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ABSTRACT

Automatic memory management is an important issue of massively parallel computing. In a

distributed environment where processors are connected by asynchronous networks, the presence of

pending messages makes it di�cult to traverse references for a GC. In order to con�rm the arrival

of all pending messages, some existing GC schemes use ACK (a message that informs of the arrival

of the sending message ) and others use network clearance operations that send sweeping messages

through all the network paths. But few studies compare performance with actual implementations.

This study presents a distributed garbage collection algorithm that use weight for termination

detection to reduce message overheads, and does not suspend ongoing computations, and allows

each node to initiate local GC independently. The two methods (one is the variant of method using

ACK and the other uses network clear operations) are compared through actual implementations

on a multicomputer with 64-512 nodes, AP1000.
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Chapter

1

Introduction

On a multicomputer with distributed memory where processors are connected by asynchronous

network, it is di�cult to implement distributed garbage collection in concurrent object-oriented

programing environments.

Some of di�culties are as follows:

� It is di�cult to collect all garbages including cyclic ones ranging over nodes with light network

tra�c.

� Reference relations change over time by message passing, and in an asynchronous network,

pending messages make it di�cult to traverse references for GC.

Two Major Garbage collection schemes are (1) reference count type and its variant, (2) mark and

sweep type that marks over nodes.

In this study, we select (1) to implement our distributed garbage collection (referring to as

DGC) scheme to collect garbages including distributed cyclic ones bymarking over nodes (referring

as global mark).

Our goal is to implement DGC as follows:

1. It works concurrently with mutators and does not block ongoing computations.

1



2. It has local garbage collection system that can collect only local garbages and can run at any

time independently of other nodes.

3. It has mark-and-sweep type distributed garbage collection system that can collect garbages

including distributed cyclic ones.

To do with light network tra�c, our scheme does not send acknowledgment (ACK) messages to

con�rm each message's arrival. or to con�rm terminations of marking from objects. To con�rm the

arrival of all messages, we use a message count scheme (a variant of ACK messages) and bulldozing

scheme (a sort of network clear operations), and compare them through actual implementation.

To con�rm termination of marking over nodes, we present our termination detecting algorithm

using weight given to each marking activity as local collector and remote mark message as a unit.

The remainder of this thesis is structured as follows. Chapter 2 describes the related work on

distributed garbage collection. Chapter 3 presents an approach to our DGC scheme. Chapter 4

forms the algorithm of our DGC, message count version and bulldozing version as well as their

proof. Chapter 5 presents an implementation on AP1000 and in the performance of our DGC. We

conclude in Chapter 6.
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Chapter

2

Related Work

This chapter present previous work in distributed garbage collection. Section 2.1 describes prob-

lems to implement distributed garbage collections. Section 2.2, 2.3 presents two major types of

DGC, reference count and mark and sweep type.

2.1 Problems

It is di�cult to implement DGC that collect all garbages ranging over nodes with light network

tra�cs. One major kind of DGC is using reference counter that has di�culties in collecting

distributed cyclic garbages. Another major kind of distributed garbage collection does marking

over nodes and has to send many messages for marking, con�rming of arrival, termination detection

of marking. Some algorithms of both are described below.

Another di�culty is concurrency with mutators (ordinary user programs). We have to care of

mutators' activities on unmarked space that may change global snapshot for GC. In environments

where processors are connected with an asynchronous network, we also care of pending messages

that may change reference relations of objects.

Two major kinds of distributed garbage collection scheme, reference count schemes and dis-

tributed marking schemes, are described below.

3



2.2 Reference Count scheme and its Variants

Basic idea of reference count scheme is as follows:

� Remotely referenced objects and referencing objects have reference count.

� Local GC is done by adding remotely referenced objects to root set of marking.

� If referencing objects are reclaimed, reference counts of referenced object are decremented.

An algorithm of this kind is presented in [2]. This algorithm is simple and where each cell does

GC on its local space independently. However it can not collect cyclic garbages ranging over nodes.

In [5], an algorithm where each cell does GC on its local space independently is presented which

is fault-tolerant, largely independent of how a processor garbage collects its own space, allows

for multiple concurrent active GCs, dose not need centralized control nor global stop-the-world

synchronization, does not require to migrate objects from processor to processor and eventually

reclaim all inaccessible objects including distributed cycles. Group GC is sometime done to remove

dead cycles over nodes. However dead cycles are removed only when cycles are included in nodes

doing group GC.

[8] presents the algorithm using timestamp that can collects distributed cyclic garbages. We

do not understand it enough.

2.3 Distributed Mark-and-Sweep Schemes

Basic idea of distributed mark-and-sweep schemes is simple, to do mark-and-sweep GC over nodes.

In [1] , a mark and sweep type algorithm is presented where each processor has their collector

process that accesses its own memory only. This collection scheme is for POOL system. Marking

for remote reference is done by message passing between local collectors on each cell. This algorithm

4



can collect all garbages including distributed cyclic ones. However all local collectors in network

have to synchronize to wait for arrival of all old pending messages or for initialization of global

mark on all nodes. Its termination detection is done by using three marking colors, black, gray

and white. Gray objects are live objects markings from them are not completed. If no gray object

exists on all nodes, marking phase is terminate.

In [4, 6], algorithms for Emerald System are presented. The algorithm in [4] has two garbage

collectors: a node local collector that can run at any time independently of other nodes and a

distributed garbage collector that collects distributed garbage by cooperation with other nodes

to mark globally. Their termination detection is done by using three marking colors, same as in

[1]. Mutators can run only in marked space. In [6], robust garbage collector is presented that is

tolerant to partial fault.

[10, 11, 12] present algorithm of garbage collecting actors in distributed environments connected

with an asynchronous network. This algorithm uses bulldozing method to get the consistent global

snapshot for GC. Bulldozing method is a kind of network clearance operation where communica-

tions between nodes are FIFO order. By sending bulldozing messages through network, arrivals of

sent messages before bulldozing are con�rmed. However no actual implementation is not done.

