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Abstract

We propose a re
ective object-oriented concurrent

language RbCl which has no run-time kernel. That is

to say, all the behavior of RbCl except for what is re-

stricted by the operating system and hardware can be

modi�ed/extended by the user. RbCl runs e�ciently

in a distributed environment and is intended for prac-

tical use. The execution of an RbCl program is per-

formed by a metasystem that consists of metalevel ob-

jects. All the features of RbCl including concurrent ex-

ecution, inter-node communication, and even re
ective

facilities themselves are realized by the metalevel ob-

jects, which are modi�able and extendable. Important

metalevel objects are called system objects, that are reg-

istered in system object tables. The user can change the

behavior of the metasystem by replacing elements of

system object tables with user-de�ned objects. RbCl

also provides a novel feature called linguistic symbiosis

for metalevel objects. All the metalevel objects in the

initial RbCl metasystem are actually C++ objects, but

the linguistic symbiosis enables the user to manipulate

metalevel C++ objects just as ordinary RbCl objects.

Even re
ective schemes and facilities themselves are re-

alized by system objects that can be modi�ed/extended

by the user. Therefore, debugging of re
ective pro-

grams and experiments on re
ective schemes and facil-

ities can be expressed and performed within the RbCl

language framework. In Appendix, we present a full

program list of Rscheme, which is a kernel-less language

on Scheme based on a re
ective architecture modeling

that of RbCl.

1 Introduction

Re
ection is a scheme that realizes highly 
ex-

ible and malleable systems. A re
ective system

can manipulate data called Causally-Connected Self

Representation(CCSR)[3] that represents the current

�
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state of its own computation. In a re
ective system, the

user program can manipulate its CCSR to change the

computation of itself. The user can de�ne new language

features or change the representation of data structures

of the language within the same language framework.

Therefore, we believe that re
ective systems are ex-

tremely useful as a platform for experimenting new lan-

guage facilities and implementation techniques. Previ-

ous re
ective systems, however, have the following prob-

lems:

� All previous re
ective language systems are imple-

mented on top of their run-time kernels, that cannot

be manipulated by the user. For example, the re
ec-

tive tower of 3-Lisp[8][6] is implemented by code of

hundreds of lines which acts as the run-time kernel.

Although the semantics of the language may be al-

tered using the re
ective capabilities, the behavior of

the run-time kernel cannot be changed by the user.

This is a serious problem for the language users who

are keen to e�ciency: for example, a user may want

to tune the language system to adapt to a speci�c

application to improve its e�ciency. The existence of

the run-time kernel, however, will restrict such mod-

i�cations. Also, the underlying scheme of re
ection,

which is implemented by the run-time kernel, cannot

be modi�ed/extended by the user within the language

framework.

� In many re
ective systems, CCSRs that can be ma-

nipulated by the user does not expose the entire as-

pects of system implementation; rather, the CCSRs

are abstracted so that the user can easily manipulate

the system behavior. This restricts the aspects of

computation the user can manipulate: for example, if

the representation of garbage collection mechanisms

is not included in the CCSR, the user cannot change

the garbage collection scheme.

� In most re
ective systems, the re
ective tower ob-

served by the user actually does not exist; rather, the

run-time kernel makes the system act as if there is a

in�nite re
ective tower. Because the re
ective tower

is far from the actual implementation, the user must

understand the behavior of the run-time kernel to pre-

dict the amount of the CPU power and memory used

by re
ective programs. Furthermore, complex imple-



mentation techniques are required for e�cient imple-

mentation in spite of their relatively simple metacir-

cular de�nitions. This may cause various implemen-

tation problems for large systems (e.g., whether or

not the semantics of the re
ective tower is properly

preserved).

In this paper, we propose a new re
ective architec-

ture and implementation techniques that alleviate the

above problems. Our language RbCl (Re
ection Based

Concurrent Language) is an object-oriented concurrent

language with a re
ective architecture, and runs e�-

ciently in a distributed environment. Speci�cally, our

RbCl system has the following characteristics:

� A simple mechanism called system object tables are

introduced to remove the �xed run-time kernel at the

level of the implementation language. In other words,

all the run-time routines comprising the language sys-

tem can be replaced by the user-de�ned ones. In the

case of RbCl, the implementation language is C++;

the user, therefore, can rede�ne the entire C++ pro-

gram code to change the behavior of the system up

to the restriction imposed by the operating system

and hardware. Every possible run-time facility can be

provided as libraries or applications written in RbCl.

� A novel facility called linguistic symbiosis with imple-

mentation language is introduced to make the CCSR

completely be in accordance with the actual imple-

mentation. The linguistic symbiosis enables the user

tomanipulate objects of the implementation language

in the same manner as ordinary RbCl objects. All

language facilities initially realized by C++ objects,

including concurrent execution, inter-node communi-

cation, program code management, memory manage-

ment, etc., can be subject to modi�cations by the

user. Even the re
ective schemes themselves can be

modi�ed/extended by the user. Therefore, RbCl is

highly useful as a platform for experimenting new lan-

guage facilities and implementation techniques. Fur-

thermore, the linguistic symbiosis allows e�cient im-

plementation of the re
ective system itself.

� In RbCl, the re
ective tower can be regarded as ac-

tually existing; that is to say, the re
ective tower of

RbCl is the in�nite tower of the direct implementa-

tion. However, the metasystem, which is a system

that realizes the execution of a system on each level,

is created in a lazy manner. This creation of meta-

systems can be achieved without using the run-time

kernel, by using the characteristic of direct implemen-

tation. Because the behavior of the re
ective tower

is completely de�ned by the CCSR of RbCl, the user

can easily predict the e�ciency of the re
ective pro-

grams and can also modify/extend the behavior of

the entire re
ective tower.

