFP semantics are ailmost identical to Backus FP, though the syntax is quite different. The IFP
language consists of objects, functions, and functional forms. The single operation is apply which maps

a function and object into a new object.

4.1. Objects

Objects in FP are either atoms, sequences, or bottom. The latter is a specia object which denotes
an undefined value. Atoms are numbers, strings, or boolean values. Strings must be quoted when they
look like another kind of atom or contain non-alphanumeric characters. Below is a table of some typi-

ca atoms:

December 27, 1989 IFP 0.5 Users Manual 5

banana string

"The cat in the hat" string (double quotes)
"hello world’ string (single quotes)
7 number

3.1415 number

1le6 number (million)
"1.414" string

t boolean true

f boolean false

"t string

Sequences are lists of zero or more objects surrounded by angle brackets. Sequences are written

<X11X21 . Xn>

Below is table of some typical sequences:

<ab,c>
<123456>
<>

<<1 2 3> <apple banana> t>

Either commas or spaces may be used to separate the elements of a sequence. The elements of the

sequence may be any kind of object except ‘*?’, and do not have to be of the same type.

IFP sequences have the bottom preserving[1] property. Any sequence containing ‘‘?’ is itself

equal to “'?".

4.2. Functions

Functions in FP always have a single argument and a single result. FP functions are analogous to

UNIX programs which transform *‘standard input’’ into ‘‘standard output’’ without side effects.

The IFP interpreter distinguishs two kinds of functions. primitive functions and user-defined func-
tions. Primitive functions are built into the FP interpreter; user-defined functions are created by the
user. The only distinction between the two kinds of functions is that user-defined functions have
definitions in terms of other IFP functions. All functions may be used in the same manner, neither

primitive nor user-defined functions are privileged in any way.

December 27, 1989 IFP 0.5 Users Manual 6

IFP functions are arranged in a tree structure analogous to the way UNIX files are arranged.
Each node of the tree is either a module (directory) or function (file). A function is referenced by its
pathname, which is a sequence of node names separated by slashes. Pathnames follow the UNIX con-
ventions. Absolute pathnames begin with a slash, which indicates that the path starts at the IFP root
directory (as specified by the IFProot variable in your environment). Relative pathnames do not begin
with a slash, which indicates that the path starts at the current directory. Within function definitions, the
current directory is the parent node of the function. Pathnames may contain **.."", which indicates mov-

ing up to the parent node.

For example, consider the node tree in Figure 1. The root node is ‘‘r'’. Below are some ways
the function *‘b’’ can reference the other nodes. Note that the name of the root node is never explicitly

used.

pathname type

/sys/sum absolute
/tmp/foolp absolute
foolp relative

tmp/foo/p relative
.Isys/sum relative

D’ 0.400i"
D’|-D206R9GUP2A221’

DiefhA400" D3 4001
D' RBGRHRHBBER21 170 |6cRP®. St

D 400D’ ¢0.400D)’ ¢.400D)’ §9.400D&GRHA00I
D’ |ED.ID6DE. Tp202i"

D'g.400" D’ .400"

Figure 1

December 27, 1989 IFP 0.5 Users Manual 7

4.2.1. Primitive Functions

Primitive functions are built into the IFP interpreter. They have pathnames like any other func-
tion, except that there is no source code file for the function. The function descriptions are grouped
into sections below. The pathname for the function's module is in parentheses at the top of each sec-

tion.”
The following sets (types) are used in the definitions of functions:

atoms

boolean values

objects

real numbers

integers

strings

sequences with element type T

T+ non-empty sequences with element type T
Tn sequences of length n with element type T
Tin.m] sequences of length m with element type Tn
[T1,To] pair of types T, and T,

“ONDO®W>

A function returns **?’ if the argument is not in its domain. The notation X, denotes the nth element

of a sequence X.

For example, the domain of the addition function is [X,Y]O[R,R]. That is addition takes a pair
of real numbers as its argument. We could also write this as [X,Y]ORZ2, since a pair is a sequence of

length two.

The types may be pictured neatly with the Venn diagram in Figure 2;

4.2.1.1. Structural Functions (/sys)

Structural functions are assemble, reorganize, and select data. The primitive structural functions

are listed below:

7 NOTE: The author does not worship backward compatibility. Future versions of IFP may put primitive functions in
different subdirectories.

