
The Clouds Distributed Operating System
*

Partha Dasgupta

Dept. of Computer Science and Engg.
Arizona State University, Tempe AZ 85287-5406.

Richard J. LeBlanc Jr.,

Mustaque Ahamad and Umakishore Ramachandran.

College of Computing
Georgia Tech, Atlanta, GA 30332

Keywords: Distributed Operating Systems, Object-based Systems, Persistent Object Sys-
tems and Fault-tolerance.

Abstract

Clouds is a distributed operating system that

runs on general purpose computers connected

via a local-area network. The system is com-

posed of compute servers, data servers and

user workstations. It implements an object-

thread model of computation that is based on

the object-oriented programming concepts.

Clouds supports coarse-grained objects that

provide long term storage for persistent data

and associated code. Lightweight, concurrent

threads provide support for computational ac-

tivity through the code in the objects.

Persistent objects and threads give rise to a

programming environment composed of

shared permanent memory, dispensing with the

need for facilities such as file systems. Though

the hardware may be distributed, Clouds

provides applications with a logically central-

ized system, based on a shared "single-level"

store.

The implementation of Clouds separates

operating system policies from the mechanisms

used to implement them. The structure of

Clouds is a three-level hierarchy. The lowest

level is a minimal kernel that provides

mechanisms for memory and processor control.

At the next level, a set of trusted system-objects

provide low-level operating system services.

High-level services are implemented at the top

level in application objects.

Clouds is a native operating system, that is it is

not hosted on some other operating system. It

runs on a set of Sun-3 machines connected by

an Ethernet. It is being used for conducting

research in distributed systems. This paper

describes the Clouds object-thread model,

programming environment and usage details.

The implementation overview and a synopsis of

the research being conducted using Clouds is

also included.

* This research was partially supported by NASA under contract number NAG-1-430 and by NSF grants
DCS-8316590 and CCR-8619886 (CER/II program).

1. Introduction

A distributed operating system is a control program running on a set of computers that

are interconnected by a network. This control program unifies the different computers into

a single integrated compute and storage resource. Depending on the facilities provided by

the system, such systems get classified as general purpose, real time, or embedded

systems.

The need for distributed operating systems stems from the rapid change in the hardware

environment in many organizations. The proliferation of workstations, personal com-

puters, data and compute servers, and networking in the last decade (due to the rapidly

falling prices of hardware) has underlined the need for efficient and transparent manage-

ment of these physically distributed resources (see box).

This paper presents a paradigm for structuring distributed operating systems, its potential

and implications for users, and research directions for the future.

Distributed Operating Systems

Computing environments composed of

networked computers are now com-

monplace. Due to the affordable prices of

powerful desktop systems, most comput-

ing environments are now composed of

combinations of workstations and file ser-

vers. Such distributed environments how-

ever are not easy to use or administer.

Using a collection of computers connected

by a local-area network often poses

problems of resource sharing and environ-

ment integration not present in central-

ized systems. To keep user productivity

high, it is necessary to make the distribu-

tion transparent and make the environ-

ment appear to be centralized. The

short-term solution adopted by current

commercial software is to extend conven-

tional operating systems to allow

transparent file access and sharing. For

example, Sun added Network File System

(NFS) to provide distributed file access

capabilities in Unix. Sun-NFS has become

the industry standard distributed file sys-

tem for Unix systems. The small systems

world dominated by IBM-PC compatible

and Apple computers has software pack-

ages that perform multitasking and net-

work-transparent file access. Such

facilities are provided by packages such as

Microsoft Windows 3.0, Novell Netware,

Appletalk, and PC-NFS.

A better long-term solution is the design of

an operating system that takes the dis-

tributed nature of the hardware architec-

ture into consideration at all levels. Such

an operating system, for distributed

hardware, is a distributed operating sys-

tem. A distributed operating system makes

a collection of computers look and feel like

one centralized system, yet keeps intact

the advantages of distribution. Message-

based and object-based systems are two

paradigms for structuring such operating

systems.

2

1.1. Distributed Operating Systems

Operating system structures for a distributed environment follow one of two major

paradigms: Message-based or Object-based. Message-based operating systems place a

message passing kernel on each node, supporting processes and communication between

them via explicit messages. This kernel supports both local communication (communication

between processes on the same node) and non-local or remote communication, sometimes

implemented via a distinguished network manager process. In a traditional system such

as Unix, access to system services is requested via protected procedure calls, whereas in a

message-based operating system it is requested via message passing. Message-based

operating systems are attractive for structuring distributed systems due to the separation

of policy, encoded in server processes, from mechanism implemented in the kernel.

Object-based distributed operating systems encapsulates services and resources into

entities called objects. Objects are similar to instances of abstract data types, and are

written as individual modules composed of the specific operations that define their

interface. Access to system services is requested by invoking the appropriate system object.

The invocation mechanism is similar to a protected procedure call. Objects encapsulate

functionality, similar to the encapsulation provided by server processes in message-based

systems.

Among the well-known message-based systems are the V-system [Ch88] developed at

Stanford and the Amoeba system [Mu*90] developed at Vrije University. These systems

provide computation and data services via servers that run on machines linked by a

network.

Most of the object-based systems are built on top of an existing operating system, typically

Unix. Examples of such systems include Argus [Lis87], Cronus [Be*85], and Eden [Al*85].

These systems support objects that respond to invocations sent to them via the message-

passing mechanisms of Unix.