[7] presents an algorithm of DGC in an unreliable asynchronous FIFO network. By using vector

timestamp, each node knows global time and does not have to synchronize to get global states.

To con�rm arrivals of old pending messages, nodes only have to send acknowledgment messages

to last messages for each node-to-node communications.
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Chapter

3

Our Approach

This chapter presents our approach to distributed garbage collection. Section 2.1 presents our goal

of DGC. Section 2.2 describes how to do local GC. Section 2.3 presents how to do global GC and

our approaches to reduce global GC overhead.

3.1 Goals of Our Distributed Garbage Collection

We assume our DGC to work on multicomputers where processors are connected with an asyn-

chronous network, where each channel has reliable and FIFO communication. Actually implemen-

tation is done on AP1000, a multicomputer with 64 - 512 nodes.

Our DGC is assumed to work in concurrent object-oriented programing environment, and to

work concurrently with mutators and not to block mutators.

The de�nition of garbages in our DGC scheme is as described below.

� Active objects (that are currently processing messages or have messages that are not pro-

cessed) are alive.

� Root objects (that are always useful objects such as I/O devices and global variables in

programs) are alive.

� Objects are alive if other live objects (or their messages) know their object address.

6



� Garbage objects are objects that are not alive according to the above de�nitions.

Goals of our DGC are as follows:

1. It works concurrently with mutators and does not block ongoing computations.

2. It has local garbage collection system that can collect only local garbages and can run at any

time independently of other nodes.

3. It has mark-and-sweep type distributed garbage collection system that can collect garbages

including distributed cyclic ones with marking ranging over nodes (referring to as global

mark).

4. It does not send acknowledgment messages for each sending message.

5. It does not send acknowledgment messages for each marking to detect terminations of global

marking.

We select mark-and-sweep type garbage collection to collect garbages comprehensively. To reduce

problem of mark-and-sweep type collector, that is overhead especially in network tra�c, 4 and 5

are done.

3.2 Local Garbage Collection

We have to mark from objects referenced from remote live objects in local GC. To do local GC at

any time independently of other nodes, conservative and simple method is selected in our collector.

The set of nodes that are potentially referenced from remote objects is created as exported set

on each node, and at starting local GC local collectors add members of their exported set to root

set for local marking. To implement this exported set, objects are added to exported set when

their object pointers are exported to remote objects. Deletions from exported set are done based

7



on reference relationship at global garbage collection. When global garbage collection starts, each

node clears their exported set and only objects that receive remote messages to mark (referring to

as remote mark messages) are put on exported set again.

In our implementation on AP1000, physical pointers of objects are �xed and local collectors

is mark-and-sweep type, but our distributed garbage collection algorithm is independent of local

collector's type. If you select copying collector as local collector, you only have to extend exported

set as export table to have physical pointers to objects and all remote references are to be done

through export table.

3.3 Global Garbage Collection

We implement a DGC that works concurrently with mutators and does not block mutators.

To collect all garbage including cyclic ones ranging over nodes, we select a scheme that marks

globally over nodes and reclaims memory on each cell. GC Host is assumed in our algorithm that

manages the opening of global GC to avoid two or more global marking start simultaneously, and

determines the termination of global marking. The algorithm of this global garbage collection is

described in following subsection.

At global garbage collection, global GC collects garbages at global snapshots at starting of

global GC. New created objects during GC are allocated as marked objects.

To do global GC correctly, we have to mark from root objects and active objects and their

messages at the global snapshot. But some unprocessed messages of active objects sent before

global GC starts may be pending in the network. We must con�rm the arrival of these messages

and mark from them. We describes about con�rming scheme of the arrival of all pending messages

sent before global GC starts in following subsection.

8
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Figure 3.1: Overview of Global GC

Termination detection of marking over nodes is a factor to increase network tra�c. We present a

termination detection algorithm using weight, that does not send acknowledge messages informing

terminations of markings from each object.

3.3.1 Overview of Our Global GC mechanism

Our global garbage collector consists of local collectors on each node and global GC host that

manages the opening of global GC to avoid two or more global marking start simultaneously,

and determines the termination of global marking. Marking over nodes is implemented as remote

message passing between node local collectors.

A local collector has each marking set from that collector continue marking. Collectors have

two sides state, quiet and active. Marking sets at starting of global GC are equal to root sets,

root objects and active objects and their unprocessed messages. In marking object A, A is deleted

from marking set and collector marks A and add referenced objects from A to marking set if A

is not marked. A collector is active when marking set is not empty and it can continue marking,

It becomes quiet when marking set becomes empty and it does not have object to mark at the

9



situation.

When a local collector wants to start global GC, it sends message to GC host requesting starting

of global GC. When GC host accepts the request, it broadcasts messages to all nodes announcing

starting of global GC and giving weight (mentioned later). If another global marking is done, GC

host rejects the request.

Local collectors on each node know the start of a global GC when announcement from GC host

or remote mark messages from other nodes (or new color messages from other nodes in case of using

message count scheme as described below) are arrived. They become active and set root sets and

clear exported set on each node. (In case of using message count scheme, they send send message

counts to host too, as described later.)

Local collectors start marking from each root set. When remote reference is found in marking,

the collector sends remote mark message to owner node of referenced object to mark it. Receiving

remote mark messages, collectors added object pointer in the messages to their marking sets and

continue marking. When marking set become empty, it becomes quiet and some messages are sent

to GC host as described below.

Ongoing computation is done concurrently with local collector as usual except the following

points:

� Arrival messages are at �rst captured by the garbage collectors. For messages that may

be sent before global GC start, local collectors add to their marking sets object pointer

information included in them. (The ways of judgment whether messages are possibly old or

not are di�erent between message count scheme and bulldozing scheme as described 3.3.2.)

� Writing on unmarked objects is checked and erased object pointer data information is added

10



to marking sets. (as described 3.3.4.)

