
Control in Parallel Constraint Logic Programming

�

Naoki Kobayashi

koba@is.s.u-tokyo.ac.jp

Satoshi Matsuoka

matsu@is.s.u-tokyo.ac.jp

Akinori Yonezawa

yonezawa@is.s.u-tokyo.ac.jp

Department of Information Science, the University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo, JAPAN, 113

Abstract

Although constraint satisfaction problems can be speci-

�ed declaratively, the cost of actual solving depends heav-

ily on the order of computation. The ideal combination

of declarative problem description and automatic satisfac-

tion is di�cult; because determination of the optimal or-

der of computation in advance is impossible in general.

Our new proposal, Parallel Constraint Logic Program-

ming(PCLP), aims to solve this dilemma. In PCLP, com-

putation is described in terms of parallel transformation

of constraints. This approach can explore natural par-

allelism, and is suitable for dynamic control of the com-

putation. Our prototype system PARCS, based on this

framework, can handle constraints on Herbrand universe

and �nite domains by using SLD-resolution and consis-

tency techniques such as forward checking. To control the

computation dynamically, priority is associated with each

process according to run-time information. In addition,

learning mechanisms adjust the parameters of the schedul-

ing policy so that scheduling becomes near optimal.

1 Introduction

It is often di�cult and costly to employ imperative pro-

gramming languages to program problems involving com-

plex arithmetic or symbolic constraints, because the
ow

of information becomes too complex for explicit user spec-

i�cation. We, therefore, aim to develop a programming

language which can specify constraints declaratively, and

solve them automatically and e�ciently. The require-

ments for such a programming language are as follows:

1. Declarative speci�cation of constraints for clean, lucid

description of problems,

2. Dynamic and automatic control of computation to

free the user from the concern for synchronization,

scheduling, and distribution.

3. Natural exploitation of parallelism to achieve consid-

erable speed-up on �ne-grained multicomputers.

�

To appear in Proceedings of the Logic Programming Conference,

Lecture Notes in Arti�cial Intelligence

The second requirement is especially important: in con-

trast to imperative programming where directions of in-

puts and outputs are �xed, constraint solving involves

multi-directional
ow of information. Thus, the system

must appropriately decide and alter the order of compu-

tation in this regard. Computational frameworks for con-

straint programming such as Ja�ar et al's CLP scheme[8]

serve as frameworks for languages that can handle con-

straints on practical domains such as real numbers and

boolean values. However, previous constraint languages

such as CLP(R)[7] (which is a direct instantiation of the

CLP scheme) are sometimes not su�cient to handle com-

plex constraints for some classes of problems because the

order of computation is �xed. In this paper, we pro-

pose Parallel Constraint Logic Programming (PCLP) as

a framework for languages which satisfy our three re-

quirements, and describe PARCS, a prototype language

based on PCLP. PCLP can exploit a very high degree of

parallelism by viewing constraints as processes. PARCS

controls the computation dynamically by prioritizing con-

straints, and further optimizes their control by the learning

mechanism. With PARCS, we can solve constraints e�-

ciently in parallel while avoiding abusive use of parallelism

which resulting in explosion in the number of processes.

In previous constraint logic programming languages,

such as Prolog-III[3] and CHIP[5], literals are distin-

guished from other constraints, and the selection order

of clauses and literals is the same as in Prolog. In

our approach, literals and other constraints are handled

uniformly, thereby achieving the same-level of And/Or-

parallelism for constraint solving as well as resolution.

Although several studies on parallelization of constraint

logic programming language are already reported, such

as parallel CHIP[6] by Hentenryck et al., the signi�cance

of PCLP and PARCS is that we aim not merely to dis-

tribute constraint solving to multiple processors, but em-

phasize on using the information of viability of constraint

solving for �ne-grained control of parallelism. Sarasswat's

Concurrent Constraint Programming gives the framework

for concurrent systems based on constraint solving, where

concurrent agents tell and ask constraints to global store.

In Concurrent Constraint Programming, the implementa-

tion details of the global store itself is unspeci�ed. In-

1

stead, we concentrate on how constraints are scheduled

and solved; this would, in the context of Concurrent Con-

straint Programming, correspond to specifying the behav-

ior of the global store in detail with respect to constraint

solving.

This paper is organized as follows. Section 2 introduces

PCLP, and its comparison to the CLP scheme. Section 3

describes our prototype language PARCS, concentrating

on the control of parallel computation and the learning

mechanism. Section 4 proposes lazy branching, an exe-

cution mechanism for distributed constraint solving. Sec-

tion 5 evaluates PARCS using some examples. Section 6

concludes this paper.

2 Parallel Constraint Logic Pro-

gramming (PCLP)

In PCLP, atoms in traditional logic programming are also

viewed as constraints. This enables the programmers to

de�ne complex numerical constraints and symbolical con-

straints with clauses. The uniform view of atoms and con-

straints contributes towards exploring natural parallelism

in processing constraints as we will show.

