
[Lis84] B. Liskov. Overview of the Argus Language and System. Technical Report

Programming Methodology Group Memo 40, M.I.T., Labaratory for computer

Science, February 1984.

[MG89] J. A. Marques and P. Guedes. Extending the Operating System Support for an

Object Oriented Environment. In In Proc. OOPSLA-89 Conference, October

1989.

[PD90] M. Pearson and P. Dasgupta. Clide: A Distributed, Symbolic Programming

System based on Large-Grained Persistent Objects. Technical Report GIT-CC-

90/62, Georgia Institute of Technology, College of Computing, Atlanta, GA.,

November 1990.

[RAK89] Umakishore Ramachandran, Mustaque Ahamad, and M. Yousef A. Khalidi. Co-

herence of Distributed Shared Memory: Unifying Synchronizat ion and Data

Transfer. In Eighteenth Annual International Conference on Parallel Process-

ing, August 1989.

[STB86] R. E. Schantz, R. H. Thomas, and G. Bono. The architecture of the Cronus dis-

tributed operating system. In Proc. of the 6th Int'l. Conf. on Distr. Computing

Sys., May 1986.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Pub-

lishing Company, Reading, MA, 1986.

[Wil89] Christopher J. Wilkenloh. Design of a Reliable Message Transaction Protocol.

Master's thesis, Georgia Institute of Technology, College of Computing, 1989.

21



[Ana] R. Ananthanarayanan. An Implementation Architecture for Synchronization

in a Distributed System. Technical Report (in progress).

[Ana91] R. Ananthanarayanan. CC++ Reference Manual. Technical Report GIT-CC-

91/07, Georgia Institute of Technology, College of Computing, Distributed Sys-

tems Laboratory, 1991.

[BKT90] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Experience with distributed

programming in Orca. In In Intl. Conf. on Computer Languages, 1990.

[BN83] A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM

Trans. on Computer Systems, October 1983.

[BST89] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming Languages for

Distributed Computing Systems. ACM Comuting Surveys, September 1989.

[CD89] Raymond C. Chen and Partha Dasgupta. Linking Consistency with Ob-

ject/Thread Semantics: An Approach to Robust Computation. In Proceedings

of the 9th International Conference on Distributed Computing Systems, June

1989.

[Che88] D.R. Cheriton. The V Distributed System. Communications of the ACM,

31(3):314{33, March 1988.

[DC90] Partha Dasgupta and Raymond C. Chen. Memory Semantics in Large Grained

Persistent Objects. In Proceedings of the 4th International Workshop on Per-

sistent Object Systems (POS). Morgan-Kaufmann, September 1990.

[DCM

+

90] P. Dasgupta, R. C. Chen, S. Menon, M. P. Pearson, R. Ananthanarayanan,

U. Ramachandran, M. Ahamad, R. J. LeBlanc, W. F. Appelbe, J. M. Bernab�eu-

Aub�an, P. W. Hutto, M. Y. A. Khalidi, and C. J. Wilkenloh. The Design and

Implementation of the Clouds Distributed Operating System. Usenix Comput-

ing Systems, 3(1), 1990.

[DJAR91] P. Dasgupta, Richard J. LeBlanc Jr., Mustaque Ahamad, and Umakishore Ra-

machandran. The Clouds Distributed Operating System. IEEE Computer,

April 1991. To appear.

[ea86] M. Accetta et. al. Mach : A New Kernel Foundation for Unix Development. In

Proc. Summer Usenix, July, 1986.

[GL90] L. Gunaseelan and R. J. LeBlanc. Distributed Ei�el: A language for program-

ming multi-granular, distributed objects. Georgia Tech Distributed Systems

Laboratory, Submitted for publication, October 1990.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained

mobility in the Emerald system. ACM Transactions on Computer Systems,

6(1):109{133, Feb 1988.

[LH86] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Sys-

tems. In Proc. 5th ACM Symp. Principles of Distributed Computing, pages

229{239. ACM, August 1986.

20



application and are copied in or out of the space, as and when necessary. When the process

terminates, the memory is lost and the persistent objects have to be saved on secondary

storage. Thus the objects, when shared exist in the memory space of multiple processes.

Our approach is the opposite. The object does not appear in multiple address spaces. The

threads visit the objects address space. We feel that this approach is cleaner, easier to

program, comprehend and also easier to implement.

