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Abstract

The notion of group-wide re
ection is presented. Group-wide re
ection, a dimen-

sion of computational re
ection in concurrent systems, allows each computational

agent (actor/object/process) to reason about and act upon not only the agent itself,

but also a group of agents which may contain the agent itself. Global properties of

the group can be dynamically controlled through group-wide re
ection. We have

developed a simple yet general model for group-wide re
ection based on the Actor

model[1]. An operational semantics of a group of object-level actors is represented

by another group of actors (a group of metalevel actors), which is an implementation

of a transition system of the object-level group. We prove that the metalevel group

correctly represents the operational semantics of the group in terms of transitions of

con�gurations. Furthermore, migration of an actor from node to node is described

as an example of group-wide re
ection.
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1 Introduction

Our research goal is to construct a solid basis for programming adaptive/self-evolving

computational systems. We believe that object-oriented concurrent computation with

re
ection provides a suitable framework for this goal.

The motivation of group-wide re
ection is to cope with the following issues.
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1. Object Group and Group Communication:

The notion of object (process) group o�ers a powerful abstraction mechanism for

construction of large systems. Using a metalevel architecture, we like to make

experiments on mechanisms such as group communications[5], dynamic (run-time)

construction/destruction/fusion and migration of groups, and so on.

2. Dynamic Modi�cation of the Semantics of Message Delivery:

It is sometimes useful to have di�erent semantics of message delivery in di�erent

groups of objects. If we want to implement the group-communication stated above

e�ciently, group-wide adaptation of message delivery semantics is often required.

For example, consider the situation of using Timewarp mechanism[4] in a group.

Changing the order of messages delivery by their timestamps makes it possible

to have an e�cient message scheduling which avoids frequent rollbacks and anti-

messages.

3. Maintaining Constraints among Objects:

Mutually constrained objects form a group. To maintain the constraints among

them, controlling metalevel properties often o�ers a better means than ordinary

message passing among the objects.

4. Modeling Implementation-Related Features:

In an actual multicomputer concurrent system, there are some limited ways to ob-

tain/modify global information of its subsystems. For example, in a coarse grained

multi-processor system (i.e., more than one object/process may run on each pro-

cessor in a pseudo-parallel manner), we can obtain and/or control various global

dynamic characteristics of objects/processes running in a single processor (e.g., ex-

ecution scheduling, allocation of resources, control of the messages tra�cs and so

on). In other words, the machine-boundary of a processor inherently forms a group.

Of course, such operations on the group have been utilized in actual systems (es-

pecially, operating systems), but they are usually introduced in either an ad-hoc or

quite limited way ([3, 9]). We need a good formalism for uniform treatment of such

implementation models.

In our previous approach to re
ective computation in an object-oriented concurrent

language ABCL/R[8], we adopted individual-based re
ection: i.e., each agent (object) can

reason about and act upon the agent itself. In ABCL/R, ameta-object, which serves as the

causally-connected metalevel representation of an object, is introduced for each object. A

meta-object represents (implements) the structural/computational aspects of an object,

and re
ective computation is realized by sending messages to meta-objects. Since the

computational activity in an object is sequential, technique for constructing a sequential

re
ective system can be used. This implies, however, each meta-object models only the

local sequential aspects of an object. Thus, our previous approach is not su�ciently

powerful to deal with the global information of a group of objects.

To realize a full-
edged computational re
ection on a group of objects, a formal model

of the group is needed. The model must represent the correct semantics of the group and

should be accessible from members of the group. In addition, more importantly, the

model and the group should be causally-connected: the model always represents (rei�es)
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the current status of the group, and the changes made to the model should correctly

re
ect in the behavior of the group.

We use the transition system given by Gul Agha[1] for describing the operational

semantics of a group of actors. In our approach, the transition system of a group is

represented as another actor group which forms a concurrent meta-circular interpreter.

We prove that it correctly represents the operational semantics of the group in terms of

the transition of con�gurations.

2 Metalevel Architecture

In order to realize the group-wide re
ection, we compose a group of actors and its met-

alevel description. The latter is also a group of actors. Suppose that S is a group of

actors. We let "S denote the group which forms a metalevel representation (meta-circular

interpreter) of S. Actors in two groups can communicate with each other (inter-level

communication). Since actors in "S maintains the global information of S, we can ac-

cess/modify the global metalevel information of a group through sending messages to

actors in "S, and vice versa. Of course, the meta-circularity of "S guarantees the causal

connection between S and "S[6].

2.1 Con�gurations

Before presenting our metalevel description for an actor system, we brie
y give a formalism

for Actor model. It is basically the same as Agha's formalism. See [1] for more details.

An actor � is a pair hm;�i of its mail address m and its behavior �. The domain of

actors A is de�ned as A = M� B, where M and B are the domains of mail addresses

and behaviors, respectively. Note that in one system, no two actors have the same mail

address.

A task is a triple ht; m; ki of a tag t, a mail address m and a message value k. A task

represents a message which has been sent to an actor (a target actor) whose mail address

is m, but which has not been received. The tag t is needed to distinguish two tasks having

the same target address and the same message value The domain of tasks is de�ned as

T = I �M� V , where I and V are the domains of tags and values used in messages.

V is the disjoint sum of domains of mail addresses and other �rst class primitive values

(such as numbers, lists, etc.).

The computation carried out by � in response to a message is described as the result

of function application �(t; k) = hT;A; �

0

i, where T is the set of tasks created by �, A

is the set of actors created by �, and �

0

is the replacement behavior. The domain of

behaviors B is de�ned as:

B = I � V ! F

s

(T )� F

s

(A) � B

where F

s

(X) is the set of all �nite subdomains (subsets) of X.

