
Creating Visual Objects by Direct Manipulation

�

Toshio TONOUCHI

y

Ken NAKAYAMA Satoshi MATSUOKA

z

Department of Information Science

The University of Tokyo

Satoru KAWAI

Department of Graphic and Computer Sciences

The University of Tokyo

Abstract

Low-cost implementations of graphical user interfaces

(GUIs) have relied on the widget library framework. Although

conventional widgets are suitable for developing typical GUIs

with predetermined interaction styles, application-speci�c cus-

tomization of interactions is rather di�cult, especially for a non-

programmer. Instead, we propose a new framework whereby the

GUI designers can arbitrarily compose new visual objects recur-

sively from intrinsic primitive objects. The behavior of a com-

posed object is governed by constraints extracted from the trace

of operations issued to the graphic editor. A prototype system

Oak based on the framework is successfully implemented. Oak

allows GUI designers to compose visual objects by direct manip-

ulation allowing non-programmers to create customized widgets

of high-degree of complexity.

1 Introduction

The widget framework greatly reduces the cost of

GUI development. However, some problems still re-

main: (i) Commonly used widgets such as buttons

and scrollbars are prefabricated and already available,

but creation of new widgets and/or major customiza-

tion of preexisting widgets to meet the requirement

of non-standard interaction style is di�cult. (ii) As

has been pointed out by Myers[9], callback functions

closely bind the interface and the application | for ex-

ample, when one constructs a calculator application,

both the numerical calculation (which is an applica-

tion dependent action) and the visual feedback via hi-

lighting of buttons (which is an application indepen-

dent action) are invoked via callback functions bound

to clicks on the button widgets that represent the nu-

merical keypad. (iii) Programmers describe the behav-

ioral part of widgets as textual programs; thus, it is

extremely di�cult for non-programmers, such as GUI

designers, to create or customize application-speci�c

�

To be presented at the 1992 IEEE International Workshop

on Visual Languages, Seattle, Washington, Sept. 1992.

y

Currently with C&C Systems Research Laboratories, NEC

Corporation, Tokyo. Japan, tonouchi@btl.cl.nec.co.jp

z

fken,matsug@is.s.u-tokyo.ac.jp

widgets. Furthermore, it is di�cult even for program-

mers to foresee how the GUI being constructed will be

visualized during the coding process.

Previous advanced widget frameworks have at-

tempted to address these issues: For example,

UniDraw [16] does relegate some amount of non-

application speci�c code into the widget framework,

but only primitive behaviors such as widget layout-

ing are supported without customization. MoDE [12]

UIMS provides composibility of constituent parts of

widgets. It also enables the programmer to join the

modules via direct manipulation to obtain a composite

widget. However, MoDE restricts the composition to

rather high-level prefabricated constituents, and fur-

thermore, still requires the programmer to manage the

complex \spaghetti" of callback functions. Myers [7]

proposed a system that uses direct manipulation to

specify the desired connection among widgets. Al-

though it does increase the modularity by separating

the application code and widgets, the level of widgets

it supports are prefabricated ones (e.g. buttons); thus,

only simple and obvious compositions such as dialogue

boxes are available. It also requires coding knowledge

for specifying complex connections, making it di�cult

for non-programmers to use the system.

To cope with these problems, we propose a new

framework, in which widgets are arbitrarily recursively

composible from prede�ned primitives by direct ma-

nipulation [15]. We refer to these extended widgets

with arbitrary composition capability as visual objects.

When a designer wants to create a previously unde-

�ned visual object, he composes it from the prede�ned

ones with a graphic editor, instead of writing program

code. For example, to de�ne a slider object, the de-

signer composes a knob, a groove, and a frame with a

graphic editor in an obvious way (Figure 1).