Mach is a recent operating system that has a distinctive character [Ac*86]. Mach is a Unix

compatible operating system built in a machine independent fashion and it runs on a large

variety of uniprocessors and multiprocessors. It has a small kernel handling the virtual

memory and process scheduling with other services built on top of the kernel. Mach

implements mechanisms that provide for distribution, especially through a facility called

memory objects. Memory objects provide a means for sharing memory between separate

tasks executing on possibly different machines.

1.2. The Clouds Approach

Clouds is a distributed operating system that integrates a set of nodes into a conceptually

centralized system. The system is composed of compute servers, data servers and user

workstations. A compute server is a machine that is available for use as a computational

engine; a data server is a machine whose purpose is to function as a repository for long-lived

(i.e., persistent) data. A user workstation is a machine whose sole purpose is to provide

the programming environment for the user to develop applications and interface with the

compute and data servers for executing these applications on them. Note that if a disk is

3

associated with a compute server, it can also serve as a data server for other compute

servers. Clouds is a native operating system, that runs on top of a native kernel called

"Ra"*. It currently runs on Sun-3/50 and Sun-3/60 computers and cooperates with Sun

SparcStations running Unix that provide user interfaces.

Clouds is a general purpose operating system. That is, it is intended to support all types

of languages and applications, distributed or not. All applications can view the system as

a monolith, but distributed applications may choose to view the system as composed of

several separate compute and data servers. Each compute facility in Clouds has access to

all resources in the system.

The system structure is based on an object-thread model. The object-thread model is an

adaptation of the popular object-oriented programming model which structures a software

system as a set of objects. In the object-oriented model, Each object is an instance of an

abstract data type consisting of data and operations on the data. The operations are called

methods. An object is an instance of a class that defines the type of the object. A class may

have any number of (0 or more) instances, but an instance is derived from exactly one

class. Objects respond to messages. Sending a message to an object causes the object to

execute a method. The execution of a method accesses or updates data stored in the object

and may cause messages to be sent to other objects. Upon completion, the method sends

a reply to the sender of the message.

Clouds has a similar structure, implemented at the operating system level. Clouds objects

are large-grained encapsulations of code and data that are contained in an entire virtual

address space. An object is an instance of a class, and a class is a compiled program

module. Clouds objects respond to invocations. An invocation is the result of a thread of

execution entering the object to execute an operation (or method) in the object.

Clouds provides objects to support an abstraction of storage and threads to implement

computations. This decouples computation and storage, thus maintaining their or-

thogonality. In addition, the object-thread model unifies the treatment of I/O, inter-process

communication, information sharing and long-term storage. This model has been further

augmented to support atomicity and to provide support for reliable execution of computa-

tions.

Multics was the starting point for many ideas found in the operating systems of today, and

Clouds is no exception. These include sharable memory segments and single level stores

using mapped files. Using objects as a system structuring concept was first implemented

in Hydra [Wu*74]. Hydra ran on a multiprocessor and provided named objects for OS

services.

2. The Clouds Paradigm

This section elaborates on the object-thread paradigm of Clouds, illustrating the paradigm

with examples of its usage.

4

* After the Egyptian Sun-God.

2.1. Objects

A Clouds object is a persistent (or non-volatile)

virtual address space. Unlike virtual address

spaces in conventional operating systems, the

contents of a Clouds object are long-lived. That

is, a Clouds object exists forever and survives

system crashes and shutdowns (like a file)

unless explicitly deleted. As will be seen in the

following description of objects, Clouds ob-

jects are somewhat ‘‘heavyweight’’. They are

best suited for storage and execution of large-

grained data and programs because of the

overhead associated with invocation and

storage of objects.

Unlike objects in some object-based operating

systems, a Clouds object does not contain a

process (or thread). Thus Clouds objects are

passive. Since contents of a virtual address

space are not accessible from outside the ad-

What can objects do?

Conceptually, an object is an encapsula-

tion of data and a set of operations on the

data. The operations are performed by in-

voking the object, and can range from

simple data manipulation routine to com-

plex algorithms; from shared library acces-

ses to elaborate system services.

Objects can also provide specialized ser-

vices. For example, a sensing device can be

represented as an object and an invocation

can be used to gather data from the device,

without having to know about the

mechanisms involved in accessing the

device, or even the location of the device.

Similarly, terminal I/O can be effectively

handled by an object (with read and write

operations defined on it).

Objects can be active. An active object has

one or more processes associated with it

that communicate with the external world

and handle housekeeping chores internal

to the object. For example a process may

monitor the environment of the object and

may inform some other entity (another

object) on the occurrence of an event. This

feature is particularly useful in objects

that manage sensor monitoring devices.

Objects are a simple concept with a major

impact. From general-purpose program-

ming to quite specialized applications, ob-

jects can be used for almost every need,

and yet provide a simple procedural inter-

face to the rest of the system.

persistent

data segments

code segment

entry

points

object

instance

data

data

heap

segment

object

instance

data

data

heap

segment

executing thread

volatile data

segments
object

instance

data

data

heap

segment

object

instance

data

data

heap

segment

Figure 1: A Clouds Object.

5

dress space, the memory (data) in an object is accessible only by the code in the object.

A Clouds object contains user defined code, persistent data, a volatile heap for temporary

memory allocation, and a persistent heap for allocating memory that becomes a part of

the persistent data structures in the object (Figure 1). Recall that the data in the object

can be manipulated only from within the object. Data can be passed into the object when

an entry point is invoked (input parameters). Data can be passed out of the object when

this invocation terminates (result parameters).