� The metasystem of RbCl (that is, the CCSR of RbCl

system as mentioned above) is designed based on an

object-oriented and layered architecture, so that the

user can easily modify/extend its behavior in an en-

capsulated manner.

� The re
ective facilities of RbCl are implemented us-

ing only simple mechanisms of the implementation

language: the only special mechanism required is

the coroutine mechanism. The implementation tech-

niques employed by RbCl can be easily applied to a

wide range of language systems.

Since RbCl is a kernel-less system, all the features de-

scribed here can be altered if the user desires so. We re-

fer to the language initially provided for the user as the

plain RbCl to distinguish it from a modi�ed/extended

RbCl. Although this paper describes the characteristics

of the plain RbCl in the strict sense of the word, we

simply use the name \RbCl" except for the cases where

we need to make the distinction.

The remainder of this paper is structured as follows.

In Section 2, we describe the characteristics and bene�ts

of kernel-less systems. Section 3 explains the facilities

and implementation of RbCl. In Section 4, we present

examples that change and extend the re
ective schemes

themselves. Section 5 compares our system with related

work. Finally, we summarize our work in Section 6.

To illustrate a concise overview of the RbCl system, in

Appendix, we will give a full program list of Rscheme,

that is a kernel-less language on Scheme based on a

re
ective architecture like that of RbCl.

2 Kernel-less system

RbCl is a kernel-less system. In this section, we de-

scribe the characteristics and bene�ts of kernel-less sys-

tems.

If a system written in a programming language L has

a facility that enables the user to replace every part of

its program code by a user-de�ned one, we say that the

system is a kernel-less system on language L.

The following systems are examples of kernel-less sys-

tems: when a system's entire machine language instruc-

tion code is located in mutable store, and the system

has a facility for modifying the values of contents of ar-

bitrary addresses, the system is a kernel-less system on

the machine language. The window system on a Lisp

machine is a kernel-less system on Lisp because all the

Lisp functions de�ning the behavior of the system can

be rede�ned by the user. A more elaborate example is

as follows: the behavior of a re
ective language is often

de�ned by a re
ective tower, that is, an in�nite tower of

metacircular interpreters. More speci�cally (e.g., in 3-

Lisp), the behavior of the language at level n is de�ned

by the interpreter at level n+1. The user can replace the

entire interpreter code at level n using re
ective com-

putation at level n+1. Therefore, any system at level n
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Figure 1: Language systems with/without run-time ker-

nels.

is a kernel-less system on the language de�ned at level

n+1. This is one reason why the re
ective system is so


exible. However, since the entire 3-Lisp system must

be implemented by another language for the e�ciency

reason, the program code implementing the behavior of

the re
ective tower can never be modi�ed by the user

of the 3-Lisp system, so the 3-Lisp system is not kernel-

less as it has a kernel running on the implementation

language.

Most of the traditional language systems such as Lisp,

Prolog, Smalltalk, etc., have run-time kernels to sup-

port their high level facilities. By contrast, machine

language programs written in an assembler or C(++),

etc., require no run-time kernel support.

RbCl is a kernel-less language system on C++, or,

we can say \on machine language" because C++ has

an ability to incorporate assembler programs, and C++

programs are compiled to machine language programs.

This kernel-less system is realized by a simple mech-

anism called system object tables as will be described

in Section 3.3. As a result, the user can rede�ne the

entire C++ program code to change the behavior of

the system up to the restriction by the operating sys-

tem and hardware (Fig. 1). Thus, concurrent execution,

inter-node communication, program code management,

memory management, and even re
ective schemes and

facilities themselves can be modi�ed/extended by the

user. In usual language systems, the trade-o�s between

various characteristics such as e�ciency, 
exibility, pro-

grammability, safety, portability, etc., are achieved only

by the system implementer. In RbCl, the balance of

the trade-o�s between all such characteristics can also

be changed by the language user.

A problem with kernel-less systems, such as a ma-

chine language program in mutable store (as described

above), is that it is often extremely di�cult and danger-

ous to change the behavior of the system dynamically:

as a result, they cannot be used for practical purposes.

In RbCl, its re
ective facilities and linguistic symbio-

sis enable the user to easily modify/extend behavior of

the system thanks to the encapsulation provided by the

object-oriented nature of RbCl.

3 Design and Implementation of

the RbCl Metasystem

In this section, we describe the main facilities pro-

vided by RbCl and the design and implementation of

the RbCl metasystem.

3.1 Characteristics of RbCl Objects

The basic features of RbCl are similar to those of

ABCL/1[12] except for its re
ective facilities. Each ob-

ject is the unit of concurrency and scripts/methods are

executed in a usual, sequential imperative manner (no

internal concurrency in a stateful object is allowed).

Currently, we use a subset of Common Lisp to describe

the sequential behavior of each object. Objects are dy-

namically created and they interact with each other only

by sending messages. RbCl provides both synchronous

and asynchronous types of message sending.

3.2 Linguistic Symbiosis

RbCl provides a novel facility called linguistic sym-

biosis with C++ objects. It hides the implementation

gap between RbCl objects and C++ objects by allowing

transparent inter-communication within the same mem-

ory space. An RbCl object can regard a C++ object

as an RbCl object, and conversely, a C++ object can

regard an RbCl object as a C++ object. The user need

not be conscious of the di�erence of these languages.

When communicating between C++ and RbCl, each

uses its own communication protocols: an RbCl object

communicates with a C++ object by the RbCl mes-

sage passing protocol, and a C++ object communicates

with an RbCl object via C++ virtual function invo-

cation. The implementation scheme of the linguistic

symbiosis is described in Section 3.6. As described in

Section 3.4, the linguistic symbiosis plays an important

role in implementing the in�nite re
ective tower with

�nite computing resources without any run-time kernel.

