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Abstract

When Object-Oriented languages are applied to distributed problem

solving, the form of communication restricted to direct message sending is

not flexible enough to naturally express complex interactions among the

objects.  We transformed the Tuple Space Communication Model[29] for

better affinity with Object-Oriented computation, and integrated it as an

alternative method of communication among the distributed objects.  To

avoid the danger of potential bottleneck, we formulated an algorithm that

makes concurrent pattern matching activities within the Tuple Space

possible.

1. INTRODUCTION

1.1 Object-Orientation, Distributed Systems and Distributed

Problem Solving

The goal of computer systems is to solve problems.  Complicated

problems are decomposed into sub-problems.  Decomposition may be

from different viewpoints, such as procedural, functional, or Object-

Oriented.  At the same time, systems have become distributed due to

lower CPU cost and faster communication speed.  Linguistic supports for

programming in the distributed systems are provided by

concurrent/distributed languages.  In the field of distributed problem

solving, problem solving has become distributed among multiple

knowledge bases.

In solving problems, one of the most attractive attributes of Object-

Oriented languages is to allow natural modelling of physical entities in the

user's problem domain.  Each object can represent actual physical entity

of the real world, such as a car or a human being, or more abstract

concept, such as time or date.  The behavior of an object is the definition

on how it will react to external events.  It is the simplified subset of the

behavior of its counterpart in the real world.  Concurrent interaction of the

objects with each other is the metaphor of collective behavior of solver-

entities in actual problem solving.

In the study of distributed systems, one objective is to provide

powerful linguistic support for concurrent programming. Various

distributed languages have been proposed as a result;  they include: ADA

[1], Cell [2], Concurrent Pascal [3], CSP [4], Distributed Processes [5],

Euclid [6], PLITS [7], and Synchronizing Resources [8].  Since Object-

Oriented computational model is based on message passing, we will

concentrate on discussing main design issues of communication

primitives [9] in those languages.

One issue is the synchronization  of messages, in other words,

whether message sends are synchronous (CSP, ADA), asynchronous

(PLITS), or both (Synchronizing Resources).

Another issue is the form of communication.  This addresses the the

relationship between the senders and the receivers in the communication.

They include:
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• symmetry of communication — symmetric or asymmetric

(master-slave)

• correspondence  of communication — 1 to 1, 1 to n, n to 1, or

n to n.

• scope of communication — to whom the message can be sent.

The issue that closely affects the correspondence and the scope of

communication is the naming scheme or addressing of processes.  [10]

categorizes four types of possible naming schemes:

• Implicit addressing allows a process to communicate with a

single parent process.

• Explicit addressing w makes the process name its target

explicitly.  It requires global knowledge of a name source

containing the identites of all the processes in the system.

• Global addressing associates global names with local

mailboxes.

• Functional addressing establishes connections based on the

need to serve or request of service.  The service path such as a

port identify the process at the other end.

Here, we define direct message send as the form of communication

whose correspondence is 1 to 1, whose scope is global, and whose naming

scope is explicit.

1.2 Concurrent/Distributed Object-Oriented

Languages

In a distributed Object-Oriented environment, the objects may reside

within different addressing spaces with no means of sharing, and

communicate with each other by sending messages.  In order to provide

linguistic support for such an environment, there have been many

proposals of concurrent/distributed Object-Oriented languages in the

recent years;  to date, they include:  Act␣1 [11], Act␣3 [12], ABCL [13],

CLIX [14], Concurrent Smalltalk [15, 16], Emerald [17], Orient84/K [18],

POOL-T [19], and Vulcan [20].  Their common properties are to model

the objects as concurrent entities which actively exchange messages with

one another, namely actors [21] or concurrent objects [18].  [19] states

that concurrency in Object-Oriented languages can be seen from the

standpoint of conventional parallel programming, as characterized by [9].

[22] compares Object-Oriented languages against conventional languages

for distributed systems.  [23] focuses on the deadlocking problem that

occurs when delegation is used as the mechanism of knowledge sharing in

concurrent Object-Oriented languages.  [24] investigates the difference

between inheritance and subtyping, and the potential problems when

incorporating them into a distributed Object-Oriented language.  [25]

discusses several design choices when class information is distributed in

Smalltalk-80 [26].

1.3 Problems in Current Concurrent/Distributed

Object-Oriented Languages

We believe that one of the essential characteristic of Object-

Oriented systems is to provide means for the user to define objects so that

he can implement the model of his particular problem naturally on the

system.  Most Object-Oriented languages are robust from this viewpoint:

by using inheritance, entities can be grouped according to similarity in

their properties, and only their peculiarities need to be distinguished with

subclass relations.  As a result, inheritance has been studied extensively,

theory and practice.