Let S be a system composed of actors. A con�guration C represents a computational

state of S at a certain frame of reference. This is represented by a pair hA(C);T (C)i,

where A(C) 2 F

s

(A) is a �nite set of actors in S (called the population of C) and
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T (C) 2 F

s

(T ) is a �nite set of tasks in S. Note that A and T are the domains of actors

and tasks respectively. We let �

S

denote the set of all con�gurations of S.

Computation in S is modeled as transitions between con�gurations in �

S

. When a

task ht; m; ki 2 T (C

1

) is processed in C

1

2 �

S

, the transition which results in a new

con�guration C

2

is denoted by:

C

1

ht;m;ki

�! C

2

The con�guration C

2

represents the situation where the actor having mail address m has

just �nished its computation for the task ht;m; ki. If the target actor is in S, the following

holds.

ht;m; ki 2 T (C

1

) ^ 9� 2 B: s.t. hm;�i 2 A(C

1

)

A(C

2

) = (A(C

1

)� fhm; �ig) [ A

0

[ fhm;�

0

ig

T (C

2

) = (T (C

1

)� fht; m; kig) [ T

0

where �(t; k) = hT

0

; A

0

; �

0

i

When the target is in another system S

0

, then the con�guration C

0

1

of S

0

will change to

C

0

2

.

A(C

2

) = A(C

1

);T (C

2

) = T (C

1

)� fht; m; kig

A(C

0

2

) = A(C

0

1

);T (C

0

2

) = T (C

0

1

) [ fht; f(m); f (k)ig

The function f :M!M translates a mail address in S to one in S

0

.

We write C

1

�

�! C

k

(k � 1) when the following holds:

C

1

�

1

�! C

2

�

2

�! � � �

�

k�1

�! C

k

where 9�

i

2 T (C

i

) (i = 1; � � � ; k � 1)

The sequence above is called a possible transition sequence.

2.2 Metacon�guration

Now we construct a causally connected metalevel representation for an actor system S.

The metalevel representation for S, which is denoted by "S, is constructed as another

actor system which implements the transition system of S. "S is an actor system which

represents the concurrent computational aspects of S, namely, "S represents an opera-

tional semantics for S. In our model, "S is also used as a meta-circular interpreter for S.

This implies that the causal-connection between S and "S is automatically guaranteed.

We show that "S correctly models the semantics of S in terms of transitions between

con�gurations. Notice that "S to be constructed here is just one case of many possible

metalevel representations.

As seen above, to de�ne an actor system, it is not enough to pick up actors in the

system | we need to de�ne its con�guration. We now de�ne a special con�guration

of "S, called a metacon�guration. A metacon�guration is a con�guration which models

a particular con�guration of S. We let "C denote a metacon�guration which models

a con�guration C 2 �

S

. We assume that the initial con�guration of "S is always a

metacon�guration. Below, �

"S

denotes the set of all possible con�gurations of "S.
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Figure 1: Actors in "S

De�nition 1 (Metacon�guration) Let C be a con�guration of S. A metacon�guration

"C 2 �

"S

of C is de�ned as a pair hT ("C);T ("C)i:

A("C) = f�; �

S

; "; �g [ E

A

[B

S

T ("C) = fhu;m

�

; [:task "t "m "k]i j ht;m; ki 2 T (C)g

where E

A

= fe

�

j � 2 A(C)g

B

S

= fb

�

j hm;�i 2 A(C)g

A task hu;m

�

; [:task "t "m "k]i 2 T ("C) is called a meta-task of ht; m; ki 2 T (C).

It represents a task ht;m; ki in the object-level (C). We let "� denote the meta-task of

� . We let u denote the tag of the meta-task. m

�

is the mail address of the task handler

actor � described below. "t and "m, called a tag handle and a mail address handle

1

(or

handles in short), are the metalevel representations of the tag t and the mail address m.

A handle may denote another handle: ""m is also valid. Let H be the domain of handles.

The functionality of " is:

": I +M+H ! H

Recall that I andM are the domain of tags and the domain of mail addresses. We write

# for the inverse function of ". For any x 2 I +M+H and y 2 H, #"x = x and "#y = y

holds. Thus " is a bijection, so H should be an (recursive) in�nite domain.

Handles will be used as keys in the database actor �

S

described below. "k is the value

which has the same structure as k, but every occurrence of mail addresses and handles in

k are replaced with their handles. For example, if k is the value [:do m

1

(foo "m

2

)]

and m

1

and m

2

are mail addresses, then "k is [:do "m

1

(foo ""m

2

)].

The metalevel actors in A("C) are categorized as follows (see Figure 1). Their precise

de�nition will be given as actual code de�nitions in Section 2.4.

� Task Handler (�):

The task handler actor � knows other metalevel actors (�

S

, " and �) and arranges

1

The term handle is used by B. Smith[7] for an extension of the concept of quotation. We use \handle"

as the same way.
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metalevel computation representing the task processing in the object-level. When �

receives "� , � spawns a customer actor which continues the subsequent computation

(representing the processing of �).

� Database (�

S

) and Database Entries (elements of E

A

):

The database actor �

S

has a handle-entry table and manages it. The handle-entry

table maps a handle to a database entry actor. Each database entry actor e

�

has

the information of a speci�c actor � in the object-level. Suppose that � = hm; �i is

an actor in A(S). Then the handle-entry table maps the handle "m to the database

entry actor e

�

which represents �. e

�

contains a message queue and a behavior

actor b

�

.

� Behavior Actors (elements of B

S

):

A behavior actor b

�

is the metalevel representation of a behavior �. It contains the

code of behavior script and an environment which has the binding information for

acquaintance variables. The code of b

�

will be evaluated by the evaluator actor "

under the environment (acquaintances).

� Concurrent Evaluator/Processor ("):

The evaluator actor " accepts the code (expressions) of a behavior actor and execute

concurrently. " also represents the processor, the resource which o�ers the processing

power of an actor group in the system.

� External Mailer (�):

The external mailer handles communication between S and outside systems.