2.1 Goal, Clause, and Program in PCLP

A goal in PCLP is a set of constraints. We denote a goal

fC

1

; . . . ; C

n

g as follows:

 C

1

; . . . ; C

n

:

Note that a goal is a set of constraints, not a sequence. A

clause in PCLP is a pair that consists of an atom and a

goal. We denote a clause as

A G:

where A is an atom and G is a goal. The clause A G:

can be interpreted in two ways; either (1) operationally

i.e., to solve the constraint A, solve the constraints in G,

or (2) declaratively i.e., constraint A is de�ned as the set

of constraints G. A program is a set of clauses. It can be

regarded as a de�nition of an entire system of constraints.

2.2 Operational Semantics

We denote a program and domain theory as P and T

respectively. The derivations in PCLP are as follows:

Derivation in PCLP When we have the goal

 C

1

; . . . ; C

n

and the condition

P; T j= 8(C

i

; . . . ;C

k�1

 C

0

1

; . . . ; C

0

l

)

holds, then the new goal

 C

1

; . . . ; C

i�1

; C

0

1

; . . . ; C

0

l

; C

k

; . . . ; C

n

can be derived(transformed).

Successful Derivation A derivation sequence is suc-

cessful i� its last goal is a normal form other than False,

which is a unique normal form for unsatis�able con-

straints. An answer is the last goal of a successful deriva-

tion.

Failure of Derivation A derivation sequence fails when

its last goal is False. In practice, the following situations

lead to the failure of derivations:

� Constraint in the goal cannot be transformed | for

instance, an atom with no matching clause.

� The result of transformation is clearly unsatis�able

| for instance, X = 1 ^X = 2.

As an example of derivation in PCLP, given the clause:

p q; r:

in the program and the goal,

 p; C

2

; C

3

; . . .

we can derive the new goal

 q; r;C

2

; C

3

; . . . :

As another example, let T be the domain theory for real

numbers, then the condition

T j= 8(X + Y = 3; X + 2 � Y = 5 X = 1; Y = 2)

holds, so from the goal,

 X + Y = 3; X + 2 � Y = 5; C

3

; . . .

the new goal

 X = 1; Y = 2; C

3

; . . .

can be derived.

As described above, each computation step in PCLP is

a transformation of partial constraints in the goal towards

a solution. In this regard, each step in SLD-resolution and

constraint solving algorithms can be treated within PCLP

as a transformation of partial constraints. Furthermore,

PCLP can explore two kinds of natural parallelism in the

transformations: One is OR-parallelism, where di�erent

transformations are applied in parallel to the same set of

constraints. Another is AND-parallelism, where disjoint

sets of constraints in the goal are transformed in parallel.

These parallelisms are not just the ordinary AND/OR-

parallelism in the usual sense (parallelism in resolution),

but also capture the parallelisms in constraint solving al-

gorithms.

2.3 Discussion - Comparison with CLP

Scheme

In the CLP Scheme[8], proposed by Ja�ar et al., a goal is

composed of the literal part and the constraint part, and

2

the latter is checked for satis�ability at each derivation.

In PCLP, by contrast, the satis�ability of the entire set of

constraints in the goal is not checked at each derivation.

Rather, we require only partial satis�ability, and the total

satis�ability of the set of constraints is guaranteed only

when an answer is found. This is reasonable in PCLP,

because literals are regarded as constraints, and as a result

the satis�ability of the entire set of constraints would have

no meaning during the computation. The motivation for

requiring only partial satis�ability is due to the following

reasons relevant to parallel distributed computation:

1. Global information is required for checking the satis-

�ability of the entire set of constraints. This becomes

a bottleneck for parallel computation, especially due

to distribution.

2. The costs for checking satis�ability of constraints are

not generally predictable, and the costs for complex

constraints are usually very high. The scheme where

the satis�ability of constraints is checked at each

derivation, therefore, in practice could only handle

special domains for which e�ective constraint solving

algorithms are already found.

3. It is di�cult to e�ciently determine which transfor-

mation is optimal at each derivation. Instead, we

have the system automatically attempt a set of cer-

tain transformations and judge the interim viability

of each. PCLP can perform such automatic self-

adaptation e�ectively due to smaller units of deriva-

tion compared to the CLP scheme.

In most cases, the satis�ability of constraints can be

checked by transforming them into normal forms. For ex-

ample, the satis�ability of simultaneous equations can be

checked via normalization into the Gr�obner base[2]. In the

same manner, the entire derivation sequence in PCLP is

a checking process of satis�ability for a set of constraints,

and each derivation is a step towards the total satisfaction

of the entire set of constraints. In this regard, the CLP

scheme can be viewed as a restricted version of PCLP

where constraints other than literals are always processed

prior to literals.

