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Abstract

Record calculi have recently been a very active �eld of research, but its reciprocal,

i.e. the use of keywords in functions, is still ignored.

Selective �-calculus is a conservative extension of lambda calculus which, by labeling

abstractions and applications, enables some form of commutation between arguments.

It is an enhancement for both clarity, thanks to labels, and power with the possibility

to commute. We propose here a simply typed version of this calculus, and show that it

extends to second order and polymorphic typing. For this last one there exists a most

generic type, and we give the algorithm to �nd it.

This, combined with the fact selective �-calculus extends naturally lambda calculus,

giving numeric labels their intuitive meaning, provides us with a keyword extension for

polymorphically typed languages like ML, compatible with the original syntax, where

unlabeled abstractions and applications can be seen as labeled by 1.

1 Introduction

The idea of introducing labels in programming languages is not a new one. This has been

done in two ways. The �rst one, that is common to nearly every modern languages, is records.

It is present either explicitly, like in Pascal, C, ML, etc; or implicitly with association lists,

methods... Formalization of this structure has been actively explored lately. This started

with Cardelli [5], was later extended in a second order calculus [6], and resulted in a number

of type inference systems to make it compatible with ML-style polymorphic type inference

[20, 18, 11, 17], and a compilation method was �nally given byOhori in [16], for an extension of

�-calculus containing labeled records. The problem is not completely solved, since the merge

operator is still problematic (Ohori's calculus does not contain it), but becomes clearer.

On the other hand, the second use of labels, as keywords for parameter passing in func-

tions, as it may be done in Common LISP [19], ADA [13], or LIFE [3], is still an unexplored

�eld. The reason might be that it touches a more fundamental part of �-calculus: applica-

tions and abstractions. We cannot now limit us to adding new structures to the calculus,

but must attack it in its core. In fact some systems o�er the same type of parameterizing

possibilities without modifying the core [12, 15], but they are based on an intuition of store,

that is of bindings from names to values, which makes this a second parameterizing system,

independent from application. To our knowledge, no typing system has been proposed for

them.

Our goal is to have a system where we can apply a function on a list of labeled arguments,

and be able to give only part of the arguments at once. We can call it an incremental (curried)

parameter passing system with labels. What do we expect from it? First, to be incremental.

We want to be able to write f (p) a; q) b; r) c; :::) as ((f(p) a))(q) b))(r) c)::: like

we would do in ML without labels (we will omit parentheses). Then to provide us with

commutativity of arguments. That is, for two labels p and q,

f (p)a; q)b) ' f(p)a)(q)b) = f(q)b)(p)a):
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Since we include �-abstraction in our system, we cannot suppose that we will always have

di�erent labels. That is, f(p) a)(p) b) cannot be rewritten by commutation in order to

preserve semantics, and it has still a meaning since f can be a function with some parameter

labeled p, and giving back another function with a parameter labeled p.

This limit for commutation is absent if we think of numerical labels, seen as relative

positions. They must satisfy two constraints. The �rst one is to respect our intuition of

\numbers indicate positions". In clear we want to have

f (a; b; c; : : :) = f (1)a; 2)b; 3)c; : : :)

It is important since it means that we can interpret unlabeled terms in our system. The

second constraint is given by currying: we want f(a; b; : : :) ' f (a)(b) : : :. For labeled terms

it means

f(1)a; 2)b; 3)c; : : :) ' f (1)a)(1)b)(1)c) : : : ;

The change in labels comes from the fact relative positions changed. Intuitively in the left

hand all arguments are directly acceded from f , and as such must receive di�erent labels in

order to be distinguished. But in the right hand b is only accessible after consumption of a,

and becomes then the �rst argument, as does c after b is consumed.

We have only translated here unlabeled expressions, but once we have unique labels in a

tuple, we can change the order freely, so that f (1)a; 2) b; 3) c) ' f (3) c; 1)a; 2) b).

In the right hand we mean that c should be consumed �rst. If we curry this expression, we

obtain

f (3)c; 1)a; 2)b) ' f (3)c)(1)a)(1)b):

Since c is the last argument (highest label), currying does not a�ect relative positions of

labels following it. After application on c, a is still the �rst argument and b the second.

Similarly, if we want to apply successively b; c; a, we will write

f(2)b;3)c; 1)a) = f(2)b)(2)c)(1)a)

After consumption of b, c becomes the second argument, and a is still the �rst.

Finally, if we think of all possible consumption orders, for three arguments we want all

the following commutation equalities,

f (1)a)(1)b)(1)c) = f (2)b)(1)a)(1)c)

= f(2)b)(2)c)(1)a) = f(3)c)(2)b)(1)a)

= f(3)c)(1)a)(1)b)

Uniqueness of result is preserved since we have di�erent labelings too. We can de�ne it more

generally for any pair of numeric labels by,

8m > n f (m)a)(n)b) = f (n)b)(m� 1)a)

which de�nes an equivalence on terms of our system.

Selective �-calculus provides us with these equalities, about symbolic and numerical la-

bels, and the symmetrical ones in respect to abstractions. As an untyped calculus, its con
u-

ence has already been proved, along with fundamental properties of �-calculus like B�ohm's

theorem. We will give its full de�nition in Section 2.

In respect to types we can see it as the integration in the calculus of the natural isomor-

phism,

A�B ' B �A;

which, combined with currying,

A �B ! C ' A! (B ! C);

gives us:

A! (B ! C) ' B ! (A! C):

This becomes clearer when we think of indexed products like in category theory, with

explicit projections �

1

and �

2

, and write

�

1

)A� �

2

)B ' �

2

)B � �

1

)A;
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or

�

1

)A! (�

2

)B ! C) ' �

2

)B ! (�

1

)A! C):

The object of this paper is to de�ne a type system which re
ects the preceding isomor-

phisms, which are part of those described in [4].

