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Abstract

It has been pointed out that inheritance and synchronization constraints in con-

current object systems often con
ict with each other. Several proposals have been

made for resolving the con
icts. We show that, however, for many of the proposals,

one cannot avoid anomaly in inheritance where re-de�nitions of all relevant parent

methods are necessary. Our prime contribution is that we formally prove the oc-

currence of such an anomaly is not a minor problem in the language design, but is

an inherent di�culty in the general scheme for specifying the behavior of objects

with respect to synchronization. This is more serious than the violation of class en-

capsulation that has been pointed out by Snyder, for NONE of the parent methods

can be inherited except for trivial cases. We then propose an alternative scheme

in which the anomaly does not occur, while e�ciency is retained using program

transformation. Since this transformation is invisible to the programmer, the full

bene�t of inheritance can be attained in OOCP without sacri�ces in e�ciency.
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1 Introduction

In just a few years, massive parallel architectures will be available to professionals of nu-

merous �elds in the manner personal computers and workstations are today. Professional

computing is the term we use for describing the computational activities of professionals

requiring immense computational power. We claim that object-oriented concurrent pro-

gramming (OOCP) serves as the basis for professional computing. Massive parallel archi-

tectures supporting OOCP languages are being designed and built atCaltech (Mosaic)[3],

MIT (J-Machine)[8], among other places. Research on computational models for OOCP,

such as the Actor model[1], design of languages based on those models, and their imple-

mentations are 
ourishing.

In developing large-scale programs for professional computing with OOCP languages,

it is extremely important that inheritance is provided for high-level program abstrac-

tion/organization and re-usability. However, it has been previously pointed out that

inheritance and synchronization constraints in concurrent object systems often con
ict

with each other[2, 4, 16]. Some have gone so far as not adopting inheritance in their

languages[2, 21, 23, 24], or employed a 
exible communication mechanism independent

of the inheritance hierarchy[13]. Several proposals[5, 6, 9, 12, 15, 19] have been made in

the past for controlling the anomaly arising from their simultaneous incorporation into

OOCP languages. However, we can show for many of such proposals that the anomaly

in inheritance occurs where re-de�nitions of all relevant parent methods are necessary.

The prime contribution of our present work is that, based on Cook's framework of

inheritance semantics, we have formally proven that the anomaly is not a minor 
aw

in the language design that is easily circumvented, but is an inherent di�culty in the

general scheme for specifying the behavior of objects with respect to synchronization. In

fact, for a certain class of speci�cation schemes in which many of the past proposals are

categorized, it is ALWAYS necessary, except for insigni�cant situations which we formally

identify, for the entire synchronization speci�cations made in the ancestor class de�nitions

to be modi�ed. This anomaly is more severe than the violation of class encapsulation

that has been pointed out by Snyder[18], for in some of the schemes NONE of the parent

methods can be inherited.

This anomaly can be avoided by attaching a predicate to each method as a guard

for synchronization speci�cation. Although the naive implementation of guards is not

very e�cient, we use program transformation to obtain code that is near-optimal in the

sense that the time e�ciency of the code would match that of the code written with

the previous proposals. Since this transformation is invisible to the programmer, the full

bene�t of inheritance can be attained without sacri�ces in e�ciency. The correctness of

the transformation up to arrival-order nondeterminism can be proven by showing that

the concurrent objects before and after the transformation are bisimilar in the sense of

Milner's CCS[14].
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2 A Counter Example to Previous Proposals

Prior to our formal discussion on how the anomaly in inheritance occurs in the previous

proposals, we present a simpli�ed example aimed at attaining the reader's intuition. The

example we give is a bounded bu�er class, which also appears in[9, 12, 19].

When a concurrent object is in a certain state, it can accept only a subset of its entire

set of messages in order to maintain its internal integrity. We call such a restriction

on acceptable messages the synchronization constraint of a concurrent object. In most

OOCP languages, the programmer gives either implicit or explicit program speci�cation

to control the set of acceptable messages. We call such speci�cation the synchronization

speci�cation. The synchronization speci�cation must always be consistent with the syn-

chronization constraint of an object; otherwise the object might accept a message which

it really should not accept, causing an error.

In some of the previous proposals, the programmer writes down explicit synchroniza-

tion speci�cation by specifying what we call the accept set , i.e., the set of acceptable

method keys[12]. There are other proposals in which languages provides some indirect

schemes for manipulating such sets[15, 19]. We show that such schemes cannot avoid

causing serious anomaly in inheritance.

Figure 1 shows a de�nition of the bounded bu�er class in the notation similar to

Kafura's[12]. It is a �rst-in �rst-out bu�er that can contain at most size items. It has

two public methods put() and get(). The method put() stores one item in the bu�er

and get() removes the oldest one. The code for accessing the local array storage for

insertion and removal is omitted for brevity. Two instance variables in and out count

the total numbers of items inserted and removed, respectively, and act as indices into the

bu�er | the location of the next item to be put is indexed by (in mod size) and that

of the oldest item in the bu�er is indexed by (out mod size). Upon creation, the bu�er

is in the empty state, and the only message acceptable is put(); arriving get() messages

are not accepted but kept in the message queue unprocessed. When a put() message is

processed, the bu�er is no longer empty and can accept both put() and get() messages,

reaching a `partial' (non-empty and non-full) state. When the bu�er is full, it can only

accept get(), and after processing the get() message, it becomes partial again.