Using this framework, a variety of visual objects can

be constructed using the arbitrary composition capa-

bility, simply by assembling the prede�ned subobjects

via direct manipulation. Furthermore, composed ob-

jects can also be used as subobjects of more complex

objects. The composite `visual' behavior of composed

Subobjects

Frame
Knob

Groovespecified by
 direct manipulation

Behavioral
Constraints
among subobjects

Frame

Knob Groove

Figure 1: Composition of a slider object

objects is governed by constraints, separating the

application-independent action from the application-

dependent action. In this sense, our framework might

seem similar to the one proposed in Peridot [6],

but is actually quite di�erent because (i) we allow

and stress arbitrary compositionality of visual ob-

jects, and (ii) we allow speci�cation of richer classes

of application-speci�c visual objects by the use of a

more powerful constraint solver, and (iii) application-

independent action of complex composite objects is

encapsulated within the object itself, whereas Peridot

does not support speci�cation of coordinated behavior

of widgets.

Constraint

Composite Object

V

B

I

Composite
Behavior

V

B

I

V

B

IInternal State

Visualization Function

Behavior

Composite
Visualization
Function

Composite
Internal State

Subobjects

Figure 2: The BVI model

To realize the framework, we propose the under-

lying BVI model where we regard a visual object as

consisting of three constituents: the behavior (B), the

visualization function (V) and internal state (I). The

internal state holds the attributes of the visual object.

The visualization function displays the visual object,

re
ecting its internal state. The behavior speci�es

application-independent action of the visual object:

it updates the internal state of the visual object in

response to the interaction by the user. In the slider-

object example, the internal state of a knob object

is its coordinates. Its visualization function displays

a circle at the coordinates speci�ed by the internal

state. The behavior speci�es that the knob follows

the mouse cursor when dragged. The behavior of the

composite slider object further dictates that the knob

is constrained to move along the groove.

We have implemented a prototype system Oak,

which is based on the model. The (non-programmer)

designer can arbitrarily compose new visual objects by

composing prede�ned subobjects by direct manipula-

tion without textual programming. In Oak, the de-

signer �rst draws a visual object on the graphical ed-

itor which provides elementary (CAD-like) geometric

operations. The system derives constraints between

subobjects from the trace of operations on the graphic

editor. The code generator then compiles the descrip-

tion of the subobjects (the geometric relation among

the subobjects) into C++ as special subclasses of In-

terViews [1]. The resulting visual objects are avail-

able for use within the application with the integra-

tion of a run-time routine, which includes a special-

purpose constraint solver that can handle non-linear

constraints, and is tailored for interactive GUI.

2 Visual Object Composition with

Constraints

To simplify the treatment of composition of visual

objects, we propose the BVI model (Figure 2). In this

model, interaction from a user is treated as follows:

when the user interacts with visual objects using the

mouse, the behavior of the objects updates the inter-

nal state of the objects if necessary. The visualization

function visualizes the new appearance of the objects.

Based on this model, various kinds of visual objects

are composed from prede�ned subobjects. The com-

position of visual objects is de�ned as a set of three

independent composition of B, V, and I constituents:

� Composite internal state is the collection of all the

internal states of subobjects.

� Composite visualization function is the collection of

all the visualization functions of subobjects (with

appropriate precedence).

� Behavior composition requires supplementary infor-

mation to determine composite behavior. The com-

posite behavior is not only a collection of behaviors

of subobjects, but also constraints are composed so

that the behavior of the interrelated subobjects are

coordinated or restricted.

For example, the composite internal state and visu-

alization function of a slider object is merely a collec-

tion of those of the knob, the groove, and the frame,

while the composite behavior keeps the knob con-

strained to the groove. That is to say, the intrinsic

behavior of a knob is to exactly follow the mouse cur-

sor in response to user dragging, but the imposed con-

straint of the composite slider forces it to be on the

groove. The constraint solver arbitrates these con-

straints and updates the composed internal state.

Visual objects also support the export value mech-

anism to specify the application-dependent action.

Whenever an export value is updated via user interac-

tion or constraint solving, the corresponding callback

function attached to the value is invoked to notify the

application.

Constraint-based speci�cation [13, 14, 10] has the

following advantage: In a conventional widget frame-

work, the programmer is responsible for governing all

the control
ow information using complicated call-

back functions. Constraint-based visual object com-

position frees the designer from such responsibilities,

since the constraint solver guarantees the (behavior

described as) constraints to be always satis�ed. More-

over, by de�ning constraints to be composible, the ad-

vantage is maintained for composite objects as well.