When GC host determines termination of global marking, GC host sends announcement mes-

sages to all nodes, and local collector starts to reclaim garbages on each node. Algorithm of

termination detection is described in 3.3.3.

3.3.2 Con�rming the Arrival of All Pending Messages

Marking from all unprocessed messages of objects have to be done, in an asynchronous network

we have to con�rm the arrival of all pending messages sent before global GC start and mark from

them.

A well known method of con�rming the arrival of sending messages is to use acknowledgment

message (referring to as ACK) that is sent from receiver nodes to sender nodes to inform sending

message arrival. If we implement this naively, message tra�c for ordinary computation increased

twice and messages must include the information of sender node ID.

Another method is called network clear operations that sweep out old messages from network.

Bulldozing method is one of network clear operation that needs no special hardware supports

except the FIFOness of each network channel, as described in [10, 11, 12]. By sending bulldozing

messages through network, we can con�rm the arrival of all old messages when bulldozing �nished.

This time, we implement our DGC algorithm through two schemes, a scheme that we call mes-

sage count scheme (improved scheme of naive ACK method) and bulldozing scheme, and compared

through implementation.

Our message count scheme colors all messages of ordinary computation to distinguish whether

messages are sent before global GC start or after, and local collector count numbers of all sent mes-

sages and arrival messages by their message color, as sent message count and arrival message count.
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When global GC start, GC host compares the sums of sent messages count and arrival messages counter

in distributed system. In actual implementation, a local collector sends sent message counts of old

color to GC host and sets the counter to zero at beginning of a global GC. When a local collector

becomes quiet, it sends arrival message counts of old color to GC host and sets the counters to

zero. If marking set increased from arrival of remote messages or so, the local collector sends

arrival message count again at becoming quiet.

Message counting is done all the time and old messages may arrive to a quiet collector in global

GC. In the case, the collector becomes active again. Marking to possibly old message is done with

old color messages. For arrival of old color messages in global GC, collectors add object pointer

information including the messages to their marking set and continue marking. Naturally local

collectors send arrival message count at becoming quiet again.

GC host con�rms the arrival of all pending messages sent before global GC start, if following

condition is attained.

1. Sent message counts are received from all nodes.

2. Sums of sent message counts and arrival message counts are equal.

Safety property of above statements is obvious. 1 means sum of sent message counts become

sum of all of them. As sum of arrival message counts increase monotonically, and sum of ar-

rival message counts is not more than sum of all arrival message counts, which is equal to sum

of all sent message count, 2 means all message arrived. Termination is also obvious because all

sent message counts are sent at the beginning of global GC and for all arrival of messages ar-

rival message counts are returned to GC host in �nite time.

On the other hand, bulldozing schemes are described in detail in [10, 11, 12]. By sending

12



bulldozing messages through network, we can con�rm the arrival of all old messages when bull-

dozing �nished. AP1000 has 2-dimension torus network and implementation of bulldozing is done

considering with speci�c hardware architecture. Detail of our bulldozing algorithm is described in

5.3. Bulldozing is implemented to work concurrently with global marking. In [11] messages are

colored to distinguish whether messages are sent before global GC or not. In this studies this time

we make two version of bulldozing algorithm, one use coloring information and another do not use

colors and messages arrived before bulldozing �nished are judged as possibly old messages.

3.3.3 Distributed Termination Detection of Global Marking

Another di�culties of mark and sweep type distributed garbage collection is to implement termi-

nation detection algorithm of global marking with light network tra�c.

A naive termination detection algorithm uses acknowledgments for marking when marking from

marked object as a root is terminates. Termination condition of this type algorithm is achieved

when all root sets on each nodes have been acknowledged. However acknowledgment messages

are sent for each remote mark message and latency of acknowledgment is long when marking is

ranging several nodes. Memory space for remembering not acknowledged objects is necessary.

A well known termination detection algorithm is setting three colors for marking, in [1]. Ac-

knowledgment for marking when all references of marked object are traversed. Black objects are

alive and acknowledged objects. Gray objects are alive but not acknowledged objects. White

objects are not marked objects. Termination condition of this type algorithm is achieved when

all nodes have no gray objects. However acknowledgment messages are sent for each remote mark

message. And messages are sent many times to gain termination condition.

Our termination detection algorithm uses weight and gives it to marking activities, remote

13
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arrival  :  7

weight : 14weight : 12
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         mark
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active active

active

Figure 3.2: Remote Mark with Weight

mark messages and active local collectors as a unit. This weight is provided by GC host and each

collector returns weight to GC host at becoming quiet. The sum of weight in network and local

collectors on each node, that is sum of weight of remote mark messages and active local collectors,

are equal to provided weight byGC host. Remote mark messages and active local collectors are kept

to have positive weight in our algorithm (except the case described 3.3.4. Naturally termination

condition of our garbage collection is attained when GC host receive all weight provided before.

At staring of global GC, each node gets weight from global GC host with announcementmessage

of starting of global GC and adds the weight to its weight. At sending remote mark messages,

local collectors send them with positive weight and decrement their own weight. If collectors weight

becomes zero by decreasing weight, sending remote mark is blocked until request of weight to GC

host is done and enough weight is provided from GC host. Receiving remote mark messages, local

collectors add weight of mark messages to their own weight and add referenced pointer into their

marking set and continue marking. At becoming quiet, nodes return their weight to GC host.

A quiet local collector becomes active when possibly old messages or remote mark messages

arrive. In case of remote mark messages, local collectors get messages' weight and become active

14
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Figure 3.3: Requesting Weight to GC Host

with positive weight. In case of possibly old messages, local collector becomes active with zero

weight.

Thus weight in network and all nodes are equal to weight provided by GC host. After con�rming

the arrival of all pending messages, weight of remote mark messages and local node collectors are

kept positive because active collector with zero weight becomes quiet until con�rming of arrival

and no zero weight active collector will not be created after con�rming. (More formal proof of this

property is described in 4.3.)