3 PARCS: A Prototype PCLP

System

A programming language based on PCLP would allow ex-

ploitation of a high degree of parallelism in solving con-

straints speci�ed declaratively, because the system is given

more freedom in determining the order of computation

that is e�cient. Simplistic exploitation of parallelism,

however, would be ine�cient due to excessive parallelism

and redundant computation in actual execution. Control

of parallelism is therefore essential. For this purpose, the

viability information of each process with respect to even-

tual satis�ability of the constraint set is employed to pri-

oritize their execution. In this section, we introduce a

prototype system PARCS (PARallel Constraint Solving),

based on PCLP, and describe its mechanism for the con-

trol of parallel computation. A pseudo-parallel version of

PARCS written in C is running on UNIX

1

.

3.1 Overview of PARCS

PARCS can currently handle constraints on two kinds of

computational domains: the Herbrand universe and Finite

domains in the style of CHIP[5]. In PARCS, �nite domains

are a �nite subset of integers or a �nite set of symbols.

Figure 1 shows a sample program in PARCS for the

cryptoarithmetic puzzle 'SEND + MORE = MONEY'.

The problem is to assign each S,..,Y a di�erent digit from

0 to 9 so that the equation SEND+MORE=MONEY is

satis�ed. Figure 2 is the result of the execution.

As illustrated above, in PARCS, constraints can be de-

scribed declaratively and lucidly, compared to the test-

generation style program written in Prolog. Moreover,

since PARCS automatically controls the order of compu-

tation, it is not necessary for the programmer to employ

special predicates such as freeze for delayed evaluation.

As a result, readability of program is preserved, and the

dual roles of arguments as both input and output are also

retained.

The following describes the derivation rules of PARCS:

� Resolution

From the goal

 . . . ; p(X

1

; . . . ; X

n

); . . .

and the rule,

p(Y

1

; . . . ; Y

n

) q

1

(Z

11

; . . . ; Z

1n

1

); . . . ; q

k

(Z

k1

; . . . ; Z

kn

k

):

the new goal

 . . . ; q

1

(Z

11

; . . . ; Z

1n

1

); . . . ; q

k

(Z

k1

; . . . ; Z

kn

k

); X

1

= Y

1

; . . . ; X

n

= Y

n

; . . .

can be derived

� Forward Checking

From the goal

 . . . ; C(X); X 2 D; . . .

the new goal

 . . . ; X 2 E; . . .

where E = fe 2 D j C(e)is true.g

can be derived, where X denotes a variable,

D andE some �nite domain, and C denotes

an arithmetic constraint comprised of =; 6=

;�,etc. or a symbolic constraint comprised

of =; 6=.

� (Partial) Looking Ahead

1

Unix is a registered trademark of AT&T

3

defdomain from0to9 int{0..9}.

sendmory([S,E,N,D,M,O,R,Y]) :-

from0to9(S,E,N,D,M,O,R,Y),

/* S,E,...,Y range from 0 to 9 */

1000*S+100*E+10*N+D + 1000*M+100*O+10*R+E

= 10000*M+1000*O+100*N+10*E+Y,

/* SEND + MORE = MONEY */

S!=0,M!=0, /* most significant digit is not 0*/

all_different([S,E,N,D,M,O,R,Y]).

/* S,E,...,Y are all different*/

all_different([]).

all_different([A|X]) :- different(A,X),all_different(X).

different(A,[]).

different(A,[B|X]) :- A!=B ,different(A,X).

Figure 1: Programming Example in PARCS

From the goal

 . . . ;C(X

1

; . . . ;X

n

); X

1

2 D

1

; . . . ; X

n

2 D

n

; . . .

the new goal

 . . . ;C(X

1

; . . . ;X

n

); X

1

2 E

1

; . . . ; X

n

2 E

n

; . . .

where D

i

� E

i

� fe

i

2 D

i

j 9e

1

2 E

1

; . . . ;9e

i�1

2 E

i�1

;

9e

i+1

2 E

i+1

; . . . ; 9e

n

2 E

n

(C(e

1

; . . . ; e

n

) is true.)g

can be derived, where X

i

, D

i

and E

i

, C de-

note a variable, a �nite domain, arithmetic

constraint respectively.

� Solving an Equation

From the goal,

 . . . ; f (X) = 0; . . .

the new goal

 . . . ; X 2 D; . . .

where D = fd j f(d) = 0g

can be derived, where f (X) is a linear or a

quadratic equation.

� Variable Instantiation

From the goal,

 . . . ; X 2 D; . . .

the new goal

 . . . ; X = e; . . .

where e 2 D

can be derived.

<PARCS>#read("sendmory").

<PARCS>:-sendmory(X).

yes

of failures = 6

max # of or-nodes = 4

X = [9,5,6,7,1,0,8,2];

no.

of failures = 6

max # of or-nodes = 4

Figure 2: Execution Example

3.2 Scheduling

3.2.1 The Basic Control Strategy

The optimal ordering of constraint solving is di�cult to

determine statically in general. For example, consider the

following clause:

grand parent(X,Y) :- parent(X,Z), parent(Z,Y).