10 Conclusions

The support for programming distributed objects in a variety of programming languages

and environments is one of the strong points of the CLOUDS distributed operating system.

The system provides persistent objects that can be used for programming applications.

Since the objects are persistent, there is no need for explicitly saving state. In fact, the op-

erating system does not provide for �le systems or disk I/O routines available from the user

environments. In addition, CLOUDS distribution mechanisms allow the programmer to im-

plement applications using implicit distribution techniques. Coupled with the orthogonality

of compute and data servers, the system design is elegant, easy to use and intuitive. This

enhances its usability and represents the novel aspect of the CLOUDS system environment.

The performance of the system is more than adequate. The compute performance

is dependent on the machines used to run the applications; the only bottleneck being the

paging of the objects from the data servers. This can be improved with high speed networks

or placing the data servers on the same machines as the compute servers. However, keeping

the data servers physically separate has some distinct advantages: orthogonality, uniform

access costs and symmetry. We could improve local performance by integrating the compute

and data server functions together on one machine. However, this approach would not

improve global system performance, since objects located at the combined compute/data

server node would still have the same remote access characteristics as they did when the

functions were separated. Instead, a solution involving a high-speed network appears more

favorable. Thus, in most cases (except if the host is a high-power multiprocessor) the data

servers should be kept separate and linked via a high speed network.

11 Acknowledgements

We thank Mark Pearson for working on the earlier version of this paper. We also thank

Chris Wilkenloh, Gautam Shah, Vibby Gottemukkala and M. Chelliah for implementing

some features of the system.

References

[ABLN85] G. Almes, A. Black, E. Laswoska, and J. Noe. The Eden System: A Technical

Review. IEEE Trans. on Software Engg., SE-11, January 1985.

[AMMR90] R. Ananthanarayanan, Sathis Menon, Ajay Mohindra, and Umakishore Ra-

machandran. Integrating Distributed Shared Memory with Virtual Memory

Management. Technical Report GIT-CC-90/40, Georgia Institute of Technol-

ogy, 1990.

19



environments is beyond the scope of this paper, and we shall compare CLOUDS to some of

the closely related systems.

Orca is a programming language and runtime system to program distributed applica-

tions [BKT90]. It extends the abstract data type model to distributed systems through

shared data objects. The runtime system of Orca provides support for sharing and location

of objects. The programming support is heavily dependant on the Orca runtime mecha-

nisms and not the underlying operating system. In contrast, CLOUDS provides most of the

support necessary for DC++. This allows multiple language support possible without reim-

plementing the runtime support for each language. As mentioned before, Distributed Ei�el

and CLiDE are two other environments that run on top of CLOUDS. Distributed Ei�el pro-

vides a more structured programming environment and is intended for casual programmers

while DC++ is intended for systems programmers. CLiDE is an environment implemented

using DC++ and caters to symbolic programming needs, such as those of AI applications.

While this allows for the user to choose an appropriate vehicle of expression depending on

the application, e�ort is not duplicated in implementation of multiple runtime systems that

perform similar tasks. Further, object sharing in Orca is restricted to processes that are

related. Such a restriction does not arise in CLOUDS as a direct result of persistence of

objects and orthogonality of computation and objects.

While Orca hides the location of objects from the programmer, Emerald [JLHB88] pro-

vides mechanisms to move objects when necessary. This feature is similar to CLOUDS,

where objects move to a node on invocation and remain there if no other nodes invoke the

object. However, automatic replication due to immutable invocations are handled di�er-

ently. Replication is controlled in Emerald by the programmer by claiming the object to be

immutable: the system does not check the validity of the claim. While this is potentially

dangerous due to possible programming errors, it is also a static property. In CLOUDS, on

the other hand, replication is controlled dynamically based on actual usage as illustrated in

the dictionary example.

Some operating systems implement their own versions of objects at the kernel level.

These include Argus [Lis84], Cronus [STB86] and Eden [ABLN85]. The objects in these

systems are modules that run as Unix processes and respond to invocations or messages.

The objects can be checkpointed to �les on demand. Lightweight threads are used to

provide intra-object concurrency and the threads are handled by built in libraries. Un-

like CLOUDS these systems do not provide the orthogonality of computations and memory

making programming not as elegant.