We start in Section 3 with an approach very close to classical �-calculus, and provide

simple types for selective �-terms. The essential di�erence with classical simple types is that,

in order to emphasize the intrinsic commutativity, we will put on the same level, types of

arguments that may commute, and have non-commutative lists for those that may not. For

instance, the cons

int

operator, namely cons

int

(car) h : int; cdr) t : int list) = (h :: t) for

integer lists, should get type (car) int; cdr) int list)! int list. Such a notation shows that

it is possible to apply cons

int

on both labels car and cdr, and that the �nal (not abstracted)

result is a list of integers.

Limitations of simple types being well-known, this type system is then, in Section 4,

extended into a second order system, to enable parameterized types. We can then de�ne a

more general cons operation by cons[�](car) h : �; cdr) t : � list) = (h :: t) for lists of

some type �, and it will get type 8�:(car) �; cdr) � list) ! � list. Again the extension

is essentially similar to that for classical �-calculus, except that we must keep the leveled

structure in types, after substitution of a type variable. Such a system may express many

generic structures, but we will see that, outside of its complexity and verbosity, the distinction

it makes between typing phases and application phases is somehow in contradiction with the

intuition of selective �-calculus.

The last step of this process is attained in Section 5, building a polymorphic typing system

�a la ML for selective �-calculus. We can view it as a restriction of the second order system,

which, enabling us to �nd a type inference algorithm, frees us of explicit typing. In short this

means that we can integrate labeled parameters in any ML-like programming language and

obtain a coherent result on both sides of syntax, since a classical �-term may be interpreted

as a selective one, and typing, by this algorithm. Going on with the preceding example, for

the de�nition cons(car) h; cdr) t) = (h :: t), we can infer the type 8�:((car) �; cdr)

� list)! � list).

Such a type system seems particularly well adapted to selective �-calculus, by the incre-

mental aspect of typing, which is done together with application. It makes the commutation

facility really transparent for functions, since one do not need to know how the function has

been written, but which labeled function it represents, where we de�ne labeled functions as

a counterpart for normal forms in our system.

We tried to show the usefulness of such an extension in Section 6, with examples in an

hypothetical ML-like language. Section 7 concludes.

2 Selective �-calculus

2.1 Syntax

Selective �-terms are formed by variables from a variable set V and two labeled constructors,

abstraction and application.

The set of labels L is the union of numeric labels in N = N n f0g and symbolic labels S.

It is totally ordered, on N we have <

L

=<

N

, and 8(n; p) 2 N � S; n <

L

p.

L = N [ S

We will denote variables by x; y, labels by p; q, restricting m;n to numerical ones, and

�-expressions by capitals.

Here is the syntax of selective �-terms.

M ::= x variables;

j �

p

x:M abstraction;

j M

bp

M

0

application:

We will say \to abstract x on p in M", \to apply M to M

0

through p". These terms will

always be considered modulo �-conversion.
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� � reduction

(�) (�

p

x:M )

bp

N ! [N=x]M

Symbolic reordering

(1) �

p

x:�

q

y:M ! �

q

y:�

p

x:M p > q

(2) M

bp

N

1
bq

N

2

!M

bq

N

2
bp

N

1

p > q

(3) (�

p

x:M )

bq

N ! �

p

x:(M

bq

N) p 6= q; x 62 FV (N )

Numeric reordering

(4) �

m

x:�

n

y:M ! �

n

y:�

m�1

x:M m > n

(5) M

bm

N

1
bn

N

2

!M

bn

N

2

d
m�1

N

1

m > n

(6) (�

m

x:M)

bn

N ! �

m�1

x:(M

bn

N) m > n; x 62 FV (N)

(7) (�

m

x:M)

bn

N ! �

m

x:(M

d
n�1

N) m < n; x 62 FV (N)

Figure 1: Reduction rules for selective �-calculus

We should precise here what is the intuition behind this syntax. It is clear enough

for symbolic labels, which might be seen as channels (or stacks), where we can put with

applications and get with abstractions, as we did in classical �-calculus. But for numerics

we use here relative labels. It would be more natural to use absolute ones. That is, to write

(�(1) x; 2) y; 4) z):M)

b

(1) a; 4) b) in place of (�

1

x:�

1

y:�

2

z:M)

b
1

a

b
3

b like relative

labels impose. But we need it to get local rules. Just keep in mind the easy translation from

growing absolute labels (i

k

< i

k+1

; j

k

< j

k+1

) to relative labels:

(�(i

1

)x

1

; :::; i

k

)x

k

; :::; i

n

)x

n

):M)

b

(j

1

)N

1

; :::; j

k

)N

k

; :::; j

m

)N

m

)

m

(�

i

1

x

1

:::::�

i

k

�k+1

x

k

:::::�

i

n

�n+1

x

n

:M )

b
j

1

N

1

:::

d

j

k

�k+1

N

k

:::

d

j

m

�m+1

N

m

This translation justi�es label modi�cations in reduction rules or types.

2.2 Reduction system

The reduction rules are given in �gure 1. In (1)-(3) at least one of p or q should be symbolic,

in (4)-(7), m and n are numeric. Rules (1) and (2) are directly translated into (4) and (5),

with the appropriate changes in labels. Rule (3) has to be separated in (6) and (7) in order to

distinguish cases where m < n and m > n. Rules (1) and (4) are there for con
uence. They

are not necessary if we are not interested in abstracted results, since we can have applicators

(pair label-argument,

bp

M ) meet abstractors (pair label-binding variable,�

p

x) even without

them. The mention x 62 FV (N ) in (3), (6) and (7) is not a limitation since x is binding, and

may be renamed in V n FV (N) by �-conversion.

