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Abstract

Weinvestigate an automatic verification mechanism for
control-finite CSP programsusing the model checkingtech-
nique. CSP programs with variables and usual sequential
constructs are transformed into transition systemsto apply
themodel checking technique. Morespecifically, binding of
variables are attached to states and sequential statements
are treated uniformly as eventsin a parallel environment.
With this transformation, our system can be viewed asim-
plementing the model checker for a static version of value-
passing CCS. Another characteristic of the system is that
the CSP programs to be verified are not limited to finite-
state, but control-finite. CSP programs are control-finite if
their control flow isfinite. Wehope it can serve as one step
toward verification of infinite state programs.

1 Introduction

Writing concurrent programs is difficult because they
exhibit various unexpected behaviors, such as deadlocks or
race-conditions. Without some mechanisms to check their
safety, it would be significantly difficult to construct large
concurrent programs.

Conventionally, parallel programs have been verified us-
ing the axiomatic approach[11, 10]: each program con-
struct has an axiom or an inference rule which describes
its meaning. Programs are correct if their proof can be
composed with these axioms and rules. Since the axioms
include the rule of consequence, that is, all facts that are
mathematically provable can be used as axioms, we can
deduce awide range of properties of concurrent programs.
The axiomatic proof technique, however, requires deep in-
sight into program behaviors. For example, to verify a
programwhich containsawhile statement, we haveto find
aloop invariant which holds throughout the statement.

Model checking[4, 8] is a different approach to verify-
ing parallel programs; it can automatically check if agiven

state of a finite transition system is a model of a given
formula, i.e., it checks whether the formula is true in that
state. By using formulas in the modal mu-calculug[13] to
expressproperties of parallel programs, model checking al-
lows us to check avariety of properties, including absence
of deadlock and mutual exclusiveness. The key to model
checking is the use of transition systems, which describe
the external behavior of processes. Themodel checker ver-
ifies the correctness of a parallel program by traversing all
possible states over a given transition system that describes
the behavior of the program.

The problem, however, isasfollows: athoughtransition
systems give good abstractions of parallel processes, they
are not suited for practical programs. There, we use vari-
ables to distinguish different states, if statements to cause
branches in the control, and while statements for repeti-
tion. All these features are abstracted away in thetransition
systems as internal actions.

We present a method for automatically verifying readis-
tic parallel programs which contain sequential constructs.
As afirst step, we use Hoare's Communicating Sequen-
tial Processes (CSP)[9] as a working example. We hope
to extend our approach to be able to handle more flexible
language based on concurrent objects, such as Actorg[1] or
ABCL[17].

CSP processes are literally sequential processes which
communicate synchronously. CSP includes variables, al-
ternation and repetition constructs, sequential composition,
and parallel composition. Verification of a CSP program
is performed by first transforming it into a transition sys-
tem. A state of the transition system consists of execution
pointers together with a binding of variables. Transition
relations are constructed from the control flow of the CSP
programs. Then, we apply the model checking technique
to the resulting transition system. Verification proceeds
fully automatically — wejust supply the formulato be ver-
ified. With this transformation, our system can be viewed
as implementing the model checker for a static version of



skip : skip

asstgnment . x1,...,&n ‘= €1,...,6, OV T =€
send : send ¢(¢) to p

receive ! receive ¢(7) from p

Figure 1: Simple commands (¢: template, p: pro-
cess name)

sequence . c1,....¢Cn

parallel : [priicall - |l pn i cnl
alternation : if g1 —e1[]...[Jgn — cn fi
repetition :  do gy —c1[]...[] gn — ¢n od

Figure 2: Composite commands (¢;: command,
p;. process name, g;: guard)

value-passing CCS.

Unfortunately, not all CSP programs can beverifiedwith
this method because the technique can be applied only to
finite transition systems. The number of states of CSP
programs can easily become infinite, because the range
of variable values is unbounded. This means that only
programs which contain variables with finite ranges can
be checked. To weaken this restriction, we introduce the
lazy evaluation mechanism, which defers the evaluation of
variables until they are required. With this mechanism,
we can verify control-finite programs. CSP programs are
control-finiteif their control flow isfinite.

We have implemented the model checker in MIT-
Scheme, and verified variousexamplesof parallel program-
ming, including the dining philosophers problem and the
mutual exclusion problem. Experimental results show that
the proofs of these examples complete within a reasonable
time.

