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1 Introduction

1.1 OOCP, Re
ection, and Professional Computing

In the very near future, massive parallel architectures will be available to professionals of numer-

ous �elds in the manner personal computers and workstations are today. Professional computing

is the term we use for describing the computational activities of professionals requiring immense

computational power. We claim that object-oriented concurrent programming (OOCP) serves

as the basis for professional computing.

The ABCL project group, now at the University of Tokyo, is actively engaged in the research

of OOCP[21]. A research conducted by Takuo Watanabe and Akinori Yonezawa of the ABCL

project group has shown that meta-level architectures and computational re
ection play signif-

icant roles for 
exible modeling of activities of concurrent objects. In ABCL/R, a re
ectional

version of ABCL/1, examples were given for dynamic acquisition of methods, monitoring of

objects, and the virtual time algorithm[18].

Fully-re
ectional languages such as ABCL/R, however, tends to experience ine�ciency due

to their interpretive mode of execution. This is a severe disadvantage for concurrent computing,

for substantial gain in the speed of computation is the primary motivation for resorting to

concurrency in the �rst place. Fortunately, for many purposes, full computational re
ection

is not necessary; instead, `partial' re
ection will su�ce. For example, [7] reviews the control-

related meta-level facilities in LISP, such as call/cc. [9] demonstrates the e�ectiveness of partial

re
ection in Object-Oriented languages by extending the VM of Smalltalk so that message

dispatching can be altered by the user. The Metaobject Protocol of CLOS is another example

where partial re
ection is e�ective[2].
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1.2 Dynamic Progression of the Degree of Re
ectivity

Re
ection is especially important in OO-Concurrent systems, where re
ectional capabilities

could be used for dynamic evolution of the system[20]. One of the current goals of the ABCL

project is to build a portable software platform architecture with re
ective capabilities in order

to support dynamically evolving OOCP languages. The platform would serve as a basis for not

only for ABCL but also for various other research in OOCP.

As our research proceeded, however, it became apparent that ad-hoc partial re
ective capa-

bilities were not powerful enough to simultaneously achieve the (somewhat contradictory) goals

of speed/e�ciency versus system 
exibility/evolution | Since our re
ection is partial, there is

some degree of freedom as to how much of the system we could reify within itself. Then, there

is a tendency that, the more we allow the computational structure to be rei�ed/re
ected, the

e�ciency of the system su�ers; for example, it would be di�cult to perform `behind the back'

optimization of objects. This especially poses di�culty in compiled code, where various code

optimizations are natural occurences.

Our solution to this problem is to allow variance in the degree of re
ection; we call our

approach the dynamic progression of the degree of re
ectivity. Re
ection is `lighter' when the

system allows less of the structure/computation to be rei�ed/re
ected. The converse is `heavier'

re
ection. By dynamically adapting to varying degree of re
ectivity according to the necessity

of the meta-level operation to be performed, we can accomplish both good performance and


exible system evolution.

2 The Con
ict Between Synchronization and Inheritance

Before proceeding with describing the essential aspects of our proposal, let us �rst give an

overview of the fundamental problem in OOCP we are attempting to solve with re
ection.

When OOCP languages are put to use in the development of large-scale programs, one of the

prime issues is synchronization of activities of objects in the system: When a concurrent object

is in a certain state, it can accept only a subset of its entire set of messages in order to maintain

its internal integrity. We call such a restriction on acceptable messages the synchronization

constraint of a concurrent object. In most OOCP languages, the programmer gives either

implicit or explicit program speci�cation to control the set of acceptable messages. We call

such speci�cation the synchronization speci�cation. The synchronization speci�cation must

always be consistent with the synchronization constraint of an object; otherwise the object

might accept a message which it really should not accept, causing an error.

Another important facility of OO languages is inheritance. However, it has been previously

pointed out that inheritance and synchronization constraints often con
ict with each other[1,

3, 15]. Some have gone so far as not adopting inheritance in their languages[1, 17, 21, 22],

or employed a 
exible communication mechanism independent of the inheritance hierarchy[12].