In Figure 1, the behavior statements declare three sets of keys named empty, partial,

and full assigned to fput()g, fput(); get()g, and fget()g, respectively. A synchro-

nization speci�cation is given using the become statements, each of which designating

the set of method keys acceptable in the next state. We call such a set the next accept

set . A method typically ends with conditional statements specifying the next accept set

in order to maintain the consistency between the synchronization speci�cation and the

synchronization constraint. For example, in the de�nition of get(), when (in == out)

(i.e., the bu�er becomes empty), become empty is executed and the next accept set

becomes fput()g, which does not contain get(); as a result, the get() messages become

unacceptable.

Now, consider creating a class x-buf, a subclass of b-buf. X-buf has one additional

method get2(), which removes the two oldest items from the bu�er simultaneously

1

.

1

Note that this cannot be done with successive messages sends of get(), as get() messages from

3



Class b-buf: Object { /* b-buf is a subclass of Object */

int in, out;

behavior: empty = { put() };

partial = { put(), get() };

full = { get() };

public: void b-buf() { in = out = 0;

become empty;

}

void put() { in++; /* insert an item into a buffer */

if (in == out + size) become full;

else become partial;

}

void get() { out++; /* remove an item from a buffer */

if (in == out) become empty;

else become partial;

}

}

Figure 1: The Bounded Bu�er Class Example

The corresponding synchronization constraint for get2() requires that at least two items

remain in the bu�er. As a consequence, the partial state must be partitioned into two

| the state in which exactly one item exists, and the remaining states. In order to cope

with the new constraint, we need another accept set x-one that represents the former

state (Figure 2). Then, the methods get() and put() must be re-de�ned to maintain

consistency with the new constraint.

Notice that NONE of the methods (except the initializer) in b-buf can be inherited,

and as a consequence, the programmer is forced to rewrite both put() and get()! This

anomaly is more serious compared to the violation of encapsulation by inheritance[18],

as the programmer de�ning the subclass must have complete access to/knowledge of the

implementation of the ancestor classes. In fact, there could be cases where inheritance is

almost totally useless, as shown above.

Then, is it ever possible to formulate a scheme for giving synchronization speci�cation

using method keys so that the anomaly in the manner above never occurs? We shall prove

that this is impossible in general in the next section.

3 The Proof of Anomaly in Inheritance

In the previous section, a particular example demonstrated how the anomaly occurs with

the previous proposals. To make our claim more general, we will prove that it is always

necessary, except for some trivial situations, for the synchronization speci�cations in the

parent classes to be modi�ed in order to maintain consistency with the synchronization

constraints. This is shown by employing a simple operational model of concurrent ob-

di�erent objects may be interleaved.
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Class x-buf: b-buf { /* x-buf is a subclass of b-buf */

behavior: x-empty = renames empty;

x-one = {put(),get()};

x-partial = {put(),get(),get2()} redefines partial;

x-full = {get(),get2()} redefines full;

public: void x-buf() { in = out = 0; become x-empty; }

void get2() { out += 2; /* addition of get2() */

if (in == out) become x-empty;

else if (in == out + 1) become x-one;

else become x-partial;

}

/* the following re-defines the corresponding methods in b-buf */

void get() { out++;

if (in == out) become x-empty;

else if (in == out + 1) become x-one;

else become x-partial;

}

void put() { in++;

if (in == out + size) become x-full;

else if (in == out + 1) become x-one;

else become x-partial;

}

}

Figure 2: The Extended Bounded Bu�er Class Example

jects with inheritance and synchronization constraints. The outline of the proof is as

follows

2

. First, we make a minor extension to the Cook-Palsberg inheritance semantics[7]

to incorporate object states. Then, restricting our attention to state transitional be-

havior objects, we de�ne functions that characterize the synchronization constraints of

objects. Next, synchronization speci�cations are categorized into two schemes, one using

predicates and the other using accept sets, and functions that characterize both schemes

are given; consistency is then de�ned in terms of extensive equivalence of the functions.

Finally, we prove the occurrence of the anomaly by constructing the characterization

function for the scheme using accept sets, and showing that on creation of a subclass, the

synchronization speci�cations in the superclasses must be modi�ed in order to maintain

consistency with the synchronization constraints.

3.1 Overview of Cook-Palsberg Inheritance Semantics and its

Extensions

We �rst employ the semantics of inheritance de�ned by Cook and Palsberg[7]. We make

minor extensions to incorporate object states, just simple enough for our purpose. Also,

2

The proof, although not mathematically complex, is nevertheless somewhat long and tedious. We

have omitted the minute details, and attempted to arouse reader intuition as much as possible. Subsection

3.1 can probably be safely skimmed on �rst reading.
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Instances: �; ' 2 Ins

Classes: � 2 Cls

Message Keys: m 2 Key

Primitive Functions: f 2 Prim

Method Expressions: e 2 Exp

Figure 3: Method System Domains

Unde�ned: ?

Numbers: Num

Values: � 2 Val = Beh+Num+ Stat

Behaviors: �; � 2 Beh = Key! (Fun+ ?)