However, most current distributed Object-Oriented languages

assume that the interactions among the objects are done solely with direct

message sends, despite many studies of distributed languages which state

that explicit naming of processes is restrictive [9, 10], and proceeds to

investigate more powerful and effective communication primitives.

In distributed problem solving, the interactions among the

cooperative entities can vary in a number of complex ways.  For example,

the contract net protocol [27] requires broadcasting of the announcement

of eligibility requirements to a set of potential contractors by the manager.

If only direct message sends were available, the manager, in turn, must

send a message to each contractor he has to his acquaintance (Figure 1.1).

As a consequence, the manager must have explicit knowledge of all the

contractors that can take part in the bidding.  When a sub-contract is

announced by the contractor, it must have a knowledge of potential sub-

contractors as well, and so on.  This spoils the initial intention of the

contract net protocol, in that one of the favorable characteristics of the

protocol was that automatic distribution of the problem is achieved

through content-directed procedure invocation.

The disadvantage further manifests itself when a new solver is

added;  then a painstaking process of adding the solver to the

acquaintance set of each manager and solver must be performed (Figure

1.2).  This calls for enumeration of all managers and solvers in the

system, requiring maintenance of some global set holding such

information.  Such maintenance usually requires explicit programming,

introducing various unnecessary details into the program.  The result is

that we have drifted far away from the original intent of Object-

Orientation, where 'natural programming of problem at hand is possible.'

C M

S 1 S n    

C M

S 1 S n

S

Figure 1.1 Figure 1.2

We claim that the root of some of the problems encountered when

attempting to distribute current Object-Oriented systems [25, 28] lies in

the restrictiveness of communication.  Direct message sending may be

appropriate for direct communication to tightly coupled objects, but lacks

robustness in many respects.  Extending the synchronization of

communication alone is only a partial solution.  We need a new model of

communication that has high affinity with the Object-Orientation, while

powerful enough to resolve all the problems we have presented.

2. THE T UPLE S PACE COMMUNICATION

MODEL

2.1 Basic Concepts of Tuple Space Communication

Model

Tuple Space Communication,  alternatively G e n e r a t i v e

Communication, was first proposed by D. Gelernter as a fundamental

communication model for Linda [29], a language for distributed systems.

Individual processes communicate with each other via a medium called
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the Tuple Space.  The list of formal and actual arguments given in the

send request forms a Tuple.  The sender process inserts the Tuple into the

Tuple Space.  Each Tuple is a unique, independent existence in the Tuple

Space.  The receiver process gives its own list of arguments in its Tuple

withdrawal request.  Withdrawal occurs when there is a Tuple matching

the receiver's specific request;  otherwise, the receiver process waits until

such a Tuple becomes available in the Tuple Space.  The receiver obtains

the necessary information from elements of the Tuple where the formal

argument of the receiver matched the actual element of the Tuple

Gelernter defines three basic operations of the Tuple Space

communication.  The operation  out(P1,␣...␣, Pj)  outputs the Tuple

consisting of elements  P1,␣...␣, Pj  into the Tuple Space.  The operation

in(P1,␣...␣, Pj)  withdraws a Tuple matching  P1,␣...␣, Pj  from the Tuple

Space.  The operation  read(P1,␣...␣, Pj) reads the content of the Tuple

matching  P1,␣...␣, Pj  but does not extract it from the Tuple Space.  A

single Tuple may match several receivers waiting with the in() or the

read() operations, and it is logically non-determined as to which one will

match and extract the Tuple.  Alternatively, multiple Tuples may match a

single in() or a read() by a receiver;  in this case, only a single Tuple may

be extracted.  All the operations are atomic, i.e., a single Tuple may not

partially instantiate a receiver's request, but rather, can only be extracted

as a whole.

The first necessary condition for a Tuple to match the receiver

operation is that its arity, i.e., the number of elements, matches that of the

receiver request.  Next, individual elements of the Tuple must match the

corresponding arguments of the receiver operation.  There are four

possible combinations of formal and actual arguments.  Below, the LHS

of the expression denotes the argument of the out() operation (which

becomes the element of the Tuple), and the RHS denotes the argument of

the in() or read() operation.

• formal × formal — Formals never match formals.

No value passing occurs.  (Alternatively, a match could be

defined if the their types match.)

• formal × actual — A match occurs if the types of

both arguments match.  No value passing occurs (inverse

structured naming).

