
The execution of this transaction block creates a new local view with its local scheduler (Figure 6). The

object which invoked the transaction, in this case O, is put in the local view. Then, the local scheduler

of the subtransaction schedules O, the statements inside the transaction block are executed and two

messages are sent to O

1

and O

2

asynchronously. The destination objects of the messages are copied into

the subtransaction's local view and their OIDs are inserted into the read set (Figure 7). In the presence

of asynchronous message passings, the parent transaction and the subtransaction could access the same

objects concurrently, violating serializability. To avoid such situation, the objects in the parent's view

are made inaccessible by parent transaction while they are accessed by its subtransactions.

Now O has completed the execution of all the statements inside the transaction block. However, the

local scheduler �nds other schedulable objects (i.e., O

1

and O

2

) in the local view and the execution of

the transaction does not completes (Section 3.1). Suppose O

2

is scheduled �rst. We assume that the

message [Forward O

3

] has no side e�ect on O

2

but sends an Update message to O

3

. The object O

3

is

copied from the parent transaction's view to the subtransaction's view, the OID of O

3

is inserted into

the read set, and the Update message is passed to the copy of O

3

.

Then O

1

and O

3

are scheduled (the order is irrelevant to the result). O

1

and O

3

are modi�ed their

internal state by the Updatemessages and their OIDs are inserted into the write set of the subtransaction's

view (Figure 9). Now the local scheduler �nds no schedulable object in the local view and it detects the

termination of the transaction execution.

O
Subtransaction’s view
read set = {O, O1, O2, O3}
write set = {}

O1 O2
[Update]

O3
[Update]

copy object

Figure 8: Schedule O

2

O
Subtransaction’s view
read set = {O, O1, O2, O3}
write set = {O1, O3}

O1 O2 O3

Figure 9: Schedule O

1

and O

3

Next, the transaction enters the serializability validation phase. Serializability is checked by compar-

ing the read set of the subtransaction with the write sets of already committed sibling subtransactions.

If the same object is shared by them, the validation fails; otherwise it succeeds. Note that read sets and

write sets do not contain total objects nor ordinary objects, and hence validation is not performed on

them.

Finally, the transaction enters the commit phase. If the validation succeeds, the transaction commits;

objects (both total atomic and total objects) that are updated are copied into the parent's view and the

elements in the write set are included in the write set of the parent's view (Figure 10). Otherwise, the

subtransaction aborts; the subtransaction's view is cleared and no visible e�ect of its execution remains.

O O1 O2

O

copy object

Parent transaction’s view

Subtransaction’s view

read set = {r1, r2, ...}
write set = {O1, O2, w1, w2, ...}

read set = {O, O1, O2, O3}
write set = {O1, O3}

O1 O2

O3

O3

Figure 10: Commit transaction
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Appendix: Optimistic Nested Concurrency Control Algorithm

Although our transaction facilities are independent of a particular runtime algorithm for concurrency

control, an e�cient algorithm applicable to a wide range of distributed applications is nevertheless

desirable. In this appendix, we present a nested concurrency control algorithm based on the optimistic

approach [KR81] tailored for wide-range applicability in OOCP. We illustrate the algorithm with an

example transaction session. The complete description of the algorithm appears in [Wak91].

The heart of the algorithm is the treatment of asynchronous message passings: detection of the

transaction termination and avoidance of concurrent accesses by the parent transaction and its subtrans-

actions. The local view of each transaction plays an important role in our algorithm. It is a set of objects

that are accessed during the transaction execution. Objects in a local view is scheduled by a transaction

speci�c local scheduler. Besides scheduling objects in the local view, its important task is to detect the

termination of the transaction execution. To check serializability, the runtime system maintains a read

set and a write set. A read set is a set of total atomic objects that have been sent messages and a write

set is a set of total atomic objects that have been modi�ed during the transaction execution.

The algorithm is divided into three phases: the transaction execution phase, the validation phase, and

the commit phase. In the transaction execution phase, the transaction is executed preparing updates to

the parent transaction's view in its local view. In the validation phase, serializability check is performed

with respect to the previously committed sibling subtransactions, and if it succeeds, the transaction

commits in the commit phase.

Suppose the following transaction block is executed at an object O. It asynchronously sends two

messages Update and Forward to O

1

and O

2

, respectively. The Update message modi�es the state of O

1

.

Upon receiving the Forward message, O

2

sends Update message to O

3

, asynchronously.