December 27, 1989 IFP 0.5 Users Manual

D’12.000i 0.000i’ D’10.000i 3.000i’
O D’11.500i 0.000i’ D’10.000i 1.800i’
A D’11.125i 0.000i" D’10.000i 0.360i’
B

D’10.006i GOCBEDI" D’ 1610025 0070’
R D’10.750i 0.00010.000i 0.360i"
z
D’10.000i -0.880+0.750i 0.000i°
D’10.006i G0’ D’ 1610025k (03800’

S
D’10.000i -0.360i" D’I-1.125i 0.000i’
D’10.800i a1CRO0i’ D’ | e1CRI0i (03000’
O*
D’10.000i -0.900i’ D’1-1.500i 0.000i’
D’10.000i -3.000i’ D’1-2.000i 0.000i’
Figure 2
Name Domain Definition
apndl [X,Y]OO,0n] <XY1.Y2, " Yn>
apndr [X,Y]O[0m,0] <X1X2, " " Xm,Y>
cat Xoon™ catenate subsequences, e.g.
<<ab><x><35>> - <abx 35>
distl [X,Y]O[0,0"] <X y1><Xy> - <Xyp >
distr [X,Y]O[0m,0] <X, Y><Xo,Y> - -+ <Xy, Y>>

dropl [X,K]O[0On,0sZ<n] <Xk+1,Xk+25 * * * Xn>

dropr [X,K]O[0On,0€Z<n] <X1,X2, * * * Xn-k>

iota ndZ=0 <1,2,---n>

length Xgon n

pick [X,K]O[On,0<Zsn] xx

repeat [X,K]O[0,0<Z] sequence <X, X - - - X> of length K
reverse XQOO" <XpXn-1, * ° * X1>

takel [X,K]O[0On,0€Z<sn] <X1,Xp, * * * Xk >

taker [X,K]O[OM,0sZ<n] <Xn-k+1.Xn—k+2, * * * Xn>

December

27, 1989 IFP 0.5 Users Manual

tl XQdJom>0 <X2,X3, * " " Xm>
tir Xdom>0 <X1,X2, * * " Xm-1>
trans XOOoln.m] transpose matrix, e.g.

<<al><b2><c3>>-><<abc<123>>

4212, Ar

Most

function’s ¢

ithmetic (/math/arith)

IFP arithmetic functions are found here. Below is a table of the existing functi

lomain may be further restricted due to range limitations.

ons. Some

December 27, 1989 IFP 0.5 Users Manual 10

Name Domain Definition
+ [X,Y]O[R,R] X+Y
- X=Y
* XxY
% [X,Y]IOIR,R£0] X=Y
add1 XOR X+1

arcsin XOR, —-1<X<1 arcsinX

arccos X[OR, -1<X<1 arccosX

arctan XUR arctanX
cos XOR cosX

dv [X,Y]O[R,R%0] waj
exp XOR eXx

In XOR>0 l0ge X
max [X,Y]IOR,R] max(X,Y)
min X, Y]IOR,R] min(X,Y)
minus XOR -X

mod [X,Y]IOR,R] X—YLX+YJ if Y20, O otherwise
power [X,Y]OR=0,R] XY

sin XOR sinX

sort XOR>0 VX

subl XOR X-1

sum XOR* IZXi

tan XOR tanX

4.2.1.3. Logic (/math/logic)

Most IFP primitive functions returning boolean values are found here. Below is a table of the

existing functions:

December 27, 1989

IFP 0.5 Users Manual

Name Domain Definition
= [X,Y]0[0,0] X=Y

= X£Y

< [XYIOIR,R][][S.S] X<Y

<= X<y

>= X=Y

> X>Y

- X0OB X

and [X,Y]O[B,B] XAY

all X0OB* X

any XuoB* \Ika

atom XOO XOA
boolean XOO XOB
false X0OO X =#f
imply [X,Y]O[B,B] “XvY
longer [X,Y]O[Om,0n] m>n
member [X,Y]O[O* ,0] YOX
numeric X0OO XOR

null XOo* X=<>
odd X0z Xmod2=1
or [X,Y]O[B,B] XVY

pair Xdo X0d[0,0]
shorter [X,Y]O[Om,0On] m<n

xor [X,Y]O[B,B] XzY

String inequalities are defined from the lexigraphical (dictionary) ordering.