2 Background
2.1 Overview of CSP

Communicating Sequential Processes (CSP) was in-
troduced by Hoare[9] to serve as a basis for paralel
programming languages. The commands of CSP are
shown in Figure 1 and 2. The notation = represents
the vector «4,...,2,. The communication commands
send and receive were originaly written as p!#(e) and
p?(7). We use a Pascal-like style for better readability.
The guard g¢; is either a send command, a receive com-
mand, or a skip command, followed by when &, where
b is a boolean expression (e.g., send ¢(¢) to p when b,

receive (%) from p when b, or skip when 5.) Notethat
the CSP programs are static. The syntax of CSP programs
prevents creation of an infinite number of processes.

2.2 Labeed transition system

A labeled transition system is a simple model for par-
alel programs. It regards the execution of programs as
transitions between states. A labeled transition system is
formally defined asfollows:

Definition 1 A labeled transition systemis a triple 7 =
(8, £,—) whereS isa non-empty set of states, £ isa non-
empty set of actions, and — (C § x £ x §) isaternary
relation representing labeled transitions.

A labeled transition system is finite if S is finite. The
notation s; — sz is used to mean (s1, a, sp) € —-.

2.3 Themodal mu-calculus

The modal mu-calculus is a member of the family of
branching-time temporal logic[13]. It can expressavariety
of properties, including absence of deadlock and mutual ex-
clusiveness. The syntax of the modal mu-calculus formula
A is defined by:

A=Q|-A|ANA|[KIA| Z | vZ A

A formula is either an atomic proposition @2, a negation
formula—A, a conjunction formula A; A A, amodalized
formula[K] A where K isaset of actions, a propositional
variable 7, or amaximal fixed point formulav 7. A.

The formulas in the modal mu-calculus are interpreted
on labeled transition systemswith the help of valuation V.
The valuation is used to interpret atomic propositions and
propositional variables. A setof states|| A||v that satisfy the
formula A on atransition system (S, £, —) isinductively
defined as follows:

IQllv = V(Q),
I=Allv = & = [|A]lv,
lAA Bllv =lAlly n[[Bllv,
IIK]Allv = {s € 8| Vs'-Va € K.
if s s then s’ € | Allv },
1Zllv = V(2),
vz Allv = J{S" €515 =[|Allviz:=s1}-

An atomic proposition @ describes an atomic property
of states. It isused to distinguish two states with different
natures. A negation formula and a conjunction formula



need few comments. They express usua not and and. We
will also useor, A; V Ay, defined as ~(—A1 A —Ap).

The meaning of a modalized formula[K] A isthat after
the execution of every executable action taken from K, A
holds. Weomit curly bracket when we enumerate elements
of K asla,b, c]A instead of [{a, b, c}]A.

An important derived formula of [K] A is (K} A, which
is defined as ~[K]-A. (K)A expresses that there is an
executable action a in K~ such that after the execution of a,
A holds.

The last two formulas Z and vZ. A are used to express
recursive predicates. Z may appear only in the body A of
vZ.A asaboundedvariable. vZ. A isamaximal solution of
the equation 27 = A. One syntactic restrictionon v 2. A is
that every free occurrence of 7 in A must be under an even
number of negations. Thisensuresv 7. A to beamonotonic
function. It isuseful to represent a property which always
holds. For example, the formulavZ.{K)Z expresses that
some actions taken from K are always executable, and
vZ.Q A[K]Z saysthat aslong asoneis performing actions
in K, Q isawaystrue.

2.4 Local model checking

The model checking technique is a method to automat-
ically check if a given state of a finite transition system
is a model of a given formula or not. In other words,
model checkers check if the formula holds in that state.
Among various model checkers, we introduce the local
model checker by Stirling and Walker[14]. Thelocal model
checker is atableau system which can test whether a state
satisfiesaformulawithout global information. Sinceit uses
only necessary information for checking, it can sometimes
check formulas on an infinite transition system, when only
finite portions are required for checking.

The tableau system is constructed using inverse natural
deduction type rules of the form:

SI_AA
51 "Al A]_...Sk l_Ak Ak

side condition.

sta Aiscaled asequent. Theruleisread as: to check if
the state s satisfies the formula A under the definition list
A, check if s; Fa, A; holdsfori = 1,... k. If they all
hold, so doess -a A.