3 Prototype System Oak

3.1 Oak Overview

Based on the BVI model, we have implemented a

prototype system Oak that supports construction pro-

cess of visual objects by direct manipulation. The

Oak system consists of three subsystems: the graphic

editor, the code generator , and the run-time routines.

In Figure 3, the three rectangles with dashed borders

indicate the subsystems, and arrows describe the
ow

of information in the construction of visual objects.

Operation on the Editor

Body file

Editor

Runtime Routines

Library Information

Constraints

Solver

Code Generator

Header file

Use LibraryMake Library

Operation

File

Subsystem

Figure 3: Overview of the system

We give a simple example of generating a equilat-

eral triangle object, to overview how each subsystem

works. The equilateral triangle object we are generat-

ing is assumed to have two actions: (i) the lengths of

its three edges are constrained to be always equal even

if the user drags its vertices, and (ii) the speci�ed call-

back function is invoked when the lengths of edges are

changed. The former is an application-independent

action and the latter is an application-dependent ac-

tion.

Graphic editor The graphic editor is a tool with

which the GUI designers compose visual objects from

subobjects via direct manipulation. It provides primi-

tive operations that are similar to elementary geomet-

ric operations in traditional graphics, such as drawing

a circle with a pair of compasses or drawing a line with

ruler. These operations are listed in Figure 4. Using

these operations, the designer speci�es the composi-

tion of visual objects. Most operations of the graphic

editor, such as \put a point on an object", imply the

constraints on the objects involved. In such cases,

the implied constraints are added to the application-

independent action of the composed object.

In the equilateral triangle example, the designer is-

sues the following operations in sequence (Figure 5):

(i) specify two points, (ii) draw two circles centered at

the points so that each circumference goes through the

other point, (iii) select one of the intersection points of

the two circles, then (iv) draw three lines connecting

the three points

1

. The circles are drawn as auxiliary

lines (displayed as dashed lines) which can be speci-

�ed with a toggle switch at the right-bottom corner of

the graphic editor. Auxiliary lines become invisible in

the runtime phase. The constraint that three edges of

the equilateral triangle objects have the same length is

implied by step (iii) in the sequence of the operations.

We cover the constraint extraction in Section 3.2.

Figure 5: Composition

of an equilateral trian-

gle

Figure 6: A triangle

used as a library com-

mand

In addition, the designer designates export values in

the composed object for interfacing with application-

dependent action. By this designation, (i) methods to

access the export values, (ii) appropriate invocations

of the corresponding callback functions, are generated

during the code generation phase. In the example, the

designer selects `Length' export value command, and

suggests which length of the equilateral triangle he is

interested in. Then, the editor requires the designer to

enter the name of the callback function to be invoked

when the length is changed.

id1 = POINT(VISIBLE)

id2 = POINT(VISIBLE)

id3 = CIRCLE(id1, id2, INVISIBLE)

id4 = CIRCLE2(id2, id1, id2, INVISIBLE)

id5 = LINE(id1, id2, VISIBLE)

id6 = INTERSECTION(id3, id4, VISIBLE)

id7 = LINE(id6, id2, VISIBLE)

id8 = LINE(id6, id1, VISIBLE)

Figure 7: triangle.lib

The trace of the operations the designer performs

on the graphic editor is recorded in a �le called

the library information �le. This �le is processed

by the code generator in the next phase. The li-

brary information �le of the equilateral triangle li-

brary is shown in Figure 7. The format of the

1

The editor automatically selects an intersection when the

user speci�es a location near the intersection.

Operation

Command

Arguments Generated

Object

Constraints

Put a point

POINT

�none� point �none�

Draw a line

LINE

(point, point) line a line must

be drawn between the

two points.

Draw a circle

CIRCLE

(point, point) circle the center of the cir-

cle must be the �rst

point and its circumfer-

ence must pass through

the other point

Draw a circle with

the same radius of

the previous circle

CIRCLE2

(point, circle) circle the center of the gen-

erated circle must be

the point and its radius

must be the same as

the radius of the speci-

�ed circle

Generate an inter-

section

INTERSECT0

INTERSECT1

(object, object) point the point is on the in-

tersection of two ob-

jects

Put a point on an

object

ON

(object) point the point must be on

the object

Figure 4: The list of operations of the graphic editor

�le is: <object identi�er> = command(Arguments,

[invisiblejvisible]). Commands are listed in Fig-

ure 4, and the last argument indicates whether the

object should be visible or invisible. This �le is also

used as a library to extend the editor. Using a li-

brary, generated visual objects can easily be used as

subobjects of another new object, just like primitive

objects. For example, an equilateral triangle, once de-

�ned, can be used within the graphic editor as a new

library. Two equilateral triangles in Figure 6 is drawn

easily using the equilateral triangle library.

