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Abstract

Re-use of synchronization code in concurrent OO-

languages has been considered di�cult due to inheri-

tance anomaly, which we minimize with our new pro-

posal. Designed with high practicality in mind, we pro-

pose language primitives (plus their implementation)

with the following characteristics: (1) it allows multi-

ple synchronization schemes|the language schemes for

programming synchronization|to coexist and be inte-

grated, (2) re-use of synchronization code is done sim-

ilarly to sequential OO-languages for user familiarity,

(3) it o�ers high degree of encapsulation|even syn-

chronization schemes could be encapsulated in super-

classes in many cases, and (4) it can be e�ciently im-

plemented on conventional MPPs. We demonstrate the

e�ectiveness of our proposal with solutions to the exam-

ple inheritance anomaly cases from [16]. We also give an

overview of the implementation architecture, along with

preliminary benchmarks. The proposed language prim-

itives are being incorporated into our ABCL/onAP1000

running on Fujitsu's 512-node MPP, AP1000.

1 Introduction

High-performance parallel computing on Massively

Parallel Processors (MPPs) is one of the most im-

portant topics in computer science today. Al-

though most MPP programming still uses tradi-

tional languages such as FORTRAN, several re-

search projects are focused on implementing Con-

current Object-Oriented (OO) languages on MPPs.

Concurrent-OO languages provide high computa-

tional and modeling power through (1) concur-

rency of objects, plus (2) familiar OO-software

engineering concepts such as encapsulation, code

re-use, and application frameworks[32], and can

serve as a powerful platform for parallel appli-

cations on MPPs
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. Much work on establishing

useful concurrent-OO language models have been

quite fruitful: they include Actors[1], POOL[3, 4],

Hybrid[20, 21], ABCL[34], and Maude[17].

Despite such background, plus promising re-

sults in impressive pioneering research systems

such as POOL/DOOM[6], we do acknowledge

that concurrent-OO languages have not yet seen

widespread use in practice. We believe that the

two major impediments are as follows:

`Myth' that `Real'(Parallel) Message Pass-

ing is Slow:

There is still a belief amongst the OO-community

that message passing in a literal sense|parallel

over processor interconnections|is a few orders

of magnitudes slower compared to sequential pro-

cedure invocation. Since most programmers use

sequential-OO languages that implement methods

with plain procedures, the term `message passing'

has become synonymous to `procedure-calling' in

OO-programming. In parallel programming, per-

formance is the key issue, and such unwarranted

`myth' has had negative e�ects.

Inheritance Anomaly|Di�culty in Re-using

Synchronization Code:

Several works have pointed out the con
icts

between inheritance and concurrency in OO-

languages[3, 12, 23, 30, 8], where attempts to in-

herit and re-use the code of concurrent objects re-

sults in extensive breakage of encapsulation. In

[16], we have coined such a phenomenon as inheri-

tance anomaly (See Section 2). One resulting crit-

ical drawback is that it becomes very di�cult to

construct a clean application framework|the most

e�ective OO-software engineering discipline[32]|

1

To quote Robin Milner at ECOOP'91 Object-Based

Concurrency Workshop panel, \I can't understand why ob-

jects are not concurrent in the �rst place (in OO-languages

such as Smalltalk)."
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with concurrent-OO languages.

Very recently, several research groups have so

far been successful in demonstrating that the

slow-performance `myth' can be overcome. In

particular, our work on ABCL/onEM-4[33] and

ABCL/onAP1000[28] have achieves near sequential-

OO message passing performance, as we brie
y

overview in Section 5. The purpose of this paper

is to present our latest results in solving the latter

problem of providing e�cient concurrent-OO lan-

guage design that minimizes inheritance anomaly,

promote code re-use, and aid the construction of

parallel application frameworks. Although some

number of proposals have been made in this regard,

early attempts([12, 30]) were shown to be restric-

tive in [15]. The problem has sparked interest of

several concurrent-OO researchers who have come

out with various `solutions' [26, 10, 13, 11, 18], es-

pecially after circulations of analysis papers such

as [23, 15] and the early draft of [16]. However,

we feel that they were not completely satisfactory

with regards to practical applications.

Our current proposal is designed with high prac-

ticality in mind. It extends and extensively re-

�nes the ideas in the past proposals to (1) sepa-

rate and localize the synchronization schemes from

the main bodies of methods, allowing �ne-grained

inheritance/overriding, and to (2) allow dynamic

operations on the methods themselves, in order to

control which messages are acceptable by an ob-

ject. Furthermore, it has the following novel and

favorable characteristics:

� Our proposal allows multiple synchronization

schemes|the basic language features such as

guards for programming the synchronization

of objects|to coexist and be integrated, so

that the best scheme can be chosen to pro-

gram given synchronization constraints.

� The manner we re-use the synchronization

code is syntactically similar to superclass

method references in sequential OO-languages

(e.g.,super). Thus, users with experience in

OO-programming can readily adapt to our

proposal. Inheritance rules are made to de-

pend on each synchronization scheme, how-

ever, because the most `natural' way of inher-

itance di�ers among the schemes.

� We o�er a high degree of encapsulation and

re-use for synchronization code. Furthermore,

even synchronization schemes could be en-

capsulated in superclasses in many cases by

proper exporting of class information by the

user.

� Expressiveness is not our sole concern|we

have also devised speed- and space-e�cient in-

corporation into the software architecture of

the aforementioned ABCL/onAP1000. In par-

ticular, all space/time-consuming data struc-

ture construction for object synchronization

can be done at compile-time.

Throughout the paper, we demonstrate the e�ec-

tiveness of our proposal by resolving the example

inheritance anomaly cases taken from [16]. We also

give an overview of the implementation architec-

ture, and some preliminary benchmarks that sup-

port our claim of e�ciency. The proposed language

primitives are being incorporated into the MPP

version of our concurrent-OO language ABCL, cur-

rently being implemented on AP1000 and CM-5.

We are also porting practical applications we have

written into the new language (such as N-body sim-

ulation and Genome RNA secondary structure pre-

diction).

2 Background: What is Inheri-

tance Anomaly?

We �rst brie
y outline the inheritance anomaly

problem. For a more thorough analysis, readers

are referred to [16]. In order to control the syn-

chronization between objects, the set of messages

a concurrent object can receive is made to depend

on its state. We call such a restriction on ac-

ceptable messages the synchronization constraint

of a concurrent object. For example, consider a

bounded bu�er with methods put() and get(),

where put() stores an item in the bu�er and get()

removes the oldest one; then, the synchronization

constraint is that one should not get() from a

bu�er whose state is empty, etc. The satisfaction of

constraints is not achieved automatically; the user

must somehow program the methods to implement

the object behavior that satisfy the synchroniza-

tion constraint. Synchronization code is the portion

of the method code where such synchronization is

controlled. Synchronization code of an object must

always be consistent with its synchronization con-

straint; otherwise, semantical error could result.

In order to program synchronization code, a

concurrent-OO language provides some primitives

and/or general schemes for object-wise synchro-

nization, such as guarded methods. We refer to
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the scheme for achieving object-wise synchroniza-

tion using those primitives in the language as the

synchronization scheme of the language. Unfortu-

nately, it has been pointed out that synchronization

code cannot be e�ectively inherited without non-

trivial class re-de�nitions. This con
ict, which we

have coined as inheritance anomaly[15], has been

recently analyzed and categorized[16]. Inheritance

anomaly breaks the encapsulation of classes more

severely compared to sequential OO-languages, be-

cause it is possible to create a general example

where NONE of the parent methods can be inher-

ited. One notable fact is that the occurrence of

inheritance anomaly depends on the synchroniza-

tion scheme of the language; in other words, there

are cases where re-de�nitions are required for one

synchronization scheme while unnecessary in an-

other.