Notice that a meta-con�guration "C is a special con�guration which represents a

con�guration C of the object-level. There are many other possible con�gurations in

�

S

which may contains tasks other than meta-tasks. In sum, a meta-con�guration is a

con�guration of "S in which all the tasks are meta-tasks.

2.3 An Actor Language

We use a simple re
ective actor language ACT/R to describe our model and examples. Be-

fore explaining precise de�nitions of the metalevel actors, we present a brief introduction

to non-re
ective (normal) features of ACT/R. The syntax of the language is S-expression

based, and is very similar to ABCL/1[10]. However, its semantics is the same as other

pure actor languages, such as SAL and ACT. See [1] for details on semantics of these

languages.

The following is the de�nition of the behavior for a simple value cell actor. The value

cell actor accepts two kinds of messages: :read and [:write value].

(defBehavior aCell (Value) ; Value is an acquaintance variable.

(=> :read @ Customer ; Returns cell value to the customer

(become-ready) ; Equivalent to (become aCell Value).

[Customer <= Value])

(=> [:write _NewValue] ; Update the value.

(become aCell _NewValue)))
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The symbol aCell is the name of the behavior, and (Value) is the declaration of an

acquaintance variable

2

Value. Note that the defBehavior form does not immediately

evaluates itself to a cell actor. This is just a declaration for the name of a behavior

description. A new instance of cell actor is created when new form is evaluated. For

example, the expression:

(new aCell 100)

returns the mail address

3

of the new cell actor whose acquaintance variable Value is

initialized to 100.

A script is the prescription of actions in response to incoming messages. It is a

collection of methods (procedures). The following is the syntax for method description.

(=> message-pattern @ customer-variable expression: : : )

The message-pattern | an S-expression | speci�es the format of messages which the

method can handle. It may contain pattern variables | a symbol whose name begins

with an underscore character \ ". Every other symbol in a pattern is regarded as a

constant. Upon receiving a message which matches message-pattern, expressions in the

body of the method (expression: : : ) are executed concurrently.

Suppose that x is a cell actor. To express the transmission of a message :read to x,

the following syntax is used.

[x <= :read @ C]

C denotes an actor called a customer, which is waiting for the result of the computation

performed by x. The value of an expression after @ should be a customer. In a method

description, a variable after \@" (customer variable) is bound to the customers of incoming

messages. In this example, C will be bound to the variable Customer in the script of aCell

and will receive the value of the cell. If no customer is speci�ed, a null actor will be used

as a customer. This syntax on customer follows that of ABCL/1[10].

To change the values of acquaintance variables, instead of using destructive assign-

ment, we have to specify a new behavior called a replacement behavior. When processing

the next message, the replacement behavior will be used. In our syntax, to specify a

replacement behavior, become form is used. Note that at most one become form can be

executed in a method.

(become behavior-name expression: : : )

As in new form, the values of expression: : : will be bound to the acquaintance variables

of the replacement behavior. The form (become-ready) speci�es the current behavior as

the replacement behavior.

2

A notion similar to an instance variable in other object-oriented languages.

3

Abstraction of the location of an actor. It is a notion similar to references.
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2.4 Actors in "S

The Task Handler (�)

Let us look at the actors consisting metacon�guration more precisely. The following is

the de�nition of the task handler �.

(defBehavior aTaskHandler (DB ExtMailer Evaluator)

(=> [:task _Tag _Target _Message _Customer]

(become-ready) ; Immediately after message reception, becomes ready

; for the next message.

[DB <= [:behavior _Target] @

[customer _Value ; a customer waiting for the behavior actor

(case _Value

(is :external ; the target is outside of S.

[ExtMailer <= [:task _Tag _Target _Message _Customer]])

(is _Behavior where (non-null _Behavior)

[_Behavior <= [:do _Tag _Target _Message _Customer

Self DB Evaluator]]))]]))

;; Self denotes the task handler. Not the customer itself.

In De�nition 1, � is the sole instance of aTaskHandler. In �, the values of acquaintance

variables DB, ExtMailer and Evaluator should be bound to �

S

, � and ", respectively.

When � receives a message [:task "t "m "k] (where � = ht; m; ki is a task), it asks

the database actor (�

S

) for the behavior actor of the target actor. As soon as � accepts

the message, it will become ready to receive the next request (see (become-ready)). To

receive the result (a behavior actor) from the database actor, � spawns a customer c

�

(the

value of [customer _Value...]. See the next paragraph). c

�

is an actor waiting for the

value (a behavior actor) from a database entry. When the customer c

�

receives b

�

(which

is bound to the pattern variable _Value), an execution request message [:do ...] is

sent to b

�

with the message value ("k) and the addresses of other actors (�, �

S

and ").

The expression of the form [customer variable expression: : : ] evaluates to a cus-

tomer, which is an actor waiting for the result. This is syntactically equivalent to an

actor creation form ((new : : : )). In the de�nition of aTaskHandler, we can substitute

the customer form with the following form.

(new aTaskHandler_Customer Self DB ExtMailer Evaluator _Target _Message)

The de�nition for the behavior aTaskHandler_Customer is:

(defBehavior aTaskHandler_Customer

(Self DB ExtMailer Evaluator _Target Message)

(=> _Value

(case _Value body expressions described above: : : )))

Variables which freely occur in the customer form (in this case, DB,ExtMailer,Evaluator,

_Target and _Message) will automatically be introduced as acquaintance variables of the

customer actor. Note that the value of the variable Self is overridden by the creator

actor (a task handler actor � in this case). Since the customer's mail address is di�erent

from that of its creator, specifying the replacement behavior within the customer form

does not make sense.
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The Database Actor (�

S

) and Database Entries (e

�

)

The database actor �

S

and database entries e

�

are de�ned as follows. Note that �

S

in

De�nition 1 is the sole instance of aDB.

