
Incorporating Locality Management into Garbage Collection

in Massively Parallel Object-Oriented Languages

�

Kenjiro Taura

Satoshi Matsuoka

Akinori Yonezawa

Department of Information Science,

Faculty of Science, The University of Tokyo

y

Abstract

This paper discusses how locality between ob-

jects a�ects the performance, and proposes a

software architecture for enhancing locality while

keeping load-balance reasonable at the minimum

sacri�ce of runtime overhead. Objects are cre-

ated locally by default and long-lived objects

are selectively migrated during garbage collec-

tion. By enhancing locality, message passings

are likely to be local and objects are likely to be

referred to from only local objects, thus they are

quickly reclaimed when becoming garbage. By

integrating migration process into garbage col-

lection, load-balance is achieved and information

useful for migration (e.g., reference counting) are

collected at a low cost during garbage collection.

1 Introduction

1.1 Why Locality is Important

When we spawn a new concurrent object (task),

where should the new object be located? Should

the object be created on the local node, i.e., on

the same node where the creater object resides,

or on a remote node, i.e., which is some other

node where the creater object does not resides?

In order to answer to this question, we should

consider two issues and address the con
ict be-

tween them.

� Locality, which refers to how likely a reference

to an object points to an object on the local

node.

�

#&*-42,/39=;<B?@DFILN)A.O5

207/168CQ>

y

$ G:+ J!R 'TPH

UESM)M%K("M"

E-mail: ftau,matsu,yonezawag@is.s.u-tokyo.ac.jp

� Load-balance, which means how evenly ob-

jects are distributed among nodes.

If we forget locality and concern only load-

balance, the problem is easy; some randomized

distribution scheme will su�ce in practice. Un-

fortunately, this scheme creates too many re-

mote references, resulting in severe loss in lo-

cality which causes a severe degradation of the

overall performance by the following two reasons:

� Message passing overhead/latency. A remote

message passing involves larger overhead than

local message send in many multicomputers.

This is especially true on current commercial

multicomputers (e.g., AP1000) which consist

of high performance, conventional RISC pro-

cessors where the overhead of a local message

passing can be reduced to a small factor of that

of a procedure invocation.[9]

� Di�culty of garbage collection. In garbage

collection environment for high-level languages

such as concurrent object-oriented languages

or functional languages, the problem is harder.

We must reclaim the space used by garbage

objects, which are no longer referred to from

any objects. In order to reclaim an object, we

must detect if the object is no longer referred

to from remote nodes, as well as from local

nodes. Existing garbage collection schemes for

this purpose are roughly classi�ed into the fol-

lowing two categories:

{ Reference count, which keeps how many

references exist in the system relying upon

corporation by the user process (mutator).

Since reference counts must be handled when

creating/copying/deleting a reference to an

object (e.g., message passing, assignments),

it imposes large overhead to the user process.

1



{ Distributed mark-and-sweep, which is sim-

ilar to the mark-and-sweep garbage collec-

tion on single CPU, except for marking phase

transmits a message (mark message) when it

�nds a remote reference. Since this scheme

generates a large amount of network tra�c

for a garbage collection, it works well only if

it is rare, otherwise the overall performance

of the system will be signi�cantly degraded

by the messages for garbage collection.

1.2 Overview of Our Approach

Based on the above observation, we devised a

scheme which maximizes locality while keeping

load distribution reasonably balanced. Our main

concern is how to do this with minimum sac-

ri�ce of runtime node-local performance. The

key observation is that recently created objects

tend to have shorter lifetime, as in most high-

level languages; thus, it is reasonable to place

a newly created object on the same node as the

creater object to enhance locality, expecting that

the object will become garbage soon. Once al-

location area is exhausted, local garbage collec-

tion takes place. It reclaims objects which are

no longer referred to locally and whose refer-

ences have never been exported . Local garbage

collection is very e�cient because it needs no

message transmission for traversing pointers to

objects. Furthermore, it reclaims much garbage

because our creation scheme enhances locality;

most objects are referred to from only local ob-

jects. During garbage collection, the garbage col-

lector migrates some long-lived objects to other

nodes, naturally incorporating migration and

copying/compacting collection in the processor.