There were several early attempts to provide ro-

bust synchronization code re-use in concurrent-OO

languages (e.g., [2, 9, 12, 30, 19]). They can be

largely classi�ed into those based on guarded meth-

ods, and those based on accept set speci�cation:

The former assigns a boolean guard predicate to

each method, and only messages that satisfy the

guard can be accepted. The latter has an object

specify the next set of messages to be accepted

within its method code. In [16], we have analyzed

three major categories of inheritance anomaly in

those proposals, which are: (1) Partitioning of

Acceptable States (State Partitioning Anomaly),

(2) History-only Sensitiveness of Acceptable States,

and (3) Modi�cation of Acceptable States (State

Modi�cation Anomaly). To aid reader intuition,

we describe each one with a canonical example of

re-using the code of a bounded-bu�er class.

2.1 Partitioning of Acceptable States

(State Partitioning)

State partitioning anomaly occurs in the accept-

set based schemes. Figure 1 is a de�nition of class

b-buf (bounded bu�er) using a synchronization

scheme called behavior abstraction[12], a variant

of the accept-set based scheme: the user speci�es,

within its method code, the next set of methods

that can be accepted by the object with the become

statement followed by the symbolic name of the set.

Addition of new methods in a subclass is handled

by re-de�ning the set to contain the name of the

new method appropriately.

Unfortunately, naive accept-set based schemes

cannot cope with `partitioning' of acceptable

Class b-buf: ACTOR {// b-buf is an Actor

int in, out, buf[SIZE];

behavior:

empty = {put}; partial = {put, get};

full = {get};

public:

void b-buf() {

in = out = 0; become empty;

}

void put(int item) {

in++; //store an item

if (in == out + size) become full

else become partial;

}

int get() {

out++; //remove an item

if (in == out) become empty

else become partial;

}}

Figure 1: B-buf and x-buf with Behavior Abstrac-

tions

state[15]: consider creating a class x-buf2, a sub-

class of b-buf (Figure 2). X-buf2 has an additional

method get2(), which removes the two oldest

items from the bu�er simultaneously. The corre-

sponding synchronization constraint for get2() re-

quires at least two items exist|thus, the partial

state must be partitioned into (1) x-one (only one

item exists), and (2) x-partial (the remaining

states). Then, all the non-initializer methods in

b-buf (i.e., get and put) must be re-de�ned. This

is due to the following reason: the set of possible

`states' an object can be partitioned into disjoint

subsets according to the synchronization constraint

of the object. When a new method is added in the

subclass, this partitioning may require further par-

titioning to account for the synchronization con-

straint for the new method (e.g., get2() above,

illustrated with Figure 3(A)). When this state par-

titioning is determined within the method code us-

ing explicit conditional statements as in the exam-

ple, method re-de�nitions are required, because the

new partitioning must be accounted for within all

the methods. Note that, this is not entirely re-

solved by making accept sets �rst-class values as is

with enable sets[30], because this partitioning can-

not be a�ected by the operations upon the accept-

set data.
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Class x-buf2: b-buf { // x-buf2 is a subclass of b-

buf

behavior:

x_empty = rename empty;

x_one = {put,get};

x_partial = {put,get,get2()} redef partial;

x_full = {get,get2()} redef full;

public:

void x-buf2() { in = out = 0;

become x-empty;

}

intpair get2() { out += 2; //de�ni-

tion of get2

if (in == out) become x_empty;

else if (in == out+1) become x_one;

else become x_partial;

}

//The following re-de�nes the methods in b-buf.

void put(int item) {

in++; //store an item

if (in == out) become x_empty;

else if (in == out+1) become x_one;

else become x_partial;

}

int get() { // requires a similar re-de�nition.

:

}

Figure 2: State Partitioning Anomaly with Accept-

Sets

2.2 History-only Sensitiveness of Ac-

ceptable States

State partitioning anomaly can be avoided with

guarded methods, because they are able to directly

judge whether the message is acceptable or not un-

der a given state. Thus, even if the new meth-

ods were added, the guards would not need be re-

de�ned: for example, the guard (in >= out + 2)

would precisely satisfy the synchronization con-

straint for get2(). However, other types of anoma-

lies occur, as we illustrate in Figure 4: Consider

a subclass of b-buf, gb-buf that adds a single

method, gget(). The behavior of gget() is al-

most identical to that of get(), with the excep-

tion is that it cannot be accepted immediately after

the invocation of put(). As a consequence, both

get() and put() must be re-de�ned as in Figure 4.

The reason for the anomaly occurrence is that we

cannot judge the state for accepting the gget()

message with the guard declarations in b-buf, re-

quiring addition of a 
ag variable after-put and

the associated re-de�nition of guards. To be more

speci�c, gget() is a history-only sensitive method.

Since the proper valuation of this variable must

Set of Possible
States for b-buf

full

empty

partial

x-full

x-empty

x-partial

x-one

Set of Possible
States for x-buf2

partioning of state

(get2 not
acceptable)

(get2
acceptable)

Set of Possible
States for b-buf

full

empty

partial

Set of Possible
States for lb-buf

full

empty

partial
modification of state

= locked (get not acceptable)

(A) State Partitioning Anomaly

(B) State Modification Anomaly

Figure 3: Conceptual Illustrations of Inheritance

Anomalies

be done in all the methods, the requirement of re-

de�nitions of all parent methods arose.

2.3 Modi�cation of Acceptable States

We next consider the Lock class, an abstract mix-

in class whose purpose is to be `mixed-into' other

classes in order to add the capability of locking an

object. Upon accepting a message lock(), the ob-

ject suspends the acceptance of further messages

until it accepts unlock(). When Lock is mixed-

into b-buf to create lb-buf, it should not a�ect

the method codes of b-buf since the state of the

object with respect to lock() and unlock() is to-

tally orthogonal to the e�ect of other messages.

However, this is not the case | we must add an

instance variable locked which indicates whether

the object is currently `locked' or `unlocked'. Then,

the inherited methods such as put or get() must

be overridden in order to account for locked (Fig-

ure 5). What anomaly has occurred here? The

execution of the methods in Lock modi�es the set

of states under which the methods inherited from
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Class b-buf: ACTOR {

int in, out, buf[SIZE];

public:

void b-buf() { in = out = 0; }

void put() when (in < out+size) { in++; }

int get() when (in >= out+1) { out++; }

}

// gb-buf is a subclass of b-buf with gget()

Class gb-buf: b-buf {

bool after-put;

public:

void gb-buf() { after-put = False};

// De�nition of gget()

int gget() when (!after-put && (in >= out+1))

{ out++; after-put = False; }

// The following must be re-de�ned

void put(int item) when (in < out+size)

{ in++; after-put = True; }

int get() when (in >= out+1)

{ out++; after-put = False; }

}

Figure 4: History-only Sensitive Anomaly with

Guards

the parent could be invoked (Figure 3(B)). Thus,

the mixing-in of lock to lb-buf introduces �ner-

grained distinction for the set of states under which

get() (or put()) can be invoked. This would re-

quire the modi�cation of the method guards to ac-

count for the new synchronization constraint, re-

sulting in state modi�cation anomaly.