We call selective �-calculus the free combination of these rules. This calculus is meaning-

ful, in that it is con
uent.

Theorem 2.1 The selective �-calculus is con
uent.

PROOF in 12 pages. We will not produce it here. See [2] 2

Proposition 2.2 Rules (1){(7) form a Noetherian system.

2.3 Examples

We give here two examples of reductions, one using symbolic rules and the other numerical

ones. Understanding these systems separately is enough to understand them together.
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2.3.1 Symbolic

We suppose that p < q < r < s,

(�(p)x; q)y; r)z):M )(r)N

1

; s)N

2

; p)N

3

)

' (�

p

x:�

q

y:�

r

z:M)

br

N

1
bs

N

2
bp

N

3

!

3

(�

p

x:((�

q

y:�

r

y:M)

br

N

1

))

bs

N

2 bp

N

3

!

2

(�

p

x:((�

q

y:�

r

y:M)

br

N

1

))

bp

N

3 bs

N

2

!

�

(�

q

y:�

r

z:[N

3

=x]M )

br

N

1 bs

N

2

!

3

(�

q

y:((�

r

z:[N

3

=x]M)

br

N

1

))

bs

N

2

!

�

(�

q

y:([N

3

=x][N

1

=z]M))

bs

N

2

)

!

3

�

q

y:([N

3

=x][N

1

=z]M

bs

N

2

)

2.3.2 Numerical

(�(2)x; 1)y; 4)z):M)(4)N

1

; 6)N

2

; 2)N

3

)

' (�

2

x:�

1

y:�

2

z:M )

b
4

N

1b
5

N

2b
2

N

3

!

4

(�

1

y:�

1

x:�

2

z:M )

b
4

N

1
b
5

N

2
b
2

N

3

!

7

(�

1

y:((�

1

x:�

2

z:M )

b
3

N

1

))

b
5

N

2
b
2

n

3

!

5

(�

1

y:((�

1

x:�

2

z:M )

b3

N

1

))

b2

N

3
b4

N

2

!

7

(�

1

y:�

1

x:((�

2

z:M )

b
2

N

1

))

b
2

N

3b
4

N

2

!

�

(�

1

y:�

1

x:[N

1

=z]M)

b
2

N

3b
4

N

2

!

7

(�

1

y:((�

1

x:[N

1

=z]M)

b
1

N

3

))

b
4

N

2

!

�

(�

1

y:[N

3

=x][N

1

=z]M )

b
4

N

2

!

7

�

1

y:([N

3

=x][N

1

=z]M

b
3

N

2

)

3 Simply typed calculus

We introduce here simple types like in classical �-calculus. In doing so we have two goals.

The �rst one is to gain a better understanding of the calculus itself, by seeing which type

structure it involves. The second one is to verify that selective �-calculus keeps all good

properties of the classical one, like strong normalization for typable terms.

3.1 Types

We de�ne our types by a grammar; labels are generated by

p ::= n j s

with n on N and s on S.

We distinguish between base types,

u ::= u

1

j u

2

j : : :

and general types,

t ::= u j (n) t; :::; s) t

+

; :::)! u

where t

+

is a non-nil list of types, and labels n or s should be strictly growing in the

enumeration. For numeric labels we adopt the absolute notation, which explains the absence

of repetition.

The idea in writing types like that, is that an application can be done indi�erently on

any label present in the type, on a value of corresponding type. Which makes type inference

quite intuitive.

3.2 Typed terms

The original syntax of terms is extended in

M ::= x j �

p

x :t:M jM

bp

M

0

:

which requires any abstracted variable to be explicitly typed.
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�[x 7! � ] ` x : � (I)

�[x 7! �] `M : � A

p

(�

0

) = � T

p

(�

0

) = �

� ` �

p

x :�:M : �

0

(II)

� `M : � � ` N : T

p

(� )

� `M

bp

N : A

p

(� )

(III)

Figure 2: Typing rules for the simply typed calculus

� = (�

1

)�

1

; :::; �

i

)�

i

; :::; �

n

)�

n

;

�

1

)�

+

1

; :::; �

i

)�

+

i

; :::; �

m

)�

+

m

)! �

A

�

i

(� ) = (�

1

)�

1

; :::; �

i+1

� 1)�

i+1

; :::; �

n

� 1)�

n

;

�

1

)�

+

1

; :::; �

m

)�

+

m

)! �

T

�

i

(� ) = �

i

A

�

i

(� ) = (�

1

)�

1

; :::; �

n

)�

n

;

�

1

)�

+

1

; :::; �

i

)�

+

i2

:::�

+

il

i

; :::; �

m

)�

+

m

)! �

T

�

i

(� ) = �

+

i1

Figure 3: De�nition of A

p

and T

p

A term M is well typed if there is a mapping � from the free variables of M to types and

a type � such that

� `M : �

is deducible in the type inference system.

3.3 Typing rules

We write type judgements of the form

� `M : �

where � is a mapping from a subset of V to types, to express that M has type � in the typing

context �.

Figure 2 gives the inference rules for type judgements on simply typed selective �-calculus,

using de�nitions of A

p

(resulting type after application on p) and T

p

(type accepted on p)

in �gure 3. Here again the translation between absolute and relative labels explains the

structure of A

�

i

(� ). Rule (II) uses the fact that knowing A

p

(� ) and T

p

(� ) de�nes completely

� .