(defBehavior aDB (Table)

;; Table : a set of handle-entry pairs (handle-entry table).

;; returns a behavior actor (from the task handler �)

(=> [:behavior _Handle] @ Customer

(become-ready)

(case (parse-handle _Handle)

;; when _Handle denotes the address of an actor in S.

(is [:local _Addr]

;; find-entry searches the handle-entry table and returns

;; a database entry actor.

[(find-entry _Addr Table) <= :behavior @ Customer])

;; when _Handle denotes the address of an actor outside of S.

(otherwise

[Customer <= :external])))

;; speci�es a replacement behavior (from the evaluator actor ")

(=> [:become _Handle _Behavior]

(become-ready)

(case (parse-handle _Handle)

;; Here, _Addr denotes an actor in S.

(is [:local _Addr]

[(find-entry _Addr Table) <= [:become _Behavior]])

(otherwise

(error "no such actor!"))))

;; creates a new actor (from the evaluator actor ")

(=> [:new _NewEntry _Handle] @ Customer

(become aDB (add-table _Handle _NewEntry Table))

[Customer <= _Handle])

)

To obtain the behavior actor which represents the behavior of a target actor (say �), the

task handler � sends a message [:behavior "m] (where m is the mail address of �) with

a customer c

�

to �

S

. The database actor �

S

searches the handle-entry table (the value of

the acquaintance variable Table) to �nd the database entry actor e

�

. If e

�

is found, �

S

sends a message :behavior to e

�

with the address of the customer c

�

of �.

While evaluating the script body of an actor, the evaluator " sends messages [:new

: : : ] and [:become : : : ] to �

S

as the evaluation result for (new : : : ) and (become : : : ),

respectively.

The following are the behavior de�nitions of a database entry.

(defBehavior anEntry (Behavior)

;; Behavior : a behavior actor

(=> :behavior @ Customer ; delegated from �

S

(become anEntry-Waiting (empty-queue))

[Customer <= Behavior]))

;;; When some actors have been using the behavior actor.

(defBehavior anEntry-Waiting (WaitingCustomers)

;; WaitingCustomers : a queue of customers waiting for the behavior

9



(=> :behavior @ Customer ; delegated by �

S

;; When someone has been using the behavior, the customer has to wait

(become anEntry-Waiting (enqueue WaitingCustomers Customer)))

;; a replacement behavior is now provided (by the evaluator actor).

(=> [:become _Behavior]

(case WaitingCustomers

(is ()

(become anEntry _Behavior))

;; If someone is waiting the replacement behavior, just pass it to him soon.

(is (_Customer . _Rest) ; The �rst customer is bound to _Customer.

(become anEntry-Waiting _Rest)

[_Customer <= _Behavior]))))

A database entry contains a behavior actor (the value of Behavior). Once the behavior

actor is passed to a customer, the subsequent requests are postponed until a replacement

behavior is provided. Actually, the customers of postponed requests are put into the

queue (the value of WaitingCustomers). In this situation, the database entry has no

behavior actor. Instead, it has a queue.

The replacement behavior (actor) will be provided by the evaluator actor " as a mes-

sage [:become : : : ]. This will be sent to the database actor as the evaluation result of

(become : : : ) expression and will be delegated to the database entry. Then, the �rst

customer (the value of _Customer) waiting in the queue (WaitingCustomers) will be

activated.

Behavior Actors

The following is the de�nition of behavior actors.

(defBehavior aBehavior (Script AcqEnv)

;; AcqEnv is an environment contains the bindings for acquaintance variables

(=> [:do _Tag _Target _Message _TaskHandler _DB _Evaluator]

;; A behavior actor does not specify a replacement behavior.

(case (find-method _Message Script)

(is NIL

(error "Cannot handle the message ~S" _Message))

(is (_MethodBody _Pattern)

;; the body of a method will be executed concurrently under the environment

;; AcqEnv extended with the bindings of message pattern variables.

[_Evaluator <= [:exec-para _MethodBody

(extend-env _Pattern _Message AcqEnv)

_Target _Tag _TaskHandler _DB]]))))

A behavior actor b

�

contains the script description (Script) and an environment for

acquaintance variable (AcqEnv). When b

�

receives [:do ...], an appropriate method

(an element of Script) is searched (find-method), a new environment is created, and

then a message [:exec-para ...] which requests the execution of the body of the script

is sent to the evaluator actor ".

The concurrent evaluator actor " evaluates the body of the script concurrently. Then,

" sends messages [:new : : : ] and [:become : : : ] to �

S

as the evaluation result for (new

: : : ) and (become : : : ), respectively. For details of concurrent evaluation in ", see Ap-

pendix A.
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3 Correctness of "S

Now we will give a brief outline of our proof that "S correctly represents S in terms of

transition relations. A more precise discussion is given in Appendix B.

As described in [1], each transition C

1

�

�! C

2

in �

S

is assumed to be atomic. But

in "S, � is represented as a sequence of transitions | the execution (interpretation) of

� in "S is not atomic | which may interleave with other sequences. This implies that

an arbitrary con�guration in the midst of interleaved transition sequences represents a

mixture of intermediate states of task-processing at the object-level (S). So it seems

impossible to state that which (object-level) con�guration an arbitrary metalevel con�gu-

ration represents. In contrast, a metacon�guration "C clearly represents the con�guration

C 2 �

S

.

First, we show that every con�guration K of "S | even if it is not a metacon�guration

| can be regarded as the representation of a con�guration C of S. To do so, we introduce

a notion of normalization. Then each K 2 �

"S

can be normalized to a con�guration jKj

which is a metacon�guration. So j "Cj ="C holds for each metacon�guration "C.