The Commandos operating system [MG89] provides support for all types of objects (�ne

and large grained, persistent and volatile) in an uniform fashion. The operating system

provides management of object types, location, and sharing. Among other things, since

object typing is directly supported by the operating system, Commandos is closely tied to

the programming environment and thus is a special purpose, single paradigm system.

In Mach [ea86], multiple threads share a task, which is the unit of sharing and protec-

tion. All resources of a thread are accessible to other threads associated the task. At a

programmer's level, concurrency is explicitly programmed by creating threads using a li-

brary package. Sharing is also possible through memory objects, which have to be explicitly

mapped in into a task's address space. In CLOUDS, this is automatically done on invoking

the desired object.

The memory in most of the above systems are private to the process or application

using the objects. The objects exist in the global address space of the process executing the

18



The time taken to service a page fault, which requires the page to be fetched from a

remote data server, costs 16.3 ms. The page fetch over the network uses the RaTP reliable

transport protocol.

Invocation Operations
Time

Synchronous Local Object Invocation

- 1

st

time
93 ms

- 1

st

time, 1 data page
119 ms

- 2

nd

time
8:9 ms

Asynchronous Local Object Invocation

- 1

st

time, return from call
66 ms

- 2

nd

time
17:8 ms

Table 2: Invocation Performance

Table 2 summarizes the costs for local object invocation. Invoking an object for the

�rst time involves at least two page-fault operations for bringing the object header (an 8K

page) and one page of code. Such an invocation takes 93 ms., while an invocation that also

accesses a data page takes 119 ms.

The next time the same object is invoked, its pages are cached in memory and invocation

time (8.9 ms.) drops sharply. This is because no page fault occurs and no network network

access is needed. Overhead in this case involves switching the address spaces of processes.

In general, object invocation costs should be amortized over the lifetime of the object at a

particular compute site.

A local asynchronous invocation is measured from the time the invoking thread issues

the invocation request to the point the request returns. This involves setting up the object

header (paging in one page, on the �rst invocation) and creating a new thread. The total

time of 66 ms does not involve bringing in code or data pages or waiting for the newly

created thread to run. The new thread waits for its time slice before it executes and may

wait a long time before it actually executes. Costs for subsequent invocations is less since

the object header mapping does not involve network access. However, its cost is larger than

a synchronous invocation due to the thread creation overhead.

Remote invocations are almost identical to the local invocations, except that an invo-

cation request is sent to another compute server.

The performance measurements for the CLOUDS distributed operating system show

that it is quite competitive with any system that works over a network without local disks.

While initial operations are slower, subsequent operations are considerably faster. Thus,

the speedup of subsequent operations due to caching provides fast overall execution char-

acteristics when network costs are properly amortized.

9 Related ork

Distributed programming has been around ever since networking was made possible. Some

of the �rst major distributed applications such as uucp and UseNet used handshaking over

communication lines without operating systems support. Bal et. al. [BST89] presents

a comprehensive survey of programming languages and systems developed for distributed

system, classifying them by functionality and intent. A complete discussion of all the

17



to the routines in the object and lasts for the length of each invocation. Similarly per-

thread memory is global to the routines in the object but speci�c to a particular thread and

lasts until the thread terminates. This variety of memory structures provides a powerful

programming support in the CLOUDS system [DC90].

7.2 Consistency Support

The CLOUDS consistency-preservationmechanisms present a uniform object-thread abstrac-

tion that allows programmers to specify a wide range of atomicity semantics. This scheme

performs automatic locking and recovery of persistent data. Locking and recovery are per-

formed at the segment-level and not at the object level. Since segments are user de�ned, this

allows the user to control the granularity of locking. Custom recovery and synchronization

are still possible but will not be necessary in many cases.

Threads are categorized into two kinds, namely s-threads (or standard threads) and

cp-threads (or consistency-preserving threads). The s-threads are not provided with any

system-level locking or recovery. The system supports well de�ned automatic locking and

recovery features for cp-threads. When a cp-thread executes, all segments it reads are read-

locked and the segments it updates are write-locked. On completion, the segments are com-

mitted and locks released. Further, cp-threads are classi�ed to support global consistency

across objects and local consistency within an object. Since s-threads do not automatically

acquire locks, nor are they blocked by any system acquired locks, they can freely interleave

with other s-threads and cp-threads.