This type system, of course provides us with the fundamental property of typing, subject

reduction (stability of typing).

Proposition 3.1 If � `M : � and M ! N then � ` N : � .

3.4 Strong normalization

The strong normalization was a consequence of the addition of types to classical �-calculus.

If the selective version has same properties, it should be obtained too.

Theorem 3.2 The simply typed selective �-calculus is strongly normalizing.

PROOF We already know that the calculus is con
uent, by the Church-Rosser theorem for

untyped selective �-calculus. We only need termination.

A preliminary remark is that proving that the number of �-steps in the reduction has an

upper bound is enough, since we know that the system without � is Noetherian even for the

untyped calculus.
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We associate to each subterm a function that calculates an upper bound for the maximal

number of �-steps to reduce it in function of its arguments. For instance, for �

p

f : ((r)

aa) ! a):�

q

x : a:f

br

x

br

x, the associated function is �

p

f:�

q

x:(f (r)x; r) x) + 2 � x + 2) :

(p) (r)!!) ! !; q)!) ! !. One can see at �rst glance that such a function has same

order (depth of type) as the original term. And since a function can only be applied to a

function of inferior order, we get a structure of calculation like this when we look for a result:

f

4

(g

3

; h

3

; i

1

; j

0

) = a� g

3

(c

2

; c

0

)+b�h

3

(c

2

)+d� i

1

(c

0

)+ j

0

+ e, where indices indicate order,

and a; b; d; e are integer coe�cients. So that we are sure to obtain a �nite tree, whose depth

is the order of the original term.

It means that if for some terms such a function is de�ned and gives �nite results, then

we can get, for any term combining them by applications, an upper bound.

It gives us the induction step to prove this property.

We construct function schemes for this function. A function scheme has not to be well

typed: this is done when we transform it into a real function. The induction is on the size of

terms.

1. For a single variable x of type � , the function scheme is a free variable x

0

with corre-

sponding type �

0

(every base type is replaced by !).

2. For an abstracted term �

p

x : �:M , by induction hypothesis we have a function scheme

f for M . The function scheme is �

p

x

0

:�

0

:f .

3. For an application M

bp

N , by induction hypothesis we have f for M and g for N . The

function scheme is f

bp

g + 1 + g. The 1 is for the �-reduction corresponding to this

application, and the g if N is evaluated before substitution in M .

We transform function schemes into functions by the following rules:

� we replace all variables that are still free by zeros or zero functions (according to the

expected type).

� all insu�ciently applied functions are applied to zeros or zero function (according to

the expected type).

� right hands of \+" are typed as integers. They should be added to the �nal result of

the left hand (necessarily typed !, since this is the only base type here).

This gives us the function f : (p

1

) �

1

; :::) ! ! that we were looking for. By induction

its results are �nite.

We have again an upper bound for the longest reduction path by applying this function

to zeros or zero functions. 2

4 Second order selective �-calculus

Girard in [9] (quoted by [10]) proposed a second order �-calculus, in which types can contain

variables and be handled as terms. We adapted this to selective �-calculus, in the most

straightforward way, adding the same syntactic and type constructs.

For this, types are extended in

v ::= � j � j : : :

w ::= u j v j 8v:t

t ::= w j (n) t; :::; s) t

+

; :::)! w

where v represents variables and w return types (types that can be found on the right side

of an arrow).

The new syntax adds two new constructs to handle types,

M ::= x j t j �

p

x :t:M j �v:M jM

bp

M

0

jM �M

0

�v:M is type abstraction, and M �M

0

is type application. In our straight-forwardness, they

do not mix up in reordering.
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Allowing commutation between these constructs and previous abstractions and applica-

tions is possible. We could de�ne �v:M as �

T

v :T:N and M �M

0

as M

b

T

M

0

, giving highest

priority to type instantiation by changing the order in 8p 2 L; T <

L

p. But type inference

becomes more complex, since some terms which, by any reduction, give well-typed terms in

a �nite number of steps, cannot be typed by simple inference rules (the sort used for second

order �-calculus).

4.1 Reduction rules

We add a new version of �-reduction, for types:

(�

T

) (��:M ) �N !M [�nN ]

4.2 Type normalization

We will not modify inference rules, but a problem appears for substitutions, when we substi-

tute type variables with types. In the syntax of types, a return type w may only be a base

type, a type variable or a generalized type, but not any type.

The problem can be solved generally by normalizing types during substitutions. We give

here the algorithm to do that.

We proceed recursively from the right, starting from

((: : : ; �

n

)�

n

; : : : ; �

m

)�

+

m

)! v)

[vn((: : : ; �

0

n

0

)�

0

n

0

; : : : ; �

0

m

0

)�

0+

m

0

)! w)]

� We �rst substitute v in all �

i

; �

+

i

, so that it appears only once, as �nal return type.

� If �

0

m

0

= �

k

we just concatenate �

+

k

and �

0+

m

0

under �

k

and suppress �

0

m

0

in the substi-

tution.

((: : : ; �

k

)�

+

k

�

0+

m

0

; : : :)! �)

[�n((: : : ; �

0

m

0

�1

)�

0+

m

0

�1

)! w)]

If there is no �

i

equal to �

0

m

0

then there is k such that �

k

< �

0

m

0

(< �

k+1

). We transfer

the label too.

((: : : ; �

k

)�

+

k

; �

0

m

0

)�

0+

m

0

; : : :)! �)

[�n((: : : ; �

0

m

0

�1

)�

0+

m

0

�1

)! w)]

Repeat this step until there is no symbolic label.