• actual × formal — A match occurs if the types of

both arguments match.  The formal argument of the receiver is

instantiated with the value of the sender argument.

• actual × actual — A match occurs if the types and

the values of both arguments match.  Global identifiers can be

given by both sides to specifically select a Tuple in the

communication.

Gelernter identifies several distinguishable properties of the Tuple

Space communication.  Communication orthogonality means that the

sender and receiver are equivalent in their functionality, and that both the

sender and the receiver need no direct prior knowledge of each other.

This is contrary to message sends in Object-Oriented languages, where

the receiver needs to be a member of the sender's acquaintance set, and

the receiver must be explicitly named in the message send statements.

Space uncoupling, time uncoupling, and distributed sharing are derived

directly from this property.  Free naming means that  the elements of a

Tuple can be used to name it with a structured identifier, whereas other

programming languages impose a single naming scheme for identifying

the receiver.  This allows the communication operation to have support

for continuation passing and structured naming.

2.2 Transformation of the Tuple Space

Communication Model in Distributed Object-

Oriented Computing

We claim that the problems in distributed Object-Oriented

languages can be resolved with Tuple Space communication integrated as

a fundamental communication functionality among the objects.  However,

the original model of Tuple Space communication is deficient in several

respects if it is simple-mindedly blended into Object-Oriented languages.

Fundamental transformation of the semantics of the communication

model must be made in order to correct the deficiencies and extend its

power.  The transformed model merged with Object-Oriented model of

computation forms a new model, whose power is sufficient to serve as a

solutions to the problems presented.  For each transformation, we show

the deficiencies present in the original model and how they are corrected.

Transformation 1:␣Object-Orientation of Tuples and Tuple

Spaces

In the actor model, messages themselves are considered to be first-

class objects.  This is necessary in facilitating message delegation of

opaque objects.  In many Object-Oriented languages, however, messages

are usually not regarded as first-class objects.  In Smalltalk-80, for

example, the message selector and message arguments are objects,

whereas the message itself is not an object1.  One cannot, for instance,

send a message to a message.

By contrast, in Tuple Space communication, objects communicate

using Tuples; as a result, it is natural to regard Tuples as objects.  The

functionality of Tuples can then be defined in a manner consistent with

other objects in the system.  The advantages are:

• An object can retain the message even though it may not have

the ability to understand it:  Later on, by gaining the ability,

the message can be processed.

• An object may delegate the message freely to other objects,

regardless of its ability to understand it.

• A Tuple is subject to garbage collection.

The first property is essential for maintaining time-uncoupling

property when the actions of the objects can be altered dynamically, such

as the enhancement mechanism in [30].  The second property allows

transparent delegation, a non-elegant task in some Object-Oriented

languages.  The third property implies that a Tuple used in one

communication may be re-used in another communication.

Transformation 2:␣Communication Orthogonality between

Sender and Receiver Tuples

In the original model, the sender creates a Tuple by giving the

specification of the Tuple in the out() operation (Figure 2.1.A).  The

receiver, in turn, gives a specification of the Tuple it wants to match in the

in() or the read() operation, then extracts the matching Tuple (Figure

2.1.C).  In this model, the creation of the Tuple is only done implicitly by

the sender.  Here, violation of communication orthogonality is apparent:

1  In Smalltalk-80 , class Message exists for the use by a simulator that is

invoked by the debugger.
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the sender may pass the Tuple to other senders who have no knowledge of

the entire specification of the Tuple, and they may use the Tuple with no

modification or only partial modification of the elements they do know

about.  However, on the receiver side, the entire receiver specification of

the Tuple must be revealed and shared among the receivers1.

In order to overcome the deficiency, we modify the model so that

both the sender and the receiver output Tuples into the Tuple Space

(Figure 2.2.A).  We distinguish them by referring to Tuples created by the

senders sender Tuples, and those created by the receivers receiver Tuples.

The sender and receiver Tuples mutually check each other for a match.  If

a match occurs, unification of the Tuples occur by the formal elements of

the receiver Tuple being instantiated by the corresponding actual elements

of the sender Tuple (Figure 2.2.B).  Then, the unified Tuple is returned to

the receiver (Figure 2.2.C).  Orthogonality is maintained with this model,

as both the sender and the receiver Tuples may be shared among the

clients; still, the flow of information is still one way.  Also the distinction

of the Tuples is made only by the roles they play in the communication;  a

Tuple serving as a receiver Tuple may serve as a sender Tuple in another

situation, or vice-versa.