Transaction

begin O1 <= [Update v];

O2 <= [Forward O3]

end

O O1 O2

O

copy object

Parent transaction’s view

Subtransaction’s view

read set = {r1, r2, ...}
write set = {w1, w2, ...}

read set = {O}
write set = {}

O3

Figure 6: Start transaction

O O1 O2

O

copy objects

Parent transaction’s view

Subtransaction’s view

read set = {r1, r2, ...}
write set = {w1, w2, ...}

read set = {O, O1, O2}
write set = {}

O1 O2
[Update] [Forward O3]

O3

Figure 7: Send messages

13



To make such facilities available to the programmer, we mainly introduced two linguistic constructs

called transaction blocks for nested transactions and indirect instance variable declarations for �ne-

grained control of concurrency. Furthermore, declarations of object atomicity level (total atomic, total,

and ordinary) allow the programmer to customize concurrency control mechanisms.

A prototype implementation of our language Harmony which realizes the transaction facilities pro-

posed in this paper is now being completed.
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Table 1: Con
icting operation table for a bounded bu�er

Put Get

Put Con
ict OK

Get OK Con
ict

The above scheme is not speci�c to the bounded bu�er. In general, data type speci�c concurrency

control can be derived from a con
icting operation table such as Table 1. The con
icting operation table

is implemented in terms of a set of indirect instance variables that are total atomic. In the example of

Bu�er Revised, two total atomic indirect instance variables p and g are introduced to detect the Put/Put

con
ict and the Get/Get con
ict, respectively.

6 Related Works

Several e�orts have been made to incorporate atomic transaction facilities in concurrent programming

languages (for example, Argus [Lis88], Aeolus [LW85], and Avalon/C++ [DHW88]). Their approaches

are all based on RPC. In contrast our approach is based on non-RPC protocols.

Among them, in Avalon/C++, the inheritance hierarchy is accommodated to support both the level

of atomicity and the customization of concurrency control algorithm | (1) by choosing an appropriate

class for superclass, the level of atomicity are speci�ed for all the instances of a new class and (2) by

rede�ning two hook methods commit and abort provided in the subatomic class and handling short term

locks properly, the programmer can add a class speci�c concurrency control protocol. The problem in

this approach is its dependence on the inheritance hierarchy and the underlying implementation of the

concurrency control algorithm. In contrast, our approach does not use the inheritance hierarchy for these

purposes. Instead, the level of atomicity are speci�ed on a per-object basis for customization. Therefore,

our approach does not depend on the inheritance hierarchy nor the implementations of concurrency

control mechanism thus achieves better encapsulation.

Recently, for the development of cooperative design applications, several models of cooperative trans-

actions have been proposed to relax the restriction of serializability. [NZ90] de�nes a cooperative trans-

action hierarchy and allows the programmer to specify the constraints on the access patterns to objects

shared by multiple transactions in a transaction group. For the development of real-time groupwares,

[EG89] proposes the transformation matrix which is used to resolve the con
icting operation sequences in

a distributed environment. These approaches are very 
exible in expressing cooperation among transac-

tions. (The approach of [EG89] does not seem to deal with nested transactions.) And these approaches

specify permissible operation sequences based on the observation of the external operations performed on

shared objects. In contrast, we restrict the description of constraints to contain only the local information

of the atomicity levels of the subcomponents.

7 Concluding Remarks

In this paper, we have presented novel transaction facilities and their linguistic constructs which are pow-

erful for modeling and implementing distributed organizational information systems in object-oriented

concurrent languages. Our transaction facilities are characterized by:

� Accommodation of nested transactions to non-RPC message passing protocols

� An explicit way of grouping multiple message passings into a single transaction

� Object-wise (class independent) speci�cation of atomicity level

� Customizability of concurrency control mechanism and its independence of underlying concurrency

control algorithms of the runtime system
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class Bu�er Split superclass Object

var size;

indirectvar in : unstructured, out : unstructured, vec : vector;

begin

method init(n)

begin size := n; in := 0; out := 0; vec := new vector(size) end;

method Put(item) when (in < out + size)

begin vec[in mod size] := item; in := in + 1 end;

method Get(item) when (in > out)

begin !vec[out mod size]; out := out + 1 end

end

In this implementation, the �rst two requirements are guaranteed by the guard expressions

7

attached

to the methods and the atomic property of the bu�er object. However, the third requirement is not

satis�ed because this implementation prohibits the concurrent execution of a transaction, T

1

, containing

the invocation of Put method and another transaction, T

2

, containing the Get method. The reason is:

T

1

attempts to update the value of the container object IN

8

and T

2

attempts to update the value of the

container object OUT. An important point here is that both transactions read the values of IN and

OUT in their guards in order to check the invocation condition of Put and Get, causing a read/write

con
ict thereby requiring one of the transactions to abort.