Functions: � 2 Fun = Val! Val

States: �; � 2 Stat

Generators: Gen = Beh! Beh

Figure 4: Semantic Domains

slight restrictions are made so that classes are well-formed. Other notations used here

follow their paper.

3.1.1 Domains and Functions in the Method System

The de�nitions of method system domains are identical to Cook's (Figure 3). The def-

inition of semantic domains is identical, except for the addition of Stat, the domain of

states of instances (Figure 4). Intuitively, the state of an instance can be given with the

values bound to its instance variables. (We could de�ne it more precisely as is done for

standard denotational semantics by introducing local locations for each instance, but for

our purpose, the simple de�nition we give here su�ces.) Introducing Stat also a�ects

the domain of values, Val, as shown in Figure 4.

Two auxiliary functions are added to handle states. To specify the set of all possible

states of instances of a class, we use the function States for each class �. It has the

property that for any class �, States(�) � Stat. The auxiliary function state returns

the current state of a given instance (Figure 5). We also extend Cook's de�nition of par

(standing for `parent') as follows:

par

n

(�) = par(par(: : : par(�)))

| {z }

n

(n � 1)

Henceforth, we adopt the notations �

�

def

= class(�) and �

�

def

= state(�) for brevity.

We also employ a portion of the functions in Cook's denotational system of inheritance,

as shown in Figure 6. For convenience, we de�ne bec = ��:�x (gen(�)), which is the

common behavior for all instances of a given class.
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class : Ins! Cls the class of an instance

par : Cls! (Cls+ ?) the parent class of a class

meth : Cls! Key! (Exp+ ?) non-inherited methods for a class

root : Cls! Bool true if root class, false otherwise

States : Cls! 2

Stat

the set of possible states for instances of a class

state : Ins! Stat the current state of an instance

(Abbreviations: �

�

def

= class(�) and �

�

def

= state(�))

Figure 5: Auxiliary Functions

beh : Ins! Beh the behavior of an instance (to be extended in Sect. 3.2)

gen : Cls! Gen the generator of a class

bec : Cls! Beh the behavior common to all instances of a class

bec = ��:�x (gen(�)) (to be extended in Sect. 3.2)

Figure 6: Functions in the Denotational System of Inheritance

3.1.2 Well-Formed Classes (WFC)

Now that we have established the domains and functions in the method system, we need

to de�ne the notion of well-formed classes (WFC). When a class is well-formed, all the

methods available for the class are well-de�ned, that is, invocations of all methods that

was de�ned at that class or at its superclasses do not result in messageNotUnderstood

or in�nite looping in the method lookup.

For our purpose, we assume that if a function is given a value in an illegal domain, it

would return ?

?

. This allows us to de�ne the following:

De�nition 1 (Valid Domain Function) Let f be a function. Then, vd(f ) is the sub-

set of the domain of the function for which the mapped value is not ?

?

. To be more

precise,

vd(f ) = fx jx 2 domain of f ; f (x) 6=?

?

g:

On de�ning a method, we need a pair consisting of a method key ! and a method

expression e

!

. We use a notation ! 7! e

!

for such a pair. Note that both ! and e

!

are

syntactic entities. We also need to specify exactly at which class in the inheritance tree

a given method is de�ned.

De�nition 2 A method ! 7! e

!

is de�ned at class � i� meth(�)! 2 Exp.

We then restrict ourselves to well-de�ned methods, whose associated expression eval-

uate to a function in Fun:
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De�nition 3 (Well-De�ned Method)

A method ! 7! e

!

is well-de�ned at class � i� A method ! 7! e

!

is de�ned at class � and

bec(�)m 2 Fun

We now de�ne well-formed class, whose available methods are all well-de�ned.

De�nition 4 (Well-Formed Class (WFC)) A class � is well-formed i� � is a root

class, or:

1. 8m 2 vd(meth(�)), m is well-de�ned at �,

2. par(�) is well-formed, and

3. 9n such that root(par

n

(�)) = true (i.e., the message lookup does not `loop').

Some of the properties of WFCs, which we give without proof, are as follows:

� The well-formedness property is inherited; that is, when one creates a subclass of a

WFC by adding only well-de�ned methods, then the created subclass is a WFC.

� A set of acceptable method keys of an instance, (vd(beh(�))), is equivalent to the

union of all keys of its class and of its ancestor classes.

3.2 Concurrent Objects with Synchronization Constraints

We will next de�ne the operational behavior of concurrent objects with synchronization

constraints. For our purpose, we use an extension of the model given by Shibayama[17], in

which the state transition of an object is given with a function that takes three arguments:

an object, the key of the message accepted, and the state of the object at the time of

the message acceptance. The result of the function is the next state of the object. In

our framework, we restrict the domain of primitive functions to Stat ! Stat; for a

pure function, i.e., a function that does not a�ect the state of the object, we de�ne it as

identity with respect to state transition. Then, beh becomes the state transition function,

as beh : Ins ! Key ! Stat ! Stat. Since our system has classes, we also require a

function that gives the state transition behavior common to all instances of a class; this

is achieved with bec, as bec : Cls! Key! Stat! Stat.

