
Model Checking of Control-Finite CSP Programs

Kenichi Asai Satoshi Matsuoka Akinori Yonezawa

Department of Information Science, Faculty of Science,
The University of Tokyo

7-3-1 Hongou, Bunkyo-Ku, Tokyo, 113, Japan
fasai,matsu,yonezawag@is.s.u-tokyo.ac.jp

Abstract

We investigate an automatic verification mechanism for
control-finite CSP programs using the model checking tech-
nique. CSP programs with variables and usual sequential
constructs are transformed into transition systems to apply
the model checking technique. More specifically, binding of
variables are attached to states and sequential statements
are treated uniformly as events in a parallel environment.
With this transformation, our system can be viewed as im-
plementing the model checker for a static version of value-
passing CCS. Another characteristic of the system is that
the CSP programs to be verified are not limited to finite-
state, but control-finite. CSP programs are control-finite if
their control flow is finite. We hope it can serve as one step
toward verification of infinite state programs.

1 Introduction

Writing concurrent programs is difficult because they
exhibit various unexpected behaviors, such as deadlocks or
race-conditions. Without some mechanisms to check their
safety, it would be significantly difficult to construct large
concurrent programs.

Conventionally, parallel programs have been verified us-
ing the axiomatic approach[11, 10]: each program con-
struct has an axiom or an inference rule which describes
its meaning. Programs are correct if their proof can be
composed with these axioms and rules. Since the axioms
include the rule of consequence, that is, all facts that are
mathematically provable can be used as axioms, we can
deduce a wide range of properties of concurrent programs.
The axiomatic proof technique, however, requires deep in-
sight into program behaviors. For example, to verify a
program which contains a while statement, we have to find
a loop invariant which holds throughout the statement.

Model checking[4, 8] is a different approach to verify-
ing parallel programs; it can automatically check if a given

state of a finite transition system is a model of a given
formula, i.e., it checks whether the formula is true in that
state. By using formulas in the modal mu-calculus[13] to
express properties of parallel programs, model checking al-
lows us to check a variety of properties, including absence
of deadlock and mutual exclusiveness. The key to model
checking is the use of transition systems, which describe
the external behavior of processes. The model checker ver-
ifies the correctness of a parallel program by traversing all
possible states over a given transition system that describes
the behavior of the program.

The problem, however, is as follows: although transition
systems give good abstractions of parallel processes, they
are not suited for practical programs. There, we use vari-
ables to distinguish different states, if statements to cause
branches in the control, and while statements for repeti-
tion. All these features are abstracted away in the transition
systems as internal actions.

We present a method for automatically verifying realis-
tic parallel programs which contain sequential constructs.
As a first step, we use Hoare’s Communicating Sequen-
tial Processes (CSP)[9] as a working example. We hope
to extend our approach to be able to handle more flexible
language based on concurrent objects, such as Actors[1] or
ABCL[17].

CSP processes are literally sequential processes which
communicate synchronously. CSP includes variables, al-
ternation and repetition constructs, sequential composition,
and parallel composition. Verification of a CSP program
is performed by first transforming it into a transition sys-
tem. A state of the transition system consists of execution
pointers together with a binding of variables. Transition
relations are constructed from the control flow of the CSP
programs. Then, we apply the model checking technique
to the resulting transition system. Verification proceeds
fully automatically — we just supply the formula to be ver-
ified. With this transformation, our system can be viewed
as implementing the model checker for a static version of

skip : skip

assignment : x1; : : : ; xn := e1; : : : ; en or x := e

send : send t(e) to p

receive : receive t(x) from p

Figure 1: Simple commands (t: template, p: pro-
cess name)

sequence : c1; : : : ; c
n

parallel : [p1 :: c1 k : : : k pn :: c
n

]

alternation : if g1 ! c1 [] : : : [] gn ! c

n

�

repetition : do g1 ! c1 [] : : : [] gn ! c

n

od

Figure 2: Composite commands (c
i

: command,
p

i

: process name, g
i

: guard)

value-passing CCS.
Unfortunately, not all CSP programs can be verified with

this method because the technique can be applied only to
finite transition systems. The number of states of CSP
programs can easily become infinite, because the range
of variable values is unbounded. This means that only
programs which contain variables with finite ranges can
be checked. To weaken this restriction, we introduce the
lazy evaluation mechanism, which defers the evaluation of
variables until they are required. With this mechanism,
we can verify control-finite programs. CSP programs are
control-finite if their control flow is finite.

We have implemented the model checker in MIT-
Scheme, and verified various examples of parallel program-
ming, including the dining philosophers problem and the
mutual exclusion problem. Experimental results show that
the proofs of these examples complete within a reasonable
time.