3.3 Metasystem

The client RbCl program resides at the baselevel. The

metasystem is a metalevel system that realizes the ex-

ecution of the baselevel RbCl program (Fig. 2). The

metasystem consists of metalevel objects. Likewise the

execution of the metalevel objects is realized by the

meta meta system and so on ad in�nitum, forming a

re
ective tower.
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Figure 2: The baselevel and the metalevel in RbCl.

The RbCl system consists of nodes which are units of

resource sharing such as CPU power and memory. Each

node has its own re
ective tower. If a node is imple-

mented on a shared memory architecture machine, mul-

tiple threads may run simultaneously within the node.

Otherwise, the metasystem is executed sequentially; in

this case, concurrent execution of the baselevel objects

becomes pseudo-parallel. In programming the baselevel,

the user need not be aware of the distributed nature of

the architecture. However, the design of the metalevel

takes node boundaries into account. In the metasystem

of the plain RbCl, there are no inter-node references be-

tweenmetalevel objects. The inter-node communication

between baselevel objects is realized at the metalevel us-

ing system calls provided by the operating system.

Each level of each node has its own system object ta-

ble (Fig. 3), which plays a crucial role in realizing the

re
ective facilities of RbCl. A system object table re-

alizes a name space of system objects. System objects

are important metalevel objects that determine the ba-

sic behavior of the baselevel, and are recorded in the

system object table of the metalevel. For example, the

metalevel objects that determine the global behavior of

the baselevel, such as schedulers, active queues and the

network daemons, are all system objects. The gener-

ators are also system objects that generate metalevel

objects such as parts of baselevel objects, or primitive

data element such as cons cells, etc. System objects

are referenced to by name from other objects within the

same node and level. The user can change the behavior

of the baselevel on a node by replacing elements of the

system object table of the metalevel on the node.

Although the plain RbCl metasystem consists of only
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Figure 3: Each level of each node has its own system

object table.
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Figure 4: The user can replace all system objects.

C++ objects, the behavior of each object is carefully

designed so as to be independent of C++ language fea-

tures as much as possible. For example, global variables

and global functions of C++ are not used; rather, sys-

tem objects are employed for encapsulating global data

and operations. C++ object creation constructs such as

new class foo() are not used directly; instead, gener-

ators are used for the purpose. For instance, when a

system object named cons generator receives a mes-

sage, it generates a metalevel object that represents a

cons cell.

The user can replace arbitrary system objects with

user-de�ned ones, that may be either C++ objects or

RbCl objects (Fig. 4). The user need not be conscious

of the di�erences between these languages thanks to the

linguistic symbiosis. When the user de�nes RbCl sys-



tem objects, the user can use all RbCl features such as

concurrent execution, inter-node communication, etc.

The RbCl metasystem is constructed in a layered

manner. In other words, the metasystem consists of

several layers corresponding to the degree of abstrac-

tion. Program modules that depend on the hardware

architecture are in the lower layers, and program mod-

ules that depend on speci�c features are in the higher

layers. The layered architecture enhances portability

and extensibility of RbCl.

3.4 The In�nite Tower of Direct Imple-

mentation

Without run-time kernels, the previous re
ective sys-

tems would be impossible to implement e�ciently with

�nite computing resources. A run-time kernel is usually

necessary to make the system act as if an in�nite re
ec-

tive tower exists. In contrast, an RbCl system, which

embodies a tower, is implemented with �nite computing

resources without a run-time kernel. This is achieved by

employing the linguistic symbiosis with C++ objects,

that can be executed without a run-time kernel. The

re
ective tower of the plain RbCl is the in�nite tower of

the direct implementation. In this section, we describe

the re
ective tower of RbCl.

In re
ective systems, baselevel entities do not exist at

the metalevel in the strict sense of the word; that is to

say, there exist only the metalevel entities that repre-

sent the baselevel entities. For example, imagine a Lisp

interpreter written in C. Although there are cons cells

in Lisp, there are none in C; rather there are C struc-

tures that represent the Lisp cons cells. In the same

way, there are no C structures at the machine language

level, but rather there is storage whose contents repre-

sent the C structures. We can go far as to say that,

there is no storage at the hardware level, but rather,

there are electronic entities that represent the storage.

When a Lisp program is running, all the levels are ac-

tive at the same time, but usually one pays attention

to one level at a time to understand the behavior of the

system.

Let us pay attention to the C level interpreting Lisp

expressions. Generally, there are twomethods for imple-

menting a language facility on top of another language

system: direct implementation and explicit implementa-

tion [6]. For example, when the `+' operation of Lisp

is implemented by using only the `+' operation of the

C language, we say that \the `+' operation is directly

implemented." In this case, the semantics of the `+' op-

eration of Lisp fully depends on that of C. On the other

hand, if the meaning of the `+' operation is de�ned ex-

plicitly using the usual primitive recursion scheme, we

say that \the `+' operation is explicitly implemented."

Analogously, let us pay attention to the metalevel of

RbCl that implements the baselevel of RbCl. RbCl pro-

vides the linguistic symbiosis that enables C++ objects

to be executed as baselevel objects. In the plain RbCl

metasystem, the execution of the baselevel C++ ob-

jects are directly implemented. This is achieved as fol-

lows(Fig. 5): a baselevel C++ object O is represented

by a single metalevel object O' (in contrast to a baselevel

RbCl object which is represented by multiple metalevel

objects). O' has instance variables and methods iden-

tical to those of O. Therefore, a message sending to O

at the baselevel can be simply represented by a message

sending to O' at the metalevel.