A definition list supplies the environment which stores
fixed point formulas encountered so far. Each time afixed
point formula 2. A is encountered, we introduce a new
constant U/, add U = v7. A to the definition list, and check
A[Z = U]. If U is encountered afterwards, it means that
Z inthe original formulais encountered. Thus, we unroll
the fixed point by looking up the definition list. The no-
tation A - U = A isadefinition list obtained by adding a

definition U = A to A. A(U) returns aformula bound to
U. Herearetherules:

ska A ska ANB
ska A ska A ska B,
ska (4 A B) stka (4 AB)
ska —A skFa B |
ska [K]4 {51,...,8n} =

s1hFa A . s, Fa A {5’|E|a€[(,5i>5/)},

ska -[K]A e

- Jda € K.s — &,
stavZ.A . _

sFa U A"ISA-U=vZ.A,
ska vZA . _

sha U A"ISA-U =-vZ.A,
SI_AU
————— Cand A(U) =vZ.A
sFa A[Z = U] () =vz.4,
Sl_AU

Cand A(U) = ~wZ.A.
sFa —A[Z = =] ()=~

Condition C, appearing in the side condition on the last two
rules, isthat: above the current node s Fa U, no node of
theform s A/ U for some A’ appears.

Model checking proceeds in a top-down manner. First,
write a state and a formula to be checked with the empty
definition list as s F A. (We omit the definition list when
it is empty.) Then, we apply the rules as far as possible.
Theruleto be applied is determined by the structure of the
formula. When no rules are applicable, the leaf nodes are
examined. If they are al true leaf nodes, then the state s
satisfies the formula A. Note that there is a nondetermin-
ism, or or-branching, intherulesfor —(A A B) and ~[ K] A.
Thismeans that we haveto choose acorrect one whose | eaf
nodesbecometrue. In practice, wetest all casesuntil atrue
leaf node is found.

A leaf node s -a A is true when one of the following
requirementsholds: (1)A = Q ands € V(Q), (2A = -Q
ands ¢ V(Q), (3)A = [K]B for some B, (4 A = U and
A(U) = vZ.B. Thecase (1) and (2) areclear. sFa Q
ands Fa ~Q holdif andonly if s € V(Q) and s ¢ V(Q),
respectively. s Fa [K]B istrue because s can perform no
actions in /. If it can, the node can not be a leaf node
because the rule for modalized formulasis still applicable.
The last case needs some comments. s -5 U becomes a
leaf node only when the condition € failsto hold, namely, a
node of theform s -4 U hasalready appeared. Intuitively
speaking, asthetruth of s - U dependson s - U itself, the
fixed point is reached. In thiscase, it is proved [14] that s
satisfiesv 7. B.



The following theorems [14] guarantee that the model
checker works correctly.

Theorem 1 Every tableau for s - A on a finite transition
systemis finite.

Theorem 2 s - A holdsif and only if s €||A]|v .

3 CSP programsastransition systems

Inthis section, CSP programs are transformed into tran-
sition systems to apply the model checking technique.
Although CSP programs have internal states and sequen-
tial constructs, they can be regarded as transition systems
through (1) including a binding of variables into the def-
inition of states, and (2) observing sequential constructs
uniformly as actions. We define states, actions, and transi-
tion relations for CSP programs in the following sections
to obtain transition systems representing CSP programs.
Then, weillustrate how the model checking proceeds with
some examples.

3.1 States

Wedefine astate of aCSP program asapair of execution
pointers and abinding of variables. To determine states of
CSP programs, we need two pieces of information. Oneis
where in the program each processis running. It isrepre-
sented as (a set of) execution pointers or labels attached to
appropriate placein the program. The other isabinding of
variables. Eventhough the execution pointersarethe same,
succeeding behavior may change if the value of variables
differ. Thus, we have to include the binding of variables
into the definition of states. Assuming that all variablesare
global, we maintain one binding list for the whole program
instead of each process. Local variables are realized by
using unique variable names.