3.2.1 Accept Function

Our next step is to characterize the `synchronization constraints'. For this, we introduce

the accept function, which denotes the abstract condition of message acceptance. As we

have indicated earlier, a message is acceptable by an object if the invocation of the asso-

ciated method does not violate the assertion (concerning the synchronization constraints)

that must hold for the current state of the object, in order for the internal consistency

of the object to be maintained. This is a natural and powerful way to characterize the

synchronization constraints, as object states can be partitioned by arbitrary predicates

regarding its state.
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The intuitive meaning of the accept function A, which is de�ned below, is as follows:

for an instance of a particular class, upon receipt of a message, when in a particular

state, A decides whether it is safe to accept the message or not. For instance, the get()

message in class b-buf should not be acceptable if the instance is in the empty state,

i.e., informally A(b-buf)(get())(in == out) = false (Note: in == out stands for the

empty state).

De�nition 5 (Accept Function) Accept function A is de�ned as follows:

A : Cls! Key! Stat! Bool

A(�)m� =

8

>

<

>

:

true if m 2 vd (bec(�)) and message m is acceptable at state �

false if m 2 vd(bec(�)) and message m is not acceptable at state �

?

?

otherwise

3.2.2 Accept Sets

Alternatively, given an object and its state, we can enumerate the methods whose invo-

cation do not violate the assertion that must hold for the current state of the object. By

enumerating the keys of the methods, we obtain a �nite set of method keys, which we

call the accept set.

De�nition 6 (Accept Set) The accept set b is a �nite set of method keys for an in-

stance � of a WFC �

�

, for which the associated methods are acceptable for its current

state �

�

.

Now, given A, we can derive the accept set function B as a function returning, for a

given state, the accept set of an instance of a class:

B : Cls! Stat! 2

Key

B = ���:fm jm 2 vd(bec(�));A(�)m� = trueg

Each accept set naturally satis�es the following condition: for any element key in

the accept set, the method corresponding to the key is already de�ned at that class or

its superclasses, not those methods that are going to be de�ned at the subclasses. This

condition, which is a signi�cant property of accept sets, is stated formally below; it is

trivial to prove that it holds for any WFC �.

8� 2 States(�):(B(�)� � vd(bec(�)) 2 2

Key

)

3.3 Schemes for Synchronization Speci�cation: DPSS and DKSS

Before proceeding, we stress the point that A (and its derivative B) merely characterize

the object's synchronization constraints that must be satis�ed to maintain its internal

integrity, and does not characterize the behavior of an object with respect to message

acceptance. The program description for controlling message acceptance, i.e., the syn-

chronization speci�cation, must be given within the textual de�nition of each class.
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For example, in b-buf of Section 2, the synchronization constraint for an empty bu�er

is that only message put() can be accepted. Then, the synchronization speci�cation is

given in the de�nition of b-buf with become statements so that it would be consistent

with the synchronization constraint i.e., the constraint is always satis�ed. If we would

mistakenly write become full for become empty in the method get(), then the syn-

chronization speci�cation would not be consistent with the synchronization constraint

for b-buf, causing an error. In such a case, the synchronization constraint is said to

be broken. Here, for a more precise treatment of the notion of consistency, we catego-

rize schemes for synchronization speci�cation into those using predicates and those using

accept sets.

3.3.1 Direct Predicate Speci�cation Scheme (DPSS)

The �rst category speci�es a predicate per each method indicating the condition under

which the message that invokes the method can be accepted. For example, one could

attach a predicate as a guard within the text of the method expression, or give a separate

description in the class de�nition

3

. We categorize such a scheme of synchronization

speci�cation as the Direct Predicate Speci�cation Scheme (DPSS). An example of DPSS

will be given in Section 4.

The behavior of an object whose synchronization speci�cation is given with DPSS

is represented by a function A

P

: Cls ! Key ! Stat ! Bool. In order for the

synchronization speci�cation of the object to be consistent with its synchronization

constraint, A and A

P

must be extensively equivalent, that is, for a given key, and

state, they must evaluate to the same value; otherwise, the synchronization constraints

would be broken. To present an informal example, A(b-buf)(get())(in == out) =

A

P

(b-buf)(get())(in == out) = false must hold. Otherwise, ifA

P

(b-buf)(get())(in == out)

were true, an attempt would be made to get() from an empty bu�er, which would result

in an error.

De�nition 7 The accept function A and the DPSS function A

P

are said to be consistent

for class � i� A(�) and A

P

(�) are extensively equivalent for all m 2 vd(bec(�)) and

� 2 States(�).

3.3.2 Direct Keyset Speci�cation Scheme (DKSS)

Alternatively, one comes up with an idea of directly specifying the accept sets as �rst-

class entities within the program descriptions (which, as we shall see later, is the root

of the anomaly). Again, these can be given within method de�nitions, or as separate

descriptions within class de�nitions. We categorize this scheme as the Direct Keyset

Speci�cation Scheme (DKSS).

The behavior of an object whose synchronization speci�cation is given with DKSS is

represented by a function B

K

: Cls! Stat! 2

Key

. As was with A and A

P

, B and B

K

must be extensively equivalent; otherwise synchronization constraints would be broken.