Whether the literal parent(X;Z) or parent(Z; Y) should

be given more priority over the other depends on the order

of instantiation of X and Y at run-time. In order to cap-

ture this run-time information, one approach is to let the

user manually specify such a dynamic decision with ex-

tralogical predicates such as var(X). This approach, how-

ever, su�ers from (1) the combinatorial increase of pro-

gramming burden with the increase of the number of vari-

ables, and (2) also makes the program error-prone. In-

stead, the approach we take in PARCS is to dynamically

and automatically compute the priority for each constraint

solving processes according to the run-time information

with no or little user intervention. As we had indicated

earlier, priority is computed based on the `viability' infor-

mation of each process, i.e., how much we can count on

the process to lead to the fastest solution to the entire set

of constraints, based on the state of the process.

4

A rough sketch of the basic strategies for process prior-

itization is as follows:

1. a constraint with higher level of information is given

higher priority.

2. a constraint with a lower solving cost is given higher

priority.

For example, \p(X) should have higher priority compared

to p(a)" corresponds to the former case, and \linear equa-

tions should have higher priority compared to quadratic

equation" corresponds to the latter case. The rule of com-

putation in Warren's Andorra model[12], \deterministic

goals are processed prior to non-deterministic goals" is

also an example of the latter case, because branching in-

curs high computational cost. We could say that PARCS

prioritizes constraints more sophisticatedly compared to

Andorra and its variants by using the information of mul-

tiple constraint domains.

In PARCS, priority is expressed with the priority func-

tion:

p(S

1

; . . . ; S

m

; C

1

; . . . ; C

n

)

where S

1

; . . . ; S

m

are values which depend on the state

of process, and C

1

; . . . ; C

n

are the scheduling parameters

which are used to dynamically alter the scheduling policy.

The parameters are optimized using the learning mecha-

nism described in section 3.2.5.

3.2.2 Process Organization

Figure 3 illustrates And/Or organization of the processes

in PARCS. Each AND-node corresponds to a process. The

scheduler selects the process in two stages. It �rst selects a

set of OR-nodes and then selects a set of their child AND-

nodes. Scheduling of distinct OR-nodes in parallel results

in OR-parallelism, and scheduling AND-nodes in the same

OR-node results in AND-parallelism. The system controls

the parallelism by associating a priority to each OR-node

and AND-node.

3.2.3 Control of OR-parallelism

In order to control the OR-parallelism, the following run-

time information of each process is employed:

1. Number of variables(Nv), and the range of each vari-

able.

2. Number of AND-nodes(Ng).

3. Number of derivation steps from the initial goal(Nd).

With the above information, the priority of each OR-

node is computed by the following function:

P

OR

= Cv �Nv + Cg �Ng + Cd �Nd+ Cgd �Ng=Nd

Parameters Cv;Cg; . . . are constants during a single exe-

cution. They can be set manually by the programmer or

their optimal values can be automatically determined by

the learning mechanism.

In our current pseudo-parallel implementation, OR-

nodes are scheduled round-robin. The time quantum for

priority po is:

Q

OR

= Cq � f (Cpitch � (po� po)=�)

where po is the mean of po, and � is the standard devia-

tion of po (In practice, the values of po and � are approx-

imated). Function f is the sigmoid function,

f (X) = 1=(1 + exp(�X)):

Cq is the parameter for changing the depth of the depth-

�rst search, and Cpitch adjusts the degree of the e�ect of

the priority value on the time quantum. Both of these

parameters adjust the degree of parallelism to avoid the

explosion of the number of processes. Figure 4 shows the

e�ect of Cpitch on the sigmoid function. The abscissa

in the �gure is the normalized value of priority ((po �

po)=�) and the ordinate is the time quantum with Cq =

1. Processes with a time quantum shorter than a certain

value are not scheduled, thereby allowing the control of

the ratio of active processes. For combinatorial problems,

this feature is especially important, because the number

of process is likely to be very large.

The increase of Cq causes higher locality in memory ref-

erence when a contiguous memory block is allocated for

each OR-node. This is evident in the current prototype

and we expect it to hold for future distributed implemen-

tations.

Contrasting to other OR parameters, Cpitch and Cq are

changed by the system during execution according to the

number of process, and are also adjusted by the learning

mechanism. For optimization in our current prototype,

the scheduling policy is changed to the depth-�rst search

when the number of OR-node exceeds a certain value.

3.2.4 Control of AND-parallelism

To control the AND-parallelism, PARCS structures the

multi-level scheduling queue for AND-nodes as follows, in

the decreasing order of priority:

� Level 1: constraints which can be processed deter-

ministically.