Our approach to customization of concurrency control is to use the level of atomicity through the

speci�cation of object category. We use the indirect variable declaration to specify the category of objects

that implement the indirect variables:

indirectvar hvariable

1

i:htype

1

i:hcategory

1

i,

.

.

., hvariable

m

i:htype

m

i:hcategory

m

i;

where, hcategory

i

i speci�es the category of the container which represents the indirect instance variable.

In the de�nition of the Bu�er Revised class below, indirect instance variables in, out , and vec are declared

as total; as a result, serializability validation for these objects is omitted (Figure 5). Instead, serializability

validation is performed on new indirect instance variables p and g, which are declared as total atomic |

they are touched in the body of Put and Get, respectively. Note that p and g represents the con
icting

invocation of Put and Get by multiple transactions.

The guard expressions in the Bu�er Revised example ensure the �rst requirement for a concurrent

bu�er. The second requirement is guaranteed because concurrent invocations of Put (or Get) cause a

write/write con
ict at the Container object P (or G). Bu�er Revised also satis�es the third requirement,

because P and G are the only total atomic objects that comprise the bu�er, and concurrent invocations

of Put and Get do not cause con
icts with respect to serializability.

class Bu�er Revised superclass Object

var size;

indirectvar in : unstructured : total, out : unstructured : total,

vec : vector : total,

p : unstructured : total atomic, g : unstructured : total atomic;

begin

method init(n)

begin size := n; in := 0; out := 0; vec := new vector(size) end;

method Put(item) when (in < out + size)

begin vec[in mod size] := item; in := in + 1;

p := any value f Touch the indirect instance variable p g

end;

method Get(item) when (in > out)

begin !vec[out mod size]; out := out + 1;

g := any value f Touch the indirect instance variable g g

end

end

7

The when (predicate) attached to a method declares that the method is invoked only when the predicate evaluates to

true.

8

IN, OUT, P, and G in the following discussion refer to the objects in the �gures 4 and 5.
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vec:

 C0  C1  C2  C3  C4 

in:

out:

4

1

 Buffer_Split

 OUT 

 IN 

 Container 

 Container 

 Container  Container 

 Atomic objects 

Figure 4: A naive implementation of a bu�er

vec:

 C0  C1  C2  C3  C4 

in:

out:

4

1

 Bounded-Buffer 

 OUT 

 IN 

 Container 

 Container 

 Container  Container 

:p

:g

 Container 

 Container 

 Total atomic objects 

 Total objects 

 G 

 P 

Figure 5: A Concurrent Bu�er

wise correct operation sequences. We often like to weaken the correctness condition by customizing

concurrency control algorithms that are performed at runtime.

One possible approach would be to make some functionalities (such as commitment and abort) of

the runtime system user de�nable as hook functions. The problem of this approach is that it is much

dependent on the runtime concurrency control algorithm such as the two-phase lock protocol. Instead,

our approach to customization of concurrency control is object splitting technique (explained in Section

3.2) supplemented with the category speci�cation, which is independent of underlying concurrency con-

trol algorithms. Three bene�ts of the algorithm independence are: 1) the programmer can customize

concurrency control mechanisms without the knowledge of implementation details of runtime systems, 2)

a single program runs on di�erent implementations of the same language, and as a result, the user of the

applications can choose one that best �ts to the application and the architecture, 3) concurrency control

algorithms of runtime systems can be changed or tuned without a�ecting the application programs.

Let us illustrate the problem of the usual serializability validation using an example of de�ning a

highly concurrent bounded FIFO bu�er, which must satisfy the requirements:

1. Put (Get) method should not be invoked when the bu�er is full (empty).

2. The execution of two transactions, each of which contains an invocation of Put (Get) method,

cannot overlap.

3. The execution of a transaction containing an invocation of Put method and another transaction

containing an invocation of Get method may overlap.

A naive implementation using the object splitting technique is given below and its structure is il-

lustrated in Figure 4. The data is stored in the Container objects whose OIDs are stored in vec. Two

indirect instance variables in and out count the total number of items inserted and removed; the number

of items in the bu�er can be calculated by (in - out). They also serve as indices to the vec. Namely,

(in mod size) is the location where the next item should be inserted by Put and (out mod size)

is the location from which the next invocation of Get removes an item.