Execution pointers indicate the location in the program
where the processes are running. A single process is de-
scribed by a single execution pointer, while a set of pro-
cesses is described by a set of execution pointers. Execu-
tion pointers are attached to the beginning of the program,
the end of the program, all “;"”s which appear in sequence
commands, and all “ —"'s which appear in aternative and
repetitivecommands. Inthe case where parallel commands
appear, we also label the beginning and the end of each pro-
cessesin parallel commands. Then, the execution pointers
before and after the parallel commands are identified with
a set of the first execution pointers and the last execution
pointers of component processes, respectively. Note that
we take simple commands as atomic actions.

See, for example, the programin Figure 3, which sends5
or 6to user, depending on which of theprocesses, procl or

Ti=2ep
[ procli,, z =+ 1cp,
|| proc2 tiepy @ := & % 2ep,;ep!

send () to user,p,

Main lep,

Figure 3: Main sends 5 or 6 to user

buffer iicp,
do receive put(x) from user when true
—¢p, send get(z) to user

od

ep2

Figure 4: A bounded buffer with capacity 1

proc2,isexecutedfirst. All“;”, aswell asthebeginningand
theend of each process arelabeled with execution pointers.
ep and ep’ will not be used as they are identified with
{ep1,eps} and {epz, epa}, respectively. Figure 4 shows a
program of a bounded buffer of capacity one. “ —” in
the repetitive command is labeled with ep;. E'p; expresses
that put () hasjust been received and get () isabout to be
sent.

3.2 Actions

In CSP programs, statetransitions occur when one of the
simple commands is executed or when an internal commu-
nication occurs. The actions of CSP programs are defined

by:
L = Skip U Assignment U Send U Receive U {1}

where T represents an internal communication. Skip and
Assignment are sets of al skip and assignment com-
mands.

Sendisaset of send commandswhoseactual parameters
are substituted with fresh variables @. For example, the
program

p i send t(5) to user

canperform an action send t(u) to user. Theassignment
u := 5isperformed and we can observe the communicated
value through the value of u. The program satisfies the
formula (send t(u) to user)u = 5, which states that the
program can take a send action with the sent value5. Intro-
ducing new variablesu enables us to reference sent values
freely.

Likewise, Receive isaset of receive commands whose
virtual parameters are substituted with (all possible) actual
parameters. The reason for the substitution is fundamental



in Receive. Consider the program:
zerop :: receive t(n) from user;

if send yes() to user when n = 0 — skip

[ send no() to user when n # 0 — skip

fi

which sends yes if the received value is zero and no
otherwise. If we allow virtua parameters for receive
actions, we can write a formula such as (receive ¢(n)
from user)(send yes() to user)true, meaning that after
receiving n from user, it can always answer yes. Thetruth
of such formulas can not be determined in a simple way
until the value of virtual parameters are known. One way
to proceed without knowing the valueis to use a symbolic
computation mechanism which we discuss in Section 4.3.
For now, we forbid the use of virtual parametersin receive
actions.

3.3 Transtion relations

Transition relations are defined for each action a in L.
First, we consider the casewhere @ isnot 7. Let ep and ep’
be execution pointers just before and after the command in
the program designated by the action @, and (E P, £) be a
global state where £ P is a set of execution pointers and
£ isahinding of variables. Assume that the when clause
of a (if exists) istrue and ep € E'P, that is, the action «
isready to be taken. Then, the transition relation for a is
defined as follows, depending on the type of a:

(EP,£) —— _sfi" (P ),
(EP,E) p = (EP', &[F =7¢]),
send {(u) to
(EP.€) W0 op ema),
receive {(d) from p Do =
(EP,€) (EP, €[F = d])

where EP' is EP U {ep'} — {ep}, @ and d are virtual and
actual parameters explained in the previous section.

For all cases above, an action proceeds the execution
pointer leaving some side effectsin £. A skip action leaves
nothing. An assignment action changes the binding of vari-
ablesasjust assigned. A send action introduces a binding
for new variables w so that we can check the sent values.
A receive action assigns actual parameters to the virtual
parameters.

The transition relation for = is almost identical except
that two processes participate. Consider atypica matching
pair:

1 eps Send t(€) to pp (when bl);ep/1 .