Code Generator The code generator translates

the library information �le into subclasses of Inter-

Views [1] widgets, using the library information �le.

Three �les are generated: the header �le contains the

class declaration of the generated object, the body �le

contains the methods of the generated object, and the

constraint speci�cation �le contains the constraints

that will be handled by the run-time routines. The

constraint speci�cation �le of the equilateral triangle

object is shown in Figure 8. The constraint speci�-

cation �le consists of a set of vector equations. `Idn'

denotes a position vector which corresponds to the ob-

jects in Figure 7. `@Idn' denotes the amount of mouse

movement used for approximation by the constraint

solver. The equivalent vector equations in a more fa-

miliar notation are shown in Figure 9.

Run-time routines The run-time routines sup-

port the run-time behavior of the constructed visual

2 @Id2 (Id2 - Id1) + 2 @Id1 (Id6 - Id2)

+ 2 @Id6 (Id1 - Id6)

+ (Id2 - 2 Id1 + Id6) (Id2 - Id6)

(Id6 - Id2) (Id6 - Id2) - 2 @Id6 (Id6 - Id2)

+ 2 @Id2 (Id6 - Id2) - (Id2 - Id1) (Id2 - Id1)

+ 2 @Id2 (Id2 - Id1) - 2 @Id1 (Id2 - Id1)

Figure 8: triangle.cnt

2�

~

Id2 � (

~

Id2�

~

Id1) + 2�

~

Id1 � (

~

Id6�

~

Id2)

+2�

~

Id6 � (

~

Id1�

~

Id6)

+(

~

Id2� 2

~

Id1+

~

Id6) � (

~

Id2�

~

Id6) = 0

(

~

Id6�

~

Id2) � (

~

Id6�

~

Id2)��

~

Id6 � (

~

Id6�

~

Id2)

+2�

~

Id2 � (

~

Id6�

~

Id2)� (

~

Id2�

~

Id1) � (

~

Id2�

~

Id1)

+2�

~

Id2 � (

~

Id2�

~

Id1)� 2�

~

Id1 � (

~

Id2�

~

Id1) = 0

Figure 9: Vector equations of triangle.cnt

objects. Central to the run-time routines is the con-

straint solver; it receives requests for updating the in-

ternal state as a result of user interaction, upon which

it determines how to change the internal state accord-

ing to the constraints that de�ne the composite be-

havior. The run-time routines also support the export

value mechanism.

3.2 Composition of Visual Objects in Oak

When the designer is editing a visual object, there

are two alternative schemes whereby constraints could

be speci�ed: (i) constraints are constructed from the

`trace' of the operations issued to the graphic editor,

and (ii) constraints are extracted from the resulting

picture [6, 8, 11, 3]. In Oak, we adopt the former ap-

proach for the following reason: the former approach

incurs less ambiguity in constraint extraction com-

pared to the latter, because the information of the

composition of the visual objects, such as sequence

of editor operations, could be used to extract the con-

straints in addition to the resulting picture. For exam-

ple, when a knob coincides with a groove, it is not clear

whether it is intentional (when the knob was explic-

itly placed on top of the groove) or accidental (when

the groove was inadvertently moved to coincide with

the knob) in the latter approach, whereas it could be

easily distinguished in the former.

In Oak, each operation of the graphic editor im-

plies corresponding constraints, as described in Fig-

ure 4. A non-programmer designer merely `draws'

and composes the visual objects in an intuitive fashion

using these operations. Constraints are accumulated

and composed when the points in the subobjects are

shared by the operations. For example, in the third

step of the construction of the equilateral triangle ob-

ject in the previous section, the designer selects the

intersection of the two circle. The system then ex-

tracts the following constraints: (i) the distance be-

tween the intersection and the center of the �rst cir-

cle should be equal to that between the centers of the

two circles, and (ii) the distance between the intersec-

tion and the center of the other circle should be equal

to the distance between the centers of the two circles.