9



class Observer superclass Person

begin

method negotiate(manager)

var time;

begin Transaction

begin manager <== [remove me, Me];

for time := 0 to 23 do

if (timetable[time] = manager) then

timetable[time] := nil

end

end

end

5 Transaction Facilities (Continued)

This section presents two advanced features of our transaction facilities. They are used to reduce the

runtime overhead of concurrency control mechanisms for serializability validation and also increase con-

currency by customization of concurrency control mechanisms.

5.1 Object-wise Speci�cation of Atomicity Level

In the previous approaches, every object is usually ensured atomicity and concurrency control mechanisms

of runtime systems allow only serializable operation sequences on an object. We think this is often

unnecessarily ine�cient. For example, objects that are temporarily created during a transaction and are

not shared by its subtransactions should not be subject to concurrency control. Thus in our approach,

we do not impose concurrency control on all the objects. Rather, we support three categories of objects:

total atomic objects, total objects, and ordinary objects, to specify the level of atomicity at a per-object

basis.

� Total atomic object: Both totality and atomicity are ensured on operations performed on total

atomic objects. Updates made on them during a transaction execution are localized to the trans-

action's view, and upon its commitment the updates are re
ected to the parent transaction's view.

Atomicity guarantees that only serializable operation sequences can be performed on total atomic

objects.

� Total object: Only totality is ensured on total objects, and atomicity is not ensured. The

consequence is that operations performed on total objects may not be serializable and hence in the

presence of concurrency, non-serializable operation sequences may introduce inconsistency such as

lost operations, non-reproducible reads, etc. This unique, seemingly unusual feature of total objects

is introduced for the purpose of the concurrency control customization we will discuss in the next

subsection.

� Ordinary object: Ordinary objects are una�ected by concurrency control, and hence exhibit

the maximum execution e�ciency due to the lack of system overhead. During transaction execu-

tion, message passing to ordinary objects that are not created by the transaction is

prohibited; if this rule is violated, the system signals an error and the transaction aborts.

The category of each object is speci�ed statically at its creation by the instance creation form. The

general form of instance creation statement is as follows:

create instance hclass namei(hargumentsi) : hcategoryi;

When a category is not speci�ed, the category of the new instance becomes total atomic by default. We

refer to our approach as the object-wise atomicity speci�cation (Comparison with the class-wise atomicity

speci�cation of Avalon/C++ will be discussed in Section 6).

5.2 Customization of Concurrency Control

Serializability is a clean and well-understood correctness condition to maintain consistency of distributed

systems. However, it is sometimes too restrictive in that they do not permit commitment of other-

8



f code for deciding the time of the meeting g

Transaction

begin manager := create instance Meeting manager(start, end, organizer

participants title);

foreach person in participants do f announce the meeting g

person <= [new meeting start, end, manager];

for time := start to end do f �ll in the electric reservation board g

if ((rsv board <== [Ref time]) <> nil) then

rsv board <= [Set time, manager]

else abort end f abort the transaction g

end

The following is the de�nition of the Meeting Manager class which holds the information of the

meeting. We could add more methods and give other useful functionalities to the Meeting Manager class

such as report the topics of the meeting, distribute documents to participants, forward comments to the

organizer, etc.

class Meeting Manager superclass Object;

var start, end, organizer, participants, title;

begin

method Initialize(s, e, o, m, t)

begin start := s; end := e; organizer := o;

participants := m; title := t end;

method Remove me(person)

begin remove from set(participants, person) end;

.

.

.

end

Members and observers are implemented as instances of Members and Observers, which are subclasses

of Person. The method new meeting de�ned in the Person class checks to see if the noti�cation of the

new meeting con
icts with the individual's schedule and if it doesn't, assigns the OID of the meeting

manager to the time slots. If it does con
ict, it sends negotiate message to itself.

class Person superclass Object;

indirectvar timetable : vector; f individual's private timetable g

begin

method Initialize()

begin timetable := new array(24);

for time := 0 to 23 do timetable[time] := nil end;

method new meeting(start, end, manager)

var time;

begin for time := start to end do

begin if (timetable[time] <> nil) then

self <== [negotiate timetable[time]];

timetable[time] := manager end

end

end

The classes, Member and Observer, implements the negotiate method. The member is required to

attend the meeting and if the personal schedule and the noti�cation of meeting con
icts (a fact known

by the reception of the self-sent negotiate message), the meeting schedule has to be changed. The abort

statement explicitly aborts the transaction and all the e�ects of the meeting set-up are cleaned up.

class Member superclass Person

begin

method negotiate(manager) begin abort end

end

On the other hand, if an Observer receives the negotiate message, he/she cancels the previous appoint-

ment.