P2t ep, receive {(Z) from py (when by);.,0 - -

Let (EP, &) be agloba state and assume ep; € EP and
ep2 € E'P. If both b1 and b, (if exist) aretruein &, the
transition relation for 7 is:

(EP, &) /— (EP' &7 =¢)
where EP’ is EP U {ep),ep5t — {ep1,ep2}. A T actionis
effectively the same as an assignment action = := € except
that it advances both execution pointers.

3.4 Examples

Since we have defined states, actions, and transition re-
lations for CSP programs, we can now apply the model
checking algorithm to them. In this section, we demon-
strate with two examples how CSP programs are actually
transformed into transition systems and see how the model
checking algorithm is applied.

The first example illustrates how modalized formulas
check al the possible execution paths. We show that the
program in Figure 3 actually sends 5 or 6 to user. The
property is expressed as:

SendSor6=[Assignment][Assignment][Assignment]
(send t(u) to useryu =5V u = 6.

There are six possible execution pointers. epg, {epy,
ep3}, {ep2, epst, {ep1, epat, {ep2, epa}, and eps. Actions
aredefinedas £ = Assignment U {send t(u)to user},
where Assignment is{e := 2,2 ==+ 1, ¢ := « x 2}.
Here, a new variable u is introduced. Transition relations
are given by:

(70 €) —— =2 ({eprrepsh, €l = 2),
(epnepsh €) 22 (fepaepsh, €l 1= o+ 1),
(epnepah, €) 22 (fepepah, €l = o+ 1),
({epnepsh €) _—2> ({eprrcpah, €l 1= 2+ 2),
(epzrepsh €) =2 ({eps,epah, £l 1= 2 2)),

send t(u) to user

({ep2, epat, &) (eps, E[u = z]).

The tableau for the formula is shown in Figure 5(a)
and bindings of variables are listed in Figure 5(b). In
Figure 5(a), we use two abbreviations: [A4] stands for
[Assignment] and (send) standsfor (send t(u) to user).
Blanks in the table mean that the value is undefined. Def-
inition lists are omitted because they are not used in this
example. In our implemented system, the model checking
is done as a depth first search.

At the second line of the tableau, division into two sub-
tableaus occurs, which corresponds to the two possible
execution paths. In the last line of subtableaus, « = 5 and



(epo, €o0) F [A][A][A](send)u =5V u =6
({ep1,ep3}, E1) - [A][A]l{send)u =5V u =6

({ep2,ep3}, €2) F [Al(send)u = 5V u = 6 ({ep1,epa}, €5) I [A](send)u =5V u =26

({ep2,epa},E3) F (send)u =5V u=6  ({eps epa},&6)F (sendju =5V u=26

(eps, E4) Fu=5vu==6
(eps, E4) Fu=256
(success)

(eps, E7)Fu=5vu==6
(eps, E7)Fu=5
(success)

Figure 5: The example proof for a modalized formula (a) the tableau

ol &1 Sl &1 Eal €] 6] &
x 2 366 4|5]5
6 5

Figure 5: (b) bindings of variables

u = 6arenondeterministically chosenfrom« = 5vu = 6.
Becausetheboth leaf nodes aretrue (€4 satisfiesu = 6 and
&, satisfies u = 5), we verify that Send5o0r6 holds at the
beginning of the program.

The next example illustrates the use of recursive for-
mulas and definition lists. We check if the program
in Figure 4 can take two actions receive put(3) from
user; send get(u) to user successively infinite number
of times. The property is expressed as. v7.(receive)
(send)Z. Here, we write (receive) for (receive put(3)
from user) and (send) for (send get(u) to user).

Thereare only two possible (reachable) execution point-
ers. epo and ep;. Actions are given by £ = {receive
put(e) from user,send get(u) to user} where e and u
are newly introduced actual and virtual parameters. Note
that £ contains infinite number of actions. The actual pa-
rameter e must be a concrete value when the receive action
istaken. Transition relations are given by:

receive put(e) from user

(epo, &) (ep1, E[x = €]),

send get(u) to user

(ep1, €) (epo, E[u := z]).
The proof isin Figure 6. At the second line of Figure 6(a),
aconstant U isintroduced. It isused to unroll the recursive
formula for two times at lines three and six. The proof
can not stop at line five, because the condition € does not
hold. Although the similar sequent appears in the second
line, bindings of the variables are not the same. Thus, we
proceed the proof until we find exactly the same sequent at
line eight.