sender

Tuple Space

Tuple

receiver

A

sender

Tuple Space

Tuple

receiver

Tuple

A

sender

Tuple Space

Tuple

receiver

B  

sender

Tuple Space

receiver

Tuple

B

Tuple

sender

Tuple Space

Tuple

receiver

C

sender

Tuple Space

Tuple

receiver

C

Figure 2.1 Figure 2.2

We illustrate how the transformed model is advantageous over the

original for a certain case in distributed problem solving.  There is a client

object C with a set of problems to be solved.  C communicates with

problem solver manager M via Tuple Space communication, requesting to

solve some of the problems.  M has a set of problem solvers S1, ..., Sn to

his acquaintance.  When M  receives the entire problem from C, it breaks

the problem down into sub-problems, and assigns them to S1, ..., Sn.

During the course of problem solving, C  and M communicate,

exchanging partial results.  There may be situations where S1, ..., Sn
directly participate in the communications in order to receive broadcasted

information from C.  But if Tuples cannot be passed as objects, S1, ..., Sn
cannot directly wait for messages from C, as they cannot predetermine the

specification of the Tuples used in the communication between C and M.

Instead, they must rely on M to translate and broadcast to them (Figure

2.3.A).  This restricts the structure of distributed control to be

hierarchical, which is not  necessarily always the most efficient [31].

By allowing the receiver Tuples to be passed as objects, M can

1  Such sharing is impossible in Linda, because the specification of the

Tuples must be hard coded in the program.

broadcast to the solvers beforehand the partial specifications of the Tuples

it intends to use in the communications with C.  From then on, the solvers

can directly receive messages intended for M  from C , without having

total knowledge of the Tuples used in the communications (Figure

2.3.B)2 .

C M

S 1
S

n

Tuple

Tuple

(A)

Tuple Space

Tuple

C M

Tuple Space

S
1

S n

(B) Tuple

Tuple

Tuple

Figure 2.3  Distributed Problem Solving:  Schematics
of the original communication model (A ) versus the
proposed model (B) applied to distributed problem solving.
Notice how S1, ..., Sn  can directly receive messages
intended for M in (B).

Transformation 3:␣Distribution of Tuple Space

Gelernter's original model assumed that the Tuple Space is a single,

unique global meta-entity in the system.  By contrast, we assume that

Tuple Spaces are objects, and are multiply distributed throughout the

entire system.  Two objects can communicate via a certain Tuple Space if

and only if the Tuple Space is an acquaintance to both objects.  This

solves several problems inherent in Gelernter's model:

• Inefficiency — If there are huge number of objects exchanging

enormous number of Tuples via a single global Tuple Space,

the Tuple Space is likely to become a bottleneck.  By

distributing the Tuple Space,  the flow of Tuples can be

distributed evenly within the system, avoiding bottlenecks to

some extent.

• Lack of effective naming scope — System-wide naming

convention must be employed for identifiers that are elements

of Tuples when different groups of non co-operating objects

communicate simultaneously via a single Tuple Space.  Such

naming convention is not only extraneous (and is thus

undesirable) to the specification of programming languages,

but also must be hard-coded into the program.  By having

multiple distinct Tuple Spaces assigned to each group, such

convention becomes unnecessary.

• Lack of security — If the Tuple Space is global, a malicious

object can easily insert a Tuple with the wrong information, or

extract a Tuple crucial to the computation.  Distributing

multiple Tuple Space overcomes this problem easily by

secluding the acquaintance of the Tuple Space within the

group.

By treating the Tuple Space as objects, we additionally obtain the

following characteristics:

• Tuple Spaces can be created dynamically when necessary.

• Tuple Spaces can become first-class objects.

• Tuple Spaces can be subject to garbage collection.

2  Of course, various minor conventions must be established.
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• The functionality of the Tuple Space can be extended using

inheritance.

The ability to pass a Tuple Space as an element of a Tuple is an

essential characteristic of our proposal, due to the fact that an object can

only gain acquaintance to a newly created Tuple Space through messages

in an distributed environment.

2.3 The Tuple Space Communication Kernel

The fundamental functionality of the Tuple Space communication is

defined by the Tuple Space Communication Kernel.  It consists of

communicating objects, which serve as media of communication among

the distributed objects.  Kernel Communication Classes are classes of

communicating objects  The functionality provided by the Kernel is

minimum, but can be extended using inheritance (see section 3).