December 27, 1989 IFP 0.5 Users Manual 12

4.2.1.4. String Functions (/sys)

The string functions are;

Name Domain Definition

explode X0OS sequence of charactersin X
implode X[OS* string made by catenating strings in X

patom XOA string representation of X, eg. 123 :
patom - "123"

4.2.1.5. Miscellaneous Functions (/sys)

The miscellaneous functions are listed below. Each function description is preceded by a title

line of the form:

function domain definition

apply [X,F]O[0,S] apply F to X

F is a sequence of strings representing a pathname to a defined function. The result is the
function referenced by F applied to X. Example:

<<3 4> <math arith "+'>> : apply - 7

F may also be an anonymous function. Anonymous functions are objects that are enclosed
by parentheses. For instance, the previous example could be written as

<<3 4> (+)> : apply - 7
Functions built from functional forms may also be objects, for example:
<<<l 2 3> <4 5 6>> (trandEACH * ENDsum) - 32

Function objects are considered to be atomic. Functions that act on sequences will not behave
properly when applied to a function object. The ‘‘apply’’ function combined with function
objects lets us define our own functional forms. For example, we can define a functiona form
Twice which applies a function twice as:

DEF Twice AS [apply,2]apply;

December 27, 1989 IFP 0.5 Users Manual 13

Then we can write:

3 : [id,([id,id]¥)] | Twice — 81

assoc [X,Y]O[(OH* ,0] associative lookup

X is an association sequence, which is a sequence of non-empty subsequences. The first ele-
ment of each subsequence is the key of the subsequence. The result of assoc is the first subse-
guence of X with akey equal to Y. If no matching key is found, f is returned. The key may
be any type of object. Examples:

<<<abc <wxyz < j>>w> 5 <wxy z>
<<<abc <wxyz < j>>U> - f

def

xas+ definition

The definition function returns the object representation of its argument. The representation
of a function is a sequence of strings denoting its absolute pathname. The representation of a
functional form is a sequence. The first element of the sequence is a pathname to the func-
tional form. The remaining elements of the sequence are parameters of the functional form.
Suppose, for example, we define the inner product function:

DEF Inner AS trans | EACH * END | INSERT + END

and ‘“‘Inner’’ is defined with a module with pathname ‘‘/math/linear’’. Then ‘‘<math linear
Inner> : def”’ will result in:

<
<sys compose>
<sys trans>
<<sys each> <math arith *>>
<<sys insertr> <math arith +>>
>

Currently, the representations of functional forms are:

December 27, 1989 IFP 0.5 Users Manual 14

#c <<sys constant> #c>

#? <<sys constant>>

n <<sys select> n>

nr <<sys select> -n>

folfol - f, <<sys compose>, f 1,f 5, - - - f,
[fa,fo - fn] <<sys construct>, f ,f5, - - T
“c <<sys fetch> ¢>

EACH f END <<sys each> f >

FILTER p END <<sys filter> p>

INSERT f END <<sysinsertr> f >

IFp THEN g ELSEh END <<sysif>p g h>

WHILE p DO f END <<sys while> p f >

ELSIF clauses are aways expanded into equivalent nested IF-THEN-ELSE constructions.
Note the specia case for #?, the representation <<sys constant> ?> would be useless due to
the bottom-preserving property.

id X0OO identity

The identity function returns its argument. It is useful as a place holder in functional forms.
For example, the ‘‘square’’ function can be written as.

DEF Square AS [id,id] | *;

4.2.2. User Defined Functions

The user may define functions by creating definition files (source code). The definition in the file
is of the form:
DEF foo AS bar;
where foo is the name of the function and bar is the definition. The name of the file must also be foo.
The definition may be any IFP function. For example, you can define the square function as:

DEF Square AS [/syd/id,/sys/id] | /math/arith/*;

Writing out the entire pathname of functions is not necessary. If the function is defined in the
same subdirectory, then just its name is necessary. If the function is defined in another subdirectory,
then you can “‘import’’ it. An imported function can be referenced as though it were defined in the
directory into which it is imported. To import functions into a subdirectory, you create an ‘‘import
file'" with the name %IMPORT with the editor. The form of the %IMPORT file is:

FROM directory; IMPORT f,f5, ... fp;

December 27, 1989 IFP 0.5 Users Manual 15
FROM directory, IMPORT g1,92, ... Om;

The directory is a pathname to a directory. For example, typical import file might be:

FROM /sys IMPORT apndr,distl,id,iotatakel;
FROM /math/arith IMPORT +,-,* %;

Since the function ‘‘id"’ is imported, the square function can be defined as:

DEF Square AS [id,id] | *;

4.2.3. Functional Variables

Functional variableq6] are locally defined functions with special scope rules. A functional vari-
able definition is written:
{lIhs := function}
where |hs (Ieft hand side) is either a function name or construction of Ihs's. All function names in the
Ihs become functional variables within their scope. The scope is boundary structured as opposed to
block structured, which means that the variables may be seen only through certain boundaries. The

scope rules can be defined by the following transformations:

{V=hv - hlwy1!