2 Background

2.1 Overview of CSP

Communicating Sequential Processes (CSP) was in-
troduced by Hoare[9] to serve as a basis for parallel
programming languages. The commands of CSP are
shown in Figure 1 and 2. The notation x represents
the vector x1; : : : ; xn. The communication commands
send and receive were originally written as p!t(e) and
p?t(x). We use a Pascal-like style for better readability.
The guard g

i

is either a send command, a receive com-
mand, or a skip command, followed by when b, where
b is a boolean expression (e.g., send t(e) to p when b,

receive t(x) from p when b, or skip when b.) Note that
the CSP programs are static. The syntax of CSP programs
prevents creation of an infinite number of processes.

2.2 Labeled transition system

A labeled transition system is a simple model for par-
allel programs. It regards the execution of programs as
transitions between states. A labeled transition system is
formally defined as follows:

Definition 1 A labeled transition system is a triple T =

(S;L;!) where S is a non-empty set of states, L is a non-
empty set of actions, and ! (� S � L � S) is a ternary
relation representing labeled transitions.

A labeled transition system is finite if S is finite. The
notation s1

a

! s2 is used to mean (s1; a; s2) 2 !.

2.3 The modal mu-calculus

The modal mu-calculus is a member of the family of
branching-time temporal logic[13]. It can express a variety
of properties, including absence of deadlock and mutual ex-
clusiveness. The syntax of the modal mu-calculus formula
A is defined by:

A ::= Q j :A j A ^A j [K]A j Z j �Z:A:

A formula is either an atomic proposition Q, a negation
formula :A, a conjunction formula A1 ^ A2, a modalized
formula [K]A where K is a set of actions, a propositional
variable Z, or a maximal fixed point formula �Z:A.

The formulas in the modal mu-calculus are interpreted
on labeled transition systems with the help of valuation V .
The valuation is used to interpret atomic propositions and
propositional variables. A set of stateskAk

V

that satisfy the
formula A on a transition system (S;L;!) is inductively
defined as follows:

kQk

V

= V (Q);

k:Ak

V

= S � kAk

V

;

kA ^ Bk

V

= kAk

V

\ kBk

V

;

k[K]Ak

V

= fs 2 S j 8s

0

:8a 2 K:

if s

a

! s

0

then s

0

2 kAk

V

g;

kZk

V

= V (Z);

k�Z:Ak

V

=

[

fS

0

� S j S

0

= kAk

V [Z:=S0

]

g:

An atomic proposition Q describes an atomic property
of states. It is used to distinguish two states with different
natures. A negation formula and a conjunction formula

need few comments. They express usual not and and. We
will also use or, A1 _A2, defined as :(:A1 ^ :A2).

The meaning of a modalized formula [K]A is that after
the execution of every executable action taken from K, A
holds. We omit curly bracket when we enumerate elements
of K as [a; b; c]A instead of [fa; b; cg]A.

An important derived formula of [K]A is hKiA, which
is defined as :[K]:A. hKiA expresses that there is an
executable action a in K such that after the execution of a,
A holds.

The last two formulas Z and �Z:A are used to express
recursive predicates. Z may appear only in the body A of
�Z:A as a bounded variable. �Z:A is a maximal solution of
the equation Z = A. One syntactic restriction on �Z:A is
that every free occurrence of Z in A must be under an even
number of negations. This ensures �Z:A to be a monotonic
function. It is useful to represent a property which always
holds. For example, the formula �Z:hKiZ expresses that
some actions taken from K are always executable, and
�Z:Q^ [K]Z says that as long as one is performing actions
in K, Q is always true.

2.4 Local model checking

The model checking technique is a method to automat-
ically check if a given state of a finite transition system
is a model of a given formula or not. In other words,
model checkers check if the formula holds in that state.
Among various model checkers, we introduce the local
model checker by Stirling and Walker[14]. The local model
checker is a tableau system which can test whether a state
satisfies a formula without global information. Since it uses
only necessary information for checking, it can sometimes
check formulas on an infinite transition system, when only
finite portions are required for checking.

The tableau system is constructed using inverse natural
deduction type rules of the form:

s `

�

A

s1 `�1 A1 : : : sk `�
k

A

k

side condition:

s `

�

A is called a sequent. The rule is read as: to check if
the state s satisfies the formula A under the definition list
�, check if s

i

`

�

i

A

i

holds for i = 1; : : : ; k. If they all
hold, so does s `

�

A.
A definition list supplies the environment which stores

fixed point formulas encountered so far. Each time a fixed
point formula �Z:A is encountered, we introduce a new
constantU , add U = �Z:A to the definition list, and check
A[Z := U]. If U is encountered afterwards, it means that
Z in the original formula is encountered. Thus, we unroll
the fixed point by looking up the definition list. The no-
tation � � U = A is a definition list obtained by adding a

definition U = A to �. �(U) returns a formula bound to
U . Here are the rules:

s `

�

::A

s `

�

A ;

s `

�

A ^B

s `

�

A s `

�

B;

s `

�

:(A ^B)

s `

�

:A

or
s `

�

:(A ^B)

s `

�

:B ;

s `

�

[K]A

s1 `� A : : : s

n

`

�

A

fs1; : : : ; sng =

fs

0

j 9a 2 K:s

a

! s

0

)g;

s `

�

:[K]A

s

0

`

�

:A

9a 2 K:s

a

! s

0

;

s `

�

�Z:A

s `

�

0

U

�

0 is � � U = �Z:A;

s `

�

:�Z:A

s `

�

0

U

�

0 is � � U = :�Z:A;

s `

�

U

s `

�

A[Z := U]