In formulating the definition of the Kernel, Smalltalk-80 [26] is used

as the base language in our prototype system.  As Smalltalk-80 already

provides its own message sending mechanism, the system is hybrid,

where message sends to objects that are direct acquaintance to the sender

are done by conventional means, and those to objects that are distributed

within the system are done with Tuple Space communication.  We can,

however, construct a system where communication among the objects are

done solely via Tuple Spaces;  in [32] it is shown that the expressive

power of Tuple Space communication can simulate the conventional

direct message sends.  (Note that semantics of message sends can be

different from Smalltalk.  For example, all Smalltalk message sends

suspend the sender until a response returns from the receiver, whereas the

put: message to the Tuple Space does not.)

Essential Kernel Communication Classes are as follows:

• Class Tuple (Tuple)

Tuples are instances of class Tuple.  Each Tuple is an arbitrary

sequenced collection of element objects.  The objects are concurrent

objects, and possess the functionality to perform pattern matchings within

the Tuple Space.  (Hereafter, we adopt a syntax so that the Tuples can be

literally used in the program:  elements of a Tuple are sequentially listed

separated by spaces;  furthermore, the entire list is parenthesized, e.g.,

(#foo 123 bar).)

• Class Formal (Formal Arguments)

Instances of Formal represent formal arguments;  they only hold

class information which is used in the communication.

• Class TS (Tuple Space)

Tuple Spaces are instances of class T S, and are distributed

throughout the system.  (There is a issue regarding the identity of the

returned Tuple against the original receiver Tuple, but we omit the

discussion for brevity: for details, see [32].)

2.4 Functionality of the Kernel Communication

Classes

1. Pattern Matching Functionality of Class Tuple

The existence of inheritance complicate the rules of pattern

matching.  For classes C 1 and C2, define C1␣>␣C2 meaning C1 is

superclass of C2 [33].  Here, we use an informal definition: let f(C) be the

functionality of C, or a set of messages that an instance of C understands.

Then, we assume that the relation

• C1≥ C2⇔ f C1 ⊆f C2 (2.1)

holds.  In addition we define a function class(e), which denotes the

class of the object:

• class e ≡
ei s an instanceo f Formal →c lass of objectw hich

e can replace

otherwise →c lass of objecte
(2.2)

The rules of pattern matching for each formal-actual combination of

elements of sender and receiver Tuples are as follows.  (We denote the

element of the sender Tuple with es and that of the receiver with er.)

• actual × formal

The receiver expects the functionality of the argument passed

by the sender to be at least equivalent, i.e.,

f class es ⊇f class er .  This implies class es ≤ class er .  Upon

instantiation, er is replaced by es in the receiver Tuple.

• formal × actual

The sender sends the message to a receiver whose Tuple

satisfies the specification of its own.  Using a similar argument

as in the above case, we obtain class es ≥ class er .

• actual × actual

Both objects must have a functionality for determining

equivalences with other objects.  A match is made if es and er
are determined to be equivalent.  The problems are that:  a)

whether reflexivity, commutativity, and associativity are

satisfied by equivalence determining functionality of both

objects, and b) equivalence does not necessarily imply neither

class es ≥ class er  nor class es ≤ class er .  we do not have good

solutions for resolving the latter;  at present, we require either

class es ≥ class er  or class es ≤ class er .

• formal × formal

Even in our extended model, this sender-receiver pair never

matches, because we cannot say whether assuming either

class es ≥ class er  or class es ≤ class er  is correct.  (The sole

exception to this rule is the generic Formal any, which can

match arbitrary objects, including formals.)

2. Functionality of Class Formal

• Formal ofClass: <class>

• Formal any

The former creates an instance of Formal which can be

instantiated by the class given in the argument.  The latter

creates a generic instance of Formal which can be instantiated

by an object of any class, except other Formals (they can only

be matched).

With the pattern matching rules as defined, instances of Formal can

be instantiated with an actual object whose class is at least functionally

equivalent.  When instantiation occurs, only local references to the object
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should change.

3. Functionality of Class TS

• <Tuple Space> put: <Tuple>

This operation is identical to the out() operation of Linda.  The

sender object invokes the send operation by inserting the

specified sender Tuple into the Tuple Space.  This operation is

asynchronous, i.e., the sender is not blocked.

• <Tuple Space> set: <Tuple>

This operation is similar to put:, except that it is synchronous

— the sender is blocked until a matching receiver Tuple is

found in the Tuple Space1.

• <Tuple Space> get: <Tuple>

This operation is identical to the in() operation of Linda.  The

receiver object invokes the receive operation by inserting the

specified receiver Tuple into the Tuple Space.  This operation

is synchronous —  the receiver is blocked until a matching

sender Tuple is found, upon which the instantiated Tuple is

extracted and returned to the receiver.