{V.=nh [fofa.] - [V =h f, {V:i=h f .]

{V := h} IF p THEN x IF {V := h} p THEN {V = h} X
ELSE y - ELSE {V = h} y
END END

where — indicates that the left side may be simplified to the right side. V'’ denotes a left-hand side
containing the functional variable “‘v’’. V, 1 is the inversion function of ‘‘V'’ for ‘‘v'’. For example,
if V =[a,b,c], then V.1 = 3. Variables must be defined before use. Note that the vertical bar of com-
position cuts off the scope, e.g. in
{[xy] :=id} gl h
the function g can *‘see’” x and y, but h can not.
An example of a definition with functional variables appears below:
(*

* |nsertSort

*

December 27, 1989 IFP 0.5 Users Manual 16

This function sorts a sequence of numbers or strings into ascending order

using insertion sort.
Examples:
<3141592 : InsertSort == <112 345 9
<all work and no play> : InsertSort == <all and no play work>

*
*
*
*
*
*
*
*
*
*

The sequence may not mix strings and numbers.

*

DEF InsertSort AS
IF null THEN id (* Check for trivial case *)
ELSE

[th[1]] | apndr |
INSERT
{[Element,Seq] := id}
{[Left,Right] := [Seq, distl | FILTER > END | length] | [takel dropl]}
[Left,[Element],Right] | cat
END
END;

In this example, Element, Seq, Left, and Right are functional variables.

4.3. Functional Forms

Functional forms combine functions and objects to create new functions.

4.3.1. Constant

Constant functions always return the same result when applied to any value which is not **?".
Constant functions are written as:
#c
where ¢ is the constant value to be returned. A constant function applied to **?’ resultsin **?’. Note
that the function *‘#?"' aways returns ‘?. Examples:
923 : #<cat in hat> - <cat in hat>
<abcdef>: #4427 - 427

?2iHqWeE ty> - ?
5:#? - 72

4.3.2. Selection

Selector functions return the nth element of a sequence and are written as n, where n is a posi-

tive integer. Note the distinction between #5, which returns the value 5, and 5, which returns the fifth

December 27, 1989 IFP 0.5 Users Manual 17

element of its argument. There are also a corresponding set of select-from-right functions, written as nr.
These select the nth element of a sequence, counting from the right. All selectors return ‘7?7’ if the
argument has no nth element or is not a sequence. Below are some examples of applying selector func-
tions:

<abcde :1 -5 a

<abcde :2 - b

<apple banana cherry> : 1r - cherry

<apple banana cherry> : 4 - ?
helo : 1 - ?

4.3.3. Composition

The function composition of two functions is written as:

flg
Applying the result function is the same as applying f and then g. E.g.: Function composition is
defined by the equality:
x:(flgd=x:f):g
Since function composition is associative, the composition of more than two functions does not require
parentheses. The composition of f 4,f 5, - - - T,y iswritten;
folfol ---f,
Composition syntax is identical to UNIX’'s pipe notation for a reason: function composition is iso-

morphic to a pipe between processes without side effects.

4.3.4. Construction

The construction of functions is written as bracketed list of the functions. For example, the con-

struction of functions f; is written:

[f 11f21 e fn]
Function construction is defined by the equality:

X [fg,fo - fh] = <xcf o xif .. x:fp>

December 27, 1989 IFP 0.5 Users Manual 18

4.3.5. Apply to Each

The EACH functional form applies a function to each element of a sequence. It is written as
EACH f END
It is defined by the equdlity:

<X1,X2, " " X%> . EACH f END = <xif xoif, - x,:f>

4.3.6. If-Then-Else

The IF functional form allows conditional function application. It is written as
IF p THEN g ELSE h END

and is defined by the equality:

(x) if p(x)=t
(x) if p(x)=f

g
X IFp THENg ELSEh END - < h
? otherwise

The level of nesting of conditional forms may be reduced by using ELSIF clauses:

IF p1 THEN g,
ELSE
IF p, THEN g>
ELSE
IF ps THEN g3
ELSE h
END
END
END

4.3.7. Filter

The FILTER functional form filters through elements of a sequence satisfying a predicate. It is
written as:
FILTER p END
where p is the predicate. It is defined by the functional equality:
EACH
IF p THEN [id] ELSE [] END
END | cat

For example, if you wish to find al numeric elements in a sequence, you could write:

FILTER numeric END

December 27, 1989 IFP 0.5 Users Manual 19

The FILTER functional form is an |FP extension to Backus FP.