Then a relation � is introduced in �

"S

: K

1

� K

2

i� jK

1

j and jK

2

j are the same

metacon�guration "C. This means that K

1

and K

2

represents the same con�guration C

at the object-level (S):

metalevel K

1

� K

2

� "C

& # .

object-level C

We show the fact that every con�guration is equivalent (by �) to one and only one

metacon�guration "C. This implies that �

"S

is partitioned by �. We let �[C] 2 �

"S

=�

denote the set of all con�gurations equivalent (by �) to "C.

Furthermore, we de�ne a transition-like relation =) on �

"S

=�. The relation �[C

1

] =)

�[C

2

] means that for any K 2 �[C

1

], there exists K

0

2 �[C

2

] such that K

�

�! K

0

holds

4

.

This represents all possible executions (interpretations) of the transition C

1

�

�! C

2

.

It can be proved that �[C

1

] =) �[C

2

] i� there exists a transition � such that C

1

�

�! C

2

(Theorem 5 in Appendix B). This means that every transition in the object-level can be

representable in the metalevel (completeness), and any actual transition sequence in the

metalevel correctly represents a transition in the object-level (soundness). Thus "S is a

correct metalevel representation of S (see below).

metalevel �[C

1

] =) �[C

2

]

m

object-level C

1

9�

�! C

2

4 Re
ective Computation

4.1 Inter-Level Communication

The basic mechanism which realize re
ective computation is inter-level communication

(communication between the object-level and the metalevel), which is based on the com-

4

This transition sequence should contain one and only one task whose target is a database entry. See

Appendix B.
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position of S and "S. In our model, "S is assumed to implement/interpret S. This

guarantees the causal connectivity between S and "S. Thus we can a�ect computation

in S by sending messages to actors in "S.

From Object-Level to Metalevel

From the viewpoint of S, "S is an actor system outside of S. This implies that messages

sent from an actor in S to one in "S are processed by the external mailer actor in "S.

(defBehavior anExtMailer (DB OtherMailers)

(=> [:task _TagHandle _AddrHandle _Message]

(become-ready)

(case (parse-handle _AddrHandle)

;; messages to an actor in the metalevel "S.

(is [:meta _Addr] ; _Addr = #_AddrHandle

[_Addr <= #_Message])

;; messages to an actor outside of S.

(is [_Mailer _LocalHandle]

[_Mailer <= [:task _Tag _LocalHandle _Message]]))))

# is the reverse of ". # Message is the value in which that every mail address handle in

the value of Message is converted to the real address it denotes. Note that " and # can

be used as primitives of our language ACT/R.

From Metalevel to Object-Level

Similarly, sending messages from the metalevel to the object-level is simple. To send a

message k to the actor whose mail address is m is performed by creating a meta-task

explicitly.

[� <= [:task "t "m "k]]

4.2 Language Facilities for Re
ection

Good language facilities are needed for accessing metalevel actors from the object-level.

There are two approaches to this issue.

� Fixed: Only �xed, pre-declared metalevel actors can be accessed from the object-

level.

� Dynamic: The set of metalevel actors which can be accessed from the object-level

may vary in the course of computation.

In our language ACT/R, a defGroup special form is used for de�ning the template of

a group. The defGroup form includes :export declaration to proclaim which metalevel

actors can be accessed from the object-level. Note that the set of the metalevel actors

declared with :export determines how the metalevel is viewed from the object-level. If an

empty set is declared with :export in a group, no metalevel actors can be accessed from

the object-level. In this case, we cannot perform any re
ective operation in the group.

We can specify arbitrary extra metalevel actors in :export. This enables us to obtain an

appropriate abstract view of the metalevel. An example is given in the next section.
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In ACT/R, the set of metalevel actors accessible from the object-level change in

the course of computation. The :export declaration speci�es only the initial accessi-

ble metalevel actors. The following is the de�nition of a group template named aGroup

in ACT/R.

(defGroup aGroup ; a name of this group template is aGroup.

;; Declaration of instantiation-time parameters.

(otherMailers)

;; Descriptions of the metalevel actors.

:meta ((evaluator (new anEvaluator))

(database (new aDB ...))

.

.

.

(taskhandler (new aTaskHandler database eval ...))

(extmailer (new anExtMailer database otherMailers)))

;; Declaration of which actor serves as the taskhandler actor.

:extmailer extmailer

;; Declaration of which actor serves as the taskhandler actor.

:taskhandler taskhandler

;; Declaration of accessible metalevel actors.

;; In this example, the mail-addresses of eval and database

;; can be accessed with these names from the object-level.

:export ((evaluator evaluator)

(db database))

)

To create a new actor group, new form is used. In this example, a list of the mailers of

other groups is given as a parameter value (is bound to otherMailers).

(new aGroup a-list-of-mailers)

The value of the above expression is the address of the newly created group. The address

of the group is actually the address of the external mailer of the group.

To execute a program in a group, the following special form is used.

(with-group E

G

E

1

E

2

: : : )

Where E

G

is an expression which evaluates to a group (say G), and E

i

(i = 1; 2; � � �) are

any expressions. Each E

i

is executed within the group G, i.e., Actors created as the result

of each E

i

belong to G.

5 An Example: Modeling Migration of Actors

Now we give an example of applications of our framework. The example is inter-group

migration of an actor . By extending the de�nitions of metalevel actors presented in

Section 2.4, we are able to describe a mechanism for inter-group migration of actors.

In this example, a group is an abstraction of a single processor node connected with

other nodes via a network. The following is the de�nition of a group template for a

node.

(defGroup aNode (aMailer aMigrator)

:meta ((evaluator (new anEvaluator))

(database (new aNodeDB (empty-table)))
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(taskhandler (new aTaskHandler database aMailer evaluator)))

:taskhandler taskhandler

:export ((migrator aMigrator))

)

The external mailer will be given as a parameter (aMailer) when a new instance of aNode

is created. In addition, there is another interface actor called migrator , which will also be

given as a parameter (aMigrator). This actor realizes the actual migration mechanism.