Let us pay attention to the meta meta level of RbCl

that implements the metalevel of RbCl. There are meta

meta level C++ objects that represent metalevel C++

objects. For example, the metalevel object O' is repre-

sented as a meta meta level object O" that has instance

variables and methods identical to those of O'. Because

the plain RbCl metasystem consists only of C++ ob-

jects, the computation state of the meta meta level is

strictly identical to that of the metalevel. In this way,

the meta meta level of the plain RbCl can be regarded

as actually existing and directly implementing the exe-

cution of the metalevel C++ objects. (Fig. 5 illustrates

this whereby each C++ object is represented by a meta

level C++ object that has the same hatch pattern.)

The meta meta level itself is also regarded as directly

implemented by the meta meta meta level and this tower

of direct implementation continues on in�nitely. In this

manner, the re
ective tower of RbCl is realized with

�nite computing resources.

According to this view, arbitrary (non-re
ective) sys-

tems could be regarded as being implemented by the

in�nite tower of direct implementation. However, such

view is usually meaningless because the user of such sys-

tems cannot manipulate the lower levels. On the other

hand, the re
ective facilities of RbCl enable the user to

manipulate the arbitrary levels if the user desires. The

meta meta system that interprets RbCl objects at the

metalevel is explicitly generated by a metasystem when

a user creates an RbCl object at the metalevel for the

�rst time. Therefore, the in�nite tower of direct imple-

mentation of RbCl has the same power as the re
ective

towers of other re
ective systems. How the meta meta

system is generated by the metasystem is described in

Section 3.7.

3.5 Level Shifting by Level Managers

The linguistic symbiosis enables C++ objects to be

executed at the baselevel. As explained in Section 3.3,

each level has its own system object table that real-

izes a name space of system objects. Consequently, the

baselevel C++ objects must be executed in the base-

level's name space. The management of the name space

is conducted by system objects called level managers.

Each level of each node has its own level manager. The

level manager of the metalevel performs level shifting,

that is, switching the current name spaces of the sys-
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tem objects between the baselevel and the metalevel.

The level manager of the meta meta level similarly per-

forms the level shifting between the metalevel and the

meta meta level. The linguistic symbiosis and all the

re
ective facilities such as creating metalevel RbCl ob-

jects are implemented using the primitive level shifting

capability provided by the level managers.

Note that a level manager only switches the name

spaces. Wherever the name space of the metalevel is

shifted, the baselevel is still executed by the metasystem

and the metalevel is still executed by the meta meta

system and so on.

The level shifting mechanism is implemented as fol-

lows: a C++ object refers to a C++ global variable to

know the appropriate system object table that repre-

sents the current name space. A C++ object accesses

a system object as follows:

system_object_table[symbol_id]

System object table is a C++ global variable which

is a pointer to an array of C++ objects. This ar-

ray represents the system object table. Symbol id is

a small integer that represents the global name of a sys-

tem object. The level manager changes the value of the

C++ global variable system object table to an ap-

propriate system object table when it receives messages

:shift-to-meta or :shift-to-base.

Level managers are system objects, and thus can also

be replaced with user-de�ned objects. Therefore, pro-

grams that require changes to the re
ective facilities

RbCl
C++

C++
RbCl

Intermediate pointer

Baselevel

Metalevel

Figure 6: Implementation of the linguistic symbiosis.

of the RbCl itself, such as debugging of re
ective pro-

grams, or performing experiments on re
ective facilities,

can be expressed within the RbCl language framework.

In Section 4 we will explain this in detail.

3.6 Implementation of the Linguistic

Symbiosis

In order to realize the linguistic symbiosis, the imple-

mentation gap between RbCl and C++ is absorbed by

metalevel objects called intermediate pointers (Fig. 6)

that perform (1) conversion of message passing proto-

cols between the two languages, and (2) level shifting

by sending messages to the level manager of the met-

alevel. Each reference between baselevel RbCl objects

and baselevel C++ objects is represented by an inter-



mediate pointer object at the metalevel. The user can

modify/extend the behavior of intermediate pointers us-

ing re
ective facilities.

An intermediate pointer also manages the coroutine

facility using the thread library of the C language. All

baselevel RbCl objects are interpreted at the metalevel

on one thread, and baselevel C++ objects are directly

implemented by metalevel C++ objects that run at the

metalevel on the other threads. When a baselevel RbCl

object sends a message to a baselevel C++ object, the

intermediate pointer at the metalevel switches the ac-

tive thread to a new thread where the corresponding

metalevel C++ object runs. If control is passed back

to a baselevel RbCl object, the interpreter thread at

the metalevel is reactivated. Message passing between

C++ objects is performed e�ciently with an ordinary

virtual function invocation without using intermediate

pointers.

3.7 Generating the Meta Meta System

Many re
ective systems implement lazy creation of

metasystems within run-time kernels. The RbCl meta-

system can generate the meta meta system within the

RbCl language framework | that is, it does not re-

quire a run-time kernel to do so. This is achieved as fol-

lows: �rst, let us de�ne an object to be primitive if it is

implemented only by direct implementation. For exam-

ple, C++ objects are primitive objects while interpreted

RbCl objects are not. As explained in Section 3.4, when

a primitive object runs at the (meta)

n

level, the same

primitive object actually runs at the (meta)

n+1

level.

For example, when a metalevel primitive object A cre-

ates another metalevel primitive object B and sends a

message to B, the corresponding meta meta level object

A' actually creates the corresponding meta meta level

object B' and sends a message to B'.

The meta meta system can be generated by the meta-

system using this characteristic of primitive objects. To

brie
y summarize, the only thing needed to be done

is to generate a new metasystem that consists of only

primitive objects.

The meta meta system is generated by the metasys-

tem in the following way:

1. Create an array of objects that represents the system

object table of the meta meta system.

2. Shallow-copy all the elements from the

default-system-object-table to the system object

table of the meta meta system.