4.3.8. Right Insert

The INSERT functional form is defined by the recursion:
INSERT f END = IF tlhull THEN 1 ELSE [1tl | INSERT f END] | f END
Typically it is used for crunching a sequence down. For example,
INSERT + END

returns the sum of a sequence.

Unlike Backus FP, functions formed with INSERT are always undefined for empty sequences.
The reason is that it is impractical for the interpreter to know the identity element of user-defined func-
tions. The number of cases where the interpreter could know the identity element are so few that you
might as well define special functions for those cases, e.g:
DEF sum AS IF null THEN #0 ELSE INSERT + END END;
Alternatively, you can append the identity element to the end of the sequence before inserting, e.g.:

DEF sum AS [id#0] | apndr | INSERT + END;

Currently there is no *‘left insert’”” form. The left insertion of f can be written as;

reverse | INSERT reverssf END

4.3.9. While

The WHILE functional form allows indefinite composition. It is written as:
WHILE p DO f END;
and is defined by the recursive functional equality:
WHILE p DO f END = IF p THEN
f | WHILE p DO f END
ELSE id
END

That is the WHILE PFO applies the fewest f 's such that x:f:f:f...;p is true.

December 27, 1989 IFP 0.5 Users Manual 20

4.3.10. Fetch®

The fetch functional form alows easy access to association sequences (see function /sys/assoc in
section 4.2.1.5 for a description of association sequences.) A fetch is written as “c, where ¢ is an
object. The fetch form is defined by the functiona equality:

"c = IF EACH pair END | al THEN [id,#c]assoc2
ELSE #?
END;

Note that the input is restricted to a sequence of pairs. For example,

<<al><b 2><c 3>>:"b>2

4.4, Comments

Comments are delimited by matching pairs of *‘(*'* and ‘‘*)"’. Comments may be inserted any-
where not adjacent to a token. For example:

DEF foo AS bar; (* This is a comment. DEF foo AS bar is not a comment *)

4.5. Syntax Summary

Below is an EBNF grammar for IFP:

8The fetch functional form is being deimplemented. It may or may not exist on your |FP interpreter.

December 27, 1989 IFP 0.5 Users Manual 21

Def - 'DEF String 'AS Comp '’

Comp - Simple { 't Simple }

Simple - Conditional | Constant | Construction | Each | Filter |
Insert | Path | While | Fetch | Debug | Funvar

Conditional - "IF Comp 'THEN' Comp { 'ELSIFF Comp 'THEN’' Comp } 'ELSE" Comp 'END’

While - "WHILE' Comp 'DO’ Comp 'end’

Insert — "INSERT’ Comp 'END’

Each - "EACH’ Comp 'END’

Filter - "FILTER’ Comp 'END’

Fetch - "™ String

Constant - "# Object

Debug - '@ Object

FunVar - {" Lhs":=" Comp '}’

Lhs - String '’ [Lhs{’, Lhs} 1T’

Construction - '[' [Comp {’,” Comp}] ']’

Path — ['/] String {'/ String}

Object — Bottom | Atom |'<’ [Atom {’, Atom}] >’

Bottom - '?

Atom - Number | String | Boolean

Boolean - e

Strings may be in single or double quotes. The strings “‘t"" and ‘‘f'” must be quoted to distinguish
them from boolean atoms. Strings of digits must also be quoted to distinguish them from numeric

atoms.

5. IFP Graphics (optional)®

There are no graphics primitives in IFP itself, rather IFP is used to calculate a display list. A
display-list processor then draws the picture specified by the display list. To send an IFP result to the
display-list processor instead of the screen, use the command:

graph object : function

instead of the ‘‘show’’ command.

5.1. Coordinate System

Points on the graphics display are referenced by <X,Y> coordinate pairs. <0,0> is the lower left
corner, <1,1> is the upper left corner. Currently there is no clipping. Lines outside the display are

wrap around in weird and not-so-wonderful ways.