The complete discussion of the semantics, behavior and implementation of this scheme

is beyond the scope of this paper, and the reader is referred to [CD89].

8 erformance

This section presents performance measurements for the invocation subsystem and other

related subsystems in CLOUDS, which supports the programming environments outlined in

the paper. In our environment, compute servers run on diskless Sun-3/60 machines; data

servers and user workstations are Sun SPARCstation 1 machines running UNIX.

Kernel Operation
Time

Page Fault Service (Local) without Zero Fill
629 �s

Page Fault Service (Local) with Zero Fill
1:5 ms

Page Fault service from data server (Remote)
16:3 ms

Table 1: Basic Timings

Object invocation involves the paging in of the object header from the data server and

the installation of an address space which contains the objects text and data, from the

information contained in the object header. When the threads starts executing in the

newly installed address space, the text and data are fetched on demand by the page-fault

handler, in co-operation with DSM. The basing timings for page-fault handling, when the

page is resident on the same node costs 1:5 ms for a zero-�lled 8K page and costs 629 �s

for a non zero-�lled page. Such faults do not require network messages.

16



Semaphores support create, P and V operations. Read-write locks support locking in

read mode or write mode, and unlocking. In addition, a get operation is provided with

both semaphores and read-write locks. The get operation is a directive to cache the state

information corresponding to a particular synchronization primitive at the node executing

the operation. This operation can be used to improve performance by making use of locality

of access to the semaphore or the read-write lock.

6.4 From Programs to bjects

In this section, we brie
y describe how objects are created from a program speci�cation. In

particular, we discuss the implementation of DC++.

DC++ programs are developed on user workstations and are stored as Unix text �les. A

DC++ program module consists of a class de�nition �le and an implementation �le. These

programs are converted to C++, using a preprocessor. The converted programs de�ne a

CLOUDS class. In addition, the preprocessor generates interface stubs to access this class.

These include the CLOUDS object reference class (See Section 3.2) and the information

needed to support inheritance of CLOUDS classes. All this information completely de�nes a

CLOUDS class and is stored as part of the environment of the programmer. This environment

serves as a library when that CLOUDS class is used or inherited by other CLOUDS classes.

C++ programs are compiled with a standard compiler along with the DC++ library which

de�nes, among other things, the CLOUDS system call stubs.

After the compilation of the program(s) to Unix .o �les, the programs are linked with

the DC++ library using the UNIX link editor (ld). This creates a UNIX executable with

the a.out format. The a.out �le is then post-processed into segments that adhere to the

CLOUDS object format

3

. The program is now stored as two �les containing the data segment

and the code segment.

The segment �les are then loaded on the CLOUDS data server. This is accomplished by

adding the segments and the object descriptor (another segment) to the list of segments

managed by the data server. At this point, the segments are accessible on the CLOUDS

system. Objects represented by these segments can then be invoked or instantiated.

ore rogramming u ort

In addition to the programming support mentioned in earlier sections, the CLOUDS system

supports various types of persistent memory and provides consistency support for persistent

objects. These allow CLOUDS programs to use advanced memory structures and de�ne

consistency requirements of applications.

7.1 emory Semantics

Persistent memory needs a structured way of specifying attributes such as longevity and

accessibility for the language-level objects contained in CLOUDS objects. To this end we

provide several types of memory in objects. The sharable, persistent memory is called per-

object memory. We also provide per-invocation memory that is not-shared, but is global

3

n o ject may contain multi le ata segments. e layout an num er of segments are un er t e

control of t e rogrammer.

15



6.2 Paging an S aring o bject Co e an ata

The DSM system is responsible for making all objects available to all compute servers. It

is the software layer between the demand paging system of the R kernel and the storage

daemons running on data servers. The DSM system has several subsystems, namely: DSM

Server and DSM Client. Each compute server includes a DSM client and a DSM server.

The data servers each run a DSM server as a Unix process. The communication transport

protocol used to communicate between the corresponding system components in di�erent

machines is called RaTP (Ra Transport Protocol) [Wil89].

Suppose a compute server running a computation faults on page of data. This

fault activates the DSM Client by generating a call to a method in the system object. The

DSM Client locates the DSM server containing page . The server, called the owner for any

particular page is �xed, systemwide.