Each Clouds object has a global system-level name called a sysname, which is a bit string

that is unique over the entire distributed system. Therefore, the sysname-based naming

scheme in Clouds creates a uniform, flat system name space for objects. Users can define

high-level names for objects. These are translated to sysnames using a name server.

Objects are physically stored in data servers, but are accessible from all compute servers

in the system (see section 3.2), thus providing location transparency to the users.

2.2. Threads

The only form of user activity in the Clouds system is the user thread. A thread is a logical

path of execution that executes code in objects, traversing objects as it executes. Thus

unlike a process in a conventional operating system, a Clouds thread is not bound to a

single address space. A thread is created by an interactive user or under program control.

When a thread executes an entry point in an object, it accesses or updates the persistent

data stored in it. In addition, the code in the object may invoke operations in other objects.

In such an event, the thread temporarily leaves the

calling object, enters the called object and commen-

ces execution there. The thread returns to the call-

ing object after the execution in the called object

completes and returns results. These argu-

ments/results are strictly data; they may not be

addresses. This restriction is mandatory as addres-

ses in one object are meaningless in the context of

another object. In addition, object invocations can

be nested or recursive. After the thread completes

execution of the operation it was created to execute,

it terminates.

Due to the nature of Clouds objects, a thread cannot

access any data outside the current address space

(object) in which it is executing. Control transfer

between address spaces occurs through object in-

vocation and data transfer between address spaces

occurs through parameter passing.

Several threads can simultaneously enter an object

and execute concurrently. Multiple threads execut-

ing in the same object share the contents of the

object’s address space. Figure 2 shows thread ex-

distributed object space (persistent, virtual memory)

thread

stack

entry

points

thread

stack

thread

execution

path

Figure 2: Distributed Object Memory.

6

ecutions in the Clouds object spaces. Concurrency control within the object is handled by

the programmer of objects using system supported synchronization primitives such as

locks or semaphores.

2.3. The Interaction Between Objects and Threads

The structure created by a system, composed of objects and threads, has several interesting

properties. Inter-object interfaces are procedural. Object invocations are equivalent to

procedure calls on long-lived modules that do not share global data. The invocations work

across machine boundaries.

The storage mechanism used in Clouds differs from those found in conventional operating

systems. Conventionally, files are used to store persistent data. Memory is associated with

No Files? No Messages?

The persistent objects supported in an

operating system like Clouds provide a

structured permanent storage

mechanism that can be used for a variety

of purposes including the simulation of

files and messages. Data in any form can

be stored in an object and invocations can

be used to:

• Manipulate or process the stored data.

• Ship data in and out of the object in

forms not necessarily the same as used

for storage.

• Allow controlled concurrent access to

shared data, without regard to the loca-

tion of the data.

In a persistent programming environ-

ment, there is no need for files. Files are

used as byte sequential storage of long-

lived data in conventional systems. When

persistent shared memory is available

there is no need to convert data into byte-

sequential form and store them in files

(and later retrieve and reconvert). The

data can be kept in memory, in a form

controlled by the programs (e.g. lists,

trees), even when not in use.

In fact, files can be simulated by objects

that store byte sequential data and have

read and write invocations defined to ac-

cess this data. Such an object will look like

a file, even though the operating system

does not explicitly support files.

The same is true for messages. The duality

of messages and shared memory is well

known. If desired, a buffer object with the

send and receive invocations defined on it

can serve as a port structure between two

(or more) communicating processes.

We feel that files, messages and disk I/O

are artifacts of the way hardware is struc-

tured. Given an object implementation,

these features are neither necessary nor

attractive. In fact, new programming

paradigms based on object-oriented styles

are emerging, which use persistent

memory effectively, and do not use files

and messages.

7

processes for programs and data, and is volatile, i.e., the contents of memory associated

with a process are lost when the process terminates. Objects in Clouds unify the concepts

of persistent storage and memory to create the concept of a persistent address space. This

unification makes programming simpler. Persistent objects provide a structured single-

level store which is cosmetically similar to mapped files in Multics and SunOS.

Some systems use message-passing for communicating shared data and coordinating

computations. Sharing of data in Clouds is achieved by placing the shared data in an

object. Computations that need access to shared data invoke the object where the data

exists. Messages and files are not supported at the operating system level. They can be

simulated by objects if necessary (see box).

In a message-based system, the user has to determine the desired level of concurrency at

the time of writing an application. This is programmed as a certain number of server

processes. The object-thread model of Clouds eliminates the need for determining the

extent of concurrency at the time of writing the application. An object can be written from

the point of view of the functionality that it is meant to provide, than the actual level of

concurrency that it may have to support. At execution time, the level of concurrency can

be specified by creating concurrent threads to execute in the objects that comprise the

user level application. The application objects, however, have to be written to support

concurrent executions, using synchronization primitives such as semaphores and locks.

To summarize:

• The Clouds system is composed of named address spaces called objects. Objects provide

data storage, data manipulation, data sharing, concurrency control, and synchroniza-

tion.

• Control flow is achieved by threads invoking objects.

• Data flow is achieved by parameter passing.

2.4. Programming in the Clouds Model

To the programmer, there are two kinds of Clouds objects: classes and instances. A class

is a template that is used to generate instances. An instance is an object that is invocable

by user threads. Thus to write application programs for Clouds, a programmer writes one

or more Clouds classes that define the code and data of the application. The programmer

may then create the requisite number of instances of these classes. The application is

then executed by creating a thread to execute the top-level invocation that runs the

application.