3

We need not question whether the non-accepted message is either discarded or placed somewhere in

the message queue, for it is irrelevant to the current argument.
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Figure 7: Relationships Between the Synchronization Constraints and the Synchroniza-

tion Speci�cations

Another requirement derived from the equivalence is that the keys appearing in the DKSS

program description must only be those of the methods that were de�ned at the class

or at the ancestor classes | that is, methods de�ned at the subclasses cannot appear

in the description. In more formal terms, it must satisfy for each class �, the predicate

8� 2 States(�):(B

K

(�)� � vd(bec(�))). Here, one must be careful | this condition was

naturally satis�ed with B, but in this case the keys given by a program could be arbitrary;

for instance, one could refer to a method key of a subclass by mistake. Such cases must

be detected by the interpreter/compiler and reported as an error.

De�nition 8 The accept set function B and the DKSS function B

K

are said to be con-

sistent for class � i� B(�) and B

K

(�) are extensively equivalent for all � 2 States(�).

The relationship between A;A

P

;B; and B

K

is illustrated in Figure 7. Notice that,

although B is derived from A, there is no direct connection between A

P

and B

K

.

3.4 Previous Proposals and DKSS

DKSS is a generalization of the synchronization speci�cation employed in many of the

previous proposals. Although those proposals seem super�cially di�erent, they are in fact

variations of DKSS.

� Some proposals represent our notion of accept sets as �rst-class identi�ers[12]. In

our framework, this is equivalent to systematically assigning a unique �rst-class

identi�er a

i

to each accept set. Then, for the synchronization constraints, we can

regard the function B(�) as returning an identi�er, i.e., B(�)� 7�! a

i

. For

synchronization speci�cation, we employ a

i

within the method expression e to

denote an accept set; thus B

K

(�) also returns an identi�er as a result, and the

equivalence can be de�ned in terms of the identi�er equivalence.
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� Many proposals specify the next accept set, that is, the accept set for the next

method invocation. In our framework, this corresponds to the accept set for the

state after a state transition. The characterization of next accept sets induced by

the synchronization constraints is given with the next accept set function B

next

,

derived from A as follows:

B

next

: Cls! Key! Stat! 2

Key

B

next

= ��m�:fm

0

jm

0

2 vd(bec(�)); A(�)m� = true; A(�)m

0

(bec(�)m�) = trueg

(1)

The behavior of an object whose synchronization speci�cation given with the scheme

of this variation is represented by a function B

next

K

: Cls! Key! Stat! 2

Key

.

We de�ne the consistency requirement between B

next

and B

next

K

analogously to

those of B and B

K

.

Now let us consider how some of the previous proposals can be regarded as DKSS:

� Kafura&Lee's proposal[12] of behavior abstractions assigns �rst-class identi�ers called

behavior names to the accept sets. A synchronization speci�cation is transcribed

within a method expression by specifying the next accept set with the behavior

name. As we have shown, this can be regarded as a simple variation of DKSS.

� Tomlinson&Singh's proposal[19] of enabled{sets is similar to Kafura&Lee's proposal.

The di�erence is that they give a �rst-class status to the accept sets to resolve the

problems discussed in their paper. Inclusion of subclass method keys in one of

parent's accept sets is prohibited by the condition given in Subsection 3.3, however.

This, together with the fact that the synchronization speci�cation is transcribed

within the method expression, their proposal does not solve the anomaly as we will

show.

� Nierstrasz's proposal of delay queues in Hybrid[15] is another variant of DKSS. A

delay queue is associated with each method, which is either opened or closed as

speci�ed within the method expressions. The entire set of delay queues used in the

object corresponds to the accept set of the object, and opening/closing queues can

be regarded as element addition/deletion operations on the set, respectively.

3.5 Proof of the Anomaly in Inheritance with DKSS

We now prove that the anomaly in inheritance always occurs for DKSS. Our proof is done

with B

next

K

for convenience, but a similar proof can be formulated for B

K

. For simplicity,

we only consider single inheritance, and that only a single method is de�ned at each class.

Let �

0

; �

1

; : : : ; �

n�1

be well-formed classes, where root(�

0

) = true, and par(�

i

) = �

i�1

for 1 � i � n � 1. Let !

i

7! e

!

i

be the well-de�ned method at class �

i

. We next re�ne

the formulation of B

next

K

: with each de�nition of method !

i

7! e

!

i

at �

i

, we associate

a function �

i

: Stat ! 2

Key

satisfying the condition we described in Subsection 3.3,

8� 2 States(�

i

):(�

i

(�) � vd(bec(�

i

))). �

i

is an abstraction of the program description

of synchronization speci�cation made with DKSS for the method !

i

7! e

!

i

at class �

i

.
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slook : Cls!Key! (Stat! 2

Key

)

slook = ��m: [�e 2 Exp:SyncSpec(�)

�� 2 ?: if root(�)

then �� 2 Stat:;

else slook(par(�))m

](meth(�)m)

Figure 8: Auxiliary Function slook (in Cook's notation)

Such a description can either be given within the method expression e

!

i

, or separately

within the class speci�cation

4

. In both cases, �

i

is said to be de�ned at class �

i

for !

i

. To

present an informal example, if the class x-buf only were to add a single method get2(),

then �

x-buf

(in == out) = fput()g.

Next, we construct B

next

K

from f�

i

g

i=1:::n�1

. Our construction becomes slightly subtle

if methods are overridden; given �

i

and !

i

, we cannot simply use the corresponding �

i

|

rather, starting from �

i

, we must search up the class hierarchy until the de�nition of the

method is found at some class; then the �

i

de�ned at that class is the synchronization

speci�cation for !

i

. To be more precise, let SyncSpec(�

i

) denote �

i

that is de�ned at �

i

.