Let site be the owner of page . The DSM Client on site sends a request to the

DSM server on . If is currently not being used by any other compute server, sends

to and the computation progresses. Site now becomes the keeper of .

At this point, suppose another computation on another site page faults on the same

page . sends a request to the owner, . forwards the request to the DSM server on

, since is the keeper of . In response to the forwarded request, the DSM server at

unmaps from the address space of the thread using the page and sends it directly to .

This is called yanking the page. If both and use a page concurrently, this page will

shuttle between and guaranteeing one-copy semantics [LH86] [RAK89].

In the above scheme, each page has one owner (the data server) and at most one keeper

(the compute server using it). For read-only pages the constraints are relaxed, and a

page can have multiple keepers. Read-write pages can be acquired in read-only mode (via

read-mode page faults) allowing better performance when pages are read-shared by several

compute servers.

6. Support or Sync roni ation

The data space of an object is shared by all computations that execute in the object. Since

computations can run in an object concurrently, there is need for mechanisms that provide

mutual exclusion and thread synchronization. The data in an object is accessible only by

threads executing within the object. Hence, programming of thread synchronization is local

to each object. However, the same object may be used by concurrent threads running on

di�erent compute servers. Thus, the synchronization must work across machines. This

section discusses the implementation of semaphores and locks that provide intra-object,

distributed synchronization.

Synchronization support can be provided at the language level using constructs such as

semaphores and monitors. The implementation of such constructs, however, needs oper-

ating system level support. CLOUDS provides support for synchronization in the form of

semaphores and read write locks [Ana]. Each semaphore or lock is identi�ed by the CLOUDS

operating system by a name that is composed of two parts: a sysname and an instance iden-

ti�er. This scheme eases management of these lock names by imposing a logical hierarchy,

based on their intended use. The sysname can be the same as the sysname of the object

where the semaphore/lock is de�ned, and each semaphore/lock within the object has an

instance identi�er. All state information associated with semaphores and read-write locks

is maintained by the operating system.

14



so t !su so t od s s ,

od 1 s s - 1 at od ;

a t o o at o s to t at ; so t d s ts

The sub-sorts are concurrently executed using asynchronous invocations. Thus, the sort

is executed by multiple threads which execute at a di�erent (logical) compute servers, and

perform computation on di�erent parts of the data in parallel. Note that the data itself is

encapsulated in a single object. The data actually required by each thread migrates to that

node automatically, via DSM, as discussed in Section 6.2.

Therefore, programming of this sorter object is achieved without explicit distribution

of data, or any knowledge of the actual distribution of the algorithm. Decisions concerning

the degree of distribution of the algorithm are made at runtime.

e m lementation of t e stem n ironment

CLOUDS is implemented as a native operating system on Sun-3 computers. The compute

servers run CLOUDS. The data servers and the user workstations are implemented by server

processes on UNIX workstations.

CLOUDS is hosted by a minimal kernel called a. Ra provides the basic memory man-

agement and scheduling mechanisms. CLOUDS is built on top of Ra by using pluggable

system service modules called system objects. In this section we will discuss the system

objects that provide support for distributed programming: the invocation system, the syn-

chronization system and the DSM system. In addition, we discuss user-level utilities that

provide compilation support for user objects. A more comprehensive description of the

implementation of CLOUDS is available in [DCM

+

90] [DJAR91].

6.1 e n ocation System

Objects in CLOUDS are implemented as shared virtual address spaces. Each object has an

object header that de�nes the layout of the object address space. Threads are implemented

using local processes. If a thread executes on only one node, then it will be associated

with only one process. However, if the thread performs remote object invocations then the

thread will have multiple processes executing on behalf of the thread; one on each machine

touched by the distributed thread.

A thread executing in one object invokes another object through a system call. The

Invocation System then determines from the system call parameters whether the invocation

is to be asynchronous or synchronous, and whether it is a local or remote invocation.

In the case of a synchronous local invocation, the state of the current object invocation is

saved. Next, using information in the header of the invoked object the new object is installed

into the address space of the executing thread. When the thread resumes execution, it will

be executing in the address space of the new object. Asynchronous local invocations are

implemented by creating a new thread to perform the object invocation.

Synchronous remote object invocations are implemented using slave processes on the

remote site and is similar to conventional RPC implementation [BN83]. In the case of an

asynchronous remote invocation, the invoking thread does not block.

13