Default-system-object-table is a system object

that contains the system objects of the plain RbCl

metasystem that are shared by all the levels. Most

system objects such as generators have no internal

states, so they can be shared.

3. Create additional objects and register them to the

system object table. These objects are system objects

that cannot be shared by all the levels | examples

are a level manager and a scheduler.

4. Initialize the created system objects as if the execu-

tion of the metalevel were directly implemented by

the meta meta system.

The generated meta meta system provides all the fa-

cilities provided by the plain RbCl metasystem. When

an RbCl object is created at the meta meta level, the

meta meta meta system will be generated in the same

way.

4 Examples of Modifying the

Re
ective Scheme

4.1 Replacing level managers

The re
ective scheme of RbCl itself can be modi-

�ed/extended or even completely changed by the user

by using the RbCl re
ective capabilities. If the user

wants to print messages whenever the current level shifts

between the baselevel and the metalevel, the user can

replace the default level manager with a user-de�ned

level manager which prints out a message whenever the

level shifts. This is achieved by the following RbCl pro-

gram.

(metalevel-exec

(setf (G level-manager)

a-user-de�ned-level-manager))

Metalevel-exec is a macro form to execute expressions

in the metalevel environment. (G level-manager) de-

notes a system object named level-manager.

The above example only changes the level manager

at the metalevel. In addition to this, the user can

change all the level managers of the metasystems cre-

ated in a lazy manner. As described in Section 3.7,

new metasystems are created using the elements of

default-system-object-table. Level managers of

the new metasystems are created by the system object

named level-manager-generator. The user can re-

place this element of default-system-object-table

as follows:

(metalevel-exec

[[(G default-system-object-table)

<== [:aset

(symbol-id 'level-manager-generator)

a-user-de�ned-level-manager-generator]]])

After executing this code, when a new metasystem (the

meta meta system, the meta meta meta system, etc.) is

generated, a level manager is generated using the user-

de�ned level manager generator.

There is one caveat in this example: when the

user replaces the level-manager-generator with an

interpreted RbCl object, in practice it will never

be used because the new meta meta system will

have already been generated using the old value of
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Figure 7: An interpreted re
ective tower and (meta)

!

level.

default-system-object-table when the user creates

the interpreted RbCl object. To avoid this situation,

in the next example, we introduce the (meta)

!

level

which enables the user to replace the elements of the

default-system-object-table with interpreted RbCl

objects.

4.2 The (Meta)

!

Level

The behavior of 3-Lisp programs is de�ned by the

in�nite re
ective tower of meta-circular interpreters. In

practice, for e�cient execution, the re
ective tower of 3-

Lisp is realized by a run-time interpreter kernel written

in another language L. We refer to such an interpreter as

the tower interpreter of 3-Lisp in L. A tower interpreter

of 3-Lisp can also be written in 3-Lisp itself (without

using its re
ective facilities)[6]. This system would be

the tower interpreter of 3-Lisp in 3-Lisp.

In the same way, we can write a tower interpreter of

RbCl in RbCl. As explained in Section 3.4, the re
ec-

tive tower of the plain RbCl is implemented on the C++

language, so the plain RbCl metasystem is a tower inter-

preter of RbCl in C++. Obviously we can use the RbCl

language itself to write a tower interpreter of RbCl: we

call this system the tower interpreter of RbCl in RbCl

(Fig. 7). The reader should not confuse two RbCl sys-

tems, the interpreted RbCl and the interpreting RbCl.

The interpreted RbCl is implemented by the tower in-

terpreter, and the tower interpreter is only an applica-

tion program of the interpreting RbCl. The baselevel of

the interpreting RbCl may be called the (meta)

!

level of

the interpreted RbCl, because it implements the entire

re
ective tower of the interpreted RbCl. The program-

ming at the (meta)

!

level allows, for example, debug-

ging of re
ective programs, experiments on re
ective

facilities using RbCl, rather than using other low level

programming languages such as C++. New re
ective

systems | for example, a multi-user system supporting

each user to have his/her own re
ective tower | could

be e�ciently realized within the RbCl framework.

Fig. 8 is an example of tower interpreter in RbCl.

(defun Tower-in-RbCl (obj-code)

;; This level is the (meta)^(omega) level

;; interpreted by the (meta)^(omega+1) level.

(let (level-manager

obj)

;; Generate a new metasystem.

(setq level-manager

[(G metasystem-generator) <== [:call]])

;; Shift to the generated level.

[level-manager <== [:shift-to-meta]]

;; Now, this level is the new metalevel

;;still interpreted by the (meta)^(omega+1) level.

(setq obj [(G make-local-object)

<== [:call obj-code]])

[(G active-queue) <== [:enqueue obj]]

;; Start interpretation of the new baselevel.

[(G scheduler) <== [:call]]

))

Figure 8: A tower interpreter in RbCl.

Obj-code is the program code of the start-up object

1

.

(G metasystem-generator) denotes a system object

that generates a new metasystem by the scheme de-

scribed in Section 3.7. Metasystem-generator returns

the level manager of the generated metasystem when

it receives a [:call] message. We can implement a

complete tower interpreter in such a few program steps

because metasystem-generator has an ability to create

a complete metasystem explicitly.

It is likewise possible in other re
ective language sys-

tems to write the tower interpreter of itself. How-

ever, it would require hundreds of lines of program

code to implement the run-time kernel explicitly. Fur-

thermore, the execution of interpreted re
ective tower

would be much slower than the original one, and the

user must change the program code of run-time ker-

nel (in an ad hoc way) to experiment with new re
ec-

tive facilities. In contrast, the execution speed of pro-

1

The RbCl metasystem represents program code of RbCl ob-

jects as metalevel objects.



grams in the interpreted RbCl would be as fast as the

interpreting RbCl, because the entire re
ective tower

would be directly implemented by the (meta)

!

level.