We de�ne an auxiliary function slook , which, given a class and a key, searches up the

class hierarchy and returns �

i

for the key de�ned at the class or the `closest' ancestor

class in the class hierarchy (Figure 8). By using slook, we can then construct B

next

K

as:

B

next

K

= ��m�:slook(�)m� (2)

Function B

next

K

constructed as above needs to be consistent with B

next

for each class

�. When the consistency requirement is satis�ed, we call each f�

i

g

1;:::;n�1

the class-speci�c

accept set speci�cation:

De�nition 9 (Class-Speci�c Accept Set Speci�cation) Each function f�

i

g

i=1:::n�1

such that �

i

: Stat ! 2

Key

is called the class-speci�c accept set speci�cation for class

�

i

if B

next

K

constructed in the manner of equation (2) is consistent with B

next

for each

class �.

We also distinguish a special case of method addition for our proof: we say that

method (key) !

i

prohibits method (key) !

j

if the next accept set for !

i

never contains !

j

:

De�nition 10 (Prohibition of a Method) For class �, let !

i

; !

j

2 vd(bec(�)). Then

!

i

prohibits !

j

in class � i� 8� 2 States(�):(!

j

62 B

next

(�)!

i

�)

On de�ning a subclass, the synchronization speci�cation for a ancestor method need

not be re-de�ned if the ancestor method prohibits the added method. In practice, how-

ever, it is rare for a method to prohibit another method | methods that do are very

4

It does not matter whatever �rst-class status the accept set is given.

13



special in the sense that they are not a�ected by the state of the object prior to their

invocation, and also tend to have an `absolute' e�ect on the state of the object. In the

bounded bu�er example, we could de�ne the method clear() which would clear the en-

tire contents of the bu�er; then clear() would prohibit get(), as the bu�er would be in

the empty state no matter what state it had been in prior to the invocation of clear().

Now we are ready for our proof. First, let us examine the ideal case in which the

anomaly does not occur. Consider the situation where B

next

is consistent with B

next

K

for all classes �

1

; : : : ; �

n�1

, and we are de�ning �

n

to be a subclass of �

n�1

by having

a well-de�ned method !

n

7! e

!

n

at �

n

. By all means �

n

is now a WFC. Then, we

would like to give a new program description of synchronization speci�cation at �

n

with

DKSS, so that none of the synchronization speci�cation given in the superclasses need be

modi�ed. This means that every f�

i

g

1:::n�1

remain unchanged, for any modi�cation in

the synchronization speci�cation in the superclasses would re
ect in the change of �

i

's.

At the same time, B

next

K

constructed as in equation (2) must be consistent with B

next

for all �

i

(1 � i � n). Unfortunately, this is not possible, as we state and prove below.

Theorem 11 (Anomaly in Inheritance with DKSS) Let �

0

; �

1

; : : : ; �

n�1

be well-formed

classes, where root(�

0

) = true, and par(�

i

) = �

i�1

for 1 � i � n � 1. Let !

i

7! e

!

i

be

the well-de�ned methods at class �

i

. Consider creating class �

n

, a subclass of �

n�1

, by

de�ning a method !

n

7! e

!

n

which would be well-de�ned at class �

n

. Also, assume that:

1. f�

i

g

i=1:::n�1

are class-speci�c accept set speci�cations, and

2. �

n

is a characterization of synchronization speci�cation given with next accept set

variation of DKSS at class �

n

.

Then, in order for B

next

K

constructed as in equation (2) to maintain consistency with

B

next

, every f�

i

g

i=1:::n�1

must be modi�ed if the corresponding !

i

(i) is not overridden,

and (ii) does not prohibit !

n

in class �

n

.

The outline of the proof is as follows: in the b-buf example, the next accept set

partial corresponds to all states such that 0 < out - in < size. But when a new

method get2() is added, set of states can be partitioned by the synchronization con-

straints for get2() in such a way that in one set, the new method is acceptable, and in

the other, it is not. Correspondingly, the accept set must also be partitioned (x-one and

x-partial). So, the program descriptions of synchronization speci�cations that referred

to the accept sets in all parent methods need to be re-written (get(), put()). This is

presented more formally below:

PROOF :

First, without the loss of generality

5

we can assume that States(�

i

) are equivalent for

all i. Now, we can partition States(�

n

) into disjoint subsets S

!

n

;S

!

n

in such a way that

5

The proof for monotonically increasing domain would be essentially the same, albeit a little more

complicated.
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S

!

n

[ S

!

n

= States(�

n

), and !

n

is acceptable i� the state of the object is an element of

S

!

n

, and vice-versa. More formally for all � 2 States(�

n

),

(

� 2 S

!

n

(if A(�

n

)!

n

� = true)

� 2 S

!

n

(if A(�

n

)!

n

� = false)

For the parent class �

n�1

, consider ANY method !

i

7! e

!

i

, where 1 � i � n � 1

and !

i

is not overridden, and !

i

does not prohibit !

n

in class �

n

. We can assume in

general that for any state � 2 States(�

n�1

), the next accept set is not an empty set, i.e.,

9b � vd (bec(�

n�1

)) such that b = B

next

(�)!

i

� and b 6= ;. This holds because if b = ;,

the object will no longer be able to accept any messages | and since state changes are

only possible when an object accepts a message, such a state is a deadlock. (This is

analogous to the agent bisimilar to 0 in CCS.)