3 Our Proposed Solution to In-

heritance Anomaly

Recently, several researchers have proposed to

minimize the e�ect of inheritance anomaly and

promote code re-use in concurrent-OO languages

[26, 10, 13, 24, 11, 18]. Altogether, they have iden-

ti�ed to some degree that (1) localization of the

changes in the synchronization code, and (2) �rst-

classing of synchronization schemes (possibly with

re
ection) are signi�cant in providing the necessary


exibility to minimize code re-de�nitions. How-

ever, there are still problems:

(1) Limited Expressiveness/Encapsulation:

We've seen that no single synchronization scheme

would be a panacea for inheriting synchronization

code, i.e., accept-set and guard each has its advan-

tages and drawbacks. Instead, our premise is that

the user should be able to choose the synchroniza-

tion scheme deemed appropriate for a given syn-

Class Lock: ACTOR {

bool locked;

public:

void Lock() {locked = 0};

void lock() when (!locked) {lock = 1};

void unlock() when (locked) {lock = 0};

}

// lb-buf is a subclass of b-buf

// with Lock mix-in

Class lb-buf: b-buf,Lock {

public:

void lb-buf();

// The following methods must be re-de�ned

void put(int item)

when (!locked && (in < out+size))

{ in++; }

int get() when (!locked && (in >= out+1))

{ out++; }

}

Figure 5: State Modi�cation Anomaly with Guards

chronization constraint. This can be achieved by

maintaining the orthogonality/encapsulation prop-

erty not only for the synchronization code, but also

for the synchronization schemes employed in the

superclasses, i.e., the employed schemes are imple-

mentation details that should not be exposed to the

subclasses. The previous proposals restrict the user

to a single synchronization scheme, thus limiting

expressiveness, and/or have not addressed the en-

capsulation issue at all. As a result, re-use that

could lead to inheritance anomaly, which could oth-

erwise be avoided using di�erent synchronization

schemes, become di�cult.

(2) Little or No Implementation/Performance

Analysis:

For all proposals, e�ciency of the implementation

of their schemes have been given little consider-

ation: in particular, none consider whether their

implementation could be done with a compara-

ble e�ciency to sequential OO-languages, say, to

Smalltalk, SELF, or C++. In fact, the overhead for

some of them could easily be hundreds of instruc-

tions per eachmethod invocation, which would pro-

hibit their usage in practical situations.

(3) Awkward Inheritance of Synchronization

Code:

Some proposals allow inheritance of synchroniza-

tion code separately from main method bodies,

but do so in a syntactically and conceptually dif-

ferent way compared to standard method inher-

itance. Thus, users are faced with two di�erent
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inheritance systems, possibly with no obvious con-

ceptual model of how they interact.

Our solution derives from and retains the fa-

vorable characteristics of the previous proposals,

but takes further steps to resolve the above prob-

lems for practical use. More speci�cally, it (1) al-

lows the programmer to achieve encapsulation of

the synchronization code and scheme in the par-

ent classes|the synchronization scheme employed

in a class de�nition can be encapsulated, allowing

the subclasses to employ entirely di�erent synchro-

nization schemes from their superclasses in many

cases, if the superclass exports proper informa-

tion to its subclasses. At the same time (2) the

overhead of synchronization at run-time is mini-

mized by smooth integration of the underlying im-

plementation into the e�cient runtime architecture

of ABCL/onAP1000[28]. Furthermore, (3) inheri-

tance of synchronization code is in principle spec-

i�ed in a similar manner to standard method in-

heritance for user familiarity, but with customized

inheritance rules appropriate for each synchroniza-

tion scheme.

3.1 Overview of Execution Model of

Concurrent Objects

The execution model of our concurrent object

is an extension of ABCM[34], the computational

model for the language ABCL: an object sends

messages asynchronously, either past type (\asyn-

chronously send and no-wait", syntactically de-

noted by Receiver <- Msg) or now type (\asyn-

chronously send and wait for a reply", syntactically

denoted by Receiver <-- Msg). The transmission

order of messages between two objects are pre-

served (transmission order preservation law). The

now-type is similar to procedure call, except that

(1) the receiver can continue its execution even af-

ter it has returned a reply message and (2) the re-

ply destination (reply message box) of a now-type

message is a �rst-class object, which can be passed

around as message arguments.

Upon message reception, an object executes mes-

sages in a mutually exclusive manner. An object is

dormant if it is not processing a message, and ac-

tive if it is. All the messages received during active

mode are placed in its message queue. When in

dormant mode, the object scans its message queue

from its head, and accepts the �rst message that

satis�es its synchronization constraint.

3.2 How do we Inherit Synchroniza-

tion Code without Unnecessary Re-

de�nitions?

In order to eliminate or `minimize' inheritance

anomaly, we propose the combined use of method

sets, synchronizers(extended form of guarded meth-

ods), and transition speci�cations (state transition

directives of accept-sets), that features (1) appro-

priate separation from the actual method bodies,

(2) specialized inheritance rules, and (3) orthogo-

nality between the synchronization schemes. Be-

low, we outline the general principles that guided

the design of our language features.

One of the primary principles of object-orientation

is the encapsulation ofmethods by abstracting their

operations and hiding their underlying implemen-

tation. The only interface open to the outside

world is the set M(C) of methods (or, method

names) that an object can accept for class C. Con-

current objects further impose restriction to this

set depending on its encapsulated `abstract state',

in order to maintain consistency with its synchro-

nization constraint. All the abstract states must

be identi�able within the synchronization code of

classes, with which users control the accept set de-

pending on each state. Such code can be charac-

terized by a mapping from the domain S(C) of ab-

stract state for the class to the powerset of methods

2

M(C)

(i.e., the set of accept sets).

We note that the mapping need not have ex-

plicit representation as a single function within user

method code; rather, it could be `spread out' in

code de�nitions. For example, with method guards

the mapping can be constructed trivially as follows:

For all s 2 S(C),

< s; fm j m 2 M(C);G(m)(s) = trueg >

where G(m) is the guard function associated with

method m in class C .

The internal state of an object can usually be

grouped into equivalence classes depending on pos-

sible accept sets. Conversely, it is usually possible

to discern the internal state of the object by its

current accept set

2

. In other words, we can de�ne

a modulo S(C)=2

M(C)

in a standard way, and let

each element of 2

M(C)

represent the corresponding

partitioned state. Based on this observation, we

provide explicit method sets within our language

2

One could construct cases where this does not hold.

However, such cases would not be in good accordance with

the concept of object encapsulation.
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as user-de�ned accept sets, in order to allow the

programmer to encapsulate the abstract state of a

concurrent object with respect to its synchroniza-

tion constraints.

When an object executes a method, it may cause

a change in its internal state; the state change could

manifest as change in the values of its instance vari-

ables, or could be some `historical state' that does

not. Whatever the case, the transitional behav-

ior between the abstract states is realized by the

underlying implementation of the synchronization

code. By properly de�ning a class so that method

sets precisely describe the abstract states, general

subclassing/code re-use can be done in the follow-

ing way: (1) synchronization code is separated from

the main body of methods, so that they can be in-

herited and re-de�ned separately, avoiding unnec-

essary re-de�nitions of method bodies; (2) if no new

states/transitional behavior need to be identi�ed

in the subclasses, then re-de�nitions can be con-

�ned to static set-operations on the method sets;

(3) if the re-de�nitions a�ect the abstract states in

a non-trivial way as exempli�ed in Section 2 (such

as state partitioning), then the user augments, via

inheritance, the method sets and the transitional

behavior dictated by the synchronization code.