At the same time, the garbage collector gath-

ers information necessary for deciding whether

or not an object should be migrated or not (such

as reference count), which is used in the next

garbage collection. Such information are col-

lected with few additional overhead to standard

garbage collection.

Our primary contributions are:

� Maximum node-local performance by quick

allocation/reclamation of local objects.

� The creation scheme which enhances locality.

� E�cient local garbage collection which needs

no message transmission and still e�ectively

collects garbage thanks to locality.

� Migration scheme which utilizes information

gathered by the garbage collector.

Throughout this paper, our proposal concen-

trates on runtime mechanisms for an object cre-

ation scheme which enhances locality but is or-

thogonal to approaches by compile-time analysis

or programmer's annotation. Neither compile-

time analysis nor programmer's annotation is

su�cient. Compile-time analysis is di�cult for

programs which involves many dynamic task cre-

ations. Programmer's annotation, where pro-

grammers explicitly specify whether or not the

task is created on remote node might be a good

compromise between runtime overhead and good

task distribution, but it has also limited e�ects.

In this kind of scheme, it is di�cult to access

global information, such as load of other proces-

sors because keeping these information available

causes runtime overhead which is not always nec-

essary and choosing available runtime informa-

tion raises di�cult trade-o� between good task

distribution and runtime overhead.

2 Related Work

Several researchers are working on e�cient

implementations of high-level concurrent lan-

guages which involves dynamic task creation,

some are in concurrent object-oriented languages

ABCL[11, 9], Concurrent Smalltalk[3], others are

in functional languages Id[2, 10] or logic pro-

gramming languages KL/1[8, 4].

ABCL and CST concentrate on and achieved

e�ciencies of basic operations such as mes-

sage passing, or task creation. Although the

above implementations have achieved good per-

formance of simple operations such as message

passing or object creation, it has not been shown

that they perform excellently in real, large scale

applications. One of the biggest problems which

has not been addressed in any of these propos-

als is where a newly created task should go and

how to reclaim spaces occupied by garbage data

at a low cost. To our knowledge, existing pro-

posals are not currently taking locality into ac-

count, that is, newly created tasks are located

on a remote node by default. More importantly,

they have no mechanism for local garbage collec-

tion, where global garbage collection takes place

whenever one of the node memory over
ows,

that may degrade the overall performance sig-

ni�cantly.

2



Culler et al[2] has shown how overhead of

�ne-grain data
ow synchronization can be re-

duced without elaborate hardware support in

their implementation of Id. It again concentrates

on basic operations such as synchronization or

function invocation and addresses little about

task creation schemes.

The KL/1 implementation[8, 4] is similar to

ours in that their implementation allows e�cient

local copying garbage collection in spite of pres-

ence of external references. Their scheme works

because data are referred to from other nodes in-

directly through export table, which keep track

of all externally referenced data. This involves

large runtime overhead in usual computation be-

cause table managements are necessary for ex-

porting references[4].

3 Representation of Object Ad-

dress

Representation of remote references has a large

impact on the performance of ordinary compu-

tation and garbage collection. Many studies

on distributed garbage collection employ \ex-

port/import tables" and objects are referenced

indirectly[6] via this table. While this scheme

simpli�es implementation because it allows sys-

tem to move objects freely for garbage collec-

tion/migration, it incurs signi�cant overhead for

accessing objects and table managements. Since

the purpose of the export table is to serve as

the \root pointer" in local garbage collection,

the export table must hold some superset of all

the references from remote nodes while it must

not be too conservative to make e�ective lo-

cal garbage collection. This is usually done by

reference counting or its variation, where every

reference transfer/disappearance operation con-

sumes several tens of instructions solely for table

management[4].