9This option is currently not implemented. If this section inspires you, get the source code and fix it (see G_*.c).

December 27, 1989 IFP 0.5 Users Manual 22

5.2. Display List Structure

Below is an EBNF grammar for the display list.

display-list -~ < {display-list} > polyline!color | transform | text

polyline — <lineg { <xy>}>

color — <'color’ color-index display-list >
text — <'text’ atom size ['center']>
transform - <trans t-matrix display-list >
t-matrix — << Ty Txo™ <Tyx Tyy Tyo>

5.2.1. Polyline

The polyline structure specifies a sequence of points. It is of the form:
<line <X1,y1> <X2,¥Y2> - <Xn,¥n>>
where each <x;,y; > is a point coordinate. Adjacent points in the sequence are connected with line seg-
ments. For example, the sequence:
<line <0 0> <0 5> <1 5> <1 0> <0 O>>

draws a box 1 unit wide and 5 units high.

5.2.2. Color

The color structure draws the display-list in the color specified by the color index (0..15). The
color applies to all parts of the subordinate display-list which are not subordinate to a color structure

within. In other words, a structure is colored by its inner-most bounding ‘‘color’” structure.

5.2.3. Transform

The transform structure draws the display-list as transformed by the t-matrix. Transforms may be
nested. Transforming a display-list converts coordinates <x,y> into coordinates <x',y'> via the for-

mula:

December 27, 1989 IFP 0.5 Users Manual 23

524. Text

The text structure draws the atom with the lower-left corner at (0,0). Each character is drawn in
a size by size box (including spacing) The lower-left corner of the text is at <O 0> by default. Includ-

ing the center option centers the text on <0 0>.

6. Debugging

Currently, IFP has simple program trace mechanism.® To trace a function, respond to the IFP
prompt with:
trace on fq,fo - fp;
where the f’'s are functions to be traced. Whenever a traced function is invoked, its argument and
result are shown. Also, the argument and result of all called functions are shown. To stop tracing
functions, respond to the IFP prompt with:

trace off fq,fo - fu;

When tracing, the interpreter ellipses are used to abbreviate functions. You can set the depth at
which ellipses occur with the depth command:
depth n

where n is a non-negative integer. The default depth is two.

There is aso a functional form for creating trace functions. Its form is

@message
The function formed always returns its argument unchanged, and it prints ‘‘message: '’ followed by its
argument. For example,

<1 3 5> : EACH @banana END

will print the messages:

banana: 1

banana: 3

banana: 5

This tracing functional form is for debugging only, since it creates a side effect (the message!), it is not

10This will be replaced by a much better trace mechanism as soon as the author as time to design one.

December 27, 1989 IFP 0.5 Users Manual 24

truly functional.

7. Differences between IFP and Backus FP

7.1. Domain

Backus FP has two types of atom, the string and empty sequence. IFP atoms do not include the

empty sequence. |FP include numbers and truth values as atoms distinct from strings.

7.2. Functions

There are many new primitives. See the section on ‘‘Primitives’ elsewhere. Of particular

interest are the functions cat, dropl, takel, taker, and iota.

7.3. Functional Forms

Backus FP defines the INSERT form for empty sequences as returning us , the right identity ele-
ment of f. IFP does not define INSERT for empty sequences. If necessary, use one of the following
functions:

IF null THEN u;f ELSE INSERT f END END

lidus] | apndr | INSERT f END

IFP has a new functional form, FILTER, which filters a sequence according to a predicate. It is
written as:
FILTER p END

When applied to a sequence X, it returns a sequence of x; for which p is true.

7.4. Syntax

The IFP syntax is designed to facilitate indentation and comments. All functional forms bracket
their parameters, so no parentheses are necessary. The differences between Backus FP and IFP syntax

are shown below.

December 27, 1989

IFP 0.5 Users Manual

Backus IFP

CBA AlIBIC

[F.GH] [F,G,H]

p-f.g IF p THEN f ELSE g END
p-f,q-0;h IFpTHEN f ELSIF g THEN g ELSE h
af EACH f END

It INSERT f END

(while p f) WHILE p DO f END

(bu f x) [id,#x] | f

f #f

Def f = x DEF f AS x;

0] <>

| ?

Also, parentheses are neither necessary nor allowed in IFP function definitions.

25

Finaly, IFP functions are arranged in a tree structure and referenced by pathnames. All path-

names are expanded into absolute pathnames when read by the interpreter, so the meaning of a path-

name is static. This is an important point, otherwise IFP would have significantly different (and more

complex) semantics than Backus FP.