C and �(U) = �Z:A;

s `

�

U

s `

�

:A[Z := :U]

C and �(U) = :�Z:A:

Condition C, appearing in the side condition on the last two
rules, is that: above the current node s `

�

U , no node of
the form s `

�

0

U for some �0 appears.
Model checking proceeds in a top-down manner. First,

write a state and a formula to be checked with the empty
definition list as s ` A. (We omit the definition list when
it is empty.) Then, we apply the rules as far as possible.
The rule to be applied is determined by the structure of the
formula. When no rules are applicable, the leaf nodes are
examined. If they are all true leaf nodes, then the state s
satisfies the formula A. Note that there is a nondetermin-
ism, or or-branching, in the rules for :(A^B) and:[K]A.
This means that we have to choose a correct one whose leaf
nodes become true. In practice, we test all cases until a true
leaf node is found.

A leaf node s `
�

A is true when one of the following
requirements holds: (1)A = Q and s 2 V (Q), (2)A = :Q

and s 62 V (Q), (3)A = [K]B for some B, (4)A = U and
�(U) = �Z:B. The case (1) and (2) are clear. s `

�

Q

and s `
�

:Q hold if and only if s 2 V (Q) and s 62 V (Q),
respectively. s `

�

[K]B is true because s can perform no
actions in K. If it can, the node can not be a leaf node
because the rule for modalized formulas is still applicable.
The last case needs some comments. s `

�

U becomes a
leaf node only when the condition C fails to hold, namely, a
node of the form s `

�

0

U has already appeared. Intuitively
speaking, as the truth of s ` U depends on s ` U itself, the
fixed point is reached. In this case, it is proved [14] that s
satisfies �Z:B.

The following theorems [14] guarantee that the model
checker works correctly.

Theorem 1 Every tableau for s ` A on a finite transition
system is finite.

Theorem 2 s ` A holds if and only if s 2kAk
V

.

3 CSP programs as transition systems

In this section, CSP programs are transformed into tran-
sition systems to apply the model checking technique.
Although CSP programs have internal states and sequen-
tial constructs, they can be regarded as transition systems
through (1) including a binding of variables into the def-
inition of states, and (2) observing sequential constructs
uniformly as actions. We define states, actions, and transi-
tion relations for CSP programs in the following sections
to obtain transition systems representing CSP programs.
Then, we illustrate how the model checking proceeds with
some examples.

3.1 States

We define a state of a CSP program as a pair of execution
pointers and a binding of variables. To determine states of
CSP programs, we need two pieces of information. One is
where in the program each process is running. It is repre-
sented as (a set of) execution pointers or labels attached to
appropriate place in the program. The other is a binding of
variables. Even though the execution pointers are the same,
succeeding behavior may change if the value of variables
differ. Thus, we have to include the binding of variables
into the definition of states. Assuming that all variables are
global, we maintain one binding list for the whole program
instead of each process. Local variables are realized by
using unique variable names.

Execution pointers indicate the location in the program
where the processes are running. A single process is de-
scribed by a single execution pointer, while a set of pro-
cesses is described by a set of execution pointers. Execu-
tion pointers are attached to the beginning of the program,
the end of the program, all “;00s which appear in sequence
commands, and all “ !00s which appear in alternative and
repetitive commands. In the case where parallel commands
appear, we also label the beginning and the end of each pro-
cesses in parallel commands. Then, the execution pointers
before and after the parallel commands are identified with
a set of the first execution pointers and the last execution
pointers of component processes, respectively. Note that
we take simple commands as atomic actions.

See, for example, the program in Figure 3, which sends 5
or 6 to user, depending on which of the processes, proc1 or

main ::
ep0 x := 2;

ep

[proc1 ::
ep1 x := x + 1

ep2

k proc2 ::
ep3 x := x � 2

ep4];ep0

send t(x) to user

ep5

Figure 3: Main sends 5 or 6 to user

buffer ::
ep0

do receive put(x) from user when true

!

ep1 send get(x) to user

od

ep2

Figure 4: A bounded buffer with capacity 1

proc2, is executed first. All “;00, as well as the beginning and
the end of each process are labeled with execution pointers.
ep and ep

0 will not be used as they are identified with
fep1; ep3g and fep2; ep4g, respectively. Figure 4 shows a
program of a bounded buffer of capacity one. “ !