� Level 2: Non-deterministic constraints (e.g., a literal

which can be uni�ed with several clauses, a variable

instantiation)

� Level 3: suspended constraints, i.e., constraints which

cannot yet be processed (e.g. X

2

+ Y

3

= 1)

In our current prototype, the scheduling algorithm dif-

fers for each level: Constraints in Level 1 queue are sched-

uled round-robin. Constraints in Level 2 queue are se-

lected only when Level 1 queue is empty. The resulting

scheduling strategy is thus, \deterministic goals are ex-

ecuted prior to non-deterministic goals", postponing the

costly division of goals. This is similar to the strategies

in the systems based on the Andorra model[1][12]; how-

ever, PARCS is di�erent from Andorra in that PARCS

5

OR

AND

OR-node

p(X) q(X) r(X) s(X)

AND-node

Figure 3: Process Organization

practically active processes

1.0

Cpitch is low

Cpitch is high

priority

time quantum (Cq=1.0)

quantum is not allocated

Figure 4: The e�ect of Cpitch

6

#priority append(0.3, 0, 0.5) 0

append([],X,X).

append([A|X],Y,[A|Z]) :- append(X,Y,Z).

Figure 5: Declaration for priority parameters

automatically selects the optimal goal from Level 2 queue

according to priority information, whereas Andorra always

selects the left-most goal. This di�erence is very important

because the order of division of goals extremely a�ects the

overall cost of computation.

Level 2 queue contains both atoms(for resolution) and

variables(for instantiation). In order to make them com-

pete for computational resources, PARCS prioritizes them

uniformly in the following manner:

� The priority P

AND

for the atom p(X

1

; . . . ; X

n

) is

given by the following expression:

P

AND

= C

0

+ C

1

�A

1

+ . . . + C

n

�A

n

where A

i

is either 1 or 0 according to whether the

argument X

i

is instantiated or not, and C

j

is a

predicate-dependent parameter which ranges from 0.0

to 1.0. An atom is suspended when its priority is 0.

For example, suppose the predicate append/3 is de-

�ned as shown in Figure 5; then, append(X; [a]; Y) is

suspended until X or Y is instantiated.

� The priority for variable instantiation is given by the

following expression:

P

AND

= C

RANGE

�N

RANGE

+ C

REF

�N

REF

where N

RANGE

is the size of the variable range,

and N

REF

is the number of references from other

constraints. By prioritizing the processes according

to these information, PARCS automatically decides

when to instantiate variables at run-time.

3.2.5 The Learning Mechanism

Some logic programming languages with coroutining

mechanisms, such as NU-Prolog[9], analyze programs stat-

ically and generate declarations for delayed evaluation.

For some cases, however, it is di�cult to derive such

control speci�cations purely by static analysis. Instead,

PARCS takes the dynamic analysis approach, i.e., provides

the learning mechanism for priority parameters, where a

program is repeatedly executed in search for an optimal

value for each parameter.

As described in Section 3.2.3 and Section 3.2.4, the pri-

ority functions and time quantum functions contain sev-

eral parameters to control the parallelism to optimize sys-

tem performance. The system performance PF can be

given as a function of all parameters involved, i.e.:

PF = f

PF

(C

1

; . . . ; C

N

)

where C

1

; . . . ;C

N

are all the parameters contained in the

priority functions and the time quantum functions. The

goal of learning is to \�nd values for C

1

; . . . ; C

N

so that

PF is minimum"(the smaller the PF , the better the per-

formance). Since the function f

PF

is itself unknown, the

hill-up climbing algorithm is used in the current imple-

mentation to minimize PF . Parameters are moved one

by one in the direction PF decreases. To avoid PF from

converging to the local minimum, parameters are moved

by a large scale at �rst and by a smaller scale afterwards.

The value of PF is computed for each execution by

PF =W

f

�N

f

+W

o

�N

o

where N

f

andN

o

are the number of failures, and the max-

imum number of OR-nodes until the �rst answer is found,

respectively. In a sequential context, N

f

indicates the

number of backtrackings and N

o

is related to the amount

of memory usage. The weights W

f

and W

o

are speci�ed

by the user.

Figure 6 shows the basic algorithm for minimizing PF .

The function evaluate() in the �gure executes a given sam-

ple goal, and returns the value of PF for that execution.

The system executes the entire program each time a pa-

rameter is moved; thus, the number of executions in learn-

ing is kN, where N is the number of parameters and k

is some constant. The number of executions can be de-

creased by changing the sample goals | �rst a simple

sample and gradually increasing the complexity.

Figure 7 shows the example learning session. The input

line beginning with #learn-and in the �gure instructs the

system to perform learning (#learn-and is a command to

learn parameters for AND-parallelism.). A single learning

command causes the system to perform a certain number

of trials to optimize parameters.

As described above, the learning mechanism is fairly

simple. Despite its simplicity, however, it is nevertheless

e�ective in obtaining drastic improvement in performance

as will be shown in section 5.