Now, for !

i

, consider a state � 2 States(�

n

) where the next accept set contains

!

n

; namely, !

n

2 B

next

(�

n

)!

i

�. We can easily show that such a state � is guaran-

teed to exist, as !

n

is not prohibited by !

i

in �

n

. Let b

Q

denote the next accept set

for � in the parent class �

n�1

, that is, b

Q

def

= f!

Q1

; !

Q2

; : : : ; !

Ql

g = B

next

(�

n�1

)!

i

� =

B

next

K

(�

n�1

)!

i

�. There may be other states which also map to b

Q

with B

next

(�

n�1

)!

i

.

LetQ � States(�

n�1

) be a set of all such states; in other words,Q = f� j B

next

(�

n�1

)!

i

� =

b

Q

g. By the de�nition of B

next

and the construction of B

next

K

, the corresponding �

i

(�)

de�ned for !

i

at �

i

must likewise be equal to b

Q

for all � 2 Q in order for B

next

K

to

maintain consistency with B

next

.

Next, partition Q into disjoint subsets q; q so that q = Q \ S

!

n

and q = Q \ S

!

n

.

Then, !

n

is acceptable only if � 2 q . So, by the de�nition of B

next

in (1), we derive the

following for each � 2 Q (Figure 9):

B

next

(�

n

)!

i

� =

(

b

Q

[ f!

n

g (� 2 q)

b

Q

(� 2 q)

(3)

Here, we can guarantee that q is non-empty by the construction of Q (since � was

chosen so that the next accept set would contain !

n

in the �rst place) and thus B

next

K

must be modi�ed so that it is consistent with B

next

for class �

n

. But we can easily show

from the construction of B

next

K

in equation (2) that this requires modi�cations to �

i

, so

that �

i

(�) = b

Q

[ f!

n

g if � 2 q, and �

i

(�) = b

Q

if � 2 q . Since this applies to any !

i

such that 1 � i � n � 1 as the selection of !

i

was arbitrary, every �

i

must be modi�ed,

if both (i) and (ii) hold for !

i

, in order to maintain consistency.

As an additional note, careful readers might be concerned with the case q = ;;

actually, this is the only case where indirect re-naming of accept sets by the previous

proposals might work. Although we have deliberately omitted the treatment here for

brevity, an analysis reveals that occurrence of such a case is just as rare as the prohibition

of methods (every q must be ;).

3.6 The Main Cause of Anomaly in Inheritance

What then, is the main cause of the anomaly? It is due to the properties of the class

hierarchy with respect to accept sets. In DKSS, the accept sets are treated as �rst-
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States(κn)

q

bQ ∪  { ωn} bQ

Q
q

Figure 9: Proof of Anomaly in Inheritance

class entities within the program description. Then, as we have seen in the proof, the

synchronization speci�cations of the parent classes must be modi�ed on creation of a new

subclass. The only way to avoid this in DKSS is to allow reference to the method keys of

the child classes in the synchronization speci�cations of the parent classes. But this is not

allowed, as one-way references of method keys from child classes to their parents is one of

the general properties of inheritance. If we were to allow inverse references from parents

to their children to be predetermined, inheritance would be almost useless | once the

class hierarchy is created, not only the hierarchy itself, but the methods contained therein

cannot be modi�ed.

It is easy to see that DPSS does not exhibit the anomaly of DKSS, since method

keys are not (usually) treated as �rst-class entities within the predicates. As a result,

the synchronization speci�cation for a particular method is totally independent of the

de�nitions of any other methods.

4 Program Transformation for DPSS

The idea of using predicates as guards as in DPSS is not new; notable examples are Hoare's

CSP[11], concurrent logic programming languages[20], etc. In the context of OOCP,

there were several, including [5, 6, 9, 24]. Then what was the motivation in the previous

proposals for employing DKSS for synchronization speci�cation instead of DPSS? We

speculate that e�ciency is one of the prime motivations. Naive implementations of DPSS

would scan the message queue for a message whose associated guard evaluates to true;

when such a message is found, it is removed from the queue and the corresponding method

is invoked. However, this implementation would be ine�cient because every method

invocation requires the scanning of the message queue; if several messages remained

unacceptable for a long duration, the associated guard could be evaluated repeatedly

without success.

To alleviate the ine�ciency, we use program transformation to obtain code that are

near-optimal in the sense that the time e�ciency of the code would match that of the
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code written with languages that employ DKSS for synchronization speci�cation. The

main idea is to convert a class de�nition written with guards into the one using condition

variables

6

. The transformation is invisible to the programmer | thus, the full bene�t

of inheritance can be enjoyed without making sacri�ces in e�ciency. The correctness of

the transformation up to arrival-order nondeterminism is proven by using the bisimilarity

relationship in CCS founded by R. Milner et. al.[14] Here, we present only an overview

and some examples of the transformation. The details of the transformation rules and

the proof of correctness are given elsewhere[22].