To give the reader a flavor of programming in the Clouds system, the following simple

example is presented. The object "rectangle" consists of x and y dimensions of a rectangle.

The object has two entry points, one for setting the size of the rectangle and the other for

computing the area. The object is defined as follows:

8

clouds_class rectangle;

int x, y; // persistent data for rect.

entry rectangle; // constructor

entry size (int x, y); // set size of rect.

entry int area (); // return area of rect.

end_class

Once the class is compiled, any number of instances may be created either from the

command line or via another object. Suppose the rectangle class is instantiated into an

object called "Rect01". Now Rect01.size can be used to set the size and Rect01.area

can be called to return the area of the rectangle. The entry point in the object may be called

by a command in the command interpreter for Clouds. Entry points may also be invoked

in the program, allowing one object to call another.

Objects have user names, which are assigned by the programmer when objects are created

(compiled or instantiated). The sysname of an object is then obtained by using a name

server that translates the user name to the sysname. Recall that a sysname is a unique

name for an object, which is needed for invoking an object. The following code fragment

details the steps in getting access to a Clouds object Rect01 and invoking operations on

it:

rectangle_ref rect; // "rect" is a class that refers to

 // an object of type rectangle.

rect.bind("Rect01"); // call to name server,

 // binds sysname to Rect01

rect.size(5, 10); // invocation of Rect01

printf("%d\n" rect.area()); // will print 50

Clouds provides a variety of mechanisms including registering user-defined names of

objects with the name server, looking up names using the name server, invoking objects

both synchronously and asynchronously, and synchronizing threads that share data. In

the interest of space, these details are not discussed in this paper.

I/O to the user console is handled by read and write routines (and printf, scanf library

calls). These routines read/write ASCII strings to and from the user terminal, irrespective

of the actual location of the object or the thread, as long as the thread was started at the

user terminal.

User objects and their entry points are typed by the language definition. Static type

checking is performed on the object and entry point types at compile time. No runtime

type checking is done by Clouds. Clouds objects are coarse-grained, unlike fine-grained

entities found in object-oriented programming languages such as Smalltalk. Since an

object invocation in Clouds is at least an order of magnitude more expensive than a simple

procedure call, a Clouds object is appropriate to be used as a module that may contain

9

several fine-grained entities. These fine grained objects are completely contained within

the Clouds object and are not visible to the operating system.

Currently we support two languages in the Clouds operating system. CC++ is an extension

of C++ that is used by systems programmers. Distributed Eiffel is an extension of Eiffel

that is targeted for application developers. Both CC++ and Distributed Eiffel have been

designed to support persistent fine-grained and large-grained objects, invocations, thread

creation, synchronization and user-level object naming.

3. The Clouds Environment

The Clouds system integrates a set of homogeneous machines into one seamless environ-

ment that behaves as one, large computer. The system configuration is composed of three

logical categories of machines, each supporting a different logical function. These are

compute servers, data servers and user workstations.

The core of the system consists of a set of homogeneous machines of the compute server

category. Compute servers do not have any secondary storage. These machines provide an

execution service for threads. Secondary storage is provided by data servers. Data servers

are used to store Clouds objects and supply the code and data of these objects to compute

servers. The data servers also provide support for distributed synchronization. The third

machine category is the user workstation. These machines provide user access to Clouds

compute servers. Compute servers, in turn, know how and when to access data servers.

The logical machine categories do not have to be mapped to physical machines using a

one-to-one scheme. Although a diskless machine can function only as a compute server,

a machine with a disk can simultaneously be

a compute and data server. This enhances

computing performance, since data access via

local disk is faster than data access over a

network. However, in our prototype system, we

use a one-to-one mapping, in order to keep the

system’s implementation and configuration

simpler (Figure 3).

The user interface to Clouds is provided by a

suite of programs that run on top of Unix on

Sun workstations. These programs include

Distributed Eiffel and CC++ compilers, Clouds

user shell (under X-windows), a user-I/O

manager and various utilities. The user can

use the familiar Unix utilities (including Unix

editors) to interface with these programs.

3.1. The User Environment

A user writes Clouds programs using CC++ or

Distributed Eiffel and compiles them on the

Unix workstation. The compiler loads the

Objects

Data Server

Objects

Data Server

Network

User

Workstation

Clouds

Compute

Server

Compute

Server

Clouds

Figure 3: The Clouds System Architecture

10

generated classes on a Clouds data server. Now these classes are available to all Clouds

compute servers. Any Clouds node (or a user on a Unix machine) can create instances of

these classes and generate invocations to the objects thus created. Note that the objects

once created become part of the Clouds persistent object memory and can be invoked until

they are explicitly deleted.

A user invokes a Clouds object by specifying the object, the entry point and the arguments

to the Clouds shell. The Clouds shell sends an invocation request to a compute server and

the invocation proceeds under Clouds using a Clouds thread. The user communicates to

the thread via a terminal window in the X-window system. All output generated by the

thread (regardless of where it is executing) appears on the user terminal window and input

to the thread is provided by typing in the window.

3.2. The System Environment

As we mentioned earlier, the hardware environment consists of compute servers and data

servers with some nodes providing both functions. Starting a user level computation on

Clouds involves first selecting a compute server to execute the thread. This is a scheduling

decision and may depend on such factors as scheduling policies and the load at each

compute server, and availability of the resources needed for the computation. Once this

decision has been made, the second task is bringing the object in which the thread has to

execute from the data server to the compute server. This requires a remote paging facility;

Distributed Shared Memory

The name space represented by the Clouds

objects constitutes a shared sparse ad-

dress space. Since each object itself con-

sists of a linear address space, these two

spaces in conjunction provide a system-

wide 2-dimensional address space. The

contents of this address space are avail-

able on every machine in the system,

providing a globally shared (yet dis-

tributed) memory.