� For numerical labels we need a count of unused labels. ff (i) is the minimal integer

such that [1; ff(i)] contains ff (i) � i labels of ( ~�

n

) (that is the i

th

unused numerical

label.) The transfer is then unique, towards ff(�

0

n

0

).

((: : : ; �

k

)�

k

; ff (�

0

n

0

))�

0

n

0

; : : :)! �)

[�n((: : : ; �

0

n

0

�1

)�

0

n

0

�1

)! w)]

Repeat this step until there is no label.

� Then we just substitute the return type, which is structurally correct.

((: : :)! �)[�nw] = ((: : :)! w)

The correctness of this algorithm is based on the absolute-relative label translation.

4.3 Typing rules

The inference rules for typing judgements are given in �gure 4. The three new rules are IV:

Type introduction, V: Generalization and VI: Instantiation. T is the type of types. These

rules are syntactically similar to rules for classical lambda calculus, the di�erence being in

the sus-cited substitution algorithm for (VI).

Proposition 4.1 If � ` M : � in the second order typed selective �-calculus, and M ! N ,

then � ` N : � .
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�[x 7! � ] ` x : � (I)

� ` � : T �[x 7! �] `M : �

� ` �

p

x:M : �

0

A

p

(�

0

) = �

T

p

(�

0

) = �

(II)

� `M : � � ` N : T

p

(� )

� `M

bp

N : A

p

(� )

(III)

� ` � : T (� is a well formed type) (IV)

�[� 7! T ] `M : �

� ` ��:M : 8�:�

(V)

� `M : 8�:� � ` � : T

� `M � � : � [�n�]

(VI)

Figure 4: Typing rules for second order calculus

Theorem 4.2 The second order selective �-calculus is strongly normalizing.

PROOF Strong normalization of simply-typed selective �-calculus and second order �-

calculus. 2

Now we should go back and see why, if we consider � as �

T

, and \�" as

b

T

, there are

terms that should be typable, and have no type in this system. An example is

(�

T

� :T:�

p

x : int:�

q

y :((1) int)! �):y

b
1

x)

bp

2

b

T

int

In the typing system we de�ned,

b

T

int, being behind

bp

2, cannot be reduced by rule (VI),

giving no type to this term. However, the abstraction on p being independent of �, this is

perfectly equivalent to

(�

T

� :T:(�

p

x : int:�

q

y :((1) int)! �):y

b1

x)

bp

2)

b

T

int

which is typable. We could of course extend rule (VI) for commutation, but then we have

the inverse problem. That is

(�

T

� :T:�

p

x : int:�

q

y :((1) int)! �):y

b
1

x)

bq

I

int

b

T

int

has type (p) int)! int, whereas

(�

T

� :T:�

p

x : int:�

q

y : ((1) int)! �):y

b
1

x)

bq

I

int

is untypable. We might have subterms of typable terms which would be untypable. Prudence

makes us refuse such an eventuality.

Nonetheless, the system we de�ned is powerful, since we can instantiate types indepen-

dently during a calculation. It will prove useful. But it is cumbersome if we do not need all

this power. And it makes us loose the freedom of selective �-calculus, by enforcing a typing

order independent of the application order. This is only a problem in the (rare) case when

one would want to instantiate only partially a term's type, before applying it partially.

5 Polymorphic selective �-calculus

Whereas a second order typing system might be used in programming languages, the ML

trend for typing is the more simple (because more restrictive) polymorphism. That is to put

all type quanti�ers outside of the type itself, and instantiate types implicitly while applying

to arguments. The principal advantage of this type system is that, for �-calculus, any term

has a most generic type, which avoids explicit declarations of type, since a simple uni�cation

algorithm gives this type.

We will show here that such an algorithm exists for selective �-calculus too. This means

that, from a typing point of view, the addition of labels is coherent with polymorphically

typed �-calculus.
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�[x 7! � ] ` x : � (I)

�[x 7! �] `M : � A

p

(�

0

) = � T

p

(�

0

) = �

� ` �

p

x:M : �

0

(II)

� `M : � � ` N : T

p

(� )

� `M

bp

N : A

p

(� )

(III)

� `M : �

� `M : 8�:�

� not free in � (IV)

� `M : 8�:�

� `M : �[�n� ]

(V)

� `M : � �[x 7! �] ` N : �

� ` let x = M in N : �

(VI)

Figure 5: Typing rules for polymorphic selective �-calculus

5.1 Syntax and types

The syntax is that of untyped selective �-calculus with a let construct, types being provided

by inference.

M ::= x j �

p

x:M jM

bp

M

0

j let x = M in M

0

Like in Damas and Milner's de�nition [7] types are divided into monotypes and polytypes.

Monotypes are ranged by t in

w ::= u j v

t ::= w j (n) t; :::; s) t

+

; :::)! w

where u stands for base types and v for type variables, and polytypes by � in

� ::= t j 8v:�

5.2 Typing rules

The typing rules are given in �gure 5. The rules (IV)-(VI) are in no way speci�c to selective

�-calculus. In fact, since type quanti�ers are external they are independent from the structure

of monotypes. Their roles are IV: Generalize, V: Instantiate and VI:Let introduction.

Proposition 5.1 If � ` M : � in polymorphically typed selective �-calculus, and M ! N ,

then � ` N : � .

Still there is an important di�erence between these rules and rules for classical �-calculus.