Even for case (3), if the abstract state is inter-

nally identi�able, that is, one can always identify

the abstract state of an object solely from the in-

ternal values of its instance variables, then the pro-

grammer is free to use whatever synchronization

scheme that he deems appropriate in his synchro-

nization code of the subclasses, provided that the

di�erent schemes can be combined orthogonally,

and a new mapping can be constructed transpar-

ently for the methods in the superclasses. In other

words, encapsulation not only of the synchroniza-

tion code, but also of the synchronization scheme

becomes possible in such a case.

In our proposal, the execution model of concur-

rent objects is extended with the following synchro-

nization scheme: First, the object evaluates its set

of synchronizers to determine, within its current

accept set, which messages are acceptable accord-

ing to its current state. The object scans the mes-

sage queue for an acceptable message, and executes

the corresponding method. After its execution is

completed, the object evaluates the transition spec-

i�cation associated with the method, and alters its

accept set with the method sets speci�ed in the

transition. The programmer can choose and com-

bine the synchronization schemes in the synchro-

nization code to best express his synchronization

constraints (i.e., with various forms of synchroniz-

ers and transition types). Both synchronization

schemes are de�ned separately from the main body

of methods, and employ (user-de�ned) method set

in operations upon the accept set. The separated

de�nition is referred to as the synchronization spec-

i�cation of a given class.

In de�ning subclasses, The constituent prim-

itives of synchronization speci�cation|method

sets, synchronizers, and transition speci�cations|

can be individually inherited and re-used in a `�ne-

grain' manner, using a similar syntax to standard

method inheritance but with separate inheritance

rules for each primitive. Furthermore, since the dif-

ferent synchronization schemes|synchronizers and

transition speci�cations|are designed to be or-

thogonal, we achieve encapsulation of synchroniza-

tion schemes when the object state is internally

identi�able.

3.3 Method Sets

A method set is a set of methods (identi�ers) bound

with the corresponding method bodies. It is wor-

thy to note in the outset that method sets are de-

signed NOT to be full �rst class objects, in that

they cannot be assigned to variables and such, and

are only subject to restricted run-time extensions.

This allows the Virtual Function Table (VFT) (the

table that holds pointers to the compiled methods

code according to their method identi�ers) to be

determined at compile time for e�cient execution

and low storage space; the details are discussed in

Section 5.

Primitive method set constructor has the form

#{method name,: : : }. There are also some primi-

tive set operations, such as `|'(union). Other than

within the method de�nitions, the method sets in

the program must be assigned to explicit identi�ers

to be referenced, disallowing arbitrary run-time set

operations. The basic de�nition form is:

mset name #{method name, ...};

Example 1 Consider the b-buf class with the two

methods, put and get:

class b-buf {

method_sets:

// only `put' to empty bu�er

mset EMPTY #{put};

// only `get' from full bu�er

mset FULL #{get};

// both possible otherwise

mset PARTIAL EMPTY | FULL;
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:

}

A method quali�er is a limited form of quali�er

expression to denote a constructor for a set of meth-

ods. The restriction on the quali�er is that the re-

sulting set must be computable at compile time.

Currently, the supported form is as follows:

� all|all the methods of the class including the

inherited methods,

� defined|the de�ned methods of the class,

excluding the inherited ones, and

� all except(method set,: : : )|all the meth-

ods of the class except the ones of the speci�ed

method sets.

Example 2 The following constructs a pair of mutu-

ally exclusive method set: LOCKED is a singleton set con-

taining unlock, while UNLOCKED contains all the meth-

ods de�ned at the class, except unlock.

class Lock {

method_sets:

mset LOCKED #{unlock};

mset UNLOCKED all-except(LOCKED);

:

}

Method set de�nitions can be re-de�ned in sub-

classes. If the overridden de�nitions of the super-

class needs to be referenced, the subclasses may

refer to them using the super operator followed

by the method set identi�er

3

(see Example 3). All

the method sets are recomputed in the subclass to

account for re-de�nitions, so that any changes are

propagated to the derived method sets.

One special case is as follows: when the name of

a method is not syntactically manifest in any of the

method set de�nitions, then the method is called

a synchronization free method. Such a method is

added implicitly and uniformly to all the method

sets of the class. This is to allow non-constrained

methods to be freely invokable by default. When

the method is later explicitly used in a construction

of a method set in a subclass, this implicit addition

is nulli�ed for that subclass and its siblings.

In addition, the method quali�ers are also

(re)computed when one de�nes a new method

in the subclass: for example, if a new method

foo is added in a subclass of Lock, it automati-

cally becomes a member of the UNLOCKED method

3

In practice, matters are more complicated due to multi-

ple inheritance.

set for the class, because UNLOCKED is de�ned as

all-except(LOCKED).

Example 3 Consider de�ning a class x-buf as a sub-

class of b-buf of Example 1 by adding the following

two methods: (1) last, which removes the last element

that was put, and (2) empty? which checks whether the

bu�er is empty or not. Since the synchronization con-

straint for last is identical to that of get, it is added to

the method set where get was a member, namely, FULL.

Method empty? is a synchronization-free method, and

is automatically added to all the method sets. Further-

more, the method sets that were derived from FULL,

i.e., PARTIAL, are also automatically updated in x-buf

as well.

method_sets:

mset FULL super FULL | #{last};

// PARTIAL is automatically rede�ned.

Altogether, method set PARTIAL in x-buf is #{put,

get, last, empty?}.

A method set can be statically bound to a guard

expression (see below), so that a method set in the

superclass can be partitioned into multiple method

sets, depending on runtime object states. Such

guarded method set is introduced to cope with the

state partitioning anomaly, allowing transitions to

have (full) 
exibility of guards. Below is the syn-

tax:

mset name #{method name, ...}

when guard expression;

Note, however, that we do not allow arbitrary run-

time set operations on the method sets; the purpose

of the guarded method set de�nitions is to main-

tain the encapsulation property without method

sets being full �rst-class entities for e�ciency rea-

sons.

Example 4 The following de�nition of PARTIAL al-

lows partitioning of the state in the subclass:

method_sets:

mset PARTIAL super PARTIAL

when (size == 1);

mset PARTIAL super PARTIAL | #{get2}

when (size > 1);

3.4 Synchronizers

A synchronizer is a combination of guard expres-

sions, enabling speci�er, and a list of method sets.

In essence, it is similar to a guarded method, but is

more 
exible in that a single guard can be assigned

to multiple methods in method sets.
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A guard expression is basically a side-e�ect free

boolean expression involving (1) instance variables

and (2) method arguments (in particular, Local

variables of individual methods are not allowed in

the guards to maintain encapsulation). The named

method argument must exist in all the methods

associated with the guard (both for synchronizers

and transitions) or compile-time error will result.

A guard expression can also contain acceptance in-

quiry function enabled() and disabled(), which

takes either a method name or a method set as

an argument. The guard expressions can be as-

signed symbolic names with guard de�nitions, so

that they can be re-used and possibly rede�ned in

subclasses.

guard name guard expression;

The synchronizer thus becomes:

synchronizers:

guard enables method set name, ...;

A special keyword initially can be speci�ed

in place of a guard in order to indicate which

method set is enabled initially upon object cre-

ation. Also, a synchronizer can be chosen NOT

to be inherited for methods in a given method set

with override method set.