In the fourth step, the designer draws three line seg-

ments among the three points; the lines (edges) are

constrained to be equal by the extracted constraints.

Composition of the application-dependent actions

are achieved simply by considering the union of all ex-

port alues and having the appropriate callback func-

tions invoked when one of the export values changes.

New callback functions could also be added to a subset

of the union of export values.

4 Implementation Issues

4.1 The Constraint Solver

Since the application-independent action of the vi-

sual objects in Oak is governed by constraints, the

constraint solver must be robust enough to express

rich classes of visual objects and still be fast enough

to realize interactive response, as the e�ciency of the

constraint solver directly a�ects the performance of

the entire application program. More speci�cally, the

constraint solver must satisfy the following require-

ments:

� The solver must be e�cient enough so that the com-

plex visual objects can follow the motion of the

mouse cursor in real-time.

� The solver must be able to handle non-linear equa-

tions. This is important because some primitive

constraints, such as equality of distances, are non-

linear.

� The solver must be able to solve multi-way as well

as cyclic constraints. This is bene�cial for allowing

arbitrary compositions.

It is di�cult to construct a constraint solver sat-

isfying all the abovementioned requirements, because

expressive power and speed are contradictory require-

ments in constraint solving. In order to realize the

interactive response, previous approaches have been

to restrict the power of the constraint solver by em-

ploying propagational algorithms (e.g., [4, 17]).

In Oak, we take a di�erent approach, taking into ac-

count the characteristics of mouse interaction: (i) the

movement of the mouse is mostly continuous, and

(ii) when the user is making a rapid mouse movement,

errors incurred in constraint solving will be nearby in-

distinguishable, as long as the visual objects follow

the mouse cursor. When the user is making a precise

adjustment, and/or when the user has �nished the in-

teraction, the exact shape of the visual object needs to

be computed and displayed. Under such observation,

we provide two kinds of constraint solvers: one solver

approximates non-linear equations with linear equa-

tions, utilizing the nature of continuity of dragging.

It is very fast but embodies some inaccuracy; this is

called the approximate solver . The other solver is ac-

curate but is slower; this is called the accurate solver .

While the user drags the object on the display, the ap-

proximate solver satis�es the constraints and decides

its behavior. When the user �nishes the interaction,

the non-linear equations are exactly solved using the

accurate solver, and the display is updated to match

the solution.

In the approximate solver, non-linear equations are

approximated as follows: when the user drags the ob-

ject, we consider the dragging as a summation of its

minute movements. Ignoring the second-order terms

of the minute movements, the non-linear equations are

approximated with linear equations.

To give a simple example, line segments AB and

BC are orthogonal to each other, and their lengths are

equal (Figure 10 (a)). When the user drags Point A,

the line segments move to maintain the constraint.

The equations that express the constraints are approx-

imated with linear equations in advance by the code

generator. At run-time, mouse movements occur suc-

cessively while the user drags Point A. Every time an

event occurs, the approximate solver solves the linear

equations, and moves the line segments according to

the solution (Figure 10 (b)). When the dragging is

�nished, the exact solution is found by the accurate

solver (Figure 10 (c)).

Approximate
solving

fixed

Accurate
solving

(a) Constrains in the object
(b) The appoximate constraint
solver decides the behavior.

A

B C
(c) adjust the position using
the accurate constraint solver.

minute
 movements

Figure 10: Two orthogonal line segments of equal

lengths

So far, the examples constructed with our proto-

type have behaved remarkably well. Real-time re-

sponse has been maintained for the examples given

in this paper. Even experienced GUI users did not

initially guess that two di�erent solvers are actually

being used.

4.2 Generalization of Operations for Con-

straint Extraction

Oak basically translates operations of the graphic

editor one-to-one into corresponding constraints.

There are some cases, however, in which generaliza-

tion on the number of the operations are necessary.

For example, suppose that the designer wants an ar-

bitrary number of parallelograms. Without general-

ization, it is impossible to express constraints on an

arbitrary number of visual objects by a �nite number

of examples.