00 in
the repetitive command is labeled with ep1. Ep1 expresses
that put(x) has just been received and get(x) is about to be
sent.

3.2 Actions

In CSP programs, state transitions occur when one of the
simple commands is executed or when an internal commu-
nication occurs. The actions of CSP programs are defined
by:

L = Skip [Assignment [Send [Receive [f�g

where � represents an internal communication. Skip and
Assignment are sets of all skip and assignment com-
mands.

Send is a set of send commands whose actual parameters
are substituted with fresh variables u. For example, the
program

p :: send t(5) to user

can perform an action send t(u) to user. The assignment
u := 5 is performed and we can observe the communicated
value through the value of u. The program satisfies the
formula hsend t(u) to useriu = 5, which states that the
program can take a send action with the sent value 5. Intro-
ducing new variables u enables us to reference sent values
freely.

Likewise, Receive is a set of receive commands whose
virtual parameters are substituted with (all possible) actual
parameters. The reason for the substitution is fundamental

in Receive. Consider the program:

zerop :: receive t(n) from user;
if send yes() to user when n = 0 ! skip

[] send no() to user when n 6= 0 ! skip

�

which sends yes if the received value is zero and no

otherwise. If we allow virtual parameters for receive
actions, we can write a formula such as hreceive t(n)

from userihsend yes() to useritrue, meaning that after
receiving n from user, it can always answer yes. The truth
of such formulas can not be determined in a simple way
until the value of virtual parameters are known. One way
to proceed without knowing the value is to use a symbolic
computation mechanism which we discuss in Section 4.3.
For now, we forbid the use of virtual parameters in receive
actions.

3.3 Transition relations

Transition relations are defined for each action a in L.
First, we consider the case where a is not � . Let ep and ep0

be execution pointers just before and after the command in
the program designated by the action a, and (EP; E) be a
global state where EP is a set of execution pointers and
E is a binding of variables. Assume that the when clause
of a (if exists) is true and ep 2 EP , that is, the action a

is ready to be taken. Then, the transition relation for a is
defined as follows, depending on the type of a:

(EP; E)

skip

����������������! (EP

0

; E);

(EP; E)

x := e

����������������! (EP

0

; E [x := e]);

(EP; E)

send t(u) to p

����������������! (EP

0

; E [u := e]);

(EP; E)

receive t(d) from p

����������������! (EP

0

; E[x := d])

where EP 0 is EP [fep

0

g � fepg, u and d are virtual and
actual parameters explained in the previous section.

For all cases above, an action proceeds the execution
pointer leaving some side effects in E . A skip action leaves
nothing. An assignment action changes the binding of vari-
ables as just assigned. A send action introduces a binding
for new variables u so that we can check the sent values.
A receive action assigns actual parameters to the virtual
parameters.

The transition relation for � is almost identical except
that two processes participate. Consider a typical matching
pair:

p1 :: � � � ;
ep1 send t(e) to p2 (when b1);

ep

0

1
� � � ;

p2 :: � � � ;
ep2 receive t(x) from p1 (when b2);

ep

0

2
� � � :

Let (EP; E) be a global state and assume ep1 2 EP and
ep2 2 EP . If both b1 and b2 (if exist) are true in E , the
transition relation for � is:

(EP; E)

�

�! (EP

0

; E[x := e])

where EP 0 is EP [fep

0

1; ep
0

2g�fep1; ep2g. A � action is
effectively the same as an assignment action x := e except
that it advances both execution pointers.

3.4 Examples

Since we have defined states, actions, and transition re-
lations for CSP programs, we can now apply the model
checking algorithm to them. In this section, we demon-
strate with two examples how CSP programs are actually
transformed into transition systems and see how the model
checking algorithm is applied.

The first example illustrates how modalized formulas
check all the possible execution paths. We show that the
program in Figure 3 actually sends 5 or 6 to user. The
property is expressed as:

Send5or6=[Assignment][Assignment][Assignment]

hsend t(u) to useriu = 5 _ u = 6.