We can view these interface actors (external mailer and migrator) as an abstraction of

\ports" in usual network architectures.

The de�nition of a migrator is as follows.

(defBehavior aMigrator (LocalDB NodeSet)

;; Migration request from the object-level.

(=> [:migrate _AddrHandle _DestinationNodeAddr]

;; 1: Obtain the migrator of the destination node.

(case (find-destination-migrator _DestinationNodeAddr NodeSet)

(is _Migrator where (non-nil _Migrator)

;; 2: Ask for the address of the database of destination.

[_Migrator <= :database @

[customer DestinationDB

;; 3: Get the immigrant's new address in the destination node.

[DestinationDB <= :new-immigrant-addr @

[customer NewLocalAddr

;; 4: Perform Migration

[LocalDB <= [:migrate-to _AddrHandle DestinationDB

NewLocalAddr]]]]]])))

)

The value of the acquaintance variable LocalDB is the mail address of the database actor

of the group to which the migrator belongs. The value of NodeSet is a set of (the mail

addresses of) other nodes.

Suppose that N

1

and N

2

are (the address of) nodes. When an actor � in N

1

wants to

migrate itself to N

2

, � sends a message [:migrate "m N

2

] (where m is the mail address

of �) to the local migrator (the migrator of N

1

), say, �

1

. " is needed because we have to

pass the handle of the immigrant to the migrator. Actually, the form:

[migrator <= [:migrate "Self N

2

]]

is executed in the script

5

of � (�

1

is assumed to be accessible via the name migrator

within the node.) �

1

�rst tries to obtain the address of �

2

, the migrator of N

2

(using

find-destination-migrator). Then, �

1

asks for the address of the database actor of

N

2

(�

N

2

), and send a message :new-immigrant-addr to �

N

2

. When �

N

2

returns the new

local address for � in N

2

, �

1

sends a message [:migrate-to : : : ] to the local database

(�

N

1

).

The de�nition of the database actor (aNodeDB) is extended to handle new messages

such as :new-immigrant-addr and [:migrate-to : : : ]. When �

N

2

receives the message

:new-immigrantaddr, �

N

2

allocates a new local address for an incoming actor (immigrant

actor). Actually, �

N

2

creates a new empty database entry actor.

Now, suppose that m is the address of the immigrant (�), and �

N

2

returns "m

0

for the

newly created address in N

2

. When �

N

1

receives the message:

5

Of course, other actors can also make � migrate from N

1

.
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[:migrate-to "m �

N

2

"m

0

]

�

N

1

�rst replaces e

�

(the database entry actor which contains the data for �) with an

actor called migration forwarder. The migration forwarder actually copies the contents

of e

�

to the newly allocated database entry in N

2

. If e

�

does not have any behavior

actor (i.e., � is processing a message), the migration forwarder waits for the incoming

[:become : : : ] from �

N

1

and then performs copying. This implies that running actors

can consistently migrate to other nodes. The more concrete descriptions of aNodeDB and

migration forwarder are found in the �rst author's forthcoming thesis.

Using this migration scheme, and modifying some metalevel actors, we can realize the

following mechanisms. Note that these modi�cation can be dynamically performed in our

framework.

� Call-by-Move:

Actors are usually referred to by their references (mail addresses). By message

passing, mail addresses of actors are passed around in a system. In a distributed

system, inter-node communication between actors signi�cantly increases the number

of remote references. To avoid seriously degrading in system performance, a call-

by-value like mechanism called call-by-move has been proposed[2]. With call-by-

move mechanism, when a message is sent to a remote node, some \light weight"

6

actors whose mail addresses are contained in the message also move (migrate) to the

destination node of the message. In our framework, this mechanism can be realized

by modifying the evaluator.

� Interaction-by-Move:

The mechanism that an actor sends itself (migrates) to its destination node is useful.

For example, consider the situation where a \client" actor wants to use a remote

\server" actor which requires frequent communication (interaction) while using it.

Since the server has much data, it is hard to migrate. To avoid expensive remote

communication, the client actor

7

should migrate itself to the server's place (node).

After using the server, the client actor returns to its original place. This mechanism

can be realized by modifying the task handler and the external mailer to detect

communication frequency.

6 Current Status and Future Work

Currently, experiments on group-wide re
ection using our prototypical re
ective Actor

language ACT/R is in progress. The prototype interpreter written in Common-Lisp is

implemented in a pseudo-parallel manner and will be extended to actual multiprocessor

machines. This implementation is based on the lazy (on-demand) construction of met-

alevel groups. The mechanism for the lazy construction can also be rei�ed/re
ected. The

experiments include: modeling of group communication strategies, dynamically changing

6

Small and immutable objects such as integers or stateless functions are obvious candidates for mobile

objects. To determine dynamically which actors can be mobile is another example of application of

re
ection.

7

If the client actor has tight communication links with its neighbor actors, the neighbors as well as the

client should migrate. This mechanism, group-migration, is an example we are currently investigating.

15



the message delivery mechanism (using Timewarp algorithm), inter-group migration of

actors, adaptive migration of groups, etc.
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A De�nition for the Evaluator Actor "

The following is the de�nition of the concurrent evaluator actor " in De�nition 1. " is the

sole instance of anEvaluator.

Notice that the form (become-ready) appears on the toplevel of each method. This

implies that when " is processing an evaluation request, the subsequent requests can be

concurrently processed. The " can handle a number of evaluation requests concurrently

| this is why " is called the concurrent evaluator.

(defBehavior anEvaluator ()

;; Concurrent evaluation for a list of commands (_Cmds).

(=> [:exec-para _Cmds _Env _Addr _Tag _TaskHandler _DB]

;; The evaluator soon will be ready to execute the next request.

(become-ready)

[Self <= [:exec-para1 _Env _Addr _Tag _TaskHandler _DB 0]])

;; In case of empty expression list...