• <Tuple Space> read: <Tuple>

This operation is identical to the read() operation of Linda.  It

is similar to get:, except that the instantiated Tuple is not

extracted from the Tuple Space, but a copy is created and

returned to the receiver.

2.5 Simple Examples Using Tuple-Space

Communication

We present a solution to the classic example of Dining Philosophers

problem due to E. Dijkstra.  The solution in [34], written in Concurrent

Pascal [3], creates a set of abstract objects whose internal states become

true if forks are available.  But introduction of such objects that do not

appear in the problem is not 'natural'.  Furthermore, the forks are modeled

as processes in the program;  but in reality, forks are static objects to be

acquired, not to respond to messages inquiring if they are 'available' or

not.  Since method invocation upon message receive has semantics

identical to dynamically bound procedure calls [35], the same problem

would arise for Object-Oriented languages as well, even if objects become

critical regions themselves and asynchronous message send were used

[18, 13].

The solution in Tuple Space Smalltalk demonstrates the

effectiveness of Object-Oriented Tuple Space communication.

Philosophers are active objects, and alternately think and dine.  They are

instances of class Philosopher.  By contrast, forks are static entities, and

are instances of class Fork ;  they can only be acquired by the

philosophers.  There are n instances of Philosopher and Fork.  The

arbitration of acquisition of forks by the philosophers depends solely on

their mutual cooperation.  i.e., availability of forks should be judged only

by the philosophers themselves.  Philosophers do not communicate

directly with each other, but instead, the announcement of availability of

1It is possible to express set: with the combination of put: and get:

forks is broadcasted.  We do not model the program so that arbitration is

controlled by tables, rooms, and such.

We let the forks be the elements of a Tuple.  The ith element of the

Tuple is an instance of Fork if the fork is available, else, it is nil.  The ith

philosopher uses ith and (i␣+␣1 mod n)th forks to dine.  The philosophers

communicate with each other through a Tuple Space aTS.  At the

beginning of the program, a single Tuple of arity n, whose elements are

all instances of Fork, is inserted into aTS.  Each active philosopher, in

turn, executes the following program:

action (for the ith philosopher)
| tuple leftFork rightFork |
[

:
"think"
:
tuple <— ( a tuple whose ith and (i + 1)th

elements are Formal ofClass: Fork
and the rest are Formal any ).

aTS get: tuple.
leftFork <— tuple at: i.
rightFork <— tuple at: i + 1 \\ n.
tuple at: i put: nil; at: i + 1 \\ n put: nil.
aTS put: tuple.
:
"dine with leftFork and rightFork"
:
tuple <— ( a tuple whose ith and (i + 1)th

elements are nil
and the rest are Formal any).

aTS get: tuple.
tuple at: i put: leftFork; at: i + 1 // n put: rightFork.
aTS put: tuple.

] loop

Philosopher

Tuple Space

tuple

Philosopher

Philosopher

= Formal any

= Formal ofClass: Fork

= a Fork

Figure 2.4 — The Dining Philosophers Problem:

At the first half of the loop, the Tuple received should contain the

forks requested by the philosopher.  After extracting the forks and

replacing them with nil, the Tuple is inserted back into aTS.  After dining

with the forks, the Tuple is received again so that the forks can be put

back for use by other philosophers.  The atomicity of Tuple Space
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communication guarantees that both forks are obtained atomically;

therefore, the deadlock-free property is guaranteed.

3. EXTENSION OF K E R N E L  TUPLE

COMMUNICATION CLASSES

3.1 Extensions for Communicating with Multiple

Tuples/Tuple Spaces

We next define extensions to the primitive Kernel operations so that

communications may be performed with multiple Tuples simultaneously.

• <Tuple Space> put: <Tuple> and: <Tuple> {and: <Tuple>

...}

• <Tuple Space> set: <Tuple> and: <Tuple> {and: <Tuple>

...}

• <Tuple Space> set: <Tuple> or: <Tuple> {or: <Tuple> ...}

These operations are extensions to the message send

operations.  The sender is not blocked (put:and:), blocked

until all its Tuples are instantiated by the matching receiver

Tuples (set:and:), or blocked until at least one of its Tuples

are instantiated (set:or:).

• <Tuple Space> get: <Tuple> and: <Tuple> {and: <Tuple>

...}

• <Tuple Space> read: <Tuple> and: <Tuple> {and: <Tuple>

...}

These are extensions to the message receive operations.  The

receiver is blocked until all its Tuples are instantiated by the

matching sender Tuples.  An OrderedCollection of Tuples is

returned by the operation.  Within the collection, the Tuples

retain their syntactical ordering specified in the operation.  All

the matching sender Tuples are extracted from the Tuple Space

for get:.