Previous GUI systems based on the programming by

example paradigm have supported generalization from

the examples provided by the designer. Speci�cally,

Peridot [6] generalizes operations on a given list of user

items, and both Eager [2] and Metamouse [5] perform

loop synthesis of dynamic interactions performed by

the user at run-time. The Oak system performs loop

synthesis at object construction time by generalizing

on the number of repeated operations when it detects

the repetition of the following pattern of commands:

prede�ned library commands are issued whose argu-

ments are the points generated by prior `put a point'

commands.

As an example, let us consider the designer drawing

a ribbon of connected parallelograms (Figure 11). We

assume that the graphical editor already has the par-

allelogram library command. The designer draws the

�rst parallelogram, then draws the next one so that

its two vertices share points with the �rst one. The

resulting library information �le would be as follows:

p

1

= Point; p

2

= Point;

p

3

= Point; c

1

= Parallelogram(p

1

; p

2

; p

3

)

| point p

4

is generated

p

5

= Point; c

2

= Parallelogram(p

4

; p

3

; p

5

)

| point p

6

is generated

p

7

= Point; c

3

= Parallelogram(p

6

; p

5

; p

7

)

.

.

.

This library information includes a pattern which is

generalized: the `put a point' commands are issued

three times immediately followed by alibrary com-

mand that uses the three points as arguments. This

pattern is repeated, and Oak generalizes the above in-

formation and generates the following library informa-

tion �le, where the arbitrary number of parallelogram

generations can be done with a loop:

p

1

1

= Point; p

1

2

= Point; p

1

3

= Point

c

1

= Parallelogram(p

1

1

; p

1

2

; p

1

3

)

| point p

1

4

is generated

loop (i = 2; 3; � � �)f

p

i

1

= Point; c

i

= Parallelogram(p

i�1

4

; p

i�1

3

; p

i

1

)

g

p1

p2
p3

p4

p5

p6

p7

Figure 11: Generalizations of connected parallelo-

grams

5 Further Examples

In order to illustrate the expressive power of Oak,

we constructed a less conventional radar chart

2

with

six arms. The application using the radar chart widget

can display six numerical data, and the user can ma-

nipulate them with a mouse. The graphs are updated

in response to the user's interaction.

Construction of the widget consists of the following

four steps: First, we draw the picture of a radar chart

as shown in (Figure 12). Second, we designate the ex-

port values. In the example, six distances between the

center and the six arms are the export values. Third,

we generate the library information �le. We select the

`Make Library' command in the `Library' menu, and

then input the library name, and the system generates

the �le. Finally, we translate the library information

�le into the three �les as mentioned previously, which

are linked with the application program along with

the run-time routines.

6 Conclusion

We have proposed the BVI (Behavior, Visualiza-

tion function, and Internal state) model, in which GUI

designers can arbitrarily compose new visual objects

(extended widgets) recursively from intrinsic primitive

2

A radar chart displays the balance of some related at-

tributes. For example, a radar chart may be employed to display

the balance of a person's nutrition.

editor

Visible Invisible

editor

Visible Invisible

editor

Visible Invisible

editor

Visible Invisible

editor

Visible Invisible

editor

Visible Invisible

editor

Visible Invisible

1. Put two points 2. Draw a circle 3. Draw a next circle

4. Draw other four
 circles

5. Draw six lines 6 Put six points on
 the lines

7. Draw six lines

Figure 12: Snapshots of the radar chart construction

Figure 13: Testing the

�nished radar chart

Frame

Knob

Groove1

Groove2

Figure 14: A cross

slider object

objects using direct manipulation. With this frame-

work, a variety of visual objects can be easily con-

structed by simply assembling the subobjects without

requiring coding knowledge. Moreover, this frame-

work clearly separates the application-independent ac-

tions from dependent ones, by the use of robust con-

straints. A prototype system Oak allows GUI design-

ers to compose visual objects by direct manipulation.

The designer �rst draws a visual object on the graphic

editor that provides elementary geometric operations.

Constraints between subobjects are extracted from the

trace of operations of the graphic editor, whereafter

the code generator compiles it into C++ classes which

are subclasses of InterViews [1]. The resulting visual

objects are available for use in application programs.