The sharing of this global memory is

provided by a mechanism that we call

DSM (Distributed Shared Memory). When

a thread on node A invokes an operation

on object O, the invocation gets executed

on node A. If O is not located on A, this

causes a series of page faults which are

serviced by demand paging the pages of O

from the data server(s) where they current-

ly reside. Thus, only the necessary parts

of the code and data of O are brought to A.

However if O is being used at both node A

and node B, care must be taken to ensure

that at all times A and B see the exact same

contents of O. This is called one-copy

semantics. The maintenance of one-copy

semantics is achieved by coherence

protocols that are an integral part of the

DSM access strategy.

The implication of this mechanism is that

every object on the system logically resides

at every node. This is a powerful concept

that separates object storage from its

usage, effectively exploiting the physical

nature of the distributed system which is

composed of compute servers and data

servers.

11

coupled with this requirement is the fact that all objects are potentially shared in the

Clouds model. Therefore the entity that provides the remote paging facility should be

cognizant of the need to provide a way of maintaining the consistency of shared pages. In

Clouds this is satisfied by a mechanism called distributed shared memory (DSM), which

supports the notion of shared memory on a non-shared memory (distributed) architecture

(see box). The data servers execute a coherence protocol that preserves single-copy

semantics for all the objects [Li*89]. With DSM, concurrent invocation of the same object

by threads at different compute servers is possible. Such a scenario would result in

multiple copies of the same object existing at more than one compute server with DSM

providing the consistency maintenance.

Suppose an thread is created on compute server A to invoke object O1. The compute server

retrieves a header for the object from the appropriate data server, sets up the object space

and starts the thread in that space. As the thread executes in the object space, the code

and data of the object that is accessed by the thread is demand paged from the data servers

(possibly over the network).

If the thread executing in O1 generates an invocation to object O2, the system may choose

to execute the invocation on either A itself or on a different compute server B. In the former

case, if the required pages of object O2 are at other nodes, they have to be brought to node

A using DSM. Once the object has been brought into A, the invocation proceeds the same

way as when O1 resides at A. On the other hand, the system may choose to execute the

invocation on a different compute server B. In this case the thread sends an invocation

request to B, which invokes the object O2 and returns the results to the thread at A. This

scenario is similar to the remote procedure call (RPC) found in other systems such as the

V system but is more general because B does not have to be the node where O2 currently

resides.

The compute and data server scheme makes all objects accessible to all compute servers.

The DSM coherence protocol ensures that the data in an object is seen by concurrent

threads in a consistent fashion even if they are executing on different compute servers.

The synchronization support provided by data servers allows threads to synchronize their

actions regardless of where they execute.

4. The Implementation of Clouds

The implementation of Clouds uses a minimalist approach towards operating system

development. With this approach, each level of the implementation consists of only those

functions that cannot be implemented without a significant performance penalty at a

higher level. Traditional systems such as Unix provide most of the operating system

services in one big monolithic kernel. Unlike such systems, we differentiate between the

kernel of the operating system and the operating system itself. This approach makes the

system modular, easy to understand, more portable, and convenient to enhance. High-level

features can be implemented as user-level libraries, objects or services that use the

low-level mechanisms in the operating system. Further, it provides a clean separation of

policy from mechanisms; that is the policies are implemented at the high-level using the

mechanisms at the lower-level.

12

The current implementation of Clouds consists of three levels: at the lowest level is Ra

which provides the mechanisms for managing the basic resources, namely, processor and

memory. The next level up is a set of system objects which are trusted software modules

providing essential system services. Finally, other non-critical services such as naming

and spooling are implemented as user objects to complete the functionality of Clouds.

4.1. The Ra Kernel

Ra is the native minimal kernel that supports the basic mechanisms: virtual memory

management and low-level scheduling. Ra implements the following abstractions.

• Segments:

A segment is a sequence of uninterpreted bytes of variable length that exists either on

the disk or in physical memory. Segments have systemwide unique names (called

sysnames). Segments once created, persist until explicitly destroyed.

• Virtual Spaces:

A virtual space is the abstraction of an addressing domain, and is a monotonically

increasing range of virtual addresses with possible holes in the range. Each contiguous

range of virtual addresses is mapped to (a portion of) a segment.

• IsiBas:

An IsiBa
* is the abstraction of activity in the system, and can be thought of as a

light-weight process. It is simply a kernel resource that should be associated with a stack

to realize a schedulable entity. There are several types of stacks in the system (e.g. kernel,

interrupt and user), and an IsiBa can use an instance of any type of stack. A Clouds

process is an IsiBa in conjunction with a user stack and a Ra virtual space. One or more

Clouds processes are used to build a Clouds thread. IsiBas can also be used for a variety

of purposes inside system objects, including interrupt services, event notification, and

watchdogs.

• Partitions:

A partition is an entity that provides non-volatile data storage for segments. A Clouds

compute server may have one or more partitions, but a segment belongs to exactly one

partition. In order to access a segment, the partition containing the segment has to be

contacted. The partition communicates with the data server where the segment is stored

to page the segment in and out when necessary. Note that Ra only defines the interface

to the partitions. The partitions themselves are implemented as system objects which

are discussed in section 4.2.