4 Lazy Branching - Distribution

of Constraint Solving

In PARCS, when an OR branch occurs on processing a

constraint in a goal, the e�ect of branching is not local-

ized to that constraint; rather the entire constraints in

the goal must be copied and divided. This division is

very expensive not only because of the copying cost, but

also because it imposes the necessity for synchronization of

the entire goal, inhibiting AND-parallelism, and increas-

ing redundant computation. To avoid this expensive di-

vision, we propose Lazy Branching, which can be stated

informally as: \When a branch happens for a certain con-

straint in the goal, other constraints in the goal are not

immediately divided. Rather, the division is suspended

until the non-divided constraints reference the binding of

a variable of the divided constraint; then, the non-divided

constraints are divided when the reference results in a

di�erence in their behaviors." Lazy branching has the

7

optimize()

{

for(i=1;i<=N;i++){ /* initialize parameter C[i] */

C[i] = 0.5;

HIGH[i] = 1.0;

LOW[i] = 0.0;

}

optimized_value = evaluate();

/* execute goal and evaluate performance */

while(...){ /* iterate for several times */

for(i=1; i<=N; i++){ /* for each parameter */

current = C[i];

C[i] = (HIGH[i]+current)/2.0;

/* try increasing value */

test_value = evaluate();

if(test_value<optimized_value){

/* if performance is improved */

optimized_value = test_value;

LOW[i] = current;

continue;

}

C[i] = (LOW[i]+current)/2.0;

/* try decreasing value */

test_value = evaluate();

if(test_value<optimized_value){

optimized_value = test_value;

HIGH[i] = current;

continue;

}

C[i] = current;

HIGH[i] = (HIGH[i]+C[i])/2.0;

LOW[i] = (LOW[i]+C[i])/2.0;

}

}

}

Figure 6: Learning Algorithm

8

<PARCS>#read("parser-dcg").

<PARCS>:-parse([this,is,a,black,pen],X).

yes

of failures = 29

max # of or-nodes = 22

X = s(np(this),vp(v(is),np(d(a),np(a(black),np(n(pen))))))

<PARCS>:-parse([a,man,with,a,pen,is,ken],X).

yes

of failures = 369

max # of or-nodes = 294

X = s(np(np(d(a),np(n(man))),pp(p(with),np(d(a),np(n(pen))))),

vp(v(is),np(ken)))

<PARCS>#learn-and :-parse([a,man,with,a,pen,is,ken],X).

<PARCS>:-parse([this,is,a,black,pen],X).

yes

of failures = 21

max # of or-nodes = 7

X = s(np(this),vp(v(is),np(d(a),np(a(black),np(n(pen))))))

<PARCS>:-parse([a,man,with,a,pen,is,ken],X).

yes

of failures = 49

max # of or-nodes = 32

X = s(np(np(d(a),np(n(man))),pp(p(with),np(d(a),np(n(pen))))),

vp(v(is),np(ken)))

Figure 7: Example Learning Session

e�ect of distributing the computation, because it local-

izes branch operations and allows AND-sibling goals to be

processed independently without strict synchronizations.

It also avoids redundancy in the computation when con-

straints in the goal are independent, such as:

 p(X); q(Y)

Although Restricted AND-parallelism[4] also has this de-

layed division e�ect, lazy branching can retain the e�ect

even when constraints are not completely independent.

Moreover, Restricted AND-parallelism requires the pro-

grams to be analyzed statically, whereas such analysis is

not required for lazy branching; this is because indepen-

dence of constraints is automatically exploited.

To illustrate lazy-branching, consider the program in

Figure 8: Given the goal:

 p(X); q(X;Y)

it is transformed in the following order. First by unfolding

p(X) and q(X,Y) independently, the goal becomes

 (X = a or X = b); ((X = a; Y = b) or (r(X); s(Y)))

where `or' denotes a disjunction whose division is delayed.

Notice that the e�ect of branching on p(X) and q(X,Y)

is not yet propagated to each other. Then, subgoal (X =

a;Y = b) looks up the binding of X in its AND-sibling goal

(X = a or X = b) and the goal becomes (X = a; Y = b)

p(a).

p(b).

q(a,b).

q(X,Y) :- r(X), s(Y).

r(X) :- .../* cost for r(X), s(X) is high */

s(X) :- ...

Figure 8: Example of Lazy Branching

for this OR-branch; thus, the top-level disjunction of the

goal is now divided:

 (X = a; Y = b)

 ((X = a or X = b); r(X); s(Y))

Notice that r(X) is not divided into r(a) and r(b) yet at

this point in the second goal | the division is delayed

until the binding of X is required for some future trans-

formations. Since r(X) and s(Y) are now independent

constraints, s(Y) is processed only once.

Although this lazy branching mechanism is not incorpo-

rated into our prototype PARCS, we expect it to be well-

suited for the implementation of PARCS in �ne-grained

object-oriented concurrent programming languages; be-

cause of the locality of computation, a transformation of

constraints can be viewed as a state change of objects.