It is hidden in the �[�n� ] of rule (V). As for second order selective �-calculus, we need the

special algorithm of substitution in 4.2. Which means that our domain of types is radically

di�erent of Herbrand, where uni�cation is usually described. Knowing that, the existence

of a type inference algorithm may be surprising. It is due to some good properties of our

system, particularly that type normalization does not change sizes of types.

Since in a well-typed term all type variables get �xed once for all, we have strong nor-

malization.

Theorem 5.2 Polymorphic selective �-calculus is strongly normalizing.

5.3 Type uni�cation

The base of a type synthesis algorithm is uni�cation. We give here a uni�cation algorithm

for monotypes de�ned above.

The reason we have to design a new algorithm is that we work modulo type normalization

(cf 4.2). That is, we have a good form of E-uni�cation [8], where the equivalence relation on

terms can be expressed by an oriented rewriting system.
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Base type

� ^ u = v

?

(u 6= v; u; v base types) Redundancy

� ^ � = �

�

Non-recurrent

� ^ � = �

?

(� 6= �; � 2 V ar(�))

Type structure

� ^ u = (p

1

)�

1

; :::)! �

?

(u base type)

Elimination

� ^ � = �

�[�n� ] ^ � = �

(� 2 V ar(�) n V ar(� ); if � variable then � 2 V ar(�))

Decomposition

� ^ (�

1

)�

1

; :::; �

1

)�

11

:::�

1l

1

; :::)! � = (�

1

)�

0

1

; :::; �

1

)�

0

11

:::�

0

1l

1

; :::)! �

0

� ^ �

1

= �

0

1

^ ::: ^ �

11

= �

0

11

^ ::: ^ �

1l

1

= �

0

1l

1

^ ::: ^ � = �

0

Completion I, II, III,

� ^ (�

1

)�

1

; :::; �

i

)�

i

; :::; �

1

)�

+

1

; :::)! � = (�

1

)�

0

1

; :::; �

0

i

)�

0

i

; :::; �

0

1

)�

0+

1

; :::)! �

0

� ^ (: : :)! � = (:::; �

i

)�

i

; �

0

i

)�

0

i

; :::)! � ^ �

0

= (�

i

+ 1� i)�

i

)! �

;

(�

i

< �

0

i

; � fresh)

� ^ (�

1

)�

1

; :::; �

1

)�

(l

1

)

1

; :::; �

i

)�

+

i

; :::)! � = (�

1

)�

0

1

; :::; �

1

)�

0(l

1

)

1

; :::; �

0

i

)�

0+

i

; :::)! �

0

� ^ (: : :)! � = (:::; �

i

)�

+

i

; �

0

i

)�

0+

i

; :::)! � ^ �

0

= (�

i

)�

+

i

)! �

;

(�

i

<

L

�

i

; � fresh)

� ^ (�

1

)�

1

; :::; �

1

)�

(l

1

)

1

; :::; �

i

)�

i1

:::�

il

i

; :::)! � = (�

1

)�

0

1

; :::; �

1

)�

0(l

1

)

1

; :::; �

i

)�

0

i1

:::�

0

il

0

i

; :::)! �

0

� ^ (: : :)! � = (:::; �

i

)�

0

i1

:::�

0

il

0

i

�

i;l

0

i

+1

:::�

il

i

)! � ^ �

0

= (�

i

)�

i;l

0

i

+1

:::�

il

i

)! �

;

(l

0

i

< l

i

; � fresh)

Figure 6: Rewriting rules for type uni�cation
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Theorem 5.3 There is an algorithm which gives the most generic uni�er of a set of equations

on monotypes or reports failure if there is none.

PROOF We can write uni�cation as a rewriting algorithm which normalizes a conjunction of

equalities. The rules are given in �gure 6. � represents a conjunction of equalities, conjunction

and equality are commutative and associative. Notations are � to match variables, � or � to

match any type, �

+

for type lists, �

(l)

being a l-uple of types.

This rewriting system has a strongly normalizing strategy, up to equalized or new variables

substitution.

To prove this we will show that it doesn't change the semantics of the equation system,

and terminates representing a uni�er. We use model semantics, where we view the system

as the set of all possible type assignments for variables originally present.

The �rst three rules detect inconsistencies in the equations. That is, equation between

two di�erent base types, between a type variable and a type containing it, or between a base

type and a functional type.

Redundancy suppresses meaningless equations. Combinated with elimination it suppresses

repeated equations too. Elimination substitutes variables (using type normalization), while

keeping their referent. Conditions are there to enforce termination.

Decomposition takes two types with same (�rst level) structure, and identi�es their sub-

components. But to get types to the same structure we need completion. There are three

versions to apply successively. The equation must be between functional types. The �rst

rule is for missing labels in the numeric part. We take the �rst missing one and add it to the

type, introduce a new type variable, and identify the result type (hopefully a type variable)

with the di�erence. �

i

+ 1 � i is for going back from the absolute label to the relative one.

2 and 3 proceed in the same way, for missing symbolic label, or insu�cient number of types

on a symbolic label.

Clearly none of these rules changes the semantics.

For termination, �rst we can remark that this system without decomposition and com-

pletion is terminating. A variable is solved when it appears only once, and as side of an

equation. After elimination, � is solved. The side conditions guarantee that a solved variable

will stay solved, even if we have a reversible equation, like � = �. And once it is solved

elimination cannot apply on its equation.

To add decomposition and completion we de�ne a measure by the lexicographic order on

(unsolved variables,sum of sizes), where the size of a type is the total number of base types,

variable occurrences, and type constructors (i.e. \!") it contains (recursively).

We can verify that each rule reduces this measure. True of course for failures. True for

redundancy, for at least size. Unsolved variables for elimination. Size for decomposition:

some variables may be solved, but none created.