The relationship between segments, virtual spaces and partitions are depicted in Figure

4.

The implementation of Ra is separated into machine-dependent and machine-independent

parts. All components of Ra are built using the class mechanisms of C++. The scheme of

13

* From Ancient Egyptian: "Isi" = light, "Ba" = soul.

using system objects enhances the object structure of Ra. Ra consists of 6000 lines of

machine dependent C++ code, 6000 lines of machine independent C++ code and 1000 lines

of Sun (68020) assembly code. It currently runs on the Sun-3 class machines. More details

about the implementation are in [Da*90a].

4.2. System Objects

Ra can be thought of as the conceptual motherboard. Operating system services are

provided on top of Ra by system objects. System objects are independently compiled

modules of code that have access to certain operations defined by Ra. These operations

are exported as kernel classes by Ra and are inherited by the system objects. Conceptually,

the system objects are similar to Clouds objects living in their own virtual space and

supporting external invocations and having access to operations in the Ra kernel. However,

for the sake of efficiency, system objects live in the kernel space, are linked to the Ra kernel

at system configuration time, and are not directly invocable from user level. System objects

are implicitly invoked through a system-call interface available to user-level objects.

Some system objects implement low-level functions inside the operating system, including

the buffer manager, the uniform I/O interface, and the Ethernet driver. Other system

objects implement high-level functions that are invoked indirectly as a result of a system

call. These objects include the thread manager, the object manager and the user I/O

manager.

The following paragraphs describe some of the important system objects.

Segment X

Segment Y

Segment Z

Virtual Space Segment X

Segment Y

Segment Z

Virtual Space

....

Partition (storage)

Segment Desc.

Segments

Figure 4: Virtual spaces, segments and partitions.

14

• Thread Manager:

As we mentioned earlier, a thread may span machine boundaries and is implemented

as a collection of Clouds processes. There is some information associated with a thread

such as the objects it may have visited, the user workstation from which it was created,

and the windows on the user workstation with which it has to communicate when

input/output requests are made during the computation. The thread manager is

responsible for the creation, termination, naming and all bookkeeping necessary to

implement threads.

• User Object Manager:

User-level objects are implemented through a system object called the object manager.

The object manager creates and deletes objects and provides the object invocation

facility. An object is stored in a Ra virtual space. The invocation of an object by a thread

is handled mainly by the object manager in conjunction with the thread manager. Briefly,

when a thread invokes an object, the stack of the thread invoking the object is mapped

into the same virtual address space as the object and the thread is allowed to commence

execution at the entry point of the object. When the execution of the operation

terminates, the object manager unmaps the thread stack from the object and remaps it

in the object where the thread was previously executing. If there was no previous object,

then the object manager informs the thread manager and the thread is terminated.

• DSM Clients and Servers:

DSM clients and servers are partitions that interact with the data servers to provide

one-copy semantics for all object code and data that are used by the Clouds nodes. When

a page of data is needed at node A, the DSM client partition requests it from the data

server. If the page is currently in use in exclusive mode at node B, the data server

forwards the request to the DSM server at node B, which supplies the page to A. The

DSM server allows maintaining (both exclusive and shared) locks on segments and

provides other synchronization support.

• User I/O Manager:

This system object provides support for Clouds computations to read from and write to

user terminals. A user terminal is a window on a Unix workstation. When a thread

executes a write system call, the I/O manager routes the data written to the appropriate

controlling terminal. Reads are handled similarly. The user I/O manager is a combina-

tion of a Ra system object and a server on each Unix workstation.

• Networking and RaTP:

Networking is handled by two system objects: the Ethernet driver and the network

protocol. The network protocol used for all communication in Clouds is a transport layer

protocol called the Ra Transport Protocol (RaTP). It is similar to the communication

protocol VMTP [Ch86], used in the V-system, and provides efficient, reliable connection-

less message transactions. A message transaction is a send/reply pair used for client-

server type communications. RaTP has been implemented both on Ra (as a system

object) and on Unix, allowing Clouds to Unix communication.

15

4.3. Current Status and Performance

All the features mentioned in the paper thus far have been implemented and are in use.

The compute servers run on diskless Sun-3/60 machines; data servers and user worksta-

tions are Sun SPARCstation-1 machines running UNIX. The data service is done by storing

the data in Unix files and the user workstations run X-Windows. The user interface

includes the Clouds terminal, Clouds shell, the CC++ compiler and the Distributed Eiffel

compiler. All communication between nodes running Clouds or Unix use the RaTP protocol.

The kernel performance is good. Context switch time is 0.14 ms. The time to service a page

fault when the page is resident on the same node costs 1.5 ms for a zero-filled, 8K page;

and costs 0.629 ms for a non zero-filled page.

Networking is one of the most heavily used subsystem of Clouds, especially since our

current implementation uses diskless compute servers. All objects are demand paged to

the servers over the network when used. The RaTP protocol handles the reliable data

transfer between all machines. The Ethernet round-trip time is 2.4 ms; this involves

sending and receiving a short message (72 bytes) between two compute servers. The RaTP

reliable round-trip time is 4.8 ms. To reliably transfer an 8K page from one machine to

another costs 11.9 ms, compared to 70 ms using Unix FTP and 50 ms using Unix NFS.

Object invocation costs vary widely depending upon whether the object is currently in

memory or have to be fetched from a data server. The maximum cost for a null invocation

is 103 ms while the minimum cost is 8 ms. Note that due to locality the average costs is

much closer to the minimum than the maximum.