(=> [:exec-para1 () _ _ _ _ _ _]

;; _ matches any value, and is just ignored (void).

(become-ready))

(=> [:exec-para1 (_FirstCmd . _RestCmds)

_Env _Addr _Tag _TaskHandler _DB _Idx]

(become-ready)

;; The following two expressions will be executed concurrently.

[Self <= [:exec _FirstCmd _Env _Addr (extend _Tag _Idx)

_TaskHandler _DB]]

[Self <= [:exec-para1 _RestCmds _Env _Addr _Tag _TaskHandler _DB

(1+ _Idx)]])

;; Command Execution:

;; 1: Message transmission : [target <= message]

(=> [:exec [_Target <= _Message] _Env _Addr _Tag _TaskHandler _DB]

(become-ready)

[Self <= [:eval _Target _Env _Addr (extend _Tag 1) _DB] @

[customer Target*

[Self <= [:eval _Message _Env _Addr (extend _Tag 2) _DB] @

[customer Message*

[_TaskHandler <= [:task (extend _Tag 0) Target* Message*]]]]]])

;; 2: become form: (become behavior-description expression: : : )

(=> [:exec (become _BehavDesc . _Exps) _Env _Addr _Tag _TaskHandler _DB]

(become-ready)

[Self <= [:evlis _Exps _Env _Addr _Tag _DB] @

[customer Exps*

[_DB <= [:become _Addr

(new aBehavior (script _BehavDesc)

(make-env (vars _BehavDesc) _Exps*))]]]])

;; Expression Evaluation:

;; 1: Constant

(=> [:eval _Const _ _ _ _] @ C where (constant? _Const)

(become-ready)

[C <= _Const])

;; 2: Variable

(=> [:eval _Var _Env _Addr _Tag _] @ C where (variable? _Var)

(become-ready)

[C <= (if (bound? _Var _Env)
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(value-of _Var _Env)

(if (eq _Var 'Self) _Addr

(error "unbound variable: ~S" _Var)))])

;; 3: new actor creation: (new behavior-description expression: : : )

(=> [:eval (new _BehavDesc . _Exps) _Env _Addr _Tag _DB] @ C

(become-ready)

[Self <= [:evlis _Exps _Env _Addr (extend _Tag 1) _DB] @

[customer Exps*

[_DB <= [:new (extend _Tag 0)

(new anEntry

(new aBehavior (script _BehavDesc)

(make-env (vars _BehavDesc) Exps*)))]]]])

;; Evaluate a list of expressions in order and returns the list of results.

(=> [:evlis _Exps _Env _Addr _Tag _DB] @ C

(become-ready)

[Self <= [:evlis1 _Exps _Env _Addr _Tag _DB 0] @ C])

(=> [:evlis1 () _ _ _ _ _ _] @ C

(become-ready)

[C <= NIL])

(=> [:evlis1 (_FirstExp . _RestExps) _Env _Addr _Tag _DB _Idx] @ C

(become-ready)

[Self <= [:eval _FirstExp _Env _Addr (extend _Tag _Idx) _DB] @

[customer FirstExp*

[Self <= [:evlis1 _RestExps _Env _Addr _Tag _DB (1+ _Idx)] @

[customer RestExps*

[C <= (cons FirstExp* RestExps*)]]]]])

: : :

)

Note that the function extend, which is used to extend tags, implements the tag-extension

technique used in Chapter 5 of [1].

B Correctness of "S

First, we de�ne the notion of normalization of a metalevel con�guration, and introduce

an equivalence relation �. Then we de�ne a transition-like relation =) on the equivalent

classes of the metalevel con�gurations. Using these relations, we show that a sequence

of transitions at the metalevel correctly represents the corresponding transition in the

object-level.

Suppose that K is a con�guration of "S. We divide the set of tasks T (K) into two

disjoint sets: T (K) and T (K). The set T (K) contains all the tasks of the following forms

in K:

hu

1

;m

�

; [:task "t "m "k]i

hu

2

;m

�

S ; [:behavior "m]i

hu

3

;m

e

�

; :behaviori

m

�

, m

�

S and m

e

�

are the addresses of task-handler actor (�), database actor (�

S

) and

database entry actors (e

�

), respectively. u

i

(i = 1; 2; 3) and t are tags. The rest of the

tasks are all in T (K).

T (K) = T (K)� T (K)
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We call T (K) a pre-search set and T (K) a post-search set.

T (K) and T (K) represent the two phases of interpretation (execution) of a single

transition at the object-level. T (K) contains tasks whose corresponding behaviors have

not yet been found in database entries. This is why we call T (K) pre-search set. In

contrast, T (K) contains tasks after the corresponding behaviors being found | the actual

execution of behaviors at the object-level is performed by the tasks in T (K).

We de�ne a �nite possible transition sequence in which tasks in T (K) are only pro-

cessed:

K = K

0

�

0

�! K

1

� � �K

k�1

�

k�1

�!K

k

= K

0

where �

i

2 T (K

i

) (i = 0; � � � ; k � 1)

When a transition path �

0

� � � �

k�1

is denoted by p, we write K

(p)

7�! K

0

for the above

transition sequence. Note that K

(�)

7�! K always holds for an empty transition path �.

The number of tasks in T (K) and the number of customers queued in each database

entry are always �nite, and it is guaranteed that customers in a database entry e

�

are

activated one at a time after e

�

accepts a [:become : : : ] message. By induction on the

length of queues (in e

�

) and the depth of expressions evaluated, we have the following.