9

defdomain from1to6 int {1..6}.

defdomain from1to8 int {1..8}.

sixqueens([X1,X2,X3,X4,X5,X6])

:- from1to6(X1,X2,X3,X4,X5,X6),

queens([X1,X2,X3,X4,X5,X6]).

eightqueens([X1,X2,X3,X4,X5,X6,X7,X8])

:- from1to8(X1,X2,X3,X4,X5,X6,X7,X8),

queens([X1,X2,X3,X4,X5,X6,X7,X8]).

queens([]).

queens([X|Y]) :- noattack(X,Y), queens(Y).

noattack(X,Y) :- noattack(X,Y,1).

noattack(X,[],N).

noattack(X,[Y|Z],N) :- N2=N+1;

X!=Y, X!=Y+N, X!=Y-N,

noattack(X,Z,N2).

Figure 9: N-queens Problem

5 Evaluation of PARCS and its

Learning Mechanism

5.1 The N-queens Problem - the Control

of OR-Parallelism

The N-queens problem (given in Figure 9) is an exam-

ple of OR-parallelism control. Table 1 shows the results:

The learning was performed for N=6 for all the examples,

where the number of executions in learning ranged from

40 to 80 tries. The results show that, before learning,

the number of processes exploded at N=10. By learning,

we were able to obtain solutions comparable to depth-�rst

search even for this (single processor) pseudo-parallel im-

plementation. In a true parallel implementation, we would

enjoy a drastic increase in speed while concurrency is ef-

fectively controlled. Had we exploited full OR-parallelism,

the number of processes naturally would have increased

uncontrolled in the exponential order of N.

5.2 A Simple Parser - the Control of

AND-Parallelism

Let us demonstrate the AND-parallelism control with a

DCG-like simple parser in Figure 10. Here, given the

clause:

s(X;Y; s(NP; V P)) : �np(X;Z;NP); vp(Z; Y; V P):

vp and np should be processed not in parallel, but in the

sequential order of vp, np for optimal performance (The

similar situations occur also for several other clauses). The

results in Table 2 show that the performance after learning

is comparable to the performance where the programmer

explicitly speci�es control. It apparently indicates that the

system is able to learn the control heuristics \vp should be

processed prior to np" for optimal performance. A closer

examination of the control parameters con�rms this con-

jecture: the parameters described in Section 3.2.4 for vp=3

moved from the initial values C

0

= 0:1;C

1

= C

2

= C

3

=

0:3 to C

0

= 0:05; C

1

= 0:65; C

2

= 0:15; C

3

= 0:3: this

implies that the importance in the instantiation of �rst

argument of vp, which receives the remaining unparsed

sentence from np, became greater than the second argu-

ment. As a result, vp will not be processed until the �rst

argument is instantiated by np, in e�ect serializing the

execution of np and vp.

To further emphasize the ability for the system to au-

tomatically learn the order of processing constraints, con-

sider a more elaborate example of natural language pro-

cessing: Suppose we want to execute the following goal:

:-input(X);morpheme(X;Y); syntactic(Y; Z);

semantic(Z;W)

When an incomplete input is given, it should be comple-

mented by inferring from the syntactic and semantic con-

straints. To achieve this, the system must process these

constraints in parallel while supporting don't know non-

determinism. Although stream programming based on

don't care non-determinism using committed-choice con-

current logic programming language such as Concurrent

Prolog[10] and GHC[11] can also execute these goals in

parallel, the di�culty is that streams can't directly deal

with bidirectional
ow of information. As a result, the

program would become much more complicated compared

to PARCS. This is especially evident when it is impos-

sible for the programmer to specify the processing or-

der in advance, e.g., determine \Which of p(X,Y) pro-

duced from syntactic constraints and q(X,Y) from seman-

tic constraints should be processed �rst?". By contrast,

PARCS directly and e�ciently supports the don't know

non-determinism in parallel constraint solving.

We also make a note that the e�ect of learning is ob-

served for the sentence other than the one used for learn-

ing. This indicates that learning using small samples is not

only e�ective for OR-parallelism, but for AND-parallelism

as well; we currently believe the reason for this is that

there is some consistency for optimal parameters values

among di�erent samples of the same problem domain.

P P/L P/L/DF P/D

of failures (A) 560.5 45.6 124.4 35.8

max # of OR-nodes (A) 399.5 12.7 9.5 9.6

of failures (B) 40.4 14.4 4.0 15.0

max # of OR-nodes (B) 27.6 4.3 6.0 4.5

P, L, DF, and D denote AND/OR-parallelism, after learn-

ing, depth-�rst search, declaration of priority by program-

mer, respectively. Sentence A is `A man with a pen is ken'

and sentence B is `This is a black pen.' Learning was per-

formed for the sentence `A man with pen is ken.' Values in

the table are average for 10 trials. The number of execution

in learning is from 100 to 200.

Table 2: Results for Parser Program

10

N before learning after learning depth-�rst search

6 # of failures 22.4 4.7 8.0

max # of OR-nodes 33.0 9.5 4.0

8 # of failures 69.2 8.4 23.0

max # of OR-nodes 286.8 24.4 6.0

10 # of failures - 15.2 9.0

max # of OR-nodes - 69.3 7.0

'#' denotes 'number'. Learning was performed for N=6.