Completion must be restrained. We start completion only on a system irreducible for

preceding rules, and once we chose an equation, we go on with completion on this equation,

completing label di�erences from left to right, only eliminating or failing with the newly

introduced equation between each step. Since they are return types, � and �

0

are either base

types or variables. If �

0

is a base type, the new equation causes a failure. If it is a variable, it is

immediately eliminated, and the number of unsolved variables does not change. Completion

adding only labels that were in the other type, it can happen only a limited number of times

consecutively on an equation. After the last time, we have still the same number of unsolved

variables. We can now decompose, and solve the last introduced variable with �. So that on

the whole we have, in a �nite number of steps, reduced the number of unsolved variables.

Last we should show that an irreducible conjunction for these rules represents an uni�er.

All the equations have form � = � with � solved and � some type. All variables are either

solved either unconstrained, so that we can make an uni�er � of this list, by �(�) = � for

each equation. We can suppress solved new variables.

This uni�er is the most general one, since it fully translates the relevant part of the

equation system. 2

This algorithm may look complex. This impression is due to completion rules, which are

its backbone. It would be much shorter if we work in a little more abstract way, introducing

the notion of free-record type. That is the sequence present on the left side of an arrow.

r ::= (n)t; : : : ; s)t

+

; : : :)
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Tp(�; �) = x 7! (match �(x) with

8(fv):� ! (�;NV (fv; � ))

j � ! (�; �))

j �

p

x:M 7! let (�

0

; �) = Tp(�[x 7! �]; �;M )

in (�

0

; ((p)�)! �)[�n� ])

j M

bp

M

0

7! let (�

0

; �) = Tp(�; �;M ) in

let (�

00

; �) = Tp(�; �

0

;M

0

) in

(�

00

^ (� = (p)�)! �); �)

j let x = M in M

0

7!

let (�

0

; �) = Tp(�; �;M ) in

let fv = FV (� ) n FV (�) in

Tp(�[x 7! 8(fv):� ]; �

0

;M

0

)

Figure 7: Type inference algorithm

where we keep the same constraint of growing labels. We call it free-record since, in contrast

with classical records, a label may be assigned not only one, but a list of values.

In fact these free-record types form a monoid structure, where we even have the uniqueness

of quotient. We de�ne r = r

1

� r

2

as r ! w = (r

1

! �)[�n(r

2

! w)], using the algorithm

of 4.2; and we can show that r

1

is the only solution to r = X � r

2

, and r

2

the only one for

r = r

1

� X. We can even de�ne a generic pre�x division, with quotient q and rest r, where

r is the shortest free-record type such that, for r

1

� r

2

, r

1

� r = r

2

� q. We remark that the

quotient of r

1

� r

2

is the rest of r

2

� r

1

, so that we write r

1

� r

2

for this quotient, r

2

� r

1

being the rest. Then we can replace all completion rules by only one

Comp

� ^ r

1

! � = r

2

! �

0

� ^ r

1

! � = r

2

! �

0

^

� = (r

2

� r

1

)! � ^ �

0

= (r

1

� r

2

)! �

In fact this is the existence of this monoid with quotient that explains the existence of an

uni�cation algorithm; and to implement it we only need to de�ne this quotient.

5.4 Type inference

Once we have type uni�cation, type inference becomes a very simple thing. We just add new

equations to the list while moving through the term, as shown in �gure 7.

The principal function of this algorithm, Tp, takes a typing environment � (bindings from

variable names to types), an initial equation system, �, and a selective �-term, to give back

a couple (new equation system,type of the term). We suppose that equation systems are

always normalized, as well as � and the returned type in consequence.

� is an association list, and �(x) is the polytype associated to x. We have 
attened the

structure by writing 8(�; �; :::):� for 8�:8�:::::� . NV is a function that renames variables

listed in fv with fresh names in � . FV (� ) lists free variables in � , and by extension we write

FV (�) for free variables in associated types in �. \n" is set subtraction.

We will not prove this algorithm, since it is the same as for classical �-calculus, except

for the new uni�cation, and the use of type normalization for the abstraction case. That

is, correctness and completeness of this algorithm are only dependent on correctness and

completeness of type uni�cation we proved above.

6 Application to languages

This type synthesis algorithm have been written in CAML for the type checker of an hypo-

thetical language. We use the CAML syntax [21], modi�ed according to the basic syntax in

�gure 8, where pairs label-variable or label-value are noted p :v, c represents constants, x vari-

ables, m matching patterns, M matching cases, E open expressions and C closed expressions.

We can easily add other constructs to this syntax.
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p ::= n j s

m ::= c j x

M ::= p :m: : :! E

C ::= c j x j (E)

E ::= C j fun M (|M)

�

j C p :C : : : j let m = E in E

Figure 8: A simple ML-like language with labels

To make the language more intuitive, the fun construct uses absolute labels. Symmetri-

cally we use absolute labels for application too, which means that (f 1:x 2:y) is no longer

equivalent to ((f 1:x) 2:y). We can of course write ((f 1:x) 1:y) which means that we

have only lost formal associativity, but this is one reason we need to distinguish closed and

open expressions in the syntax.

When labels are not speci�ed we assume that their value is the actual position of the

argument. For instance (f a b) is (f 1:a 2:b), (f env:e a) is (f env:e 1:a), (f 1:a

b) is (f 1:a 2:b), and we can give a meaning to every combination by intermediate inter-

pretations like (f a 1:b) being (f 1:a 2:b), etc: : :The idea is just to interpret from left

to right, shifting values when a numeric position is already occupied.