Instead, our representation of remote refer-

ence is a simple pair hNodeID;Pointeri, where

the second component is the real pointer that is

valid on the node NodeID . Furthermore, there

is no reference counting mechanism, minimizing

the interference by garbage collection.

Seemingly, this scheme could cause several

problems:

� This scheme might seem to prohibit local

copying garbage collector because garbage col-

lector cannot move objects which may be re-

ferred to from a remote node.

� This scheme might seem to require round

trip packet-transfer latency for remote ob-

ject creation or migration (i.e., memory al-

location) because the real address of the al-

located/migrated object could only be deter-

mined by the memory manager of the remote

node.

Nevertheless, we can overcome these de�ciencies

and achieve better performance:

� For the �rst problem, temporal objects that

have never been exported to remote node can

be safely copied or reclaimed by local garbage

collector. Since temporal objects tend to have

locality as a consequence of our allocation

scheme (Section 4.1), they are likely to be col-

lected by local garbage collector.

� For the second problem, we devised a

\prefetch scheme [9]" to e�ectively hide this la-

tency where remote chunks are previously al-

located and their address are kept in a \stock"

in each node. On the remote object creation,

requester node gets an address from the stock,

and use it as an address of the newly created

object. The requested node replies another

chunk to replenish the stock of the requester,

thereby keeping the amount of stock chunks

nearly constant as long as requested node has

enough chunks to serve.

4 Object Creation and Mem-

ory Management

4.1 Structure of the Heap

The heap is separated into two areas; one is a

large contiguous area and the other contains a

number of chunks which are initially linked as

free list (Figure 1). A newly created object is al-

located on the contiguous area and it can move

freely on local garbage collection as long as its

reference has never been exported. On a local

garbage collection, an object whose reference has

been exported moves to the chunk area and it

can no longer be relocated. We call the con-

tiguous relocatable region, while the chunk area

is called unrelocatable region. For brevity, the

later discussion assumes there is only one gener-

ation in the relocatable area and it is separated

into two spaces, namely from-space and to-space

3



Relocatable Region

Allocated

from Free List

From To
Free

Free List

Unrelocatable Region

Figure 1: Structure of the Heap.

as in traditional copying collection. (In practice,

we employ a more elaborate generational copy-

ing scheme in the relocatable region.)

Since the relocatable region is contiguous, an

allocation is quickly done by incrementing the

free pointer which points the head of the free

space. Heap limit check requires only 1 instruc-

tion by keeping the free pointer in a special reg-

ister and o�setting it so that heap exhaustion

cause integer addition over
ow trap[1]. This

quick allocation helps for maximum node-local

performance.

When the allocation area is exhausted, local

garbage collection takes place. Local garbage

collector takes contents of registers, stack,

scheduling queue, and chunks in unrelocatable

region to which store operation has occurred

1

as

root pointers.

4.2 Exporting References

Since local collector cannot move/delete re-

motely referenced objects freely, exported ref-

erences cannot directly point to the relocatable

region. Thus, some maintenance is necessary

on exporting references. More speci�cally, when

the reference of an object is exported to another

node, we create an internal proxy of the object

in the following way:

� Check whether or not it is the �rst time the

object is exported,

� If it is, allocate a chunk which is large enough

for the object in the old region as an inter-

nal proxy, doubly-link the object body and the

chunk, and initialize the virtual table for the

chunk to a forwarding procedure that invokes

1

This is because they may contain pointers to relocat-

able region.