There are six possible execution pointers: ep0; fep1;

ep3g; fep2; ep3g; fep1; ep4g; fep2; ep4g, and ep5. Actions
are defined asL = Assignment [fsend t(u) to userg,
where Assignment is fx := 2; x := x + 1; x := x � 2g.
Here, a new variable u is introduced. Transition relations
are given by:

(ep0; E)
x := 2

�������! (fep1; ep3g; E [x := 2]);

(fep1; ep3g; E)
x := x + 1
�������! (fep2; ep3g; E [x := x+ 1]);

(fep1; ep4g; E)
x := x + 1
�������! (fep2; ep4g; E [x := x+ 1]);

(fep1; ep3g; E)
x := x � 2
�������! (fep1; ep4g; E [x := x � 2]);

(fep2; ep3g; E)
x := x � 2
�������! (fep2; ep4g; E [x := x � 2]);

(fep2; ep4g; E)
send t(u) to user

��������������! (ep5; E [u := x]):

The tableau for the formula is shown in Figure 5(a)
and bindings of variables are listed in Figure 5(b). In
Figure 5(a), we use two abbreviations: [A] stands for
[Assignment] and hsendi stands for hsend t(u) to useri.
Blanks in the table mean that the value is undefined. Def-
inition lists are omitted because they are not used in this
example. In our implemented system, the model checking
is done as a depth first search.

At the second line of the tableau, division into two sub-
tableaus occurs, which corresponds to the two possible
execution paths. In the last line of subtableaus, u = 5 and

(ep0; E0) ` [A][A][A]hsendiu = 5 _ u = 6

(fep1; ep3g; E1) ` [A][A]hsendiu = 5 _ u = 6

(fep2; ep3g; E2) ` [A]hsendiu = 5 _ u = 6

(fep2; ep4g; E3) ` hsendiu = 5 _ u = 6

(ep5; E4) ` u = 5 _ u = 6

(ep5; E4) ` u = 6
(success)

(fep1; ep4g; E5) ` [A]hsendiu = 5 _ u = 6

(fep2; ep4g; E6) ` hsendiu = 5 _ u = 6

(ep5; E7) ` u = 5 _ u = 6

(ep5; E7) ` u = 5
(success)

Figure 5: The example proof for a modalized formula (a) the tableau

E0 E1 E2 E3 E4 E5 E6 E7

x 2 3 6 6 4 5 5
u 6 5

Figure 5: (b) bindings of variables

u = 6 are nondeterministically chosen fromu = 5_u = 6.
Because the both leaf nodes are true (E4 satisfies u = 6 and
E7 satisfies u = 5), we verify that Send5or6 holds at the
beginning of the program.

The next example illustrates the use of recursive for-
mulas and definition lists. We check if the program
in Figure 4 can take two actions receive put(3) from

user; send get(u) to user successively infinite number
of times. The property is expressed as: �Z:hreceivei

hsendiZ. Here, we write hreceivei for hreceive put(3)
from useri and hsendi for hsend get(u) to useri.

There are only two possible (reachable) execution point-
ers: ep0 and ep1. Actions are given by L = freceive

put(e) from user; send get(u) to userg where e and u

are newly introduced actual and virtual parameters. Note
that L contains infinite number of actions. The actual pa-
rameter e must be a concrete value when the receive action
is taken. Transition relations are given by:

(ep0; E)
receive put(e) from user

�������������������! (ep1; E [x := e]);

(ep1; E)
send get(u) to user

�������������������! (ep0; E [u := x]):

The proof is in Figure 6. At the second line of Figure 6(a),
a constant U is introduced. It is used to unroll the recursive
formula for two times at lines three and six. The proof
can not stop at line five, because the condition C does not
hold. Although the similar sequent appears in the second
line, bindings of the variables are not the same. Thus, we
proceed the proof until we find exactly the same sequent at
line eight.

(ep0; E0) ` �Z:hreceiveihsendiZ

(ep0; E0) `� U

(ep0; E0) `� hreceiveihsendiU

(ep1; E1) `� hsendiU

(ep0; E2) `� U

(ep0; E2) `� hreceiveihsendiU

(ep1; E2) `� hsendiU

(ep0; E2) `� U

(success)

�(U) = �Z:hreceiveihsendiZ

(a)

E0 E1 E2

x 3 3
u 3

(b)

Figure 6: The example proof for a recursive for-
mula (a) the tableau (b) bindings of variables

4 Improving the algorithm

In this section, we discuss some techniques to improve
the algorithm. The first two are concerned with perfor-
mance while the later ones are concerned with extending
the range of programs which can be verified.

4.1 Use of assertion database

Because the local model checker uses only local infor-
mation, it sometimes exhibits very inefficient behavior. For
example, consider the following program which does noth-
ing but skip:

03 `A
13 `B

23 `C
24 `D
25 `E

14 `C

24 `D
25 `E

15 `D

25 `E

04 `B

14 `C
24 `D
25 `E

15 `D
25 `E

05 `C

15 `D
25 `E

A : [Skip][Skip][Skip]hSkipitrue
B : [Skip][Skip]hSkipitrue E : true
C : [Skip]hSkipitrue D : hSkipitrue

Figure 7: An inefficient proof

main :: [proc1 ::
ep0 skip ;

ep1 skip ep2

k proc2 ::
ep3 skip ;

ep4 skip ep5
]:

Figure 7 shows a proof tableau for [Skip][Skip][Skip]

hSkipitrue. (We write mn for (fep
m

; ep

n

g; E).) The
tableau is inefficient in that there are repeated occurrences
of identical subtableaus. Assuming that model checker
checks the left branch in the figure first, the boxed part
in the tableau is unnecessary because their truthhood has
already been determined.