We illustrate how the bounded bu�er class and extended bu�er class are expressed

and transformed (Figure 10). Here, we employ a syntax of extended C++ to express a

method de�nition with a guard as:

m(<formal arguments>) when(guard) f <body of method de�nition> g

where guard is a boolean expression. Method m is invoked only when guard evaluates

to true. For instance, in class b-buf, the guard (in < out + size) attached to put()

assures that put() is not invoked when the bu�er is full. The class x-buf is de�ned

as a subclass of b-buf with three additional methods get2(), tail() and empty?().

Contrary to get(), which removes the oldest item from the bu�er, tail() removes the

most recent one. The method empty?() just reports whether the bu�er is empty or

not, and causes no side e�ect to the internal state of the bu�er; thus, it can always be

accepted (a keyword always is provided as an abbreviation for when(true)). As shown

in Figure 10, all the methods de�ned at b-buf are inherited by x-buf without any changes

to the methods or the attached guards.

Class b-buf: Object { /* b-buf is a subclass of Object */

int in, out;

public: void b-buf() { in = out = 0; }

void put() when (in < out + size) { in++; }

void get() when (in >= out + 1) { out++; }

}

Class x-buf: public b-buf { /* x-buf is a subclass of b-buf */

public: void x-buf()

void get2() when (in >= out + 2) { out += 2; }

void tail() when (in >= out + 1) { in--; }

void empty?() always { return (in == out); }

}

Figure 10: De�nition of Bounded Bu�er and Extended Bu�er in DPSS

Now, we transform the method de�nitions with the when clauses into the correspond-

ing de�nition with condition variables in the following manner:

6

Condition variables were �rst introduced in the monitor mechanism by C. A. R. Hoare[10]. The con-

dition variables employed in our transformation, however, are slightly di�erent, as no explicit signalling

is done on the condition variables.
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m(<formal arguments>) when(guard) f <body of method de�nition> g

=) m(<formal arguments>) on c f <body of method de�nition> check(); g

Each method has its own message queue, and a disjoint set of queues is associated with

each condition variable. Condition variables take truth values; when the object is ready

to process the next message, the condition variables assigned true are checked. If element

queues in the associated set of queues contain messages, one of the non-empty queues is

chosen non-deterministically and the �rst message in the chosen queue is processed for

method invocation. After the invocation, in order to re
ect the internal state change

of the object, a call to the private function check() is made to assign the results of

evaluating the guard expressions to the corresponding condition variables. Figure 11

shows the result of transforming the x-buf class de�nition into the target language.

Condition variables c1, c2, c3, and c4 correspond to the guards for the methods put(),

get(), get2(), and tail(), respectively. For the guard always, a special condition

variable T, which is always true, is provided.

Class x-buf {

int in, out;

condition c1, c2, c3, c4;

public: void b-buf() { in = out = 0; check(); }

void put() on c1 { in++; check(); }

void get() on c2 { out++; check(); }

void get2() on c3 { out += 2; check(); }

void tail() on c4 { in--; check(); }

int empty?() on T { check(); return (in == out); }

local: void check() {

c1 = (in < out + b-size) ? true : false; /* full? */

c2 = (in >= out + 1) ? true : false; /* more than one? */

c3 = (in >= out + 2) ? true : false; /* more than two? */

c4 = (in >= out + 1) ? true : false; /* more than one? */

}

}

Figure 11: Transformed code.

One drawback with this transformation is that when the number of methods increases,

the number of condition variables increases accordingly. Then, the overhead of check()

becomes unnegligible since all the condition variables must be checked and updated.

By performing optimizations on the transformed code, however, we can obtain a more

e�cient code as shown in Figure 12. Some of the optimizations employed here are as

follows:

� Merging Predicates: In the body of check(), the same boolean expression (in �

out + 1) is evaluated twice for the condition variables c2 and c4. We can remove

this redundancy by merging c4 with c2, and associating both get() and tail()

with c2.
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� Removing Condition Variable Checking from Pure Functions: A simple dependency

analysis on empty?() reveals that empty?() is a pure function i.e., causes no side-

e�ects to the internal state of the bu�er; thus the values of condition variables

should remain unchanged. As a result, a function call to check() in the method

empty?() can be safely omitted.

� Logically Deducing Assertable Conditions: We can logically deduce that after invo-

cation of put() the bu�er would not be empty; thus we can safely assign true to

c1. Similar analysis applies to other methods as well.

� Re-Ordering of Conditional Variable Evaluation: The condition for c3 == true im-

plies the condition for c2 == true. By exchanging the order of the checking state-

ments for c2 and c3, we only need to check the conditions for c2 if c3 == false.

These and other optimization techniques from traditional compilers would allow us to

obtain codes that are near-optimal in the sense that the time e�ciency of the code would

match that of the code written with languages that employ DKSS for synchronization

speci�cation.

Class x-buf {

int in, out;

condition c1, c2, c3;

public: void x-buf() { in = out = 0; check2(); }

void put() on c1 { in++; check1(); }

void get() on c2 { out++; check2(); }

void tail() on c2 { in--; check2(); }

void get2() on c3 { out += 2; check2(); }

int empty?() on T { return (in == out); }

local: void check1() { c1 = (in < out + b-size); c2 = true;

c3 = (!c1 && (in >= out + 2)); }

void check2() { c1 = true; c3 = (in >= out + 2);

c2 = (!c3 && (in >= out + 1)); }

}

Figure 12: Optimizations on Transformed Code
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