/* <node_id, p> is the address

of the object */

struct object *export(node_id, p)

int node_id; object_t p;

{

if(node_id == MYCELLID){

object *proxy = p->link;

/* p has already been exported? */

if(proxy == NULL){

proxy = allocate_from_unrelocatable_region();

/* double link body and proxy */

proxy->link = p;

/* virtual table for forwarding */

proxy->vftbl = fwd_tbl;

/* export the proxy */

return(proxy);

} else {

return(proxy);

}

} else return(p);

}

Figure 2: Exporting Reference.

the object body via indirection. The address

of the chunk, instead of the body, is supplied as

the exported address of the object. The object

is copied into this chunk on the next garbage

collection.

� Else, the address of the proxy, which must

have been created before, is the exported ad-

dress.

Each object/proxy has an additional word which

links itself to its proxy/object. Having a null

pointer in this word indicates that the object

has not been exported yet. Figure 2 shows the

required overhead on exporting a reference. In-

struction counts are 5�8 instructions except for

creating a new proxy, which occurs only once

for each exported object. After exporting, the

object is referenced directly from objects in the

same node, while remote reference to the object

is performed indirectly via the proxy. When a re-

mote message arrives at an object which has its

internal proxy, it looks up the virtual table of the

proxy and invokes a forwarding procedure which

forwards the message to the object body. When

a garbage collection occurs, the body of the ob-

ject is copied into its internal proxy so that this

indirection disappears.

Although the role of internal proxies are sim-

ilar to that of export table, there are essential

di�erences:

4



Remote 
Message

proxy body

RelocatableUnrelocatable

:Message

Node

:Forwarding Message

Local
Message

Figure 3: Exported object and its proxy.

� Local collector copies the object body to the

address of the proxy so that indirection is nat-

urally resolved after a local garbage collection.

� Local references still have direct access to the

object body without any extra checking by

utilizing assumption that ensure object is ac-

cessed only via method invocation.

The structure of an object whose reference was

exported and its proxy is shown in Figure 3.

4.3 Activity of Local Collector

Once a local collector is invoked, it performs

a variant of copying/compacting collection al-

gorithm. Di�erences between normal copying

garbage collection are: (1) it may migrate some

objects in the garbage collection process and

(2) it gathers information for subsequent local

garbage collection to decide whether or not an

object should be migrated.

During the pointer traversal, it encounters

the following (live) data.

Data other than object Local collector sim-

ply copies it to the to-space.

An object which has already been exported

Since these object has its proxy, local col-

lector copies the object body into the proxy

space, thereby freeing the space occupied by

the object body and eliminating the indirec-

tion through the proxy. Any local references

to the object is scavenged to point to the proxy

in the garbage collection process.

An object which has never been exported

Since no remote reference to this object exists,

the local collector can move the object freely to

any place, including other nodes (i.e., migra-

tion). Pointers to the object is naturally for-

warded in the process of copying collection.

2

The local collector decides whether or not it

should migrate an object using various infor-

mation gathered by previous garbage collec-

tions. Although such information may not be

up-to-date because they were gathered on pre-

vious collections, they give a reasonable ap-

proximation at very low additional overhead.

Details of migration is described in the next

section.

5 Algorithm of Migration

Our migration scheme is integrated in the pro-

cess of local garbage collection, which is a non-

trivial extension of a well-known copying garbage

collection. When the garbage collector �nds a

pointer to an object in the process of pointer

traversing, it decides whether or not the ob-

ject should be migrated. If it decides the ob-

ject should be migrated (how to this is described

later), the garbage collector moves the object

and data which are reachable from the object

by only local pointers to to-space and then send

them to the target node. This is essentially

a copying collection with only one root object.

(Notice that simple depth-�rst copying does not

handle cyclic references.) After sending the ob-

ject, the space for sending the object is freed.

An important problem is how to decide

whether or not the garbage collector should mi-

grate an object. In fact, many factors a�ect the

preference of migration:

1. Load of other nodes.

2. Reference counts of the object.

3. Size of the object and other data pointed to

from the object.

Since it is too expensive to maintain them

always up-to-date, we must use some approxi-

mation by periodically gathering these informa-

tion. We again gather these information in the

process of a local garbage collection. Gathering

them in the process of a local garbage collection

2

When we have two or more generations, we must col-

lect generations which contains moved objects.