Example 5 Synchronization speci�cation for b-buf

can be made with synchronizers in the following way:

guards:

guard empty_g (size == 0);

guard full_g (size == MAX_SIZE);

guard partial_g (!e_guard && !full_g);

synchronizers:

partial_g enables PARTIAL;

empty_g enables EMPTY;

full_g enables FULL;

3.5 Transition Speci�cations

Transition speci�cations can be used as an alter-

native synchronization scheme to synchronizers. A

transition corresponding to a method is executed

immediately after the completion of the method

body. Its purpose is to specify the transitional be-

havior of an object's accept set, that re
ects the

synchronization constraint dictated by the internal

state of the object.

The transitions are speci�ed on a method-by-

method basis, via transition speci�cations for the

method. A method name or a method set is given

immediately after the keyword transition to

specify the transition speci�cation for the method

(or, correspondingly, the member methods of the

method set). The transition speci�cation is com-

posed of multiple lines of transitions. Each tran-

sition is associated with a transition type, followed

by a method set and an optional guard; combined,

they designate the e�ect of the method set upon

the current accept set, such as replacing the cur-

rent accept set with the designated method set, etc.

(described below). The optional guard governs the

condition under which the transition is executed.

Altogether, the syntax of transition speci�cation

for a given method is as follows:

transitions:

transition fmethod-name-or-set1g() {

transition-type-1 method-set

fwhen guard-expression 1g;

:

transition-type-n method-set

fwhen guard-expression ng;

}

transition fmethod-name-or-set2g() {

:

Each guard expression of the transition is evalu-

ated sequentially from transitions 1 through n, and

the transition of the �rst guard to evaluate to true

is executed exclusively. This not only automates

the disambiguation of multiple possible transitions,

but also allows for �ner control of inherited transi-

tions when we consider inheritance.

The currently available transition types are as

follows: become, push, enable, disable, restore,

wait once, enable once, disable once, and is.

Below is their brief description:

1. Become: Replaces the accept set entirely

with the speci�ed method set.

2. Push: Not only replaces the current accept

set with the speci�ed method set, but also

`pushes' it so that it can be restored with a

subsequent restore.

3. Enable: Enables the methods in the

method set in addition to the ones in the cur-

rent accept set. (E�ectively, the new accept

set is the set union of the old accept set and

the speci�ed method set).

4. Disable: Being complement to enable,

disables the methods that are elements of the

argument method set and the current accept

set (e�ectively, the set di�erence is taken).
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5. Restore: Restores the method set to the

one prior to performing push, enable, or

disable.

6. Wait once: The current accept set is

`pushed' and replaced as is with push, but is

subsequently restored with a implicit restore

transition in the next accepted message, just

prior to execution of the real transition. This

e�ectively allows handshaking-type protocol

to be programmed easily, as is with the

wait-for construct of ABCL/1.

7. Enable once, disable once: A combina-

tion of enable or disable with automatic

restore, as is with wait once.

8. Is: A special-purpose keyword to inherit

the transitions of the parent class.

The transition speci�cations of the parent class

are inherited, but overriding them can be done in a

more sophisticated manner compared to overriding

of method sets and synchronizers:

� Each class can have its default transition

speci�cation, indicated by a special keyword

default instead of a method name. If the

method does not have any transition speci�-

cation in its class or its superclasses, the de-

fault transition speci�cation is used if one is

de�ned. The default transition speci�cation

can also be overridden along the inheritance

chain.

� The transition is self method-name refers

to the entire transition speci�cation of that

method, allowing sharing among the methods.

The expression is super method-name is the

similar, except that the search for the corre-

sponding reference starts from the immediate

superclass as is with Smalltalk-80 (with dis-

ambiguation rules for multiple inheritance).

� There is an automatic inheritance rule to re-

lieve the programmer from explicit declara-

tion of inheritance of transition speci�cations:

when one de�nes a transition for a method,

if there are no lines with the is speci�cation,

an implicit super method-name is assumed to

exist as the last transition in the speci�cation,

e�ectively inheriting the entire transition spec-

i�cation of the superclass for the method. (In

order to prohibit this automatic inheritance,

the last line of the transition speci�cation can

made into a special form override.)

� The guard expression can be substituted for

otherwise to be the otherwise transition.

This transition is selected when there are no

guards that become true. When there are mul-

tiple otherwise transitions, the one in the most

speci�c subclass supersedes the others in the

superclasses.

Note that, combined with the ordered evalua-

tion rule of the transitions, the above inheritance

mechanism of transition speci�cations allows the

programmer the freedom to de�ne transitions that

either precede or succeed the superclass transitions

with arbitrary placement of the super. Default

transitions can be referenced by self and super

as well, so that individual methods can customized

upon the default transitions of its superclass.

To clarify the combined e�ect of the above inheri-

tance rules, suppose that we have classes C

1

: : : C

m

,

C

i

inheriting from C

i�1

, all C

i

s de�ning transition

speci�cation for method M as follows:

class C

i

: C

i�1

{

:

transition M(args) {

tr-type

1

i

mset

1

i

when guard

1

i

;

:

tr-type

N

i

i

mset

N

i

i

when guard

N

i

i

;

tr-type

o

i

mset

o

i

otherwise;

:

}}

then, the resulting transition speci�cation for class

C

m

would e�ectively be as follows, after inheritance

has been 'folded out':

transition M(args) {

tr-type

1

m

mset

1

m

when guard

1

m

;

:

tr-type

N

m

m

mset

N

m

m

when guard

N

m

m

;

tr-type

1

m�1

mset

1

m�1

when guard

1

m�1

;

:

tr-type

N

m�1

m�1

mset

N

m�1

m�1

when guard

N

m�1

m�1

;

:

tr-type

1

1

mset

1

1

when guard

1

1

;

:

tr-type

N

1

1

mset

N

1

1

when guard

N

1

1

;

tr-type

o

m

mset

o

m

otherwise;

// otherwisetransition of C

m

takes precedence.

}

Example 6 Here is an alternative de�nition of b-buf

using transitions.

transitions:

transition get() {
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become EMPTY when (size == 0);

become FULL when (size == BUFSIZE);

become PARTIAL otherwise;

transition put() {

// transition of put the same as get

is self get();

}

More comprehensive examples of transition spec-

i�cations are presented in Section 4.

3.6 Inheriting Synchronization Code

When the programmer creates a new subclass, he

(re)de�nes the new methods, and also (re)de�nes

the method sets, synchronizers, and transitions to

satisfy the new synchronization constraint, re-using

much of the synchronization code of the super-

classes. As we have seen, inheritance rules are cus-

tomized for each synchronization scheme accord-

ing to their characteristics. The required updat-

ing of synchronization code is encapsulated within

the synchronization speci�cation of the class, i.e.,

the method sets, synchronizers and transition spec-

i�cations. The main bodies of the methods in

the superclasses, by contrast, are una�ected in

the subclasses, avoiding the inheritance anomaly

and achieving encapsulation. Synchronizers and

transition speci�cations operate in an orthogonal

way, achieving encapsulation of synchronization

schemes when object state is internally identi�able.

In general, inheritance anomaly is avoided as fol-

lows: state partitioning anomaly does not occur

when using synchronizers. For transition speci�ca-

tions, there are two ways of expressing the state

partitioning in the subclasses: �rst is to augment

the sets of transitions with the additional partition-

ing required. By appropriate placement of super,

only the states that are partitioned for the new

methods in the subclass need to be modi�ed, and

majority of the parent transitions are re-used auto-

matically by the implicit inheritance rule of tran-

sition speci�cations. Second is to employ method

sets bound with (dynamically computed) guards.