• <Tuple Space> get: <Tuple> or: <Tuple> {or: <Tuple> ...}

• <Tuple Space> read: <Tuple> or: <Tuple> {or: <Tuple> ...}

These are extension to the message receive operations.  The

sender is blocked until at least one its Tuples is instantiated by

the matching sender Tuples.  The Tuple returned is the one of

the Tuples matched.  The extraction of the Tuples are non-

deterministic for get:;  at least one, and at most all, of the

matching sender Tuples are extracted.

We also extend the operations so that a single communication

operation may be performed with multiple Tuples Spaces at the same

time.  This allows, for example, an object to wait for messages from

multiple discrete communication domains.  The returned Tuples in the

receive operations obey rules similar to the above operations.

• <Tuple Space> set: <Tuple> andInTS: <Tuple Space> set:

<Tuple> {andInTS: <Tuple Space> set: <Tuple> ...}

• <Tuple Space> get: <Tuple> andInTS: <Tuple Space> get:

<Tuple> {andInTS: <Tuple Space> get: <Tuple> ...}

• <Tuple Space> get: <Tuple> orInTS: <Tuple Space> get:

<Tuple> {orInTS: <Tuple Space> get: <Tuple> ...}

• <Tuple Space> read: <Tuple> andInTS: <Tuple Space>

read: <Tuple> {andInTS: <Tuple Space> read: <Tuple> ...}

• <Tuple Space> read: <Tuple> orInTS: <Tuple Space> read:

<Tuple> {orInTS: <Tuple Space> read: <Tuple> ...}

We can actually conceive every possible combinations of Tuples,

Tuple Spaces and wait conditions.  In general, for each Tuple Space TS1,

..., TSm, there can be ni Tuples t1
i
, ... , tn

i
 involved in the operation.  The

combination of waiting conditions can be expressed with valid

combinations of and:, or: and andInTS:, orInTS:.  Tuples that are

operands of and: or andInTS: block the object until they are all

instantiated.  An OrderedCollection of all the Tuples are returned, and

all the matching sender Tuples are extracted from the Tuple Spaces.

Tuples that are operands of or: or orInTS: block the object at least one of

them is instantiated.  Only one of the matching Tuples are selected non-

deterministically and returned.

3.2 Extension of Kernel Functionality with the Use

of Inheritance

It is also possible to employ the inheritance mechanism in order to

enhance the functionality of the Kernel Classes.  This is possible because

we have defined the Tuples to be first-class objects in our model.  The

inheritance mechanism may be the normal taxonomical inheritance found

in most Object-Oriented languages, or the Part-Whole mechanism similar

to the one proposed by [36].

Inheritance, in general, assumes that messages are sent to the objects

directly.  In our prototype system, communication operations defined by

the Kernel classes has the same syntax as direct message sends in

Smalltalk-80.  Hence, it is possible to define that the operations are

inherited as normal methods are, i.e., subclasses of Kernel classes can

accept requests for communication operation from other objects

identically as their superclasses.  As noted earlier, however, the semantics

of the message sends may be different from direct message sends;  for

example, it is possible for the sender not to be suspended.

Newly defined communication operations of subclasses of TS must

'trap' and preprocess the Tuple before it inserts it into the Tuple Space.

This has the drawback that, if the operation is mutually exclusive,

degrades the utility of the Tuple Space communication by not allowing

concurrent communication operation with the Tuple Space.  The

advantages overcome the deficiencies, however, for special Tuple Spaces

that arbitrate complex synchronized interactions among multiple

concurrent objects.  For example, [37] proposes a special language

construct called the Compact which serves as a mediator for multiple

process to synchronize with each other.  By using inheritance, we were

easily able to define CompactTS, which emulates the basic functions of

the Compact.

4. R EALIZABILITY OF THE TUPLE SPACE

COMMUNICATION KERNEL

In our proposal, the efficiency of the entire system depends on the



8

power of the Tuple Spaces to process the pattern matching among the

Tuples as efficiently as possible.  This requires performing a difficult task

of establishing mutual control among the Tuples so that multiple pattern

matchings proceed without conflicts.

We have developed an algorithm so that high degree of parallelism

can be achieved within a Tuple Space.  The pattern matchings of Tuples

are done concurrently, and the activities of sender and receiver Tuples are

carefully controlled to avoid mutual conflicts.  The conceptual structure of

the Tuple Space employed in the algorithm is illustrated in Figure␣4.1.