Lemma 1 For any K 2 �

"S

, it is always possible to �nd a �nite transition path p and

K

0

2 �

"S

such that

K

(p)

7�! K

0

^ T (K

0

) = �

The customers in the queue of each database entry will be activated one by one from the

head of the queue. The other metalevel actors (the evaluator and its customers) except

�

S

never change their states. Moreover, the order of reception of [:new : : : ] messages by

�

S

does not a�ect the subsequent computation. Thus, by the induction on the structure

8

of tags and mail addresses, we have:

Lemma 2 For any K 2 �

"S

, if K

(p

1

)

7�! K

0

and K

(p

2

)

7�! K

00

and T (K

0

) = T (K

00

) = � hold,

then K

0

= K

00

holds.

Lemmas 1 and 2 imply that for K 2 �

"S

the con�guration K

0

2 �

"S

satisfying K

(p)

7�! K

0

and T (K

0

) = � is well de�ned.

De�nition 2 ForK 2 �

"S

, K

�

denotes a con�guration satisfyingK

(p)

7�!K

�

and T (K

�

) =

�.

For K 2 �

"S

, T (K) can be partitioned into T (K) and T (K). Then K

�

can be reached by

processing all the tasks in T (K) (together with the ones caused by those tasks) without

touching any task in T (K). Note that T (K

�

) � T (K) holds. Furthermore, T (K

�

) =

T (K

�

) (T (K

�

) = �) holds.

Now we de�ne the normalization of K. Tasks in T (K

�

) can again be divided into two

groups: the group of tasks whose target is � (namely, tasks of the form hu;m

�

; [:task : : : ]i,

which we called meta-tasks in Section 2.2) and the group of the remaining tasks. It is

clear that each task � in the latter group is originated by a meta-task. We denote such a

meta-task by j� j.

8

For the details of the structure of tags and mail addresses, see Chapter 5 of [1].
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De�nition 3 If � 2 T (K

�

) is a task hu;m

d

S ; [:behavior "m]i or hu

0

;m

e

�

; :behaviori,

then j� j is de�ned as the following meta-task:

hu;m

�

; [:task "t "m "k]i

where � = hu

00

;m; �i and t, u; u

0

; u

00

are tags.

When the taskhandler � receives a message [:task "t "m "k], � creates a customer

actor which contains the metalevel representation "k of the message k (as the value of

the variable _Message). We denote such a customer actor by c[� ].

De�nition 4 (normalization) For K 2 �

"S

, the normalization of K, which is denoted

by jKj, is a con�guration jKj 2 �

"S

de�ned as follows.

T (jKj) = (T (K)� T ) [ fj� j j � 2 Tg

A(jKj) = A(K

�

)� fc[� ]j� 2 Tg

where T is the set of tasks in T (K

�

) whose targets are d

S

or e

�

for some � 2 A(S).

The set T (jKj) only consists of the meta-tasks (of the form hu;m

�

; [:task : : : ]i) which

cause the tasks in T (K

�

). Note again that jKj is a metacon�guration.

The following lemma holds, which means that every K 2 �

"S

represents a con�guration

of S. The proof is straightforward from the construction of jKj.

Lemma 3 For each con�guration K 2 �

"S

, there exists one and only one metacon�gura-

tion "C 2 �

"S

such that jKj ="C holds (namely, for each K 2 �

"S

, there exists a unique

normalization).

Now we can de�ne the relation �.

De�nition 5 For K

1

;K

2

2 �

"S

, we write K

1

� K

2

if there exists a metacon�guration

"C 2 �

"S

such that both jK

1

j ="C and jK

2

j ="C hold.

It is clear that � is an equivalence relation. So we can form the equivalence classes

�

"S

=�. �[C] 2 �

"S

=� is a set of con�gurations of "S which contains one (and only one)

metacon�guration "C and all the con�gurations equal (by �) to "C. Each con�guration

in �[C] represents the con�guration C 2 �

S

.

De�nition 6 We write �[C

1

] =) �[C

2

] if:

8K 2 �[C

1

]9K

0

2 �[C

2

];K

�

�! K

0

where the transition sequence

�

�! contains one and only one task whose target is a

database entry.
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Lemma 4 For any C

1

; C

2

2 �

S

satisfying 9� 2 T (C

1

); C

1

�

�! C

2

, if there exist K

1

2

�[C

1

] and K

2

2 �[C

2

] such that K

1

�

�! K

2

(where

�

�! contains one and only one task �

whose target is a database entry such that j�j ="�)

9

holds, then �[C

1

] =) �[C

2

] holds.

Proof Suppose that � is the task whose target is a database entry e

�

.

K

1

�

�!

�

�!

�

�!K

2

where � = hu;m

e

�

; :behaviori such that u is a tag and m

e

�

is the mail address of the

database entry e

�

. By De�nition 2, for any K 2 �[C

1

], we can construct the following

transition sequence:

K

�

�! K

�

�

�!

�

�! K

0

Clearly, K

0

2 �[C

2

]. Thus �[C

1

] =) �[C

2

] holds.

The relation =) represents all the possible metalevel executions for a transition in �

S

.

The next theorem states that �

"S

=� and �

S

are isomorphic.

Theorem 5 Let C

1

; C

2

2 �

S

. �[C

1

] =) �[C

2

] i� 9� 2 T (C

1

); C

1

�

�! C

2

.

Proof Suppose that �[C

1

] =) �[C

2

]. Then, from the de�nition of �, "C

i

2 �[C

i

](i =

1; 2) holds. There is a possible transition sequence:

"C

1

"�

�!

�

�!"C

2

By De�nition 1, the above is equivalent to C

1

�

�! C

2

. Conversely, from Lemma 4, if we

have "C

1

�

�!"C

2

, �[C

1

] =) �[C

2

].

This theorem means that the execution (interpretation) of an object-level actor system S

at its metalevel "S is complete (every transition path in the object-level is representable

in the metalevel) and sound (every transition path in the metalevel correctly represents

the transitions in the object-level). So the meta-system "S is a correct metalevel repre-

sentation of S.

9

Note again that "� is the meta-task of � . See Section 2.2.
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