Termination condition of global marking is attained when following two conditions are achieved.

� Con�rming the arrival of all pending messages is done.

� GC host received all weight providing before.

We now informally compare this algorithm with above mentioned ones using acknowledgment

messages. This algorithm requires remote mark messages to have weight information but above

ones require them to have pointer of referencing object instead. In our algorithm returning of
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Figure 3.4: Remote Mark and Returning Weight

weight is done only when local collectors become quiet. Request message for weight and its reply

is pure overhead messages to implement this termination detection algorithm. Comparing with

above algorithm using acknowledgment messages for each remote mark message, message tra�c is

fairly lower. Furthermore, requests of weight occur seldom because weight is managed as a local

collector as a unit. GC host judges termination of global marking only when weights are returned

and do not have to send messages to watch local collectors' states. Considering of local collectors'

overhead, in our algorithm collectors only have to deal weight and states for remote mark and have

very simple data structure compared to above ones using acknowledgment.

3.3.4 Concurrent With Mutators

One of major problem on implementing concurrent GC with mutators is mutators' writing in

unmarked space. Writing in unmarked space may change untraced reference relation of global
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weight :  2
arrival  :  0

   active

weight :  0
arrival  :  0

but active

weight :  0
arrival  :  0

but active

remote mark
      weight : 2

Figure 3.5: Active Collector with Zero Weight

snapshot at starting of global GC.

Two ways of coping with this di�culty are well known.

(1) Mutators are allowed to execute only in marked object whose reference is considered already.

(2) Conservatively marking from erased reference is done.

This time one of our goal of distributed garbage collection is not to block mutators and select (2)

solution.

Some di�culties are raising from selecting (2). Quiet local collector can become active without

arrivals of remote mark messages or old messages. However this solution does not destroy our

termination detection algorithm. We write informal proof here. (More formal proof is described

in 4.3)

Assuming of a written unmarked object O in node N. O is alive because it is accessible from live

object, and if it is not unmarked it must be exist before global snapshot as new objects are created

marked, and marked before termination condition is formed. Next we prove termination of marking

from O as root before termination condition is formed. For marking from O as root out of N must

be managed with positive weight. For marking from O as root in N must be �nished because O

has to be marked and the marking must be one from outside root (including old messages) and N

has to receive old messages or remote mark messages. If the situation is achieved, following of this
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informal proof is same as described in 3.3.3
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Chapter

4

Algorithm

We formalize our algorithm based on discussions on chapter 3. Section 4.1 presents one version

of our DGC algorithm that use message count scheme. Section 4.2 presents another version using

bulldozing method. Section 4.3 describes proof of our algorithms.

In this chapter marking means traversing references of an object and add referenced object to

marking set. Marking from A as root means traversing graph of reference relation as A as root

and mark all referenced objects.

4.1 Algorithm : Using Message Count

This scheme uses message counters to con�rm the arrival of all pending messages.

All mutators' messages have their colors used to be distinguished whether messages are sent

before global snapshot or after. Each node has two kinds of message counter that counting the

number of sent messages and arrival messages by message color. Each local collector has its color

and sent messages are colored by its color.

Local collector and GC host's state are 2 sided, normal state and marking state. Local

collectors in marking state with non-empty marking sets are called active, and other collectors in

marking are called quiet.
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4.1.1 Behavior in Normal State

Local Collector

� On sending a message, a local collector increments their sent message count. If the message

includes local object pointers, they are added to exported set. The message is sent with color

of the collectors.

� On receiving a message, a local collector increments arrival message count of message color.

If message's color is not same as local collector's color, local collector must become active

state in GC. The message is received after becoming active.

� On receiving remote mark messages or announcement of staring of global GC start, local

collector becomes active. Remote mark message is received after becoming active.

� If a collector wants to start local GC, local collector starts garbage collection as described in

3.2. If a collector wants to start global GC, it sends request message to GC host.

GC Host

� GC host becomes active state on receiving request of global GC.

4.1.2 Behavior in Global Marking

Local Collector

� At becoming marking state, collectors must change their color, clear exported set, set root

set and send message count.

� Collectors with non-empty marking set continue marking from their marking set.

20



� Marking remote object, at �rst collector check the object is remotely marked from own node.

If it is not marked form own node, collectors send remote mark message with positive weight.

Collectors' weight decreased and , in the condition their own weights become zero, sending

remote mark is blocked until request for weight is done and enough weight is provided from

GC host.

� Sending a message is same as normal state.

� Receiving a message, a local collector increments arrival message count of message color. If

message's color is old, object pointer included in messages are added to marking set.

� Receiving a remote mark message, weight of message is added to collector's one and object

pointer included in messages is added to marking set.

� If new object is allocated, it is created as marked object.

� If mutator write in unmarked objects, erased pointer informations are added to marking set.

� If marking set become empty, collectors send weight and arrival message count of old color

to GC host.

� Announcement of starting of global marking is discarded.

� Receiving an announcement of termination of global marking, each node starts to reclaim

unmarked space. Collectors become normal state.

GC host

� At becoming marking state, GC host broadcasts announcement of starting of global GC.

� Requests to start global GC are discarded.
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� Receiving sent message count, collectors add it to sum of sent message count. Number of

receiving sent message count is counted.

� Receiving weight and arrival message count, collectors add them to sum of each. Continue

to termination detector.

� Termination of global marking is detected if following two conditions are established.

1. Sent message counts are received from all nodes.

2. Sums of sent message counts and arrival message counts are equal.

3. All weight is returned to GC host.

If these conditions are established, GC host broadcasts messages to each node to start re-

claiming of unmarked memory space. GC host becomes normal state.

4.2 Algorithm : Using Bulldozing Method

This scheme uses a bulldozing method to con�rm the arrival of all pending messages. Bulldozing

is done concurrently with global marking.

We present two algorithms, one uses message color to distinguish old messages and another do

not use message color and messages received before an announcement of termination of bulldozing

are judged as possibly old messages.