Furthermore, the user could replace some elements

of (G default-system-object-table) with (meta)

!

level RbCl objects to modify the behavior of the en-

tire re
ective tower. So, for example, the user could

use RbCl to implement a debugger of re
ective pro-

grams rather than using other low level programming

languages such as C++.

5 Related Work

An important di�erence between RbCl and the other

re
ective systems is that RbCl is a kernel-less system.

Furthermore, there are many di�erences between RbCl

and the other re
ective systems. In this section, we

compare the re
ective facilities provided by other sys-

tems to those of RbCl.

The CCSR of 3-Lisp[8][6] is the current continuation

and environment, and do not include other detailed in-

formation of the system. In RbCl, detailed CCSR is

provided by system objects. The user can, therefore,

modify/extend the behavior of the system in a �ner

manner. The modi�cation can be easily done thanks to

the object-oriented and layered architecture of the RbCl

metasystem.

In 3-KRS[3] and ABCL/R[9], all the objects are de-

�ned by its metaobjects. The user can change the be-

havior of an object by modifying its metaobject. A

metaobject itself is also an object, so it has another

metaobject, and this chain continues to in�nity com-

prising multiple individual towers[5]. The plain RbCl

baselevel object is de�ned by the corresponding met-

alevel C++ objects. The user cannot change the de�-

nition of such a C++ object, but that is not necessary

because all the metalevel objects have an opportunity

to be modi�ed/extended by replacing their generators.

This design choice of RbCl makes it possible to imple-

ment the system e�ciently and naturally.

Apertos [10, 11] is a re
ective object-oriented operat-

ing system while RbCl is a re
ective language system.

Like RbCl, Apertos runs e�ciently in distributed envi-

ronments, and the user can modify/extend almost all

parts of the system. However, there are the following

clear di�erences from RbCl, mainly stemming from the

nature of their respective origins:

� A small kernel called MetaCore manages the prim-

itives of re
ection. The behavior of the MetaCore

cannot be manipulated by the user. In this sense,

Apertos is not a kernel-less system (although Aper-

tos allows some customization of re
ective behaviors

by subclassing new re
ector classes).

� Communication between the baselevel Apertos ob-

jects is achieved by the objects at the metalevel, al-

ways requiring kernel traps. In RbCl, communica-

tion between the baselevel C++ objects are e�ciently

performed with normal virtual function invocations.

Therefore, no level shifting takes place.

� Apertos objects at the baselevel are represented as

raw data at the metalevel. In RbCl, all the baselevel

objects are represented as metalevel objects to which

messages can be directly sent from the metalevel, as

is with ABCL/R.

CLOS[2] is an object-oriented system that provides

metaobject facilities to modify/extend the behavior and

implementation of objects. The metaclass of a class is

actually an object which creates the class. The user can

modify/extend the system by customizing metaclasses.

Since CLOS has only one name space, it is di�cult to

change the system's global behavior without losing the

system's consistency. In RbCl, modi�cation of the base-

level does not a�ect the behavior of the metalevel, so it

is easy to make experiments on the language facilities.

ABCL/R2[4] is a re
ective object-oriented concur-

rent language designed to manipulate computational

resources such as computing power. The metalevel of

ABCL/R2 is constructed by concurrent objects and

their scheduling policy is not de�ned exactly by its

CCSR. In RbCl, the scheduling policy within each node

is de�ned by the metalevel, and therefore the user can

control the system behavior more precisely.

AL/1 [1] is an object-oriented concurrent language.

AL/1 is based on the multi-model re
ection framework.

AL/1 provides multiple CCSRs that are suitable for var-

ious purposes in modifying the behavior of the inter-

preter, resource management, etc. Although RbCl pro-

vides only one CCSR, it embodies all the modules im-

plementing concurrent execution, inter-node communi-

cation, and even re
ective facilities themselves. There-

fore, the user can modify/extend all the behaviors of

RbCl.

Rose[7] proposes a metaobject protocol for dynamic

dispatch that is e�cient, powerful and language inde-

pendent. However, Rose's metaobject protocol only

supports the dynamic dispatch mechanism, and does

not support other facilities such as concurrent execu-

tion as RbCl does.

6 Conclusion

RbCl realizes the re
ective tower e�ciently with �nite

computing resources without a run-time kernel. This is

achieved by employing a simple mechanism called sys-

tem object tables and a novel facility called linguistic

symbiosis with the C++ objects.

Because RbCl is a kernel-less system, the user can

change the behavior of the system up to the restriction

imposed by the operating system and hardware within

the RbCl framework. This implies that every possible

run-time facility can be provided as libraries or applica-

tions written in RbCl.



The system object table of the metalevel on a node

is the CCSR of the baselevel on the node. The system

objects that realize the basic behavior of the baselevel

are the elements in the system object table of the met-

alevel. The bene�ts of the system object tables are as

follows:

1. The system object table of the metalevel is the mech-

anism that makes the RbCl metasystem kernel-less.

All the system objects are indirectly accessed through

the system object table. Therefore, the user can

change the behavior of the metasystem by replacing

elements of the system object table with user-de�ned

objects. The overhead of this indirection is negligible

because access to a system object can be achieved in

only a few instruction steps.

2. The system object tables represent the name spaces

of system objects that are equivalently accessed by

various languages such as C++ and RbCl.

3. Level shifting, that is, switching the current name

space of the system objects, can be e�ciently imple-

mented.

The bene�ts of the linguistic symbiosis with the C++

objects are as follows:

1. An e�cient re
ective system can be easily imple-

mented. The metasystem can be constructed only

by the C++ objects that are e�ciently executed, and

the user can manipulate the metalevel C++ objects

just as RbCl objects.

