
An Actor-Based Metalevel Architecture for

Group-Wide Re
ection

Takuo Watanabe

�

Department of Information Science

Tokyo Institute of Technology

JSPS Fellow (DC)

takuo@is.s.u-tokyo.ac.jp

Akinori Yonezawa

Department of Information Science

The University of Tokyo

yonezawa@is.s.u-tokyo.ac.jp

Abstract

The notion of group-wide re
ection is presented. Group-wide re
ection, a dimen-

sion of computational re
ection in concurrent systems, allows each computational

agent (actor/object/process) to reason about and act upon not only the agent itself,

but also a group of agents which may contain the agent itself. Global properties of

the group can be dynamically controlled through group-wide re
ection. We have

developed a simple yet general model for group-wide re
ection based on the Actor

model[?]. An operational semantics of a group of object-level actors is represented

by another group of actors (a group of metalevel actors), which is an implementation

of a transition system of the object-level group. We prove that the metalevel group

correctly represents the operational semantics of the group in terms of transitions of

con�gurations. Furthermore, migration of an actor from node to node is described

as an example of group-wide re
ection.

Keywords

re
ection, group-wide re
ection, actor model, object-oriented concurrent program-

ming, object-group, ABCL/R, ABCL/1

1 Introduction

Our research goal is to construct a solid basis for programming adaptive/self-evolving

computational systems. We believe that object-oriented concurrent computation with

re
ection provides a suitable framework for this goal.

The motivation of group-wide re
ection is to cope with the following issues.

�

Contact Address: Department of Information Science, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku,

Tokyo, JAPAN, 113, TEL/FAX: +81-3-5689-4365

1

1. Object Group and Group Communication:

The notion of object (process) group o�ers a powerful abstraction mechanism for

construction of large systems. Using a metalevel architecture, we like to make

experiments on mechanisms such as group communications[?], dynamic (run-time)

construction/destruction/fusion and migration of groups, and so on.

2. Dynamic Modi�cation of the Semantics of Message Delivery:

It is sometimes useful to have di�erent semantics of message delivery in di�erent

groups of objects. If we want to implement the group-communication stated above

e�ciently, group-wide adaptation of message delivery semantics is often required.

For example, consider the situation of using Timewarp mechanism[?] in a group.

Changing the order of messages delivery by their timestamps makes it possible

to have an e�cient message scheduling which avoids frequent rollbacks and anti-

messages.

3. Maintaining Constraints among Objects:

Mutually constrained objects form a group. To maintain the constraints among

them, controlling metalevel properties often o�ers a better means than ordinary

message passing among the objects.

4. Modeling Implementation-Related Features:

In an actual multicomputer concurrent system, there are some limited ways to ob-

tain/modify global information of its subsystems. For example, in a coarse grained

multi-processor system (i.e., more than one object/process may run on each pro-

cessor in a pseudo-parallel manner), we can obtain and/or control various global

dynamic characteristics of objects/processes running in a single processor (e.g., ex-

ecution scheduling, allocation of resources, control of the messages tra�cs and so

on). In other words, the machine-boundary of a processor inherently forms a group.

Of course, such operations on the group have been utilized in actual systems (es-

pecially, operating systems), but they are usually introduced in either an ad-hoc or

quite limited way ([?, ?]). We need a good formalism for uniform treatment of such

implementation models.

In our previous approach to re
ective computation in an object-oriented concurrent

language ABCL/R[?], we adopted individual-based re
ection: i.e., each agent (object) can

reason about and act upon the agent itself. In ABCL/R, ameta-object, which serves as the

causally-connected metalevel representation of an object, is introduced for each object. A

meta-object represents (implements) the structural/computational aspects of an object,

and re
ective computation is realized by sending messages to meta-objects. Since the

computational activity in an object is sequential, technique for constructing a sequential

re
ective system can be used. This implies, however, each meta-object models only the

local sequential aspects of an object. Thus, our previous approach is not su�ciently

powerful to deal with the global information of a group of objects.

To realize a full-
edged computational re
ection on a group of objects, a formal model

of the group is needed. The model must represent the correct semantics of the group and

should be accessible from members of the group. In addition, more importantly, the

model and the group should be causally-connected: the model always represents (rei�es)

the current status of the group, and the changes made to the model should correctly

re
ect in the behavior of the group.

We use the transition system given by Gul Agha[?] for describing the operational

semantics of a group of actors. In our approach, the transition system of a group is

represented as another actor group which forms a concurrent meta-circular interpreter.

We prove that it correctly represents the operational semantics of the group in terms of

the transition of con�gurations.