5. Using Clouds for Distributed Systems Research

This section presents a brief overview of some topics being investigated as part of the

continuing systems research in the Clouds project

5.1. Using Persistent Objects

Persistent shared single-level storage is the central theme of the Clouds model. Therefore,

effectively supporting and exploiting persistent memory in a distributed setting has been

the thrust of several related research projects. Another area of research is in harnessing

the distributed resources to realize speedups for executing specific applications compared

to a single-processor implementation. Some of these projects are summarized below.

• Distributed Programming:

Using the DSM feature of Clouds, centralized algorithms can be run as distributed

computations with the expectation of achieving speedup. For example, sorting algo-

rithms can use multiple threads to perform a sort, with each thread being executed at

a different compute server, even though the data itself is contained in one object. The

threads work on the data in parallel and those parts of the data that are in use at a node

migrate to that node automatically. We have shown that even though the data resides

in a single object, the computation can be run in a distributed fashion without incurring

16

a high overhead. These experiments are helping us understand the trade-off between

computation and communication, and the granularity of computations that warrant

distribution.

• Types of Persistent Memory:

Persistent memory needs a structured way of specifying attributes such as longevity and

accessibility for the language-level objects contained in Clouds objects. To this end we

provide several types of memory in objects. The sharable, persistent memory is called

per-object memory. We also provide per-invocation memory that is not shared, yet is

global to the routines in the object and lasts for the length of each invocation. Similarly

per-thread memory is global to the routines in the object but specific to a particular

thread and lasts until the thread terminates. Such a variety of memory structures

provides a powerful programming support in the Clouds system [Da*90b].

• Lisp Programming Environment:

If the address space containing a Lisp environment can be made persistent, it has several

advantages, including not having to save/load the environment on startup and shut-

down. Further, by invoking entry points in remote Lisp interpreters it is possible to allow

inter-environment operations that are useful in building knowledge-bases. Other fea-

tures that naturally arise due to the distributed nature of the system include concurrent

evaluations and load sharing.

• Object-Oriented Programming Environment:

Persistent memory is being used to structure object-oriented programming environ-

ments. The programming environments provide support for multi-grained objects inside

Clouds objects and support for visibility/migration for these language-defined objects

within Clouds objects.

5.2. Reliability in Distributed systems

One of the goals of Clouds is to provide a highly reliable computing environment. The issue

of reliability has two parts: maintaining consistency of data in spite of failures; and

assuring forward progress for computations. It is necessary to deal with the consistency

problem because when a thread executes at several nodes (or several nodes supply objects

to a thread because of the DSM abstraction), the results of a computation may be reflected

at some nodes but not at others in the event of failure of nodes or communication links.

A consistency mechanism should provide the atomicity property which guarantees that a

thread computation either completes at all nodes or it has no effect on the state of the

system. Thus, if failures are encountered, the effects of all partially completed computation

are undone. Consistency by itself does not promise progress because a failure leads to the

undoing of the partially completed work. To ensure forward progress, objects and com-

putation must be replicated at nodes with independent failure modes. In the following

subsections we briefly touch upon the aspects of the Clouds system that address the

consistency and progress requirements.

5.2.1. Notions of Atomicity

The Clouds "consistency-preservation" mechanisms present one uniform object-thread

abstraction that allows programmers to specify a wide range of atomicity semantics. This

17

scheme performs automatic locking and recovery of persistent data. Locking and recovery

are performed at the segment-level* and not at the object level. Since segments are user

defined, this allows user control of the granularity of locking. Custom recovery and

synchronization are still possible but will not be necessary in many cases.

Instead of mandating customization of synchronization and recovery for applications that

do not need strict atomicity, the new scheme supports a variety of consistency preserving

mechanisms. The threads that execute are are of two kinds, namely s-threads (or standard

threads) and cp-threads (or consistency-preserving threads). The s-threads are not

provided with any system-level locking or recovery. The cp-threads on the other hand are

supported by well-defined locking and recovery features.

When a cp-thread executes, all segments it reads are read-locked, and the segments it

updates are write-locked. Locking is handled by the system, automatically at runtime. The

updated segments are written using a 2-phase commit mechanism when the cp-thread

completes. Since s-threads do not automatically acquire locks, nor are they blocked by

any system acquired locks, they can freely interleave with other s-threads and cp-threads.

There are two varieties of cp-threads, namely the gcp-thread and the lcp-thread. The

gcp-thread semantics provide global (heavyweight) consistency and the lcp-thread seman-

tics provide local (lightweight) consistency. All threads are s-threads when created. Each

operation has a static label that declares the consistency needs of the operation. The labels

are S (for standard) LCP (for local consistency preserving) and GCP (for global consistency

preserving). Various combinations of different consistency labels in the same object (or in

the same thread) lead to many interesting (as well as dangerous) execution time pos-

sibilities, especially when s-threads update data being read/updated by gcp or lcp threads.

The complete discussion of the semantics, behavior and implementation of this scheme is

beyond the scope of this paper, and the reader is referred to [Ch*89].

5.2.2. Fault Tolerance

Transaction processing systems provide guarantees about the consistency of data if

computations do not complete (due to failures). However, they do not guarantee success

of computations. The following section discusses an approach that allows fault-tolerant

or resilient computations in Clouds.

The approach uses a mechanism called parallel execution threads or PET which tries to

provide uninterrupted processing in the face of pre-existing (static) failures, as well as

system and software failures that occur while a resilient computation is in progress

(dynamic failures) [Ah*88].