2. The linguistic symbiosis also serves as a foreign lan-

guage interface to the C(++) language that enables

the user to directly use the system calls provided by

the operating system.

It should be noted that the implementation tech-

niques used by RbCl are easily applicable to other sys-

tems. The re
ective facilities of RbCl are implemented

using only simple mechanisms of the implementation

language: the system object table is only a simple array

of objects, and the linguistic symbiosis requires only the

coroutine facility for its implementation.
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A Rscheme

We present a full program list of Rscheme, which is

a kernel-less language on Scheme based on a re
ective

architecture modeling that of RbCl.

The program list consists of two parts, one represent-

ing system object tables and the other run-time rou-

tines. Run-time routines mainly consists of three parts

which are respectively implementing the interpreter, lin-

guistic symbiosis and the re
ective tower. All the run-

time routines are elements of the system object table.

Rscheme has a primitive language construct for re
ec-

tion, named exec-at-metalevel. The user can mod-

ify/extend elements of the system object table at the

metalevel using this primitive. For example, the follow-

ing code replaces the system function called eval with

a user de�ned function. After executing this code, each

expression will be printed out when it is evaluated.

;;; trace

(exec-at-metalevel

((lambda (old-eval)

(setG 'eval

(lambda (exp cont)

(write exp)

(newline)

(old-eval exp cont))))

(G 'eval)))

The value of old-eval is actually a Scheme proce-

dure, but the linguistic symbiosis enables the user to

manipulate the Scheme procedure just as an Rscheme

function.



;;;; Rscheme

;;;--------------------------------------------------

;;;--------------------------------------------------

;;; The representation of system object tables

;;; (Cf. Section 3.3).

;;; In the actual RbCl implementation, SOT is represented as

;;; an array and access functions are defined as macros.

(define SOT '())

(define (get-current-SOT) SOT)

(define (set-current-SOT table)

(set! SOT table))

(define (G name)

(let ((pair (assoc name SOT)))

(if pair

(cdr pair)

;; NOTE: The function "error" is not defined

;; at standard scheme.

(error name "Undefined system object."))))

(define (setG name value)

(set! SOT (cons (cons name value) SOT))

name)

(define (copy-table table)

(if (null? table)

'()

(cons (cons (car (car table)) (cdr (car table)))

(copy-table (cdr table)))))

;;;--------------------------------------------------

;;;--------------------------------------------------

(define (boot)

(set-current-SOT '())

;; The system object called default-SOT is the template of

;; metasystem (Cf. Section 3.7) represented as an alist.

;; All parts of the plain Rscheme interpreter are registered

;; as elements of default-SOT.

(setG

'default-SOT

(list

(cons 'default-SOT 'dummy)

;;;--------------------------------------------------

;;; evaluator

(cons 'eval

(lambda (exp cont)

(cond ((symbol? exp)

((G 'eval-var) exp cont))

((pair? exp)

(case (car exp)

((quote) ((G 'eval-quote) exp cont))

((if) ((G 'eval-if) exp cont))

((set!) ((G 'eval-set!) exp cont))

((lambda) ((G 'eval-lambda) exp cont))

((exec-at-metalevel)

((G 'exec-at-metalevel) exp cont))

(else

((G 'eval-list)

exp

(lambda (l)

((G 'apply)

(car l) (cdr l) cont))))))

(else (cont exp)))))

(cons 'eval-quote

(lambda (exp cont)

(cont ((G 'S->R) (car (cdr exp))))))

(cons 'eval-if

(lambda (exp cont)

(let ((cond (car (cdr exp)))

(then (car (cdr (cdr exp))))

(else (car (cdr (cdr (cdr exp))))))

((G 'eval) cond

(lambda (val)

(if val

((G 'eval) then cont)

((G 'eval) else cont)))))))

(cons 'eval-var

(lambda (var cont)

(let ((pair (assoc var (G 'env))))

(if pair

(cont (cdr pair))

(error var "Unbound variable.")))))

(cons 'eval-set!

(lambda (exp cont)

(let ((var (car (cdr exp)))

(val (car (cdr (cdr exp)))))

((G 'eval)

val

(lambda (val)

(set-cdr! (assoc var (G 'env)) val)

(cont var))))))

;;; apply

(cons 'apply

(lambda (fun args cont)

(cond (((G 'R-procedure?) fun)

((G 'apply-R-procedure) fun args cont))

(((G 'R-function?) fun)

((G 'apply-R-function) fun args cont))

(else

(error fun "It is not a function")))))

(cons 'eval-list

(lambda (exp cont)

(if (null? exp)

(cont '())

((G 'eval) (car exp)

(lambda (car-val)

((G 'eval-list)

(cdr exp)

(lambda (cdr-val)

(cont

(cons car-val

cdr-val)))))))))

;;; functions

(cons 'eval-lambda

(lambda (exp cont)

(cont

(let ((args (car (cdr exp)))

(body (cdr (cdr exp))))

(list 'R-function args body (G 'env))))))

(cons 'R-function?

(lambda (x)

(and (pair? x) (eq? (car x) 'R-function))))

(cons 'apply-R-function

(lambda (fun args cont)

(let ((vars (car (cdr fun)))

(body (car (cdr (cdr fun))))

(env (car (cdr (cdr (cdr fun)))))

(old-env (G 'env)))

(setG 'env

(append (map cons vars args) env))

((G 'eval-list)

body

(lambda (val)

(setG 'env old-env)

(cont

((G 'last-element) val)))))))

(cons 'last-element

(lambda (l)

(cond ((null? l) '())

((null? (cdr l)) (car l))

(else ((G 'last-element) (cdr l))))))

;;;--------------------------------------------------

;;;--------------------------------------------------

;;; The following system functions play the same roles

;;; as the intermediate pointers described in Section 3.6

;;; and realize linguistic symbiosis.