Here are some little examples of computed types.

#fun car:a cdr:b -> a::b;;

(car:'a cdr:'a list -> 'a list)

#let rec append = fun l1:[] l2:l -> l

# | l1:[h|t] l2:l -> h::append l1:t l2:l;;

append : (l1:'a list l2:'a list -> 'a list)

#let cons a b = a::b;;

cons : (1:'a 2:'a list -> 'a list)

#let rec map f:f = fun [] -> []

# | [h|t] -> (f h)::map f:f t;;

map : (1:'a list f:(1:'a -> 'b) -> 'b list)

#map f:(cons 23);;

(1:int list list -> int list list)

#map f:(cons 2:[1;2]);;

(1:int list -> int list list)

You can see here two advantages of this system: types are more expressive, a good choice

of keywords documents the function; and we can change application order with numeric

labels. In the last case it would have needed a combinator.

At the same time a default appears. Types become more speci�c, and map could not be

applied on (append l2:[1;2]) for instance. But this can be solved by introducing a meta

language for relabeling, where we could write map f:(#f1:l1g append l2:[1;2]), which is

anyway more understandable than map (C append [1;2]), and more proper than map (fun

l -> append l [1;2]), if not shorter.

The preceding examples were only functions with two arguments. In such a case one may

doubt about the necessity of labels. When the order of arguments is clear enough, the risk

of error is low. Still some two-argument functions are not so clear. For instance, think about

mem (membership) or assoc (association list), whose respective types are:

value mem : 'a -> 'a list -> bool

value assoc : 'a -> ('a * 'b) list -> 'b

14



There is no special reason for them to respect such an order. The opposite could even be

more natural, since we will more often map them on the �rst argument than the second. One

could still argue that a quick glance at the type suppresses the ambiguity. But this is not

always true, and if we can suppose the programmer to be able to do that, the following types

would certainly be more practical.

value mem : (1:'a in:'a list -> bool)

value assoc : (1:'a in:('a * 'b) list -> 'b)

This is not only more readable. If one knows that every time we fetch something in a list

we use the label \in", there is no longer any ambiguity. Which means that we must avoid

anarchic use of labels, and promote a standardized one.

With two arguments, there were only two possibilities of order. If we have three, we jump

to six. Since the number of combinations is n!, remembering arguments order for functions

of more than three arguments, and there are lots of them in the functional programming

paradigm, is more than uneasy. We give a little more examples. Take it list and list it

(fold left and right),

value it_list : ('a -> 'b -> 'a) ->

'a -> 'b list -> 'a

value list_it : ('a -> 'b -> 'b) ->

'a list -> 'b -> 'b

A natural labeling as

value it_list : (1:'a list f:(1:'b 2:'a -> 'b)

start:'b -> 'b)

value list_it : (1:'a list f:(1:'a 2:'b -> 'b)

start:'b -> 'b)

would be expressive enough, and avoid my trying to understand the type every time I use

one of them.

We can even try to give types to control structures, like if ... then ... else ...,

and reintroduce the practical notion of macros we had in Lisp:

value if : (1:bool else:'a then:'a -> 'a)

which can be used as if (condition) then: (case true) else: (case false). Of course

this is not a function like others, since we want a di�erent reduction strategy. But we can still

pro�t from commutation, since we only need to have arguments for else and then, but not

the condition, at compile time: we easily de�ne a lazy pair, where arguments are calculated

on request.

7 Conclusion and further work

We have proposed here three typing systems for selective �-calculus: simple types, second

order and polymorphic. The polymorphic one seems to give the best integration with the

calculus. Integrated in a functional programming language with currying, it should be a pow-

erful tool, extending currying facilities and helping to memorize multi-argument functions.

In presenting here a second order calculus, we have two reasons. First, polymorphism can

be seen as a restriction of second order, and it uses results obtained for second order, like

type normalization. The second one is that there are things impossible with polymorphism,

like using di�erent type instances of an argument. It is not a very disturbing limitation in

a functional use of selective �-calculus, but it proved fatal when encoding transformation

calculus, an extension with some imperative features, in selective �-calculus, whereas second

order was still working.

An interesting subject is how to mix record operations and selective �-calculus. The idea

comes from the natural encoding of free records in the untyped calculus, as

fl
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where s should be a function selecting a label and discarding the others individually (we have

no way to discard them globally), like �

l

1

x

1

: : : : :�

l

n

x

n

:x

k

. We can even have function using

more than one label. This is in fact the basic idea for transformation calculus. Still there are

di�erences between this de�nition of free records, which allows label repetitions, and classical

records, which do not. And the problem of type inference is only partially solved.

Another application of this calculus might be found in parallel processing. If we now see

labels on a stream as identifying threads, the commutation capability directly interprets a

concurrent evaluation. This is an idea very close to the data
ow paradigm, but we hope to

replace 
ow analysis by type synthesis. Another, but not contradictory, view is to see labels

as names, like for process communication. It shows a link, which can easily be made more

evident, with calculi like Milner's �-calculus [14]. The conjunction of those two views seems

an interesting prospective.

The last, but more immediate, problem, and a capital one, is compilation. Two di�erent

versions of selective �-calculus using de Bruijn indices, through explicit substitutions [1],

have been developed. They re
ect two di�erent levels of compilation: the semantic, where

we keep labels; and the material, where they can be replaced by simple integer positions on

a stack. This might be the basis for an e�cient compilation method, which should, this is a

characteristic of selective �-calculus, be built on a completely curried vision. That is, there

should be no overhead due to currying, except maybe a few low level operations.
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