By describing the new partition of the method

sets with the guards, the transitions in the su-

perclasses can be re�ned with re-de�nitions only

for the relevant method sets. For state modi�ca-

tions such as lock, synchronizers can be re-de�ned,

or alternatively, transitions can also be used e�ec-

tively to `switch' the method sets according to the

state. We do not employ expensive higher-order

term structure encodings and pattern matchings as

in Maude[18], but provide comparable descriptive

power.

4 Examples of Avoiding Inheri-

tance Anomaly

The inheritance anomaly examples in Section 2 are

now programmed using our proposal. We show

that (1) the synchronization code is encapsulated

in the synchronization speci�cations and does not

manifest in the main body of the methods, and

(2) separate inheritance (rules) for method sets,

synchronizers, and transitions allow �ne-grain re-

use of superclass synchronization code, keeping re-

de�nitions very small. Furthermore (3) synchro-

nization schemes are also encapsulated; separate

solutions for the same problem are programmed

using either synchronizers or transitions (except

gget). We also emphasize that synchronization

scheme of the superclasses are also encapsulated,

i.e., the solutions would work irrespective of the

choice of the synchronization scheme in the origi-

nal b-buf �rst presented below:

Bounded Bu�er with Synchronizers:

Class b-buf {

int size = in = out = 0;

int item[MAX_SIZE];

method_sets:

// only `put' to empty bu�er

mset EMPTY #{put};

// only `get' from full bu�er

mset FULL #{get};

// both possible otherwise

mset PARTIAL EMPTY | FULL;

synchronizers:

(0 < size && size < MAX_SIZE) enables PARTIAL;

(size == 0) enables EMPTY;

(size == MAX_SIZE) enables FULL;

methods:

void put(int item) {

size--; out = (out+1) % max_size;

return item[out]; }

int get() {

size++; in = (in + 1) % max_size;

item[in] = x; }

}

Bounded Bu�er with Transition Speci�ca-

tions:

Class b-buf {

int size = in = out = 0;

int item[MAX_SIZE];

method_sets:

mset EMPTY #{put};

mset FULL #{get};

mset PARTIAL EMPTY | FULL;

methods:
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void put(int item) {

size--; out = (out + 1) % max_size;

return item[out]; }

int get() { size++; in = (in + 1) % max_size;

item[in] = x; }

transitions:

// the default transition speci�cation

transition default {

become EMPTY when (size == 0);

become FULL when (size == BUFSIZE);

become PARTIAL otherwise;

}

}

4.1 State Partitioning Anomaly|Method

get2:

The method obtains two elements atomically from

the bu�er. State partitioning in the subclass is

trivially satis�ed with guards. With accept sets,

there are two possible solutions: One is to aug-

ment the transition speci�cations of each method

to realize the partition. The other is to use method

sets bound with guards|method sets are `re�ned'

with guards to dynamically add get2 as an element

depending on the internal state of the object.

Solution with Synchronizers:

Class x-buf2: b-buf { //x-buf2 subclass of b-buf

// Optional re-de�nitions of method sets,

// necessary if the future subclasses

// are to use transitions.

method_sets:

mset FULL super FULL | #{get2};

mset PARTIAL super PARTIAL | #{get2};

mset ONE super PARTIAL;

synchronizers:

(size > 1) enables get2

methods:

int get2() {

// code to return two elements; }

}

Solution with Transition Speci�cations (1):

Class x-buf2: b-buf {

method_sets:

mset FULL super FULL | #{get2};

mset PARTIAL super PARTIAL | #{get2};

mset ONE super PARTIAL;

methods:

int get2() {

// code to return two elements; }

transitions:

// account for new state partitioning

transition default {

become ONE when (size == 1);

// implicit `is super default()'

}

}

Solution with Transition Speci�cations (2):

Class x-buf2: b-buf {

method_sets:

mset FULL super FULL

when (size == 1)

mset FULL super FULL | #{get2}

when (size > 1)

mset PARTIAL super PARTIAL

when (size == 1)

mset PARTIAL super PARTIAL | #{get2}

when (size > 1)

mset ONE super PARTIAL

methods:

int get2(){

// code to return two elements; }

// Transitions need not be re-de�ned

}

4.2 History-Only Sensitiveness|Method

gget in class gb-buf:

Although not all history sensitiveness can be re-

solved with our scheme, cases where only the pre-

vious message a�ects the accept set can be han-

dled gracefully with the family of _once transitions.

Here, we present a solution to the gget method in

gb-buf; notice that the solution works irrespective

of whether b-buf is speci�ed with synchronizers or

transitions. A more elaborate inter-object proto-

col can be designed by the combined use of both

synchronizers and transitions.

Solution with Transition Speci�cations:

class gb-buf: b-buf {

method_sets:

mset AFTER-PUT #{gget};

mset FULL super FULL | AFTER-PUT;

methods:

// gget identical to get except

// for synchronization constraint

int gget() { return super get(); }

transitions:

transition put() {

// Only once immediately after put

disable_once AFTER-PUT;

}

// gget automatically handled by the

// default: transition, if b-buf

// were speci�ed with transitions.

}

As another example of history sensitiveness, we

can simulate the ALTERNATION behavioral class

given by Rheghizzi et. al.[24] as a mixin. We de�ne

two `abstract' method sets FOPS and SOPS in the

mixin to be instantiated by the client subclass; the

accept sets alternate between the two sets on each

method invocation:

Alternation mixin:

class alternate {

12



method_sets:

mset FOPS #{}; // abstract; rede�ned in subclasses

mset SOPS #{}; // abstract; rede�ned in subclasses

transitions:

// Alternate between FOPS and SOPS

transition FOPS() {

become SOPS otherwise;

}

transition SOPS() {

become FOPS otherwise;

}

}

4.3 State Modi�cation Anomaly|Method

Lock/Write-Lock/Unlock:

The write-lock class de�nes a two-level lock

where the method lock locks the object exclu-

sively so that no other methods can access it un-

til it receives a corresponding unlock message,

whereas the write-lock message allows side-e�ect

free methods to be invoked. Write-lock is to be

used as a mixin, so that the invokable methods un-

der write-locked state can be extended in the sub-

classes. It is also straightforward to re�ne the locks

by constructing a hierarchy of locks. Although it is

possible to de�ne write-lock using either synchro-

nizers or transition speci�cations, we only present

the de�nition with the latter for brevity. (Inter-

ested readers are referred to [14] for full details.)

Solution with Transition Speci�cations:

class write-lock {

method_sets:

mset LOCKED #{unlock}

// rede�ned in subclass

mset WRITE-LOCKED self LOCKED;

mset UNLOCKED all-except(LOCKED);

methods:

// Locking can be handled entirely

// with transitions.

transitions

transition lock() { push LOCKED; }

transition write-lock() { push WRITE-LOCKED; }

transition unlock() { restore; }

}

We give two examples of the use of lock: One is

to add a method to the lock class itself which in-

quires the status of the lock, which is not possible

with Fr�lund's proposal[13]. Notice how the inher-

itance of method sets allows easy re-use of existing

lock code:

class lock2: lock {

method_sets:

// Always invokable.

mset ALWAYS #{inquire-lock};

mset LOCKED super LOCKED | ALWAYS;

// WRITE-LOCK is automatically updated

mset UNLOCKED super UNLOCKED | ALWAYS;

methods:

lock_state inquire-lock() { return lock_var; }

}

As an example of use of write-lock as a mix-in,

we de�ne a class lb-buf, which is a bounded bu�er

that allows locking; in particular, if the bu�er is

write-locked, then only the empty? method can be

invoked. Further extensions to lb-buf is possible

by augmenting the method set READ-ONLY. We note

that this type of encapsulated extensibility is much

more cumbersome with other proposed schemes:

class lb-buf: b-buf,write-lock {

method_sets:

// Can be extended in subclasses

mset READ-ONLY #{empty?};

mset WRITE-LOCKED

super WRITE-LOCKED | READ-ONLY;

// No other de�nitions are necessary

// Note that empty? is in both

// UNLOCKED and WRITE-LOCKED

}

5 Overview of Implementing our

Proposal E�ciently

To aim for practical use, our proposal is care-

fully crafted not to sacri�ce run-time execution

e�ciency, despite its expressive power. E�cient

implementation of our proposal is possible as

an extension to the run-time architecture of our

ABCL/onAP1000[28], whose key techniques al-

lowed orders of magnitude improvement in execu-

tion e�ciency:

(1) Integration of Stack-Based and Queue-

Based Scheduling:

The scheduling mechanism of ABCL/onAP1000

avoids unnecessary queue manipulation by employ-

ing e�cient stack-based scheduling as much as pos-

sible, signi�cantly reducing the cost of intra-node

processing.