To avoid this re-evaluation, we introduce an assertion
database which stores the known results. The effect of
the database is especially significant in verifying CSP pro-
grams which contain many independent commands. All
skip commands are independent of all other commands in
the program. Assignment commands are independent if
they do not refer to shared variables. Because the execu-
tion order of independent commands does not affect the
resulting state of programs, they always reach the same se-
quent and cause re-evaluation. The experimental results of
the effect of databases are presented in Section 5.1.

One drawback of the use of databases is that it suffers
from the state explosion problem. Because we record all
results calculated so far, the database may become too large
to manage. As formulas that we want to verify usually re-
quire checking almost all the reachable states, the problem
is likely to occur if programs become bigger. Clarke em-
ployed Binary Decision Diagrams (BDD) [2] in his (global)
model checker, but it can not be directly used for our case
because the global state space is unknown. Further study
is required here.

4.2 Relation optimization

The purpose of relation optimization is to reduce re-
dundant states. This is because redundant states extremely
increase the verification time. For example, consider the
program:

alwaysSkip ::
ep0 do skip when true !

ep1 skip od

which is transformed into:

(ep0; E)
skip

���������! (ep1; E);

(ep1; E)
skip

���������! (ep0; E):

Although alwaysSkip does nothing, it doubles the number
of states when it is contained in the program to be verified.
All the states are divided into two states depending on
which state alwaysSkip is in. Thus, the time required
for verification is usually doubled because most properties
need all the reachable states to be verified.

To reduce the redundant states, we remove all skip com-
mands, except the ones in guards. In a sequential process
in CSP programs, the flow of control branches only in the
beginning of alternative and repetitive commands. The ex-
ecution proceeds straightforwardly in other places. If the
execution reaches the point just before a skip command (the
one without when clause), the execution always proceeds
to the point after the skip command. This means that if we
have a relation of the form

(ep; E)

skip

���������! (ep

0

; E)

where the skip is not the one taken from guards, we can
safely remove the relation through substituting all the oc-
currence of ep in other relations by ep

0. The program
alwaysSkip is optimized into

(ep0; E)
skip

���������! (ep0; E):

4.3 Towards verification of more expressive pro-
grams

Because the model checking technique can be applied
to only finite transition systems, all variable values in CSP
programs have to be finite. In this section, we discuss how
to weaken this restriction. We introduce a lazy evalua-
tion mechanism and a simple case of symbolic computa-
tion. Through adapting these mechanisms, verification of
control-finite programs becomes possible. A program is
control-finite if all variables in the program that can affect
the control flow have finite ranges of values. In this case,
the state space of the program becomes finite and the proof
always terminates.

Lazy evaluation: Consider the program:

incX :: do skip when true ! x := x + 1 od

which increases x by 1 infinite number of times. Suppose,
we want to check that skip and x := x+1 can be executed
one after the other infinitely: �Z:hSkipihx := x + 1iZ.

Although this is clearly true, the proof tableau for this
formula does not terminate. This is because the value of x
increases each time and will never take the previous value.
As the state never returns to any of the previous states,
the proofs for fixed point formulas do not terminate. The
example shows that we should not include all the variables
into states, but some should be ignored. To include only
required variables, we use lazy evaluation strategy.

The lazy evaluation strategydefers the evaluationof vari-
ables until variable values are actually required. It evaluates
only the necessary variables. In our case, we evaluate the
variables only when they appear in when clauses in guards
(or explicitly mentioned in the verifying formula). As the
boolean value in a when clause determines the subsequent
flow of program execution, it needs to be evaluated.

Because the variable with unevaluated value indicates
that it does not affect the program execution, we exclude
the variable from states. The variable x in the above ex-
ample is excluded from states since it does not appear in
guards. Without x, the proof terminates.

A simple symbolic computation: Because the un-
used variables do not affect the control flow, we can
prove some more general properties about them. Con-
sider the program of a bounded buffer shown in Fig-
ure 4. The restriction on virtual parameters in re-
ceive commands forbids us to verify formulas such as
hreceive put(x) from userihsend get(u) to useriu =

n. We have to supply a specific value for n. However,
the value of n is never evaluated in the program. In such a
case, we just want the model checker to carry n as though
n is a specific value.

This is achieved by introducing a simple symbolic com-
putation mechanism. The symbolic computation mecha-
nism enables us to manipulate symbols directly. We allow
the use of symbols for unused variables. Because we allow
symbols only for unused variables, the mechanism does
not affect the model checker itself. We can introduce the
symbolic computation orthogonal to the model checker.