The average of 10 trials gave this result.

Table 1: Results for N-queens Problem

parse(Sentence,Ptree) :- s(Sentence,[],Ptree).

s(X,Y,s(NP,VP)) :- np(X,Z,NP),

vp(Z,Y,VP).

np(X,Y,np(N)) :- n(X,Y,N).

np(X,Y,np(D,NP)) :- d(X,Z,D),

np(Z,Y,NP).

np(X,Y,np(A,NP)) :- a(X,Z,A),

np(Z,Y,NP).

.....

n([pen|X],X,n(pen)).

n([man|X],X,n(man)).

.....

Figure 10: DCG-like Parser

5.3 Discussion - Relationship between the

E�ect of Learning and Complexity of

Problems

Examples in Section 5.1 and Section 5.2 are fairly simple.

In this section, let us consider the e�ect of learning for

more complex, real-life problems. The learning yields the

following e�ect:

� Restrain unnecessary expansion of nodes in the search

tree.

� Prune branches of the search tree as early as possible.

By learning, in the best case, performance is expected to

improve by the factor of c

N

, where N is the number of

derivation steps, and c is some constant. In other words,

the more complex the problem, the more we expect the

e�ect of learning to be greater. We plan to apply PARCS

to a larger, real-life problems to observe the validity of this

conjecture.

6 Conclusion and Future Work

We proposed PCLP, a framework of programming lan-

guages to describe and solve constraints with automatic

system control of parallelism, and implemented a proto-

type language PARCS. Our approach, where a program

is written declaratively and the system automatically ex-

ploits and controls its parallelism, seems promising for fu-

ture ultra-parallel processor environment on which sole re-

liance on traditional imperative programming will become

very di�cult.

For an immediate extension to PARCS, we are consid-

ering the following: When there are several solutions, it

is often important that the optimal solution be found as

far as possible, rather than that the one found 'fast'. To

meet this requirement, the following extensions can be in-

corporated into the scheduling policy:

1. Prioritize according to what clause was selected on

the resolution.

2. Prioritize according to what value was selected to in-

stantiate a variable.

Other future work includes (1) implementation of a more

practical system on multi-processors, (2) investigating a

formal framework of PCLP where the `control' in PARCS

can be expressed, and (3) to combine our paradigm with

other paradigms such as Object-Oriented Concurrent Pro-

gramming and Functional Programming. Lazy branching

would be one factor in realizing (3): we are now studying a

way to compile programs in PARCS into Object-Oriented

Concurrent language, so that PCLP and Concurrent Ob-

jects can be combined at the implementation level.

Acknowledgment

We would like to thank Kôiti Hasida and Hirosi Tsuda for

their numerous advices during the course of this work.

References

[1] Bahgat, R. and S. Gregory, \Pandora: Non-

deterministic Parallel Logic Programming," in Pro-

ceedings of the Sixth International Conference on

Logic Programming, pp. 471{486, 1989.

[2] Buchberger, B., \Gr�obner bases: an algorithmic

method in polynomial ideal theory," tech. rep.,

CAMP-LINTZ, 1983.

11

[3] Colmerauer, A., \Opening the Prolog-III Universe,"

BYTE Magazine, vol. 12, no. 9, 1987.

[4] DeGroot, D., \Restricted AND-parallelism," in Pro-

ceedings of FGCS'84, pp. 471{478, 1984.

[5] Dincbas, M., P. V. Hentenryck, et al., \The Con-

straint Logic Programming Language CHIP," in Pro-

ceedings of the International Conference on FGCS,

pp. 693{702, 1988.

[6] Hentenryck, P. V., \Parallel constraint satisfaction

in logic programming," in Proceedings of the Sixth

International Conference on Logic Programming and

Symposium, pp. 165{179, 1989.

[7] Ja�ar, J. and S. Michaylov, \Methodology and Imple-

mentation of a CLP System," Journal of Logic Pro-

gramming, pp. 196{218, 1987.

[8] Ja�ar, J. and J.-L. Lassez, \Constraint Logic Pro-

gramming," in Proceedings of SIGACT/SIGPLAN

Symposium on Principles of Programming Language,

pp. 111{119, ACM, 1987.

[9] Naish, L., \Automating Control for Logic Programs,"

Journal of Logic Programming, no. 3, pp. 167{183,

1985.

[10] Shapiro, E., \Concurrent Prolog: A Progress Re-

port," in Concurrent Prolog (E. Shapiro, ed.), vol. 1,

pp. 157{187, The MIT Press, 1987.

[11] Ueda, K., \Guarded Horn Clauses," in Concurrent

Prolog (E. Shapiro, ed.), vol. 1, pp. 140{156, The MIT

Press, 1987.

[12] Yang, R. and V. S. Costa, \Andorra-I: A Sys-

tem Integrating Dependent And-parallelism and Or-

parallelism," tech. rep., Department of Computer Sci-

ence, University of Bristol, 1990.

12