Local collectors and GC host have 2 sided state as message count scheme.

4.2.1 Behavior in Normal State

Local Collector

� Sending a message including local object pointers, they are added to exported set.
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� Receiving remote mark messages or announcement of global GC start (or new colored mes-

sages at using color), local collector becomes active. The message is received after becoming

active.

� If a collector wants to start local GC, local collector starts garbage collection as described in

3.2. If a collector wants to start global GC, it sends request message to GC host.

GC Host

� GC host becomes active state on receiving request of global GC.

4.2.2 Behavior in Global Marking

For Bulldozing

� Bulldozing starts after cells become marking state.

� Termination of bulldozing is announced to all cells and GC nodes.

� Bulldozing algorithm depend on machine architecture and our algorithm using WO at im-

plementing on AP1000 is presented in 5.3.

Local Collector

� At becoming marking state, collectors clear exported set, set root set. Some kinds of ac-

knowledgement is done for bulldozing.

� Collectors with non-empty marking set continue marking from their marking set.

� Marking remote object is as message count scheme.

� Sending a message is same as normal state.
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� Receiving a message before arrival of announcement of bulldozing termination, local collectors

add object pointers included in messages to their marking set. (If using color, local collectors

add object pointers included in old colored messages to their marking set.)

� Collectors neglect messages after arrival of announcement of bulldozing termination.

� Receiving remote mark messages, weights of messages are added to collector's one and object

pointers included in messages are added to marking set.

� New objects are created as marked object.

� If mutators write in unmarked objects, erased pointer informations are added to marking set.

� If marking set become empty, collectors send weight to GC host.

� Receiving announcement of termination of bulldozing, collectors send acknowledgement mes-

sage for this announcement. If collectors have no weights, acknowledgement is done after

requesting weight is done and weights are provided.

� Receiving bulldozing messages, collectors play their role in bulldozing algorithm.

� Announcement of starting of global marking is discarded.

� Receiving announcement of termination of global marking, each node starts to reclaim un-

marked space. Collectors become normal state.

GC host

� At becoming marking state, GC host broadcasts announcement of starting of global GC.

� Requests to start global GC are ignored.
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� Receiving weight and arrival message count, collectors add them to sum of each. Continue

to termination detector.

� Receiving an acknowledgement message for announcement of bulldozing termination, termi-

nation detector is continued.

� Termination of global marking is detected if following two conditions is established.

1. Acknowledgment messages for announcement of bulldozing termination are received

from all nodes.

2. All weight is returned to GC host.

If these conditions are established, GC host broadcasts to all nodes to start reclaiming of

unmarked memory space. GC host becomes normal state.

4.3 Correctness Proof

4.3.1 Correctness and Assumption

We must satisfy following properties to prove the correctness of our distributed garbage collection

algorithm.

� Safety Theorem :

1. Non-garbage objects will not be collected during garbage collections.

2. User programs will not be in
uenced by garbage collections.

� Liveness Theorem :

1. Garbage collection algorithm terminates in �nite time.

2. Every Garbage Object will eventually be collected.
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To prove our distributed garbage collection, we use following assumption.

� Assumption : Garbages will not become live objects again.

We also assume about network as follows:

� Network Assumption : All messages arrive at their destination in �nite time.

4.3.2 Lemmas around Con�rming the Arrival of Old Messages

This section presents and proves following lemmas around con�rming of old messages used in proof

of correctness.

Lemma 1.1.1 : At message count scheme or bulldozing scheme using color for messages, a

consistent global snapshot has been obtained by our algorithm.

Lemma 1.1.2 : At bulldozing scheme not using color for messages, a consistent global

snapshot has existed.

Lemma 1.2 : After con�rming the arrival of all old messages, no old message is in network.

Lemma 1.3 : Marking from all old messages is done.

Lemma 1.1.1 : At message count scheme or bulldozing messages using color for messages, a

consistent global snapshot has been obtained by our algorithm.

Proof :

When a remote message or an announcement of starting of global marking or a new colored

message arrives, local collectors changed their color and receive the message. Messages from new

colored collectors are received by new color collectors only and consistency is gained. Announce-

ment of starting global marking is received before announcement of termination of global marking
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and its arrival is acknowledged during global marking phase. As announcement of starting of global

marking arrives in �nite time, snapshot is obtained in �nite time.

2

Lemma 1.1.2 : At bulldozing scheme, a consistent global snapshot has existed during marking

phase.

Proof :

Bulldozing scheme guaranteed the fact that no message sent from nodes before bulldozing

arrives at nodes after bulldozing, and global time of a node before bulldozing is earlier than one

of another node after bulldozing. We can get consistent global snapshot by following de�nition.

� Global time before bulldozing is before global snapshot.

� Global time after bulldozing is after global snapshot.

� If a node receives a message sent after global snapshot, global time of its node is after global

snapshot.

� If a node's global time is not after global snapshot with above algorithm, global time of its

node is before global snapshot.

A snapshot above de�nition has consistency. Supposing the condition where consistency is broken

by a message sent after global snapshot arrives at a node before global snapshot, the node is before

bulldozing. This makes contradiction with guarantee of bulldozing method.

2

Lemma 1.2 : After con�rming the arrival of all old messages, no old message is in network.

Proof on message count scheme :

From Network Assumption, sent messages arrive at destination. It is obvious that sum of sent

messages' number is equal to sum of arrival ones. Our algorithm con�rms the arrival of all old
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messages if following conditions are attained.

� Sent message counts are returned from all nodes.

� Sums of sent message counts and arrival message counts are equal.

Sent message count is returned when local collectors on each node change their colors and sent

message count of old color never increase. Sum of arrival message count is increased monotonically

and when sum of arrival message count is equal to sums of sent ones all arrival message count is

returned. This guarantees the arrival of all old messages.

2

In actual implementation message color needs only 2 color as changing color is not done before

con�rming of old objects.