5 Experimental results

In this section, various experimental results are pre-
sented. The model checker is implemented in the Scheme
language[12] with a compiler and runs on NeXT with 28
Mbytes of memory.

5.1 The effect of employing assertion database

In this section, we show how the use of an assertion
database reduces the verification time. As a benchmark
program, we use the program and the formula shown in

Figure 8. Without using the database, the model checker
checks the formula for 2nCn

times. This is understood by
considering how the n skip commands in proc1 are placed
in 2n places. On the other hand, if we use the database, the
number of states that needs to be checked is (n+ 1)2.

Table 1 shows the verification time for n = 3; : : : ; 10.
The ratio in the table expresses the execution time ratio
normalized to the case n = 3. The ideal ratio is computed
as 2nCn

=6C3 for the case using the database and (n +

1)2
=(3 + 1)2 for the case without it.
Without using the database, the verification time grows

rapidly as n becomes large. For n = 10, it took 17233.5
seconds, which is about 4.8 hours. If we use the database,
on the other hand, the verification time is considerably
reduced. Even for n = 10, the proof ends in ten seconds.

5.2 Mutual exclusion

In this section, we show the results of verifying various
mutual exclusion algorithms. Algorithms are taken from
[15], in which the algorithms are verified on the Concur-
rency Workbench[7]. We reformulate the algorithms in
CSP and check their correctness.

We verify six algorithms: algorithms due to Peterson,
Dekker, Dijkstra, Knuth, Hyman, and Lamport. All the al-
gorithms consist of two processes with some initial assign-
ment commands. They all use shared variables to achieve
mutual exclusion.

Mutual exclusiveness is expressed using an atomic
proposition at ep as follows:

�Z:(:(at critical1 ^ at critical2) ^ [L]Z):

at ep is used to indicate if programs are executing at that
point. It is true if ep is contained in the current execution
pointer. (at critical1^at critical2) says that one process
is executing critical1 and the other process is executing
critical2, that is, mutual exclusion is violated. The formula
as a whole says that such violation never occurs.

Table 2 summarizes the results of the verifications. The
algorithms turn out to preserve mutual exclusion except Hy-
man’salgorithm, which is knownto be incorrect. Peterson’s

main :: [proc1 ::

n

z }| {

skip ; : : : ; skip
k proc2 :: skip ; : : : ; skip

| {z }

n

]

[Skip] � � � [Skip]

| {z }

2n�1

hSkipitrue

Figure 8: Benchmark program and formula

Using a database Without a database Speed-up
n time (sec.) ratio ideal ratio time (sec.) ratio ideal ratio (without/with)
3 0.7 1.0 1.0 0.7 1.0 1.0 1.0
4 1.3 1.9 1.6 3.0 4.3 3.5 2.3
5 2.0 2.9 2.3 13.7 19.6 12.6 6.9
6 3.1 4.4 3.1 56.3 80.4 46.2 18.2
7 4.6 6.6 4.0 236.2 337.4 171.6 51.3
8 5.8 8.3 5.1 993.8 1419.7 643.5 171.3
9 8.0 11.4 6.3 4145.2 5921.7 2431.0 518.2
10 9.8 14.0 7.6 17233.5 24619.3 9237.8 1758.5

Table 1: Verification time

of states result time (sec.)
Peterson 21 true 10.7
Dekker 87 true 59.1
Dijkstra 161 true 131.4
Knuth 109 true 70.4
Hyman 15 false 6.4
Lamport 15 true 6.0

Table 2: Results and verification time for mutual
exclusion algorithms (for two processes)

algorithm can be verified in about ten seconds because of
its simplicity. The number of states for Hyman’s algorithm
is small because only necessary states are checked. The
number of states for Lamport’s algorithm is small because
only two processes were used. In this case, the algorithm
becomes very simple. For all algorithms, verifications ter-
minated in less than a few minutes.

6 Related work and conclusion

Several local model checkers have been proposed.
The algorithm used in this paper is due to Stirling and
Walker[14]. Cleaveland[6] proposes a slightly different
algorithm with some optimization techniques. Indepen-
dently of us, he mentions the use of database. Winskel[16]
proposes a local model checker in the modal nu-calculus,
which is the dual of the modal mu-calculus. The local
model checking algorithm has been implemented in Con-
currency Workbench[7] by Cleaveland et al. The main
difference between Concurrency Workbench and our sys-
tem is that we employ CSP as its target language, which has
internal states (variables). Thus, our system can be viewed
as implementing the model checker for a static version of
value-passing CCS.

Clarke et al.[4] and Emerson-Lei[8] propose another
model checking algorithm, which is not local. With the use
of BDD[2], Clarke et al. achieve the verification of pro-
cesses with a considerably large number of states. Because
their model checker uses global state information, the re-
evaluation of unnecessary sequents will never occur. Thus,
we conjecture that the time complexity of their algorithm
is roughly the same as ours with the use of databases.