To facilitate interactive response while providing a rich

set of speci�able constraints, a fast approximated con-

straint solver has been developed as a part of the run-

time system.

As a future work, we intend to extend our prototype

in the following ways: Firstly, it is di�cult to allow

an operation to temporarily break a constraint, be-

cause constraints express relationships which must al-

ways be maintained. Such temporary non-satisfaction

is bene�cial in describing the dynamic behavior of vi-

sual objects: for example, given two boxes aligned

horizontally, exchanging the boxes moving smoothly

along two arcs temporarily breaks the alignment con-

straint. It may be possible to handle non-satisfaction

properties with the use of hierarchical constraints [4],

but more work needs to be done. Secondly, compos-

ite behavior can be speci�ed only by supplementing

constraints with Boolean `and' relation in our current

system. By allowing `or' relations, the class of speci�-

able visual objects can be enriched. For example, the

cross slider object in Figure 14 can be constructed,

which is not supportable under the current Oak pro-

totype because the knob must be constrained to both

grooves simultaneously.

References

[1] Paul Calder, Mark Linton, and John Vlissides. Composing

user interfaces with InterViews. IEEE Computer, 1989.

[2] Allen Cypher. Eager : Programming repetitive tasks by

example. In ACM Human Factors in Computing Systems,

pages 33{39, 1991.

[3] Steven Feiner David Kurlander. Inferring constraints from

multiple snapshots. Technical report, Department of Com-

puter Scence, Columbia University, 1991.

[4] Bjorn N. Freeman-Benson, John Maloney, and Alan Born-

ing. An incremental constraint solver. Communications of

the ACM, 33(1):54{63, Jan 1990.

[5] David L. Maulsby, Ian H. Witten, and Kenneth A. Kittlitz.

Metamouse: Specifying graphical procedures by example.

ACM Computer Graphics, 23(3):127{136, July 1989.

[6] Brad. A. Myers. Creating highly-interactive and graphi-

cal user interfaces by demonstration. Computer Graphics,

pages 249{258, 1986.

[7] Brad A. Myers. Separating application code from toolkits:

Eliminating the spagetti of call-backs. In Proceedings of the

ACM SIGGRAPH Symposium on User Interface Software

and Technology, 1991.

[8] Brad A. Myers. Text formatting by demonstration. In

ACM Human Factors in Computing Systems, pages 251{

256, 1991.

[9] Brad A. Myers et al. Garnet, comprehensive support for

graphical, highly interactive user interfaces. IEEE Com-

puter, pages 71{85, November 1990.

[10] Ken Nakayama, Satoshi Matsuoka, and Satoru Kawai. Vi-

sualization of abstract concepts using generalized path

binding. In Proceedings of CG International '90, pages

377{402. Springer-Verlag, 1990.

[11] Robert P. Nix. Editing by example. ACM Transactions on

Programming Languages and Systems, 7(4):600{621, Oc-

tober 1985.

[12] Yen-Ping Shan. MoDE: A uims for smalltalk. In OOPSLA

'90 Conference Proceedings, 1990.

[13] I. E. Sutherland. Sketchpad: A man-machine graphi-

cal communication system. In Proc. AFIPS Spring Joint

Conf., volume 23, pages 329{346, 1963.

[14] Shin Takahashi, Satoshi Matsuoka, Akinori Yonezawa, and

Tomihisa Kamada. A general framework for bi-directional

translation between abstract and pictorial data. In Pro-

ceedings of the ACM SIGGRAPH Symposium on User In-

terface Software and Technology, November 1991.

[15] Toshio Tonouchi. Creating visual objects by direct manip-

ulation. Master's thesis, The Univ. of Tokyo, 1992.

[16] John M. Vlissides and Mark A. Linton. Unidraw: A frame-

work for building domain-speci�c graphical editors. In Pro-

ceedings of the ACM SIGGRAPH Symposium on User In-

terface Software and Technology, pages 158{167, 1989.

[17] Bradley T. Vander Zanden. Incremental Constraint Satis-

faction And Its Application To Graphical Interfaces. PhD

thesis, Department of Computer Science, Cornell Univer-

sity, October 1988.