7



participants:

title: ABCL
participants:

. . .
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16
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. . .
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Figure 3: Distributed schedule management

where hvariable

i

i is the name of indirect instance variable and htype

i

i is either unstructured or vector.

To de�ne a revised version of Vector, Vector Revised, the programmer only need to replace the instance

variable declaration with indirect instance variable declaration:

class Vector Revised superclass Object;

indirectvar vec : vector;

begin

.

.

. f The method de�nitions are the same as that of the Vector class g

end

4 Example: Distributed Schedule Management

This section presents our solution to the distributed schedule management. We model the world by

three kinds of objects: an electric reservation board, persons, and meeting managers as in Figure 3. The

electric reservation board object represents the timetable of the conference room and a person object

represents a project member or an observer of a meeting. A meeting manager object represents meeting.

The electric reservation table is implemented by a vector whose elements represent time slots. The time

slots initially contain nil, which means no meeting is set on the time the slot represents. If it contains a

reference to a meeting manager object, the room is reserved for the meeting the meeting manager object

represents. A meeting manager holds the information pertaining to the meeting, such as the organizer,

the title, and the potential participants. In Figure 3, the room is reserved from 16:00 to 17:00 by the

ABCL meeting, which is organized by Yonezawa and whose potential participants include Matsuoka and

Wakita. Each person has his private schedule. For example, Wakita attends the ABCL meeting from

16:00 to 17:00 and then attends the Harmony meeting from 17:00.

Below we give the code for an organizer to set up a meeting.

5

The organizer creates a new meeting

manager, announces the meeting to its participants, and �lls in the electric reservation board. The electric

reservation board is implemented by the Vector Revised class. With the extensive use of asynchronous

message passings (indicated by <=), the set-up task is highly concurrent. If the organizer �nds that the

room has already been reserved for a certain time slot, he abolishes the meeting set-up by executing the

abort statement, which aborts the transaction.

6

5

asynchronous and synchronous are indicated by <= and <==, respectively

6

In general, the abort statement aborts the transaction at the deepest level of the nesting, thus the abort statement

can be used in a method which does not contain a transaction block

6



Suppose there is an instance of Vector, the vector , to which we want to assign its elements to the values

v

1

, v

2

, . . . , v

n

atomically (i.e., without interference from the Set and Ref accesses of other concurrent

activities). The Harmony script below is su�cient for this purpose. In the body of the transaction block,

n messages [Set i, v

i

] are sent asynchronously (as indicated by \<="). It may be the case that when

the body of the transaction block (i.e., for loop) completes its execution, messages sent to the vector

remain unprocessed. As we explained above, the commitment of the transaction is postponed until all the

messages sent to the vector are processed completely. Totality of the transaction ensures that no other

concurrent activities recognize the partially assigned vector and atomicity ensures that the transaction is

not interfered by other concurrent activities. In the case of a con
ict with other concurrent activities, the

runtime system restores the state before the transaction was invoked. A concurrency control algorithm

that supports these features is explained in the appendix. (See also Section 5.)

the vector := create instance Vector(n); f the vector is an instance of Vector g

.

.

.

Transaction

begin for i := 1 to n do

the vector <= [Set i, v

i

]

f messages [Set i, v

i

] are sent to the vector asynchronously g

end

3.2 Indirect Instance Variable

The implementation of Vector class in the Section 3.1 may su�er from its low internal concurrency

because concurrent updates to its di�erent elements are prohibited: two concurrent transactions updating

di�erent elements of the same vector cause a write/write con
ict at the Vector object and hence one of

them must abort. When an instance of Vector is shared, it can easily become a performance bottleneck.

This is because each object is the unit of concurrency control (e.g., read/write operation on an object is

used for serializability validation).

vec:

Vector

Figure 1: Naive implementation of a vector

Container Container

vec:

Vector_Revised

C0 C1 C2 C3 C4

Figure 2: A revised implementation of a vector

This situation can be avoided by splitting the vector object into element pieces so that write/write

con
ict does not occur (Figure 2). The array structure vec of Vector Revised does not hold the data

items directly; rather, it holds the object identi�ers (OIDs) of Container objects which in turn hold the

data items. In this implementation, the vector becomes highly concurrent because the OIDs of Container

objects in Vector Revised are never changed by the method invocations. Even if the contents of the

di�erent elements of the vector are modi�ed by several concurrent transactions, only the contents of

Containers objects are modi�ed; all transactions can safely commit because there are no con
icts.