(epo, £0) - v7 {receive)(send)”
(6])0, 50) I_A U
(epo, £0) Fa (receive)(send)U
(ep1,&1) Fa (send)U
(6])0, 52) I_A U
(epo, £2) Fa (receive)(send)U
(6])1, 52) I_A <send>U

(epo, €2) Fa U
(success)

A(U) = vZ.(receive)(send) 7

@
Eo | &1 | &
x 3 3
u 3
(b)

Figure 6: The example proof for a recursive for-
mula (a) the tableau (b) bindings of variables

4 Improvingthealgorithm

In this section, we discuss some techniques to improve
the algorithm. The first two are concerned with perfor-
mance while the later ones are concerned with extending
the range of programs which can be verified.

4.1 Useof assertion database

Because the local model checker uses only local infor-
mation, it sometimes exhibitsvery inefficient behavior. For
example, consider the following program which does noth-
ing but skip:



03FA
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3Fc__ 1ArC 1urc | 95EC
24F D[24a+D| 15D |24- D15F D |[15F D
5FE 25|—E‘25|—E‘25|—E25|—E 5FE

A : [Skip|[Skip][Skip](Skip)true
B [Skip][Skip]{Skip)true E :true
C': [Skip]{(Skip)true D : (Skip)true

Figure 7: An inefficient proof
main i [ procl iy, skip ey, skip .,
|| proc2 :iep, skip ;ep, skip .. ]-

Figure 7 shows a proof tableau for [Skip][Skip][Skip]
(Skip)true. (We write mn for ({epm,epn}, £).) The
tableau is inefficient in that there are repeated occurrences
of identical subtableaus. Assuming that model checker
checks the left branch in the figure first, the boxed part
in the tableau is unnecessary because their truthhood has
already been determined.

To avoid this re-evaluation, we introduce an assertion
database which stores the known results. The effect of
the database is especially significant in verifying CSP pro-
grams which contain many independent commands. All
skip commands are independent of all other commands in
the program. Assignment commands are independent if
they do not refer to shared variables. Because the execu-
tion order of independent commands does not affect the
resulting state of programs, they always reach the same se-
guent and cause re-evaluation. The experimental results of
the effect of databases are presented in Section 5.1.

One drawback of the use of databases is that it suffers
from the state explosion problem. Because we record all
results calculated so far, the database may becometoo large
to manage. Asformulas that we want to verify usualy re-
quire checking almost all the reachable states, the problem
islikely to occur if programs become bigger. Clarke em-
ployed Binary Decision Diagrams(BDD) [2] in his(global)
model checker, but it can not be directly used for our case
because the global state space is unknown. Further study
isrequired here.

4.2 Relation optimization

The purpose of relation optimization is to reduce re-
dundant states. This is because redundant states extremely
increase the verification time. For example, consider the
program:

alwaysSkip :.,, do skip when true —_, skip od

which is transformed into:

skip
(ePOa 8) - (6P1a E)a

skip
(epo, £).

Although alwaysSkip doesnothing, it doublesthe number
of stateswhen it is contained in the program to be verified.
All the states are divided into two states depending on
which state alwaysSkip isin. Thus, the time required
for verification is usually doubled because most properties
need all the reachable states to be verified.

To reduce the redundant states, we removeall skip com-
mands, except the ones in guards. In a sequential process
in CSP programs, the flow of control branches only in the
beginning of alternative and repetitive commands. The ex-
ecution proceeds straightforwardly in other places. If the
execution reachesthe point just before askip command (the
one without when clause), the execution always proceeds
to the point after the skip command. This meansthat if we
have arelation of the form

skip

(ep1,€)

(ep, &) (er', )

where the skip is not the one taken from guards, we can
safely remove the relation through substituting all the oc-
currence of ep in other relations by ep/. The program
alwaysSkip is optimized into

skip
(epo, €)

(epo, £).

4.3 Towards verification of more expressive pro-
grams

Because the model checking technique can be applied
to only finite transition systems, al variable valuesin CSP
programs haveto be finite. In this section, we discuss how
to weaken this restriction. We introduce a lazy evalua-
tion mechanism and a simple case of symbolic computa
tion. Through adapting these mechanisms, verification of
control-finite programs becomes possible. A program is
control-finite if all variables in the program that can affect
the control flow have finite ranges of values. In this case,
the state space of the program becomes finite and the proof
alwaysterminates.