8. Functional Programming Techniques

8.1. Functional Programming Identities

Functional programs can be improved by algebraic substitutions. Below is a table of some IFP

identities. The notation ‘‘f =g’’ indicates f and g are equal and have the same domain. The notation

““f Og’’ indicates that g isequa to f over f's domain, but may have alarger domain than f .

[#c,id] | dist
[takel,dropl] | cat
apndl | length
apndr | length
iota | length
reverse | length
tl [length

tir llength
apndl | reverse
apndr | reverse
reverse | reverse
trans | trans

EACH f END |EACH g END

EACH f g END
EACH [#c,id] END
1

2 llength | add1
11length | add1

id

length

length | subl

length | subl

[2 I reverse,1] | apndr
[2,1 | reverse] | apndl
id

id

ogmmgomnmoogooog e m

December 27, 1989 IFP 0.5 Users Manual 26

8.2. Common Subfunctions

The interpreter is not very smart about common subfunctions, it reevaluates a function every time

its encountered. Use functional variables (section 4.2.3) to factor out common subfunctions.

8.3. State Machines

You can simulate a state machine in IFP by defining the state transition function D, which maps
an input and state into another state:
[input,state] : D - dsate
Y ou then run the state machine with the function
apndl | reverse | INSERT D END

which yields the final state when applied to the initial conditions <initial -state,tape>.

8.4. Tail Recursion

Regrettably, the IFP interpreter currently does not recognize tail recursions as iterations. Thus
near-infinite recursions will cause a stack overflow. If this is a problem, rewrite the function with the

WHILE functional form to remove the tail recursion.

For example, consider the tail recursive function:
DEF f AS
IF p THEN g
ELSE h | f (* tail recursion *)
END;
We can rewrite is as:
DEF f AS
WHILE p~ DO h END I g;
9. Installation Notes

9.1. Machine Dependence

The IFP interpreter is machine independent, as long as your machine has 32-bit two's comple-
ment integers and IEEE floating point. If not, you should take a look at the struct.h and F_arith.c

source files. The struct.h file defines al the principle types and limit definitions (e.g. Maxint,

December 27, 1989 IFP 0.5 Users Manual 27

MAXFLOAT). The F_arith.c contains the arithmetic functions. See the comments in the code for

details.

9.2. Compiling Options

Look in the Makefile and "struct.h" for possible compiling options. Not al options are available
in al releases. Normally, the release version comes ready to compile on UNIX boxes. For MSDOS,
you will have to modify the Makefile and change the OPSYS variable in *‘struct.n’’. The graphics
interface is extremely machine dependent, though should not be difficult to modify it for other

machines.