Although this technique of splitting object into several subcomponents for gaining concurrency is

powerful, the problem is that the class de�nition (of, e.g., Vector Revised) may become somewhat com-

plicated due to the indirect message passing to its subcomponents. Also it is di�cult for the compiler to

detect and use for optimization the fact that the OID references to the Container objects would remain

exclusive to the vector (i.e., not passed to other objects.). We solve these problems by introducing a lin-

guistic construct called indirect instance variable declaration, which gives programmers the illusion that

the subcomponents indirectly referenced by OIDs are directly accessed in the same manner as ordinary

instance variables. The form of indirect instance variable declaration is:

indirectvar hvariable

1

i : htype

1

i, . . . , hvariable

m

i : htype

m

i;
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control algorithm. In what follows, we assume that objects communicate via asynchronous/synchronous

messages and a method de�ned for an object is executed one at a time (in other words, more than one

method cannot be executed simultaneously in the same object even though the messages may have come

from di�erent transactions).

In explaining our approach in a concrete manner, we will use the notation borrowed from the syntax of

our language Harmony. Harmony is a class-based object-oriented concurrent programming language,

where objects communicate using asynchronous/synchronous message passing. Harmony also supports

inheritance mechanism for code sharing.

3.1 Transaction Block

A transaction is explicitly speci�ed with a language construct called the transaction block. A transaction

block is a sequence of statements that is surrounded by \Transaction begin" and \end":

Transaction

begin hstatementi; . . . ; hstatementi end

The hstatementi is a general statement including an instance variable reference/assignment statement,

a message passing form, a reply form, and a transaction block.

A transaction speci�ed by this construct is ensured totality ; a transaction either completes entirely

or have no visible e�ects. Messages may be sent asynchronously in the same transaction block, and

objects receiving the messages may in turn send more messages asynchronously (cascaded asynchronous

messages). Thus the completion of all the statements in a transaction block does not alwaysmean that the

cascaded messages are all completely processed. In order to maintain the totality of a transactions, after

the completion of the last statement in the transaction block, the transaction must wait for the completion

of all the cascaded messages sent during the its execution (The completion of the last statement of the

transaction block and that of the transaction block itself are di�erent!).

A transaction speci�ed by a transaction block is also ensured atomicity; a transaction does not log-

ically interfere with other concurrent activities acting upon the same object, because only serializable

operation sequences are permitted on an object. By grouping multiple message passings within a trans-

action block, all the message passings in the block become collectively atomic. As a result, our approach

enables us to execute arbitrary combinations of methods atomically, whereas the RPC-based approach

needs to introduce an atomic RPC handler which invokes nested transactions. A concurrency control

mechanism that realizes this 
exible transaction facilities is presented in the appendix. Details of the

semantics of the transaction block is found in [Wak91].

We can summarize the notion of our transaction as a computing process that guarantees the totality

and atomicity of all the cascading e�ects caused by executing the statements inside a transaction block.

Let us illustrate this idea with a simple example: Consider an instance of the Vector class which

accepts two types of messages [Ref i] and [Set i, val] and behaves like a vector. An instance of the

Vector class is created by executing the instance creation form, \create instance Vector(n)". Upon

creation, the method initialize is invoked with an argument n, which speci�es the size of the vector.

3

The

Vector class provides two methods: Set assigns the ith element of the vector to value and Ref returns the

value of the ith element

4

.

class Vector superclass Object;

var vec;

begin

method Initialize(size)

begin vec := new array(size) end;

method Set(i, val) f assign the ith element to val g

begin vec[i] := val end

method Ref(i) f reply to the sender with the ith element g

begin !vec[i] end;

end

3

A method named Initialize is a special method for initialization and is automatically invoked at the instance creation

with the arguments of instance creation form as its actual arguments.

4

\!value" sends the sender a reply message, which contains value

4



summarizes our work and report the current status of development. The appendix presents a concurrency

control algorithm which realizes our nested transaction facilities.