L azy evaluation: Consider the program:
incX . do skip when true — z ;= z + lod

which increases = by 1 infinite number of times. Suppose,
we want to check that skip and = := = + 1 can be executed
one after the other infinitely: vZ.(Skip){(x = 2+ 1)Z.



Although this is clearly true, the proof tableau for this
formuladoes not terminate. Thisis because the value of =
increases each time and will never take the previous value.
As the state never returns to any of the previous states,
the proofs for fixed point formulas do not terminate. The
example showsthat we should not include all the variables
into states, but some should be ignored. To include only
required variables, we use lazy evaluation strategy.

Thelazy evaluation strategy defersthe eval uation of vari-
ablesuntil variablevaluesareactually required. It evaluates
only the necessary variables. In our case, we evaluate the
variablesonly when they appear in when clausesin guards
(or explicitly mentioned in the verifying formula). Asthe
boolean valuein awhen clause determines the subsequent
flow of program execution, it needs to be evaluated.

Because the variable with unevaluated value indicates
that it does not affect the program execution, we exclude
the variable from states. The variable = in the above ex-
ample is excluded from states since it does not appear in
guards. Without «, the proof terminates.

A simple symbolic computation: Because the un-
used variables do not affect the control flow, we can
prove some more general properties about them. Con-
sider the program of a bounded buffer shown in Fig-
ure 4. The redtriction on virtual parameters in re-
ceive commands forbids us to verify formulas such as
(receive put(z) from user)(send get(u) to userju =
n. We have to supply a specific value for n. However,
thevalue of n is never evaluated in the program. In such a
case, we just want the model checker to carry n as though
n isaspecific value.

Thisisachieved by introducing asimple symbolic com-
putation mechanism. The symbolic computation mecha-
nism enables us to manipulate symbols directly. We allow
the use of symbolsfor unused variables. Because we allow
symbols only for unused variables, the mechanism does
not affect the model checker itself. We can introduce the
symbolic computation orthogonal to the model checker.

5 Experimental results

In this section, various experimental results are pre-
sented. The model checker isimplemented in the Scheme
language[ 12] with a compiler and runs on NeXT with 28
Mbytes of memory.

5.1 Theeffect of employing assertion database
In this section, we show how the use of an assertion

database reduces the verification time. As a benchmark
program, we use the program and the formula shown in

Figure 8. Without using the database, the model checker
checks the formulafor ,,C,, times. Thisis understood by
considering how the n skip commandsin procl are placed
in 2n places. On the other hand, if we use the database, the
number of states that needs to be checked is (n + 1)2.

Table 1 shows the verification time for n = 3,.. ., 10.
The ratio in the table expresses the execution time ratio
normalized to the case n = 3. Theided ratio is computed
as 2,Cy, /6C3 for the case using the database and (n +
1)?/(3 + 1)2 for the case without it.

Without using the database, the verification time grows
rapidly as n becomes large. For n = 10, it took 17233.5
seconds, which is about 4.8 hours. If we use the database,
on the other hand, the verification time is considerably
reduced. Even for n = 10, the proof endsin ten seconds.

5.2 Mutual exclusion

In this section, we show the results of verifying various
mutual exclusion agorithms. Algorithms are taken from
[15], in which the algorithms are verified on the Concur-
rency Workbench[7]. We reformulate the algorithms in
CSP and check their correctness.

We verify six agorithms: algorithms due to Peterson,
Dekker, Dijkstra, Knuth, Hyman, and Lamport. All the al-
gorithms consist of two processes with someinitia assign-
ment commands. They all use shared variablesto achieve
mutual exclusion.

Mutual exclusiveness is expressed using an atomic
proposition at ep asfollows:

vZ.(—(at criticaly A at criticaly) A [L]7).

at ep isused to indicate if programs are executing at that
point. Itistrueif ep is contained in the current execution
pointer. (at critical; Aat criticaly) saysthat one process
is executing critical; and the other process is executing
eriticaly, that is, mutual exclusionisviolated. Theformula
as awhole saysthat such violation never occurs.