Several proposals [4, 5, 6, 10, 14, 16] have been made in the past for controlling the anomaly

arising from their simultaneous incorporation into OOCP languages. However, we can show

that, for proposals which employ method keys (names) for synchronization speci�cations, the

anomaly in inheritance occurs where re-de�nitions of all relevant parent methods are necessary.

Our recent research [13] deals extensively with this subject.

We can also show that this anomaly can be avoided somewhat by attaching a predicate to

each method as a guard for synchronization speci�cation. This scheme, however still has several

drawbacks:

1. naive implementation of guards is not very e�cient, and
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2. some classes of synchronization constraints (trace-only sensitive) cannot be e�ectively

inherited.

The �rst problem can be partially resolved statically with the use of program transformation

which is invisible to the programmer | we can obtain code that is near-optimal in the sense

that the time e�ciency of the code would match that of the code written with the previous

proposals[13]. The second one is more serious: there are methods that have high generality,

such as :lock and :unlock, yet are trace-only sensitive methods. Trace-only sensitive methods

are methods whose synchronization constraint cannot be given as a �rst-order logical formula

whose only allowed terms are either constants or instance variables of the object; terms such

as message keys are not allowed. What this means is that guards alone are not su�cient for

expressing the synchronization speci�cations of concurrent objects.

The ability to partially re
ect upon the message processing of an object provides an elegant

solution to such a problem. Furthermore, we show that, with dynamic progression of degree

of re
ectivity, it is possible to apply the solution without sacri�ces in e�ciency. We are cur-

rently designing a prototype re
ective language, X0/R, whose purpose is to provide an e�cient

metalevel solution to the inheritance anomaly. The remaining sections of the paper will outline

the re
ective features of the X0/R and how it can be used to resolve the anomaly between the

synchronization constraints and inheritance.

3 Re
ective Features of Language X0/R

3.1 Brief Overview of Basic Syntax and Semantics

The syntax and the semantics of the language X0 is similar to that of ABCL/R. Each object

consists of state (instance-var), message queue, and a set of methods (scripts)

1

. A method has

an associated message pattern and a guard. Basically, objects communicate with one another

solely by sending messages. There are two types of messages, the past type (<=) and the now

type (<==). The received message is �rst placed in the message queue. When an object becomes

ready to accept a message, it scans the queue for the �rst message which (1) matches one of

the message patterns, and (2) the corresponding guard evaluates to true

2

. The receiver of the

now type message returns a value with [!value].

3.2 Informal Model of Object Re
ection in X0/R

The model of re
ection we currently employ in X0/R is basically that of languages such as

ABCL/R or 3-KRS[11]; there is one corresponding meta-object per each object. Other alter-

natives could be considered, such as: (1) re
ect upon a system of objects, and/or (2) have

many-to-many relationships between the objects and meta-objects. The reasons for adopting

the current approach are:

� Our prime objective is to realize an e�cient metalevel architecture. Per-object meta-

object is then preferable, as structural re
ection of each object would allow us to optimize

the behavior on a per-object basis.

1

Note that methods and guards in X0/R are actually associated with the class objects and not instances

themselves.

2

This is di�erent from ABCL/R, which always removes the FIRST message from the message queue, and

performs pattern matching against the message patterns. The message which did not match any of the patterns

is discarded | this prevents the violation of the transmission ordering law.

3



� Customization of the behavior of each object is e�ectively achieved with customization

of its meta-object; we do not currently require the added complexity of many{to{many

object{to{meta-object correspondences.

One of the prime di�erence between X0/R and ABCL/R is that we do not associate explicit

evaluator of scripts with each meta-object; this is primarily due to the requirement that we

run compiled code. Another di�erence between X0/R and ABCL/R is the presence of classes.

Classes are themselves objects as in Smalltalk or CLOS, and are totally distinct from meta-

objects. In essence, classes primarily act as prototypes or templates for instance creation,

and instance behavior is more strongly governed by its meta-object. This is similar to the

speci�c meta-object model as was categorized by [8]. With this approach, individual objects can

dynamically alter their `degree of re
ectivity' without the necessity of changing their classes.