2 Design Considerations of Transaction Facilities in OOCP

Several programming languages for the development of distributed reliable systems have been pro-

posed, which support nested transaction facilities (e.g., Argus [Lis88], Aeolus [LW85], and Avalon/C++

[DHW88]). The main feature of such languages is the support for atomic transaction that (1) copes

with system failure due to unreliable network communication and/or system crashes, and (2) establishes

atomicity of operations in order to avoid interference between concurrent activities. In these languages,

each Remote Procedure Call (RPC) is an invocation of an atomic transaction and nested RPCs naturally

correspond to nested transactions [Mos85]. For OOCP languages, we propose more powerful transaction

facilities to facilitate the development of sophisticated organizational information systems. The following

two subsections discuss the basic features of our transaction facilities and more advanced features will

be given in Section 5.

2.1 Support for Non-RPC Message Passing Protocols

Communication protocols provided in the previous languages which support transaction facilities are

all based on RPC. However, for the development of sophisticated distributed organizational systems

that require both reliability and execution e�ciency, more 
exible communication protocols are required

(e.g., rendezvous, asynchronous message passing, future mode message passing, etc.). For example,

multicasting new meeting messages to the participants can naturally be programmed by simultaneous

asynchronous message passings. In order to integrate the transaction mechanism and non-RPC message

passing protocols, we have to generalize the notion of nested transaction.

2.2 Compound Message Passing in a Single Transaction

In the RPC-based approach to nested transaction, each RPC automatically invokes a transaction and

hence explicit speci�cation of transactions does not appear in the code. However, this approach has two

drawbacks. First, the system performance degrades due to the runtime overhead of managing unneces-

sarily nested transactions. The nesting of transactions increases both space and execution complexity

because each transaction requires duplication of information for possible future rollbacks and runtime

overhead for serializability validation. It is preferable to keep the nesting level as small as possible.

Second, the RPC-based approach often lacks linguistic constructs for making a group of message

passings atomic. For example, when an organizer sets up a meeting, slots of the electric reservation

board and the timetables of the participants should be �lled in atomically. In the RPC-based approach,

a new remote procedure must be created to make grouping of message passings to the electric reservation

board and participants, because de�ning a remote procedure is the only way to make activities collectively

atomic. This fact implies that RPC-based approach forces the programmer to cut logical sequence of

code into di�erent remote procedures and thus modularity of code decreases signi�cantly. To improve

the modularity of distributed software, we need an explicit way of grouping several message passings

into a single transaction. Our approach to this problem is to introduce a language construct called a

transaction block as will be explained in the following section.

3 Transaction Facilities

We designed our transaction facilities for OOCP languages which take into account considerations pre-

sented in Section 2. The characteristics of our approach are: (1) a transaction is explicitly speci�ed

with a linguistic construct called a transaction block which forms a group of message passings into a

single transaction and also supports non-RPC message passing protocols, (2) we use the object splitting

technique with indirect instance variable declaration that provides a convenient means for �ne-grained

control of customization of concurrency, and (3) we also specify atomicity level for each object, which

enables the programmer to customize concurrency control independent of the choice of the concurrency

3



may be a member or an observer of other projects; thus scheduling for di�erent meetings may con
ict with

individuals' schedules.

1

To model the problem in the frameworks of object-oriented computation, entities

such as people, timetables, and slots in a timetable can be modeled as autonomous objects. Suppose an

organizer tries to set up a meeting: he looks up the timetable of the conference room to �nd the convenient

time slots that meet his/her personal schedule (sends a query message to the electric reservation board

object), �lls in the time slots of the timetable (sends a reserve room message to the electric reservation

board object), and announces the schedule for the meeting to the potential participants of the meeting

(multicasts new meeting messages to objects that represent the potential participants). The project

members are required to attend the meeting, and when they receive an announcement of a meeting that

con
icts with their schedule, they ask the organizer to change the schedule of the meeting. The presence

of observers are optional to the meeting: thus, when observers receive a con
icting announcement of a

meeting, they can either honor or cancel the previous arrangement.

When we model this schedule management in object-oriented concurrent computation frameworks,

we have to resolve the con
icts of concurrent activities at two places: one at the electric reservation

board object and another at personal timetable of each individual:

1. Multiple organizer objects might try to �ll in the same time slot of the electric reservation board.

For example, one organizer tries to reserve from 14:00 to 16:00, and another tries to reserve from

15:00 to 17:00 simultaneously. When a con
ict occurs, as in this case, at least one of the organizers

has to cancel his/her reservation, or the system will result in an inconsistent state.