The relation optimization is a technique to reduce re-
dundant states and is applicable to both local and global
model checking algorithms. It is similar in essence to
compiler code optimization, and improves the performance
dramatically. This technique can be also used in the model
checking with abstraction by Clarke et al.[5].

The lazy evaluation strategy and the symbolic compu-
tation mechanism are proposed to verify control-finite pro-
cesses. Although they extend the range of verifiable pro-
grams, it is far from our satisfaction. We hope they can
serve as one step toward verification of infinite state pro-
grams.

The fact that CSP processes are static enables us to use
execution pointers to indicate processing points. This is
impossible if processes are dynamically created as in CCS
where recursion permits us to create infinite number of
processes. To extend our system to cope with full CCS, we
have to employ a stack or similar data structure instead of
execution pointers.

As future research, we are planning to enhance the sys-
tem in three ways. First, we want to investigate a composi-
tional verification technique by adapting the object oriented
technique. Since objects are independent of each other,
we could somehow control the combinatorial explosion by
treating internal actions in other objects independent. Sec-
ondly, we have to manage the state explosion problem. Al-
though it seems we can not directly use BDD, the indirect
use of BDD could be possible. The compositional method
is also promising. Thirdly, we are seeking a method to
synthesize proofs[3]. At present, loop constructs are ver-

ified by actually executing loops. Through examining the
difference of states upon re-entering a loop, we could syn-
thesize the loop invariant. It will improve performance
considerably.

Acknowledgements

We are grateful to Makoto Takeyama for his precise
comments on theoretical considerations. Very constructive
comments from anonymous referees improved this paper
in various ways.

References

[1] Agha, G. ACTORS: A Model of Concurrent Computation in
Distributed Systems, Cambridge: MIT Press (1986).

[2] Bryant, R. E. “Graph-Based Algorithms for Boolean Func-
tion Manipulation,” IEEE Trans. Comput., Vol. C-35, No. 8,
pp. 677–691 (1986).

[3] Clarke, E. M. “Synthesis of Resource Invariants for Concur-
rent Programs,” ACM Trans. Prog. Lang. Syst., Vol. 2, No.
3, pp. 338–358 (1980).

[4] Clarke, E. M., E. A. Emerson, and A. P. Sistla “Automatic
verification of finite-state concurrent systems using temporal
logic specifications,” ACM Trans. Prog. Lang. Syst., Vol. 8,
No. 2, pp. 244–263 (1986).

[5] Clarke, E. M., O. Grumberg, and D. E. Long “Model Check-
ing and Abstraction,” Proc. 19th Ann. ACM Symp. of Prin-
ciples of Prog. Lang., pp. 343–354 (1992).

[6] Cleaveland, R. “Tableau-Based Model Checking in the
Propositional Mu-Calculus,” Acta Inf. 27, pp. 725–747
(1990).

[7] Cleaveland, R., J. Parrow, and B. Steffen “The Concurrency
Workbench,” Lecture Notes in Computer Science 407, pp.
24–37 (1989).

[8] Emerson, E. A., and C-L. Lei “Efficient Model Checking in
Fragments of the Propositional Mu-Calculus,” Procedings
of 1st IEEE Symp. on Logic in Comput. Sci., pp. 267–278
(1986).

[9] Hoare, C. A. R. “Communicating Sequential Processes,”
Comm. ACM, Vol. 21, No. 8, pp. 666–677 (1978).

[10] Levin, G. M., and D. Gries “A Proof Technique for Commu-
nicating Sequential Processes,” Acta Inf. 15, pp. 281–302
(1981).

[11] Owicki, S., and D. Gries “An Axiomatic Proof Technique
for Parallel Programs I,” Acta Inf. 6, pp. 319–340 (1976).

[12] Rees, J., and W. Clinger Revised 3 Report on the Algorithmic
Language Scheme, SIGPLAN NOTICE, Vol. 21, No. 12,
December (1986).

[13] Stirling, C. “Temporal Logics for CCS,” Lecture Notes in
Computer Science 354, pp. 660–672 (1987).

[14] Stirling, C., and D. Walker “Local model checking in the
modal mu-calculus,” Theor. Comput. Sci. 89, pp. 161–177
(1991).

[15] Walker, D. “Automated Analysis of Mutual Exclusion Al-
gorithms using CCS,” University of Edinburgh Report ECS-
LFCS-89-91, August (1989).

[16] Winskel, G. “A note on model checking the modal �-
calculus,” ICALP ’89, Lecture Notes in Computer Science
372, pp. 761–771 (1989).

[17] Yonezawa, A. (Ed.) ABCL: An Object-Oriented Concurrent
System, Cambridge: MIT Press (1990).