;;; In this implementation, we use

;;; call-with-current-continuation to implement

;;; coroutine facility.

;;; Function calls from baselevel Rscheme functions

;;; to baselevel Scheme procedures.

(cons 'apply-R-procedure

(lambda (R-proc R-args cont)

(let ((proc ((G 'R-procedure->procedure)

R-proc))

(S-args (map (G 'R->S) R-args))

(shift-to-meta (G 'shift-to-meta)))

((G 'shift-to-base))

(let ((val (apply proc S-args)))

(shift-to-meta)

(cont ((G 'S->R) val))))))

;;; Convert an Rscheme function to a Scheme procedure.

(cons 'R-function->procedure



(lambda (x)

(let ((shift-to-meta (G 'shift-to-meta)))

(lambda args

(call-with-current-continuation

(lambda (cont)

(shift-to-meta)

((G 'apply-R-function)

x

(map (G 'S->R) args)

(lambda (R-val)

(let ((S-val ((G 'R->S) R-val)))

((G 'shift-to-base))

(cont S-val))))))))))

;;;--------------------------------------------------

;;; Data representation conversions between Scheme and Rscheme.

(cons 'S->R

(lambda (x)

(cond ((pair? x)

((G 'list->R-list) x))

((procedure? x)

((G 'procedure->R-procedure) x))

(else x))))

(cons 'R->S

(lambda (x)

(cond (((G 'R-list?) x)

((G 'R-list->list) x))

(((G 'R-procedure?) x)

((G 'R-procedure->procedure) x))

(((G 'R-function?) x)

((G 'R-function->procedure) x))

((pair? x)

(error x "Cannot convert R->S"))

(else x))))

;;; Scheme procedure

(cons 'procedure->R-procedure

(lambda (proc)

(list 'R-procedure proc)))

(cons 'R-procedure?

(lambda (x)

(and (pair? x) (eq? (car x) 'R-procedure))))

(cons 'R-procedure->procedure

(lambda (x)

(car (cdr x))))

;;; list

(cons 'list->R-list

(lambda (l)

(cons 'R-list l)))

(cons 'R-list?

(lambda (x)

(and (pair? x) (eq? (car x) 'R-list))))

(cons 'R-list->list

(lambda (x)

(cdr x)))

;;;--------------------------------------------------

;;;--------------------------------------------------

;;; The following system function returns two function closures

;;; which play the same role as the level managers

;;; described in Section 3.5 .

(cons 'generate-level-manager

(lambda (metalevel-SOT)

(cons

;; shift-to-base

(lambda ()

(set! metalevel-SOT (get-current-SOT))

(set-current-SOT

(G 'baselevel-SOT)))

;; shift-to-meta

(lambda ()

(let ((baselevel-SOT (get-current-SOT)))

(set-current-SOT metalevel-SOT)

(setG 'baselevel-SOT

baselevel-SOT))))))

;;;--------------------------------------------------

;;; The following system functions generates a metasystem

;;; in the lazy manner just as described at Section 3.7 .

(cons 'generate-metasystem

;; returns shift-to-meta

(lambda ()

(let* ((new-SOT (copy-table

(G 'default-SOT)))

(pair ((G 'generate-level-manager)

new-SOT))

(shift-to-base (car pair))

(shift-to-meta (cdr pair)))

(shift-to-meta)

;; initialize meta meta level's SOT

(setG 'shift-to-base shift-to-base)

(setG 'shift-to-meta shift-to-meta)

(setG 'env

(map (lambda (pair)

(cons (car pair)

((G 'S->R) (cdr pair))))

(G 'default-env)))

(shift-to-base)

shift-to-meta)))

(cons 'shift-to-metametalevel

(lambda ()

(setG 'shift-to-metametalevel

((G 'generate-metasystem)))

((G 'shift-to-metametalevel))))

;;;--------------------------------------------------

(cons 'exec-at-metalevel

(lambda (exp cont)

(setG 'exp exp)

(setG 'cont cont)

((G 'shift-to-metametalevel))

((G 'eval) (car (cdr exp))

(lambda (R-val)

(let ((S-val ((G 'R->S) R-val)))

((G 'shift-to-base))

((G 'cont) S-val))))))

;;;--------------------------------------------------

(cons 'read-eval-print-loop

(lambda ()

(newline)

(write '==>)

((G 'eval)

(read)

(lambda (val)

(write ((G 'R->S) val))

((G 'read-eval-print-loop))))))

;;;--------------------------------------------------

;; This is the default environment of plain Rscheme.

;; ALL the Scheme functions (including higher order

;; functions such as apply or map) can be used

;; just as Rscheme functions.

(cons 'default-env

(list

(cons 'cons cons)

(cons 'car car)

(cons 'cdr cdr)

(cons 'list list)

(cons 'null? null?)

(cons 'eq? eq?)

(cons '+ +)

(cons '- -)

(cons '* *)

(cons '/ /)

(cons '= =)

(cons 'map map)

(cons 'apply apply)

(cons 'write write)

(cons 'newline newline)

(cons 'G G)

(cons 'setG setG)

;; NOTE: The function "eval" is not defined

;; at standard scheme.

(cons 'scheme-eval eval)

))

)) ; end of default-SOT

(set-cdr! (car (G 'default-SOT)) (G 'default-SOT))

(setG 'baselevel-SOT '())

(setG 'generate-level-manager

(cdr (assoc 'generate-level-manager

(G 'default-SOT))))

(setG 'generate-metasystem

(cdr (assoc 'generate-metasystem

(G 'default-SOT))))

(setG 'shift-to-metametalevel

((G 'generate-metasystem)))

((G 'shift-to-metametalevel))

((G 'read-eval-print-loop)))