December 27, 1989 IFP 0.5 Users Manual

Table of Contents

T @ V= 4= RSP
A = =0 U1 ES) (= STRTRR
AR @ 0= 0 4 { (o] o USSR
2.2, ENVIroNmMENt (UNEX) oottt
2.3. ENVIroNMENt (MSDOS)ceiicieiiiiseee st st st e e s e e sae e sresbeste st e te s tesaeneenaennennenens
G U 2 o 1 TP RP
L SHAITING TFP o bbbt b e
3.2. Creating and Editing DEfiNItIONScccccoviiiiiieie s
3.3, APPIYING FUNCLIONS ...ttt be e b e s b bbbt se e e e e e e e e eneas
3.4. Executing UNIX COMMENGSccceirieuirieiirieiirieiesieisieeseeessese e sese e ssese s sse s
3.5. Executing MSDOS COMMENGSccceererieiiiiisiesiesiesiesieseeseeesseseesessesessestessessessessesssssssssssessesens
A I 0o 10T o < PO PRSPPI
T @ o 1= o £ OSSPSR
R U 0o (o OSSPSR
4.2, PrimitiVe FUNCLIONSocoiiiiiiiiiiiitene ettt sae bbbt b e e et e e s
4.2.1.1. Structural FUNCLIONS (/SYS) ..eoveuerueerieerieeriiisiesieiesie sttt ettt
4.2.1.2. Arithmetic (/Math/arith) ..o e
00 TG T (oo ol (] 7= 1 4 oo ¥ o USRS
4.2.1.4, SHING FUNCHONS (/SYS) wvtrveueriererieerieerieisitis ettt ettt bt
4.2.1.5. Miscellaneous FUNCLIONS (/SYS) ...ccicvverereiisieierieseeeeesesesestesae e stesre s e tesaesseaeaeneeneenennas
4.2.2. User DEfINEd FUNCHIONSc.oiiiiiiiieie ettt st s st
4.2.3. FUNCLIONE VATADIES ..ottt sttt
4.3, FUNCLIONE FOMS ..ottt bbbttt ettt
G I L 0 = 4 | OO PSPPSR
G TS < = 1 o RSP
0 TG T o 40 oo] 1o o R
R N o = 1 1 0o [o o PSPPSR
A.3.5. APPIY 10 BBCN oo
A.3.6. IT-TREN-EISE ..ottt sttt sttt
R 1| = SRS
A.3.8. RIGNE INSEIT ...ttt bbbt
e Y1V o 1 OSSR
A.3.10. FECN® ...oooooie s
A4, COMUIMIENES ...o.vititetese ettt et e it bttt sbesh e b e sbese e s e sese e e eaeese e st eb e ebeeb e eheeReebeseeeE e benbene e s e e e e eneeneenis
4.5, SYNEEX SUMMBIY ...eiieiitieieiteeie sttt stee e ese e bt ese e st et e st eaeesaesaeeseeeaeesheeaeesbeeabeabeenbeebeensesaeeeesneennas
5. 1FP Graphics (OPHONEI)D ..ottt est s sses st ns sttt ans s
oI I O0 o o [0= LIRSV 1< 1 OO RSTRSRRR
5.2. DigPlay LISt SLUCLUIE ...cviiiiiiiiieeteieteseet ettt
LI 20 T =o Y T = TR
LI 2 © o o | U USSR
B.2.3. TANSFOMN oottt st sttt se s sae s s s besbesbeseententeseeneeneeneeneeneas
LI = PR
LSBT o 8T o 1 oo [N RSTRSRRR

O ~N~NUOADBMIAMREMW®WWWWNNLEREPR PR

el o el e N N s o
© © WO W~N~NOOOOUONMNRNDO

N NN
o O O

N NNDNDNDNDNDN
W W NDNDNDNPRPPRP

7. Differences between |FP and BaCKUS FPooeeiiiiiiceeee et 24

750 TR I T3¢ =T o SRR 24
4 2 ¥ 0 Lo PR 24
7.3, FUNCHONE FOMMS ...ttt sttt be bbb be b st et e bese et e e e e e e eneas 24
S 11 - TP PP PP PTPTPRSRRRON 24
8. Functional Programming TEChNIGQUESccceieieiieiieierieseeeeee e e et ste e st te e sre e e e e e e e eneas 25
8.1. Functional Programming TAENLItIEScccoeireiriiiririeeri et 25
8.2. COMMON SUBFUNCLIONSeeueeiieeeeieise ettt sse s srestesaesrensestena e e eneennenenneas 26
8.3, SHAE MBCHINES ...eeiieiieirie ettt et ettt b e re s 26
o I 1 I L= ot = T o USROS 26
9. INSAAtION NOLES ..o.viiecieseeeieeeee et sa e e e eresaessesresbeseeseeneeseneenseneeneeneenens 26
9.1, MaChing DEPENUENCEcveveieeetieese sttt st e e st e e e tesae e sbesbesae st e bestesaeneeneeneeneenens 26
9.2. COMPIIING OPLIONSouviuiieiirtieeieeet ettt b bbbt se et b st se e bbb e s s 27
2. Backus, John. Can Programming Be Liberated from the von Neumann Syle? A Func-
tional Syle and Its Algebra of Programs. CACM (August 1978) vol. 21,8, pp. 613-
641.
32. Robison, Arch D. A Functional Programming Interpreter. THESIS (January 1987).
31 ----. lllinois Functional Programming: A Tutorial. BYTE (February 1987) vol. 12,2, pp.
115-125.
5. Baden, Scott. Berkeley FP User's Manual, Rev. 4.1. UNIX Programmers Manual (July
27,1983).
10. Darlington, J., J. V. Guttag, P. Henderson, J. H. Morris, J. E. Stoy, G. J. Sussman, P. C.

Treleaven, D. A. Turner, J. H. Williams and D. S. Wise. Functional Programming and
its Applications. (1982).

4, Backus, John. The Algebra of Functional Programs. Functional Level Reasoning, Linear
Equations, and Extended Definitions. Formalization of Programming Concepts
(1981).