5



is essential improvement because it traverses lo-

cal pointers in any case. For instnce, reference

counts of an object is obtined by incrementing

the reference count of the object whenever a local

garbage collector �nds a pointer to the object.

6 Global Garbage Collection

Our local garbage collection employs a conser-

vative view about remote references; i.e., once

a reference of an object is exported, the ob-

ject cannot be reclaimed by the local garbage

collection even if it is already garbage. There-

fore, we must use some global garbage collection

scheme as well, which reclaims garbage objects

whose reference have been exported. We employ

a distributed mark-and-sweep (DMS) algorithm

as global garbage collection because it imposes

smaller overhead to user processes compared to

reference counts. The details of the algorithm

is described in [5]. This section concentrates on

when the global collection takes place.

A DMS, which runs concurrently with user

processes, takes place when an unrelocatable re-

gion is exhausted. If a user process requires more

unrelocatable memory in the process of a DMS,

it saves its context into the relocatable region

and waits for the DMS to give enough memory.

In this scheme, there is still a possiblity that

there is not enough room for saving the infor-

mation that the context is waiting. When this

occurs, we try a local garbage collection to get

memory for saving the information. If this again

fails, we use a message bu�er of one of other

nodes as an emergency bu�er. This is done by

sending a message which returns to the sender

after some period and checks to see if there is

enough memory in the sender node. If there is,

it resumes the context, else it repeats the same

process.

7 Implementation Status

Actual implementation of the proposed scheme

is being developed on Fujitsu laboratory's MPP,

AP1000[7], which consists of 32{1024 SPARC

chips. The node-local garbage collection has

been implemented and is operating on a single

CPU SPARC. Currently we are developing the

proposed migration routines and examining bet-

ter algorithm for deciding which objects should

be migrated.

8 Conclusion

We have proposed a software architecture for

concurrent object-oriented computing in mas-

sively parallel computers which includes mech-

anism for locality management, load-balancing,

and garbage collection. It achieves maximum

node-local performance by quick local alloca-

tion and indirection-free object access. Enhanc-

ing locality allows e�cient local garbage collec-

tion and the proposed migration scheme is low-

overheaded because it is free from bookkeeping

of migrated objects which no longer reside on the

node. Furthermore, it can be intelligent by tak-

ing advantages of information gathered by the

local garbage collecter, such as reference counts.

References

[1] Andrew W. Appel. Compiling with Contin-

uation. Cambridge University Press, 1992.

[2] David E. Culler, Anurag Sah, Klaus Erik

Schauser, Thorsten von Eicken, and John

Wawrzynek. Fine-grain parallelism with

minimal hardware support: A compiler-

controlled threaded abstract machine. In

Proceedings of the Fourth International

Conference on Architectural Support for

Programming Languages and Operating Sys-

tems, volume 26, pages 166{175, Snata

Clara, California, April 1991.

[3] Waldemar Horwat. Concurrent Smalltalk

on the message-driven processor. Master's

thesis, Department of Electrical Engineering

and Computer Science, Massachusetts Insti-

tute of Technology, May 1989.

[4] Nobuyuki Ichiyoshi, Kazuaki Rokusawa,

Katsuto Nakajima, and Yu Inamura. A

new external reference management and dis-

tributed uni�cation for KL1. In New Gener-

ation Computing, volume 7, pages 159{177.

Springer-Verlag, 1990.

[5] Tomio Kamada, Satoshi Matsuoka, and

Akinori Yonezawa. An algorithm of dis-

tributed garbage collection on a multicom-

puter and its performance evaluation. Se-

nior's thesis, Department of Information

Science Tokyo University, 1992.

[6] Bernard Lang, Christian Queinnec, and

Jos�e Piquer. Garbage collecting the world.

6