2 Metalevel Architecture

In order to realize the group-wide re
ection, we compose a group of actors and its met-

alevel description. The latter is also a group of actors. Suppose that S is a group of

actors. We let "S denote the group which forms a metalevel representation (meta-circular

interpreter) of S. Actors in two groups can communicate with each other (inter-level

communication). Since actors in "S maintains the global information of S, we can ac-

cess/modify the global metalevel information of a group through sending messages to

actors in "S, and vice versa. Of course, the meta-circularity of "S guarantees the causal

connection between S and "S[?].

2.1 Con�gurations

Before presenting our metalevel description for an actor system, we brie
y give a formalism

for Actor model. It is basically the same as Agha's formalism. See [?] for more details.

An actor � is a pair hm;�i of its mail address m and its behavior �. The domain of

actors A is de�ned as A = M� B, where M and B are the domains of mail addresses

and behaviors, respectively. Note that in one system, no two actors have the same mail

address.

A task is a triple ht; m; ki of a tag t, a mail address m and a message value k. A task

represents a message which has been sent to an actor (a target actor) whose mail address

is m, but which has not been received. The tag t is needed to distinguish two tasks having

the same target address and the same message value The domain of tasks is de�ned as

T = I �M� V , where I and V are the domains of tags and values used in messages.

V is the disjoint sum of domains of mail addresses and other �rst class primitive values

(such as numbers, lists, etc.).

The computation carried out by � in response to a message is described as the result

of function application �(t; k) = hT;A; �

0

i, where T is the set of tasks created by �, A

is the set of actors created by �, and �

0

is the replacement behavior. The domain of

behaviors B is de�ned as:

B = I � V ! F

s

(T)� F

s

(A) � B

where F

s

(X) is the set of all �nite subdomains (subsets) of X.

Let S be a system composed of actors. A con�guration C represents a computational

state of S at a certain frame of reference. This is represented by a pair hA(C);T (C)i,

where A(C) 2 F

s

(A) is a �nite set of actors in S (called the population of C) and

T (C) 2 F

s

(T) is a �nite set of tasks in S. Note that A and T are the domains of actors

and tasks respectively. We let �

S

denote the set of all con�gurations of S.

Computation in S is modeled as transitions between con�gurations in �

S

. When a

task ht; m; ki 2 T (C

1

) is processed in C

1

2 �

S

, the transition which results in a new

con�guration C

2

is denoted by:

C

1

ht;m;ki

�! C

2

The con�guration C

2

represents the situation where the actor having mail address m has

just �nished its computation for the task ht;m; ki. If the target actor is in S, the following

holds.

ht;m; ki 2 T (C

1

) ^ 9� 2 B: s.t. hm;�i 2 A(C

1

)

A(C

2

) = (A(C

1

)� fhm; �ig) [A

0

[fhm;�

0

ig

T (C

2

) = (T (C

1

)� fht; m; kig) [T

0

where �(t; k) = hT

0

; A

0

; �

0

i

When the target is in another system S

0

, then the con�guration C

0

1

of S

0

will change to

C

0

2

.

A(C

2

) = A(C

1

);T (C

2

) = T (C

1

)� fht; m; kig

A(C

0

2

) = A(C

0

1

);T (C

0

2

) = T (C

0

1

) [fht; f(m); f (k)ig

The function f :M!M translates a mail address in S to one in S

0

.

We write C

1

�

�! C

k

(k � 1) when the following holds:

C

1

�

1

�! C

2

�

2

�! � � �

�

k�1

�! C

k

where 9�

i

2 T (C

i

) (i = 1; � � � ; k � 1)

The sequence above is called a possible transition sequence.

2.2 Metacon�guration

Now we construct a causally connected metalevel representation for an actor system S.

The metalevel representation for S, which is denoted by "S, is constructed as another

actor system which implements the transition system of S. "S is an actor system which

represents the concurrent computational aspects of S, namely, "S represents an opera-

tional semantics for S. In our model, "S is also used as a meta-circular interpreter for S.

This implies that the causal-connection between S and "S is automatically guaranteed.

We show that "S correctly models the semantics of S in terms of transitions between

con�gurations. Notice that "S to be constructed here is just one case of many possible

metalevel representations.

As seen above, to de�ne an actor system, it is not enough to pick up actors in the

system | we need to de�ne its con�guration. We now de�ne a special con�guration

of "S, called a metacon�guration. A metacon�guration is a con�guration which models

a particular con�guration of S. We let "C denote a metacon�guration which models

a con�guration C 2 �

S

. We assume that the initial con�guration of "S is always a

metacon�guration. Below, �

"S

denotes the set of all possible con�gurations of "S.