Proof on bulldozing scheme :

Bulldozing algorithm may changes and informal proof of this time bulldozing is done in section

5.3.

Lemma 1.3 : Marking from all old messages is done.

Proof on message count scheme :

In this scheme, all messages are colored. As local collectors checking message color and marking

from old messages before the arrival of all old messages are con�rmed. From Lemma 1.2 no old

messages are in network after con�rming all messages' arrival. Local collectors continue checking

messages until termination of global marking is announced, and no old message will arrive in future.

This guarantees the fact that collectors mark from all old messages.

2

Proof on bulldozing scheme :

In our bulldozing scheme, local collectors mark from all messages before bulldozing terminates.

Therefore marking from all old messages is done.

2
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4.3.3 Proof of Safety Theorem 1

We also use following lemmas to prove safety theorem 1.

Lemma 2.1 : All live objects will be marked in global marking in our algorithm.

Lemma 2.2 : Local collectors acknowledges arrival of old messages with non-empty marking

set and no weight.

Lemma 2.3 : Termination condition is not achieved until global marking terminate.

Lemma 2.1, Lemma 2.2, Lemma 2.3, Safety Theorem 1 are proved in this order.

In our DGC live objects are de�ned as follows.

� Active objects are live objects.

� Root objects are live objects.

� Objects are alive if other live objects know their object address.

Our algorithm marks following objects.

1. Active objects and root objects are marked as root set.

2. Objects referenced by messages of global snapshot are marked.

3. Objects referenced by marked objects are marked.

4. When mutators write in unmarked objects, the written object and referenced objects by it

are marked.

Lemma 2.1 : All live objects will be marked in global marking in our algorithm.

Proof
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It is obvious that all old live objects are traced on global snapshot with 1 - 3 type marking

only. Our algorithm works concurrently with mutators. To avoid any untraced reference to be

erased, erased references are traced conservatively before reference relation is changed. We traced

reference relations on global snapshot only and no unmarked reference relation is erased during

marking phase, all live objects at global snapshot are marked using Lemma 1.3. Old live objects

were live at global snapshot using above Assumption and marked during marking phase. As new

object is created as marked object during GC, it is proved that all live objects are marked during

phase.

2

Lemma 2.2 : Local collectors acknowledge arrival of old messages with empty marking set or

positive weight.

Proof :

In message count scheme, local collectors acknowledge arrival of old messages only when their

marking set become empty. In bulldozing scheme, local collectors with non-empty marking set

acknowledge announcement of termination of bulldozing with positive weight. If a local collector

has no weight with non-empty marking set, acknowledgment is done after collectors request weight

and GC host provides weight. In both cases Lemma 2.2 is kept.

2

We de�ne some sets for proof of Lemma 2.3.

� Old marked objects are member of set A if it can be traced from root set or old messages

with references traced during marking phase.

� Old marked objects are member of set B if it is not member of A.

Lemma 2.3 : Termination condition is not achieved until global marking terminate.
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Proof Weights in network and in local collectors are kept equal to weight provided by GC

host in our algorithm. As weights do not have negative value, Returning all objects to GC host

guaranteed the fact that no remote mark messages are in network and no collectors have positive

weights.

Local collectors' weight can be zero only if its marking set become empty and collectors return

weights to GC host.

Assuming the situation where terminate condition is achieved and some local collectors continue

marking, the collector must continue marking with no weight.

A local collector with no weight marked an object O as member of set A, O is traced from any

root objects or old messages.

Case 1 : Suppose O can be traced from root set of same nodes, O is marked before marking set

becomes empty and the local collector has positive weight. This supposition makes contradiction.

Case 2 : Suppose O can be traced from old messages arrived at this node, O is marked before

marking set becomes empty. This means that O is marked by collectors with no weights and

non-empty marking set. This supposition contradicts with Lemma 2.2.

Case 3 : Suppose O can be traced from root set at other nodes or old message arrived at other

nodes, a traced reference exists that can reach to O. Remote marking to this node was done and

O will be marked until marking set becomes empty. However, local collectors on the nodes receive

positive weight from remote mark message and keep positive weight until marking set becomes

empty. This supposition makes contradiction.

Therefore we can say O is not member of A. O is marked objects and O must be traced from

unmarked objects written in by mutators. WOmust be live objects and member of A. Suppose WO
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and O is not at same nodes, some remote references exist between O and WO and contradiction

occurs as case 3. Suppose WO and O is at same nodes and reference to WO was traced by

collectors with positive weights, O must have been marked before marking set becomes empty by

collectors with positive weight. This also makes contradiction. Supposing that WO will be marked

by collectors with no weight after con�rming the arrival of all old messages, and same contradiction

occurs as Case 1 - 3.

Consequently we can say �rst assumption is not correct and Lemma 2.3 is proved.

2

Safety Theorem 1 : Non-garbage objects will not be collected

Proof :

Using Lemma 2.1 and Lemma 2.3, all live objects are marked during global marking phase and

as local collectors do not collect marked objects, all live objects will not be collected.

4.3.4 Proof of Safety Theorem 2

Safety Theorem 2 : User programs will not be in
uenced by garbage collections.

Proof

Our algorithms do not changed reference relations of objects and not block marking and not

collect live objects from Safety Theorem 1. Our algorithm will not in
uence user programs.

4.3.5 Proof of Liveness Theorems

Liveness Theorem 1 : Garbage collection algorithm terminates in �nite time.

Proof :

We prove it according to following steps. (1) �nite number of markings as reference traversal

is done. (2) markings are done in �nite time. (3) termination detection is done in �nite time.
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This time we trace only old objects. It is obvious that number of messages in network and

objects of global snapshot at starting global marking. All messages and objects have �nite number

of reference relation and Number of reference relations at global snapshot is �nite. Once a reference

is traced, it is not traced twice and marking is done in �nite number of times at most.