2. A noti�cation of a meeting to a participant may con
ict with his/her private schedule (e.g., planning

a date with a girl/boy friend). If the proposed schedule of the meeting is not accepted by the

participant, the organizer has to restore the previous state where he initiated the setting-up of the

meeting: the organizer object sends cancel messages to all the objects that are side-e�ected (e.g.,

the electric reservation board object and participant objects who have accepted the noti�cation).

We could avoid these problems by locking the slots of the electric reservation board (or the personal

timetables). This solution, however, has two drawbacks: (1) degradation of concurrency from pessimistic

locking and (2) possible deadlocks. In more general terms, the choice of the synchronization scheme would

greatly a�ect the correctness as well as the performance of the system | the safest scheme would reduce

concurrency to nil, while more elaborate schemes not only would risk the correctness but also could

result in deadlock or starvation.

We tackled this problem and propose nested transaction facilities that are more powerful than the

nested transaction facilities of previous concurrent languages such as Argus [Lis88], Aeolus [LW85], and

Avalon/C++ [DHW88]. Our transaction facilities are incorporated into our prototype OOCP language

Harmony, realizing a transparent view of shared objects in distributed environments (i.e., an illusion

as if objects were not shared but exclusively used by the application) [Weg87, MR90]. The support of

nested transactions in asynchronous

2

message passing protocols is one of the novel features of our work in

contrast to the previous works which have been based on RPC-style communication. The nested transac-

tion facilities we propose can be easily incorporated into a large family of OOCP languages. Though our

transaction features are presented with a simple CSCW application of the schedule management, they

are powerful enough to facilitate implementation of more general systems. In addition to the standard

notion of atomicity, we introduced the notion of the level of atomicity for each object, which allows cus-

tomization of concurrency control mechanisms for the purpose of permitting nonserializable operation

sequences and improving execution e�ciency by increasing concurrency. Our approach to customization

achieves good encapsulation owing to the independence of both the class hierarchy and the underlying

concurrency control protocol used in the runtime system.

Section 2 discusses several features desirable for transaction facilities for OOCP. In Section 3, we in-

troduce two linguistic constructs, the transaction block for transaction speci�cation and indirect instance

variable declaration for �ne-gained control of concurrency. These constructs are used in our solution

to the distributed schedule management in Section 4. Section 5 explains the advanced features of our

transaction facilities, namely customization of concurrency control using the level of atomicity. Section 7

1

For simplicity, we assume that a member of one project cannot be an observer of another.

2

When a message is sent asynchronously, the sender does not wait for the message to be received by the destination

object. When a message is sent synchronously, the sender waits for the destination object to reply back.

2
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Abstract

For the development of large and sophisticated distributed organizational information systems,

one of the most prevalent, yet di�cult problems is secure concurrent access to shared objects while

preserving collective system consistency. In modeling and implementing such systems in object-

oriented concurrent languages, linguistic supports are needed to enable the programmer to have a

transparent view of shared objects. For this purpose, we generalized the standard notion of nested

transactions to accommodate it to non-RPC message passing protocols, and introduced the notion

of object-wise atomicity level. This paper discusses our proposal of linguistic constructs for such

transaction facilities.

1 Introduction

The availability of inexpensive yet powerful personal workstations, equipped with large memory and

connected to a high performance network, motivated the development of complex distributed organiza-

tional information systems such as groupware systems, computer-supported cooperative work (CSCW)

systems, and distributed object-oriented database (OODB) systems. However, most of such systems are

still programmed using conventional programming languages that lack linguistic supports for distributed

computation. With the increase in number and complexity of the distributed organizational information

systems in the near future, there will be tremendous demands for concurrent programming languages

that can naturally model and implement those distributed systems [BST89].

Past research has shown the object-oriented concurrent computation paradigm to be e�ective in

modeling, describing, and implementing distributed systems. Its underlying computation model is pow-

erful enough to describe various concurrent phenomena in the real world [Hew77, Hew86, Agh90], and

proposed linguistic constructs for synchronization are 
exible and allow the development of highly con-

current systems [Yon90, Ame87, Nie87]. We found, however, the descriptive power of linguistic constructs

in object-oriented concurrent programming (OOCP) languages designed to date is still insu�cient for

a class of problems found in the development of large, distributed organizational systems. What are

lacking are the linguistic supports that guarantee the secure concurrent accesses to shared (concurrent)

objects while preserving their collective consistency. We will illustrate below the problem using a simple

typical CSCW application, distributed schedule management [B

+

90].

Consider several research projects that share a conference room for their meetings. Each project has

its project members and observers, and is led by a project organizer. Each project member and observer

�
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