The algorithm must satisfy the following criteria:  1) correctness, 2)

freeness of deadlock, 3) freeness of starvation, 4) fairness, and 5)

efficiency.  Here, we will avoid formal discussions for brevity.  In [32],

proofs of algorithm correctness and criteria satisfaction are given.

TS

tuple

tuple tuple tuple

tuple tuple

tuple tuple

tuple

WR

WS

AR

AS
A

tuple

Figure 4.1 — Structure of the Tuple Space:  The
Tuple Space TS consists of four collections, WS,
WR, AS, and AR.  A Tuple may be a member of at
most one of them at the same time.  There is another
atomic object, A, whose membership is mutually
excluded.

5. IMPLEMENTATION OF THE PROTOTYPE

TUPLE SPACE SMALLTALK

We are developing the prototype Tuple Space Smalltalk System in

order to evaluate the effectiveness of Tuple Space communication in

distributed Object-Oriented languages.  The prototype language is being

implemented atop the Concurrent Smalltalk [15, 16].  As stated earlier,

Tuples and Tuple Spaces are objects, i.e., instances of actual Smalltalk

classes.  The basic functionality of the Kernel classes are implemented as

Smalltalk methods.  Concurrency in the system is achieved with

concurrent objects of the Concurrent Smalltalk.  At present, the basic

Kernel is finished, and we are working to implement the extensions.

The Tuple Space communication is intended for implementation on

actual distributed systems. But because Concurrent Smalltalk is not

actually distributed (yet), our prototype, as a result, does not run on a true

distributed system;  however, we expect to obtain considerable

programming experiences with the prototype.  [32] discusses in detail the

various implementation issues associated with Kernel communication

classes, as well as the anticipated problems and their possible solutions in

distributed systems.

We are also investigating the effectiveness of the distributed Tuple

Spaces in distributed coordination of objects [32].  In one example,

Japanese game of “Janken” is played distributively among a group of

autonomous players selecting their 'hands' and determining the result of

each game.  Another example outlines how the Tuple Space

communication might be used for implementing high-level protocols such

as the contract net protocol.  In the example, it is shown how

environmental factors that only affect close proximities can be modeled

with distributed Tuple Spaces, and how the time and space uncoupling

characteristics play essential roles.

6. FUTURE WORKS

6.1. Further Extensions to the Kernel.

It is possible to add a non-blocking receive primitive that allows

'peeking' into the Tuple Space, and returns with a nil result if there are no

matches.  Alternatively, the Tuple object can become a future object [38],

which is substituted with an instantiated receiver Tuple when a match

occurs;  the thread of control blocks only when a message is sent to an

uninstantiated Formal object.  The former is simpler, but requires active

checking on the part of the programmer.  The latter offers greater

transparency of the operation, but requires some changes in the Tuple

Space communication model, because a Tuple outside the Tuple Space is

affected after the communication has taken place.

Another possible extensions to the model is to allow hierarchical

nesting of Tuples, so that Tuples can become elements of Tuples.  This

allows passing of uninstantiated or arbitrary size Tuples via Tuple Space

communication.

6.2 Inheritance

As noted earlier, inheritance of Tuples as messages is not provided

in Tuple Space communication because it is difficult to specify where in

the superclass script the message should be accepted.  Explicit delegation

of messages [39] is an alternative to inheritance for sharing knowledges

among objects.  We feel that delegation is favorable when distribution is

taken into account; when object migration occurs, inconsistency in the

distributed class definition can be resolved with dynamic changes in the

target of delegation.  We also feel, however, that better linguistic support

is necessary to organize the delegation relation among the objects, and are

currently investigating this matter.

6.3 Formal Investigation

Further investigation into formal aspects of our model is also

necessary, especially temporal characteristics of Tuples and Tuple Spaces.

We would like to be able to formally express the temporal behavior of the

Tuples in more precise manner than we have done.  More powerful

mathematical tools, would probably be required for this purpose.

6.4 Application to Actual Distributed Systems and

Problem Solving

As noted earlier, our current prototype does not run on a true

distributed environment.  For practical purposes, our next system must be

implemented as a distributed one.  Underlying problems in inter-object

communication will probably surface, along with the problems caused by

distribution of class definitions.  Some of the limitations of our prototype

is caused by the restrictions imposed by Smalltalk-80.  Extensions to

adapt Smalltalk-80 to distributed environment, or creation of a language

better suited for distribution, is necessary.  Applications to actual

distributed problem solving is also required;  we are currently looking for
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a field where the advantages of Tuple Space communication are best

utilized.
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