3.3 Lightweight Meta-Objects

We let the generic, top-level meta-object be the `lightest' meta-object in the system, meaning

that it is the least capable with respect to re
ection, but is the most e�cient with respect to

code execution. When an instance is created with the default new: message to a class object, its

meta-object, an instance of class Lite-Meta-Object, is created simultaneously and associated

with the object

3

. All other `heavier' meta-objects are instances of meta-object classes that

inherit from Lite-Meta-Object. Below is an outline of the de�nition of Lite-Meta-Object;

most methods are primitive methods de�ned by the system for e�ciency:

[define-class Lite-Meta-Object

[super Object]

[instance-var

(Class) ;; class object of instance

(Inst-Vars) ;; associative vector of instance variables

(Queue) ;; message queue

(Meta-of) ;; meta-object of instance

[primitive [:message M] ;; dispatch method according to message

;; search message queue until a message is found

;; such that it matches a message pattern and the guard is true

;; The guard is found in the class object paired with the method.

;; Invoke the method.]

[primitive [:get-all-guards] ;; collect and return all guards

;; collect the guards up the superclass hierarchy]

...

]

An object has a hidden meta �eld which maintains a link with its initial meta-object. Upon

object creation, this �eld is set to point to its meta-object, and do not allow subsequent access

or modi�cation by the user program. The hidden meta �eld of the meta-object is initially NULL

| by de�nition, an object whose meta �eld is NULL is considered to be an instance of class

Lite-Meta-Object. This is to allow lazy creation of meta-objects to avoid in�nite regression

up the re
ection tower.

3

Notice that the Lite-Meta-Object class object itself is an object-level existence (Figure 1).
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Figure 1: Initial Con�guration Upon Instance Creation

There is an additional instance variable in the meta-object, Meta-Of, which holds a modi-

�able link to the meta-object of an object; this variable is also set to NULL on initial creation,

indicating that the current meta-object matches that of the hidden link. The purpose for

maintaining a separate variable in the meta-object is to easily maintain compatibility between

the normal version of method lookup via the meta-object and the short-circuit version we dis-

cuss below. Figure 1 illustrates the con�guration upon initial creation of instance of class

Bounded-Buffer.

The method :message invokes the generic message handler of the system. Each message

received by an object corresponds to the meta-level reception of the :message message by the

meta-object. The system performs the following optimization to achieve the e�ciency of direct

message lookup: when the Meta-of of the meta-object is NULL, the system short-circuits the

meta-level method lookup for :message, and directly invokes the default message handler. The

method :message may be overridden by `heavier' meta-object classes to customize the method

dispatch; in such a case, the short-circuit optimization is naturally inactive.

3.4 Meta-Object Access and Lazy Meta-Meta-Object Creation

There are two special forms to go up/down the re
ective tower as in ABCL/R: [meta x] and

[den x]. For a given object x, let x " be the meta-object of x. Then, [meta x] � x ", and
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[den x] is its inverse, i.e. for a given y such that y = x ", [den y] � x. [meta x] could be

regarded as being equivalent to the following de�nition:

[meta x] � [x <== [:meta]]

where :meta is a generic method de�ned at the top class in the class hierarchy, Object:

[public [:meta]

[temporary My-Meta]

(set! My-Meta [[meta Self] <== [:get-meta-of]])

(if (null? My-Meta) ;; if Meta-Of field is NULL

(begin ;; then set it to the current meta-object

[[meta Self] <== [set-meta-of! [meta Self]]]

[! [Self <== [:meta]]]

[! My-Meta]])] ;; else return the current value of Meta-Of

The reader may have already noticed that the de�nition of [meta x] is cyclic | in practice,

the system `cheats' and returns the value of the hidden meta �eld when appropriate.

The meta-object of a meta-object (the meta-meta-object) is created lazily when [meta : : :]

is evaluated. After its creation, the meta-object attains the ability to receive meta-level mes-

sages. This guarantees that the meta-object will be able to receive meta-level messages when

necessary, for it is impossible to designate a meta-object as a target of the message otherwise

(Figure 2).