To obtain these properties, the basic requirements of the system are:

• Replication of objects, for tolerating static and dynamic failures.

18

* An object may contain multiple data segments. The layout and number of segments are under the control of the
user programmer. The segments may contain inter-segment pointers, and objects support dynamic memory
allocation on each segment.

• Replication of computation, for tolerating dynamic failures.

• An atomic commit mechanism to ensure correctness.

The PET system works by first replicating all critical objects at different nodes in the

system. The degree of replication is dependent on the degree of resilience required.

When a resilient computation is initiated, separate replicated threads (gcp-threads) are

created on a number of nodes. The number of nodes is another parameter provided by the

user, and reflects the degree of resilience required. The separate threads (or Parallel

Execution Threads) run independently as if there is no replication. An invocation by one

thread on a replicated object is done by choosing one replica of the object and invoking

that replica (Figure 5). The replica selection algorithm tries to ensure that separate threads

execute at different nodes to minimize the number of threads affected by a failure. After

one or more threads complete successfully by executing at operational nodes, one thread

is chosen to be the terminating thread. All updates made by this thread are propagated to

a quorum of replicas, if available. If there is a failure in committing this thread, another

completed thread is chosen. If the commit process succeeds, all the remaining threads are

aborted.

This method allows a tradeoff in the amount of resources used (i.e. the number of parallel

threads started for each computation) and the desired degree of resilience (number of

failures the computation can tolerate, while the computation is in progress.)

6. Concluding Remarks

The goal of Clouds has been to build a general

purpose distributed computing environment,

suitable for a wide variety of users in the com-

puter science community. We currently have

developed a native operating system and an

application development environment that is

being used for a variety of distributed applica-

tions.

Providing a conduit between Clouds and Unix

has provided a significant impetus to our

development effort. We have saved considerable

effort in not having to port program develop-

ment and environment tools (such as editors

and window systems) to a new operating sys-

tem. Application development can be done in

the familiar Unix environment to harness the

data and computation distribution capabilities

of the new system. The Clouds system has been

a fruitful exercise in providing an experimental

platform for determining the worthiness of the

object-thread paradigm.

PET #1 PET #2

Object 1

Object 2

Object 3

Replicated

Copies

Commit

Processing

Figure 5: Parallel Execution Threads.

19

7. Acknowledgements

The authors would like to acknowledge Martin McKendry and Jim Allchin for starting the

project and designing the earliest version of Clouds; David Pitts, Gene Spafford and Tom

Wilkes for the design and implementation of the kernel and programming support for

Clouds, version 1; Jose Bernabeu, Yousef Khalidi and Phil Hutto for their efforts in making

the version 1 kernel usable and for the design and implementation of Ra; Sathis Menon

R. Ananthanarayanan, Ray Chen and Chris Wilkenloh for significant contribution to the

implementation of Clouds version 2, as well as managing the software development effort.

Thanks are also due to M. Chelliah, Vibby G., L. Gunaseelan, Ranjit John, Ajay Mohindra,

Mark Pearson, Gautam Shah, for their recent participation in and contributions to the

project.

8. References

[Ac*86] M. Accetta, R. Baron, W. Bolosky, D Golub, R. Rashid, A. Tevanian and M. Young.
Mach: A New Kernel Foundation for Unix Development, Proc. Summer Usenix Con-
ference, Usenix, 1986.

[Ah*88] M. Ahamad, P. Dasgupta and R. J. LeBlanc, Fault-tolerant Atomic Computations in
an Object-based Distributed System, Distributed Computing, Vol 4, no 2, May 1990.

[Al*85] G. T. Almes, A. P. Black, E. D. Lazowska and J. D. Noe, The Eden System: A Technical
Review, IEEE Transactions on Software Engineering, Vol. SE-11, No. 1, January 1985,
pp 43-58.

[Ch86] D. R. Cheriton, VMTP: A Transport Protocol for the Next Generation of Communication
Systems. Proceedings of SIGCOMM, 1986.

[Ch88] D. R. Cheriton The V Distributed System. Communications of the ACM, March 1988.

[Ch*89] R. Chen and P. Dasgupta, Linking Consistency with Object/Thread Semantics: An
Approach to Robust Computations, 9th International Conference on Distributed Com-
puting Systems, Newport Beach CA, June 5th-7th, 1989.

[Da*90a] P. Dasgupta et. al. The Design and Implementation of the Clouds Distributed
Operating System. Usenix Computing Systems Journal, Volume 3, Number 1, 1990.

[Da*90b] P. Dasgupta and R. C. Chen, Memory Semantics in Persistent Object Systems,
chapter in Implementation of Persistent Object Systems, Editor: Stan Zdonick, Morgan
Kaufman Publishers, 1990.

[Lis87] Liskov, B. Distributed Programming in ARGUS. CACM, March, 1988.

[Li*89] K. Li and P. Hudak, Memory Coherence in Shared Virtual Memory Systems ACM
Transactions on Computer Systems, Vol. 7, No 4, November 1989.

[Mu*90] S. J. Mullender, G. Rossum, A. S. Tannenbaum, R. Renesse and H. Staveren.
Amoeba: A Distributed Operating System for the 1990s, Computer, IEEE, May 1990.

20

[Wu*74] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson and F. Pollack. W.
A. Wulf et. al. HYDRA: The Kernel of a Multiprocessor Operating System, Communica-
tions of the ACM, (17,6) June 1974.

21