(2) Multiple Virtual Function Tables (Mul-

tiple VFTs):

Objects synchronize on message reception by pro-

cessing them under mutual exclusion, enqueue-

ing any messages received during the processing.

We eliminate this cost by integrating the synchro-

nization/mutual exclusion check into VFT look-

up, which is a standard scheme for implementing

generic method dispatch in C++. By such inte-
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gration into what is already a necessary cost, local

asynchronous message passing can be optimized to

8-25 SPARC instructions/2.3�seconds. (c.f., C++

virtual function takes 8-10 instructions.)

(3) Active Message-based Inter-node Mes-

sage Sending:

We reduce the overhead of remote message pass-

ing by employing the Active Messages[31] concept,

which by only specifying the address of the message

handler address customized for each message, elim-

inates the tags and the associated overhead caused

by their interpretation. As a result, the cost of

inter-object remote asynchronous message passing

can be low as 8.9�seconds on AP1000.

Other techniques include low latency remote ob-

ject creation via object-address prefetching/fault

function tables, integrated long-range load-balancing

and distributed garbage collection, etc.[28, 29].

The N-queens benchmark on a 512-node AP1000

has so far exhibited 440 times speedup, over purely

sequential C++ code using essentially the same

search algorithm (extra cost includes distributed

termination detection using parallel tree merge).

We have managed to integrate both the syn-

chronizers and the transition speci�cations into the

run-time architecture of ABCL/onAP1000. This

is achieved by (A) creating a set of MVFTs stat-

ically customized with special-purpose procedures

for each method set, (B) augmenting the schedul-

ing of active objects in ABCL/onAP1000, and (C)

incorporating a new run-time structure called a

transition stack. Due to space limitations, we can-

not present the technical details|interested read-

ers are referred to [28, 14].

In order to demonstrate the involved cost, we

give the results of the preliminary benchmarks on

intra-node asynchronous message passings to the

b-buf objects described in Section 4 on AP1000

in Table 1, and also compare the result with

that of the original ABCL/onAP1000. A local

put/getmessage pair was sent repeatedly to a dor-

mant object, and averaged out. For the original

ABCL/onAP1000, a message with null arguments

was sent repeatedly to invoke an empty method.

The cost of unoptimized message passing (includ-

ing guard evaluation for synchronizers and transi-

tions) is approximately twice in comparison to a

null message passing on ABCL/onAP1000. The

compiler can optimize down to ABCL/onAP1000

message passing speed in ideal cases, however,

when the method is a small, leaf method in the

message chain.

The overhead incurred by our synchronization

scheme is signi�cantly smaller compared to other

cost of concurrent execution in our implemen-

tation architecture. Integration of new features

merely tacks on the small di�erence in the over-

head for intra-node messages given in Table 1. Al-

though larger-scale benchmarks are still undergo-

ing, we believe the above �gures, plus the observed

speedups in larger-scale ABCL/onAP1000 bench-

marks, support our claim of e�ciency.

6 Discussions and Conclusion

6.1 WhyMethod Sets are not Full First-

class `Sets'?

Our proposal is carefully crafted to allow the struc-

ture of all the VFTs to be determined statically at

compile time. This is to avoid the necessity of con-

structing or operating upon method sets at run-

time, because such operations are costly: the num-

ber of methods for user-de�ned classes in large ap-

plication frameworks typically exceed one hundred

in real-life settings[7], meaning that each virtual ta-

ble could well be over 400 bytes in size. Thus, the

cost of dynamic creation/copy/updating of virtual

tables would be prohibitive. Another concern is

the storage space; if each concurrent object were to

have a modi�able VFT, it would quickly overwhelm

the available memory space|for example, our 13-

queens benchmark created over 4 million objects,

most of which are simultaneously alive; In this case

VFT alone would consume approximately 1.6 Gi-

gabytes in the system, if we assigned a customized

VFT per each object. One could devise some clever

sharing techniques, but they would involve consid-

erable overhead of indirections as well as run-time

management of sharing.

By contrast, our scheme avoids the necessity of

dynamic construction and direct memory opera-

tions on the VFTs. Even method sets bound with

guards can be case-analyzed at compile time. Since

the maximum number of VFTs generated is bound

by a constant factor proportional to the number of

classes multiplied by the size of the synchronization

speci�cations (method sets + transition lines), the

number remains manageable in practice.

The use of multiple virtual table has been in-

dependently proposed by [25] for supporting �ne-

grained, object-wise protection capabilities. Unfor-

tunately, the proposal involves run-time creation of
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SPARC Instructions

Activity b-buf b-buf b-buf b-buf ABCL/

Synch. Synchrnzr. Trans. Trans.Opt. onAP1000

(Unoptim.) (Optimized) (Unoptim.) (Optimized) (Null Mess.)

Check Locality 4 4 4 4 3

Lookup and Call 6 (w/arg) 6 (w/arg) 6 (w/arg) 6 (w/arg) 5 (wo/arg)

Guard Evaluation 15 7 0 0 0

Switch VFTP to Active Mode 3 0 3 0 3

Execution of Method Body 8 8 7 7 { (empty)

Check Message Queue 3 0 3 0 3

Switch VFTP to Dormant Mode 3 0 3 0 3

Polling of Remote Message 5 0 5 0 5

Transition Execution 11 3 22 14 0

Stack Pointer Adj. and Return 3 3 3 3 3

Total Instrs. (put()) 61 31 56 34 25

Message Instrs. (incl. Guards) 52 22 48 26 25

Total Time (�sec, AP1000@25Mhz) 5.7 3.4 5.5 3.4 2.3

Table 1: Benchmark of Intra-node Message to Dormant b-buf Object on AP1000.

customized virtual table per each object, exactly

what we avoid.

6.2 Inheriting Synchronization Code with

Encapsulation|Good Design is Still

Important

Method sets as `open' interface in inheritance of

synchronization code assimilates the bene�ts of

method inheritance by giving the programmer op-

portunities to augment the synchronization speci-

�cations of the superclasses with very minor mod-

i�cations in a syntactically familiar way. In par-

ticular, our design allows automatic re-use and en-

capsulation in many common situations, promoting

de�nitions of abstract classes that serve as basis of

application frameworks for parallel programs. Still,

language mechanisms alone are not omnipotent,

and we do not claim that our proposal alone is the

panacea; rather, we stress the importance of both

the detailed user knowledge of the synchronization

constraints, and good OO-design disciplines in re-

use. When inheriting methods, it is impossible to

re-use or re�ne them in subclasses, unless the user

has a good understanding of their behavior. Anal-

ogously, the user has to have a good understanding

of the abstract state that each method set repre-

sents plus their transitional behavior when re-using

synchronization code to maintain proper encapsu-

lation.