Marking has two types, local marking and remote mark. Marking are blocked only when local

collectors do not have enough weight. At this case providing of weight is done in �nite time as

it is not blocked. Remote mark messages arrive in �nite time as Network Assumption, Each type

of marking is done in �nite time. In addition all old messages arrive in �nite time, all marking is

done in �nite time.

(3) is proved at each algorithm, message count scheme and bulldozing scheme. As message

counts scheme, local collectors have no weight and no message counts when marking set is empty.

At bulldozing scheme, local collectors have no weight when marking set is empty and as bulldozing

messages are not blocked by local collectors or mutators bulldozing terminate in �nite time. For

both cases, as marking is done in �nite time and all weight and message count is returned to host,

GC host noticed achievement of terminate condition, if no message is in loss in network as Network

Assumption.

Liveness Theorem 2. : Every Garbage Object will eventually be collected.

Proof :

If an object is garbage at global snapshot at starting global marking, it is not accessible from

any live objects or messages and it is not marked during marking phase.

If an object becomes garbage during global marking phase, it is marked and not collected during

the marking phase. However it is garbage at beginning of next global GC, and collected by the
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global GC or previous local GC.
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Chapter

5

Performance Evaluation

This chapter presents implementation of our distributed garbage collection algorithm on AP1000

and evaluate two schemes, message count one and bulldozing one are compared.

5.1 Machine Environment

We chose AP1000 as a target machine. AP1000 consists of 64 - 1024 cells and host computer as

SUN-4/330 one CPU workstation. Each cell has one SPARC processor with 16 MByte memory

and 25 MHz cycle clock.

Cells and host are connected with T-net and B-net and S-net. B-net is a broadcast network

that is used communication between host and cells. S-net is for synchronization between cells.

These two networks are not used in our implementation. T-net is a two-dimension torus network

for communications between cells. Node to node FIFO communications and X-dimension, Y-

dimension, XY-dimension broadcasts are provided. It is controlled by the routing chip called RTC

[3]. RTC's transfer rate is 25MB/s per channel (connection between next node) and its transfer

delay is 160 + 160 � distance+ 160 �message � length(word) (ns).
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Figure 5.1: AP1000 Architecture
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5.2 Memory Allocation

Our local collectors have 2 generations to reduce overhead of GC. When local collector does GC

over generation, generations of all live objects are raised to old generation. On global garbage

collection we can not get consistency between each node's generation, GCs over generation are

done.

AP1000 does not have enough memory protection mechanism to do incremental copying GC

because it is not actual to check whether it is marked or not for all reading. Our collector seldom

change addresses of objects.

Objects are only space that is referred from other nodes, their addresses are not changed. Their

allocation is done with �xed size chunk with bidirectional link. Marking to chunks are done with

copying from new space to old space with changing link and no sweeping is needed and We can

expect e�ects of doing generational GC with requiring no sweeping.

We can use heap to allocate arrays and records. References to heap area is managed through

indirection tables to enable compaction at GC over generation. GC for heap area is done with

mark and sweep. we can expect e�ects of doing generational GC with compacting old generations.

Each allocated object has tag bit for GC. Two tag bit is used to represent contents of one word,

as contents have 3 data type, object pointer or heap or non-pointer.

5.3 Bulldozing Algorithm

Routing scheme of AP1000's B-net is as in [3] and FIFOness of communication between nodes

are guaranteed. Messages are routed through X-dimension and then Y-dimension. Shorter side of

torus network is used.

AP1000 is implemented as messages may pass messages from another node in physical network.
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To bulldozing X-dimension messages, it is not enough to send bulldozing messages to go around.

This time we use following algorithm to do bulldozing because messages are not passed by ones

from the same nodes in AP1000. Node's position is presented as (X;Y ). GC host is assumed to

be (0; 0).

1. GC host broadcasts announcement messages of starting of global GC and bulldozing to all

nodes.

2. All nodes send bulldozing messages in two directions, + and� of X-dimension by half distance

of X-dimension to bulldoze messages from each node.

3. Receiving X-dimension bulldozing messages, nodes positioning (X;Y ) send acknowledgement

messages to nodes in position (0; Y ).

4. Receiving all the acknowledgements of X-dimension bulldozing messages, node (0; Y ) knows

termination of X-dimension bulldozing on this row. They send X-dimension broadcast mes-

sages to start Y-dimension bulldozing.

5. Receiving messages to start Y-dimension bulldozing, each node sends bulldozing messages in

two directions, + and � of Y-dimension by half distance of Y-dimension to bulldoze messages

from this row.

6. Receiving Y-dimension bulldozing messages, nodes positioning (X;Y ) send acknowledgement

messages to nodes in position (X; 0).

7. Receiving all the acknowledgements of Y-dimension bulldozing messages, node (0; Y ) knows

termination of Y-dimension bulldozing on this column. This guarantee no old messages will
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arrive in this column in the future. Nodes announced termination of Y-dimension bulldozing

on this column to local collectors on this column.

8. Receiving announcements, local collectors acknowledge to host. If local collectors have no

weight and active in marking, local collectors have to request to GC host and then send

acknowledgement messages.

9. Receiving all acknowledgement messages, GC host con�rms the arrival of all pending mes-

sages.

We present informal proof of unproved lemmas in section 4.3.1.

Lemma 1.2 : After con�rming the arrival of all old messages, no old message is in network.

Proof

Our algorithm depends on routing algorithm of AP1000 [3]. We use following features.

� Messages routed X-dimension and next Y-dimension.

� Messages routed through shorter pass for each dimension.

� Messages do not pass by another messages from same node.

At step 1, we con�rm no old messages are send from each cell. At step 4, it is con�rmed that no

messages exist X-dimension network of each row. At step 7, it is con�rmed that no messages exist

Y-dimension network of each column, and no old messages are arrived at nodes of each column. At

step 8, local collectors stop checking messages. At step 9, GC host con�rms that no old messages

are in network.
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5.4 Implementation

This section presents a way of representing concurrent object-oriented programing environments

used in this time implementation and presents implementation of DGC algorithm.