4 Metalevel Solution to Inheritance Anomaly

4.1 The Bu�er-With-Lock Example

We now give an example of how dynamic progression of degree of re
ectivity provided in X0/R

would provide a solution to the inheritance anomaly problem while retaining high e�ciency.

We will inherit from the Bounded-Buffer class, adding the :lock and :unlock methods, in

order to create the Buffer-With-Lock class. An object, upon accepting the :lock message,

will be `locked', i.e., will suspend the reception of further messages until it receives and accepts

the :unlock message.

As we had noted earlier, :lock and :unlock are examples of trace-only sensitive methods

that cannot be e�ectively inherited with object-level programming. By employing meta-level

operations, however, one would be able to inherit all methods de�ned at the Bounded-Buffer

class, and furthermore, all methods de�ned at the subclasses of Buffer-With-Lock will not

require any special protocols for maintaining the synchronization constraint of the locks. Below

outlines a very simple de�nition of :lock and :unlock:

[define-class Buffer-With-Lock

[super Bounded-Buffer]

[instance-variables Saved-Guards]

[public [:lock]

(set! Saved-Guards [[meta Self] <== [:get-all-guards]])

[[meta Self] <== [:set-all-guards! '#f]]
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[[meta Self] <== [:set-guard! 'unlock '#t]]]

[public [:unlock] when #f

[[meta Self] <== [:set-each-guard! Saved-Guards]]]]

These de�nitions, unfortunately, do not work. The reason is that we cannot modify the

guards of a single object, for the guards are actually associated with the class object, and are

shared by multiple instances of the same class. In more precise terms, by default the meta-

object is a Lite-Meta-Object; then, although it is possible to reify the guards, it is impossible

to re
ect the guards into meta-level and maintaining the causal connection.

In order to resolve this situation, we de�ne a `heavier' meta-object, which allow more ex-

tensive degree of re
ective operations on guards. We inherit from Lite-Meta-Object to create

the class Meta-Object. It adds an instance variable guardset, in which guards that correspond

to each method are stored. the method :message is re-de�ned to refer to the stored guards if

they are present. The method :get-all-guards is also re-de�ned, actually causing change in

the way guards are rei�ed. (This indicates that monolithic rei�cation/re
ection would not be

su�cient in systems with dynamic progression of degree of re
ectivity.)

[define-class Meta-Object

[super Lite-Meta-Object]

[instance-var

Guardset)] ;; an associative vector of guards

[public [:message M] ;; overrides Lite-Meta-Object

;looks at guards in Guardset instead of inherited guards

... ]

[public [:set-guardset! Gs]

(set! Guardset Gs)]

[public [:get-all-guards] ;; overrides Lite-Meta-Object

(if (nil? Guardset)

(set! Guardset [Super <== [:get-all-guards]])

[! Guardset]]

[public [:set-guard! M G] ;; overrides Lite-Meta-Object

(if (nil? Guardset)

(set! Guardset [Super <== [:get-all-guards]]))

(assoc-set! Guardset M G)]

[public [:set-all-guards! G] ;; overrides Lite-Meta-Object

... ]

[public [:set-each-guard! Gs] ;; overrides Lite-Meta-Object

... ]

]
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4.2 Automation of Dynamic Progression

The above example presented the meta-level solution to the inheritance anomaly. But why do

we not assign the Meta-Object as a default meta-object for the class Buffer-With-Lock? The

reason is that message reception/method dispatch of Lite-Meta-Object is very e�cient due to

the default optimization provided by the system, and since not all lockable objects would require

locking, we would like to take advantage of the e�ciency as much as possible. We therefore

dynamically progress the degree re
ectivity only when necessary.

Alteration of the meta-objects to a `heavier' one is done on demand. To accomplish this, the

de�nitions of the :set-guard and other side-e�ecting methods in Lite-Meta-Object coerces

the meta-object of the denoted object from Lite-Meta-Object to Meta-Object. The coercion

takes place only when necessary, when side-e�ecting re
ective operations are performed on

the guard (see the :set-guard! method example below). This allows us to maintain the

e�ciency provided by Lite-Meta-Object for the majority of Buffer-With-Lock objects which

might not require locking. In addition, the coercion need to be performed only once; therefore,

subsequent re
ective operations on the guards (e.g., :lock) will require little overhead. Figure

3 illustrates how the meta-object has been exchanged dynamically to a Meta-Object for a

Buffer-With-Lock object.