6.3 Which Synchronization Scheme do

we Use?

The user has the liberty of using the `appropri-

ate' synchronization scheme depending on the syn-

chronization constraint he has to satisfy, and in

many cases either scheme can be used, just as

there are many ways to implement the function-

ality of a method. There are, however, situations

where one is more preferable, depending on (1) se-

mantical and/or (2) e�ciency issues. For exam-

ple, cases involving simple state partitioning are

better programmed using synchronizers, whereas

cases where a certain set of methods needs to be en-

abled/disabled in protocols are better programmed

using transitions. As for e�ciency, the use of tran-

sitions adds an extra overhead of indirection and

transition stack management, but there are cases

where it is better, e.g., when the message queue

of an object becomes long, synchronizers have to

evaluate the guards for each message in the queue,

whereas transitions need not[27]. Establishing a

concrete guideline is a subject of our future work.

6.4 Previous Work

Early idea of separate inheritance of guards/method

bodies/state transitions was given by Shibayama[26],

where methods are categorized into primary, con-

straint, and transition methods, and each can be

separately de�ned/inherited/overridden. The pro-

posal was not as developed nor as practical com-

pared to our scheme, however, for reasons includ-
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ing: (1) there was no way to operate upon sets of

methods as abstract synchronization states of ob-

jects, resulting in lack of encapsulation as well as

other drawbacks such as cumbersome re-de�nitions

when multiple methods are a�ected, (2) almost

identical inheritance rules were applied to each

category, which made code re-use awkward, and

(3) no implementation schemes nor benchmarks

were given|in particular, Shibayama's proposal

requires a number of successive method delegations

to describe state transitions, whose execution could

be a considerable overhead.

Fr�lund has proposed a synchronization scheme

that allows 
exible re-use purely based on guarded

methods[13]. The di�erence is that methods are

essentially disabled with guards instead of being en-

abled as in our proposal. As for semantical issue

of conformance, di�erences are di�cult to judge|

there are cases where `disabling' is better, whereas

one can also consider situations where `enabling'

is better. Both are possible with our scheme, the

former implicitly and the latter via the super ref-

erence to synchronizers of the superclasses. Other

categories of anomalies are not well-handled in [13]:

in the lock example, it is only possible to specify

a single exemption method from disabling with the

all-except(method-name) construct, e.g.,

(lock_var == 1) disables all-except(lock);

Here, it is impossible to add the method

inquire-lock as we did in Section 4, because

all-except(lock) prohibits any further exten-

sions on the constraint on lock_var, which in turn

disallows addition of methods which can be invoked

under the same synchronization constraint as lock.

No implementation issues were discussed, either.

Reghizzi et. al. takes a very conservative

approach[24]: (1) synchronization code is totally

separated within the de�nitions of behavior classes

(b-class), which are mixed into free classes (f-class)

to create classes with appropriate concurrent be-

havior (called b-inheritance in their terminology),

and (2) no further subclassing is permitted once

such mixin occurs (the resulting class is called reg-

ulated classes or r-class). B-classes themselves are

not inheritable either. Mapping between names

in a b-class and actual method names in f-classes

is speci�ed at the time of mixin. Because syn-

chronization code is never inherited, anomaly ob-

viously does not occur. However, the approach

seems too restrictive: aside from the inability to

specialize on concurrent object classes (r-classes),

it would be very di�cult to cope with synchro-

nization constraints that depend on (non-generic)

internal states of objects of speci�c classes. One

interesting point in their work is the comprehen-

sive set of operators available in their synchro-

nization scheme for supporting intra-object con-

currency. Although some of their examples can be

simulated with ours as exempli�ed in Section 4, it

remains to be seen whether their scheme could be

subsumed if we extended our approach to intra-

object concurrency.

Ishikawa proposed a communication mechanism

between concurrent objects that introduced the no-

tion of method set[11], similar but di�erent from

ours. The mechanism is intended for the re-use of

communication protocols more complex than the

standard client-server protocol. It is di�cult to

compare the proposal to ours, because the orig-

inal intent of the mechanism was not on solving

inheritance anomaly. In the paper, Ishikawa does

present a `solution' to the lock example, but the

solution is limited, because as far as we understand

the solution cannot be extended to abstract mix-

in class examples such as write-lock. Also, since

state transitions are directly programmed in the

methods, state partitioning anomaly easily occurs.

Furthermore, no implementation schemes nor per-

formance results were given; in fact we believe it is

di�cult to implement the proposal e�ciently, be-

cause the basic operations require �rst-class opera-

tions on the visible set|which dictates the accept-

set of an object|per each method invocation.

Meseguer recently proposed a solution to the

inheritance anomaly problem with the Maude

language[18], which is base on concurrent rewrit-

ing logic[17]. Inheritance anomaly is avoided in

Maude with side conditions placed on the rewrite

rules of the logic serving as guards, avoiding the

state-partitioning anomaly. In addition, rewrite

rules in Maude can operate on the term structures

themselves as �rst class values, providing implicit

re
ective capabilities. This allows history informa-

tion to be encoded within the term structure of

the class de�nition. For example, the lock exam-

ple can be solved by encoding the class identi�er as

a �rst class value, and using pattern matching on

the identi�er value to distinguish locked and un-

locked state. We have not yet completely analyzed

the di�erence in the descriptive power of our pro-

posal and Maude, but there is a major di�erence

when practice is considered: Although [18] does

give some initial ideas of implementation, it is still

not obvious how Maude can be practically imple-

mented on a conventional MPP. The main problem
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is that, because the solutions are based on a pow-

erful run-time pattern-matching on �rst-class term

values, a single message send could take at the least

several hundreds of instructions, unless some novel

implementation scheme is devised.

6.5 Conclusion and Current Work

The prime objective of OOCP languages is to pro-

vide maximum computational and modeling power

through concurrency of objects plus OO-software

engineering disciplines. Unfortunately, synchro-

nization code is not trivially inheritable due to in-

heritance anomaly. We have investigated various

categories of inheritance anomaly, and presented

language constructs that facilitate multiple syn-

chronization scheme constructs to be integrated,

allowing proper encapsulation as well as e�cient

implementation. Currently, we are working on the

followings:

� Completing the implementation of the com-

piler and the language system. There are

many other implementation issues that we

have investigated, such as concurrent OO-

speci�c optimizations, distributed garbage col-

lection and long-term load-balancing[29], etc.

In particular we are planning to devise more

extensive compiler optimizations to `compile-

away' unnecessary guards and other synchro-

nization code when possible.

� Throughout the paper, inheritance was used

as a means of code re-use. Relationship with

another aspect of inheritance, subtype clas-

si�cations, might be required. Recent work

by America et. al. to separate the subtyp-

ing hierarchy from the inheritance hierarchy in

the POOL family of concurrent-OO languages

such as POOL/I and POOL/S[5, 4] could

bring the two aspects together: in their for-

malism, subtyping relationship is determined

solely by the observed external behavior and

not the internal structure. Using such formal-

ism, it could be possible to `type' the behav-

ior of a concurrent object whose synchroniza-

tion was speci�ed using our scheme. Recent

works towards active type systems e.g., by

Nierstraz[22], could also be bene�cial in this

regard.

� Construction of practical parallel applications

on top of those systems. Applications for N-

body simulation and Genome RNA secondary

structure prediction are being ported.
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