We use Remote Continuation Address Passing for remote messages as presented in [9]. A

received message has only specifying a message handler address (remote continuation address)

that depends on each speci�c message. In our DGC implementation, a message handler also

check messages as a part of local collectors. In message count method, message handler check

message's colors and increment arrival message count by each color. At global marking, marking

from possibly old messages are done by message handler, in both cases, message count scheme and

bulldozing scheme. As message handler knows tag information of messages, messages need not to

have tag informations.

We also use low latency remote object creation mechanism presented in [9]. Each node gives

to each node stocks of chunks for remote creation. At remote object creation, nodes get a chunk

from given chunks and return its address as remote created objects address and send messages to

create object to owner of chunk.

In our implementing DGC, local collectors and GC host communicates with message passing,

each remote message are handled by each type message handler using remote continuation address

mechanism.

This time we hand-compile N-queen programs to evaluate performance of DGC algorithm and

compare two schemes, message count scheme and bulldozing scheme. However our DGC is on

experiment stage and it is di�cult to identify data type at stack, no method call is implemented

using stack. Each method call is implemented as allocating a chunk and saving parameters and
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put the chunk to continuation queue.

5.5 Evaluation

Following evaluation is done at AP1000 with 64 (8� 8) cell.

At �rst we evaluate overheads of global marking of each type algorithm, by measuring time of

global marking in environments with no live objects. The result is as follows.

Table 5.1: Global Marking Time with No Live Object

message count bulldozing (for

method method bulldozing only)

7.4(msec) 14.8(msec) 14.8(msec)

Next we evaluate numbers of messages to do global GC and detect its termination. This

performance is done with running N-queen program.

At �rst we examine the case of message count scheme as shown in 5.2. Numbers of weights

request and acknowledgments for termination are less than remote marking messages at averages.

We can detect the termination of global marking with these messages only. We can say that

our algorithm require less messages than using acknowledgement for each marking termination.

According to weight request, it is quite less than remote message counts in this case.

Table 5.2: Messages at Global Marking : Message Count Scheme

average max min

remote references 58615 120340 68

remote mark messages 37892 90202 58

marked object 234837 544209 267

old pending messages 2.23 11 0

global marking time 366.6(msec) 824(msec) 38(msec)

weight request 0.02 3 0

returing of weights 5016 13527 199

overhead msg/ remote msg 0.13

Next we examine the case of bulldozing scheme, 5.3 shows number of messages at messages

do not have their color and 5.4 shows the case of no color for messages. Comparing these two
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versions, we can �nd few deferents. Oppositely in both case bulldozing time is quite similar

to global marking time. This means that terminations of global marking are often restricted

by terminations of bulldozing. This occurs in the probability of 70This fact does not indicate

bulldozing is not actual, because 5.1 shows that bulldozing can complete in short time. Each

bulldozing message is sweeping via some nodes and at each nodes the message waits for being

processed by message handler. Latency becomes long as each cell or network tra�c become heavy.

If some hardware supports that relay bulldozing message with low latency or that interrupts for

some kind of remote messages as bulldozing, bulldozing becomes more actual.

Table 5.3: Messages at Global Marking : Bulldozing Scheme (with No Color)

average max min

remote references 49284 131154 5

remote mark messages 36383 104503 5

marked object 239218 552378 41

bulldozing time 380(msec) 887(msec) 31(msec)

global marking time 394 (msec) 887(msec) 35(msec)

weight request 0.015 1 0

returing of weights 4088 18743 68

bulldozing messages 320

overhead msg/ remote msg 0.12

Table 5.4: Messages at Global Marking : Bulldozing Scheme (with Color)

average max min

remote references 45420 117447 101

remote mark messages 32096 88442 81

marked object 233612 536618 475

global marking time 387(msec) 810(msec) 34(msec)

bulldozing time 380(msec) 810(msec) 36 (msec)

weight request 0.017 1 0

returing of weights 3309 15148 136

bulldozing messages 320

overhead msg/ remote msg 0.11

In both cases, the number of messages which are sent for returning weights or requesting for

weights is 11 - 13However, our DGC using bulldozing scheme takes more time than message count
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scheme, because remote marking sometimes terminates before the termination of bulldozing. Using

bulldozing scheme on our algorithm is superior in the point that algorithm using bulldozing scheme

can work without colors and any overheads are needed in sending remote messages. If bulldozing

or some kind of network clear operations are supported, using bulldozing method in our DGC will

be faster ones.
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Chapter

6

Conclusion and Future Work

This thesis presents an distributed garbage collection algorithm that have local GC and mark-and-

sweep type global GC, and not block mutators. To reduce overhead of global marking we use a

message count scheme and a bulldozing scheme that do not send ACK messages to sender nodes.

A termination detection algorithm is used that use weight as local collectors as units.

Our DGC algorithm gives weight to each marking activities and returning of weight or request-

ing for weight or con�rming the arrival of all old messages are done as overhead. In our DGC

algorithm, it is ascertained that number of messages for above overhead are less than that of re-

mote mark messages through actual implementations. For our algorithm using bulldozing method,

termination of remote marking sometimes catch up with bulldozing termination and bulldozing

often becomes the bottleneck of our algorithm in our implementation on AP1000. This is because

bulldozing messages often waits for being handled by processors. As bulldozing methods does not

require coloring messages, it may be in actual use when some hardware supports are o�ered.

Our DGC algorithm is not fault tolerant because the termination condition of global marking

in our algorithm does not consider any kind of fault. If message are lost, arrival message count

or weight for GC are missed and our termination condition is not satis�ed. Local collectors are

waiting for GC termination, and can not start other GC. We have to devise a system recoverable
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from fault. We also need to consider reducing global marking overhead. Global marking over many

nodes requires overhead and to reduce this overhead some sort of hierarchical system is required.

Since our DGC does not require messages to have any information about sending nodes, some

information must be carried in messages to do hierarchical DGC.
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