Table 2 summarizes the results of the verifications. The
algorithmsturn out to preservemutual exclusion except Hy-
man’ salgorithm, whichisknowntobeincorrect. Peterson’s

main 3 .; skip
.; skip ]

[ procl::skip ;..
|| proc2:: skip ;..

n

[Skip] - - - [Skip]{Skip)true
S—_— ———

2n—1

Figure 8: Benchmark program and formula



Table 2: Results and verification time for mutual
exclusion algorithms (for two processes)

algorithm can be verified in about ten seconds because of
itssimplicity. The number of statesfor Hyman’salgorithm
is small because only necessary states are checked. The
number of states for Lamport’s algorithm is small because
only two processes were used. In this case, the algorithm
becomes very smple. For al agorithms, verifications ter-
minated in less than afew minutes.

6 Reated work and conclusion

Several local model checkers have been proposed.
The algorithm used in this paper is due to Stirling and
Walker[14]. Cleaveland[6] proposes a dlightly different
algorithm with some optimization techniques. Indepen-
dently of us, he mentionsthe use of database. Winskel[16]
proposes a local model checker in the modal nu-calculus,
which is the dua of the modal mu-calculus. The local
model checking algorithm has been implemented in Con-
currency Workbench[7] by Cleaveland et a. The main
difference between Concurrency Workbench and our sys-
temisthat weemploy CSP asitstarget language, which has
internal states (variables). Thus, our system can be viewed
as implementing the model checker for a static version of
value-passing CCS.

Using adatabase Without a database Speed-up

n || time(sec.) | ratio | ided ratio || time (sec.) ratio | ideal ratio || (without/with)

3 0.7 10 1.0 0.7 1.0 1.0 1.0

4 1.3 1.9 1.6 3.0 4.3 35 2.3

5 2.0 2.9 2.3 13.7 19.6 12.6 6.9

6 31 44 31 56.3 80.4 46.2 18.2

7 4.6 6.6 4.0 236.2 3374 171.6 51.3

8 5.8 8.3 51 993.8 1419.7 643.5 171.3

9 80| 114 6.3 4145.2 5921.7 2431.0 518.2

10 9.8 | 140 7.6 17233.5 | 24619.3 9237.8 1758.5

Table 1: Verification time
] Clarke et al.[4] and Emerson-Lei[8] propose another
#of states | result | time (sec.) model checking algorithm, whichisnot local. With the use
Peterson 21| true 10.7 of BDD[2], Clarke et al. achieve the verification of pro-
Dekker 87 | true 59.1 cesses with a considerably large number of states. Because
Dijkstra 161 | true 131.4 their model checker uses global state information, the re-
Knuth 109 | true 70.4 eval uation of unnecessary sequents will never occur. Thus,
Hyman 15 | fase 6.4 we conjecture that the time complexity of their algorithm
Lamport 15 | true 6.0 isroughly the same as ours with the use of databases.

The relation optimization is a technique to reduce re-
dundant states and is applicable to both local and global
model checking agorithms. It is similar in essence to
compiler code optimization, and improvesthe performance
dramatically. Thistechnique can be also used in the model
checking with abstraction by Clarke et al.[5].

The lazy evaluation strategy and the symbolic compu-
tation mechanism are proposed to verify control-finite pro-
cesses. Although they extend the range of verifiable pro-
grams, it is far from our satisfaction. We hope they can
serve as one step toward verification of infinite state pro-
grams.

The fact that CSP processes are static enables us to use
execution pointers to indicate processing points. Thisis
impossible if processes are dynamically created asin CCS
where recursion permits us to create infinite number of
processes. To extend our system to cope with full CCS, we
have to employ a stack or similar data structure instead of
execution pointers.

Asfuture research, we are planning to enhance the sys-
temin three ways. First, we want to investigate acomposi-
tional verification technique by adapting the object oriented
technique. Since objects are independent of each other,
we could somehow control the combinatorial explosion by
treating internal actions in other objects independent. Sec-
ondly, we have to manage the state explosion problem. Al-
though it seems we can not directly use BDD, the indirect
use of BDD could be possible. The compositional method
is aso promising. Thirdly, we are seeking a method to
synthesize proofg[3]. At present, loop constructs are ver-



ified by actually executing loops. Through examining the
difference of states upon re-entering a loop, we could syn-
thesize the loop invariant. It will improve performance
considerably.
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