;; methods for Lite-Meta-Object

[local [:coerce-meta-object! C]

[temporary new-meta]

(set! new-meta [C <== [:new [den Self]]])

[new-meta <== [:set-guardset! [Self <== [:get-all-guards]]]]

(assoc-set! Inst-Vars 'Meta-Of new-meta)]

[public [:set-guard! m g] ;; set new guard to corresponding message

[Self <== [:coerce-meta-object! Meta-Object]]

[[meta [den Self]] <== [:set-guard! m g]]

[public [:set-all-guards! G] ;; overrides Lite-Meta-Object, similar

... ]

...

In order to to maintain the `progressiveness' of degree of re
ectivity, the system does not

allow arbitrary meta-object to be speci�ed for replacement: the class of the meta-object is

currently restricted to be a descendent of the class of the `lighter' meta-object.

Notice that the object will remain to be an instance of the same class although the class

of its meta-object progresses. This allows us to avoid the various complex semantical issues

involving dynamic change of class membership.

5 Conclusion and Future Work

The prime objective of our work is to provide maximum computational power through concur-

rency of objects. At the same time, the system must be 
exible and dynamically con�gurable,

as concurrent computational system is highly complex, and must change and evolve to adapt

to the requirements of the user. Some ideas that have 
ourished in the sequential OO world
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such as inheritance have similar objectives; unfortunately, as we have stated, synchronization

constraints and inheritance have con
icting characteristics and thus it is di�cult to combine

them in a clean way. Re
ective architecture would provide solutions to this and many other

problems facing a OOCP system, both theory and practice: for example there is another re-

search being conducted by the ABCL group in which a group of objects are re
ected in the

metalevel as a unit[19]. This would serve as a model for more complex systems with di�erent

underlying abstractions, such as operating systems.

Dynamic progression could be regarded as somewhat being restrictive compared to arbitrary

modi�cation of the behavior of the meta-objects. The argument on our side is that we intend to

run compiled and optimized code. If arbitrary modi�cation is possible, then the computation of

the meta-object must be totally re
ected in the meta-meta object. Then, the execution of the

meta-object would be interpretive, meaning that meta-level operations such as method lookup

are executed in an interpretive mode of execution. This clearly con
icts with our interests for

achieving high degree of performance with compilation.

Instead, our approach in e�ect pre-fabricates the necessary meta-objects. We avoid the cre-

ation of meta-objects with ad-hoc behavior by utilizing the specialization in the is-a inheritance

hierarchy for de�ning `heavier' meta-objects. Furthermore, with dynamic progression, we re-

tain the e�ciency of compiled code and system optimization; expensive meta-objects allowing

more extensive meta-operations are used only when necessary. And even then, the execution of

methods is possible with compiled code.

The current status of X0/R is that we have started its implementation on top of Scheme.

We are also currently investigating if the progression can be taken further in the cases where the

underlying representation of a object would change drastically due to optimization, yet would

present the user with an old representation of the object. For example, the optimization program

transformation in [13] alters the structure of the object so that an object would have multiple

message queues. Although the transformation schema itself is sound, we would like to present

the user with a monolithic model of objects and also maintain consistent causal connection

between the object and its meta-object. Our solution is to create a `heavier' meta-object class,

Optimized-Meta-Object; its de�nition is sketched below:

[define-class Optimized-Meta-Object

[super Meta-Object]

[instance-var

(Queues) ;; set of message queues for each guard

(Methodset) ;; an associative vector of scripts

[public [:message M] ;; overrides Meta-Object

;does not perform dynamic method lookup, but instead accesses

;Methodset

... ]

...

]

Upon receiving the message [:optimize-transform], the object would ask its meta-object

to perform the transformation, and switch the meta-object to Optimized-Meta-Object. Then,

the Optimized-Meta-Object would be responsible for creating the illusion of the old object

structure, such as a single message queue. With this schema, transformation of an arbitrary

object is possible irrespective of its class.
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