
FEEL: An Implementation of EULISP

Version 0.89

Concurrent Processing Research Group

School of Mathematical Sciences

University of Bath, United Kingdom

E-mail: eulisp@maths.bath.ac.uk

July 15, 1993

Abstract

This document describes an implementation of EULISP called FEEL. The

primary reference for EULISP is the EULISP definition. In this document, the

environmental operations provided in FEEL, but which are not part of the

EULISP language, are described in detail, and examples on the use of some

eulisp features are provided.

1 Getting further information

Information about EULISP and a copy of the FEEL implementation are all available
from the eudist mail server at the University of Bath. Here is a summary of the
services provided1:

Address Subject Field Effect

eudist@maths.bath.ac.uk feel Distributes the current release of FEEL. Each
file will be sent individually in a uuencoded,
compressed format.

eudist@maths.bath.ac.uk definition Distributes the current release of the EULISP

definition, rationale and commentary in .dvi

format. Each file will be sent individually in
a uuencoded, compressed format.

eubug@maths.bath.ac.uk something germane Please provide body too! This mail-id is for
reporting bugs in the definition or in FEEL.

2 Making FEEL

The kind of FEEL system you can make depends on the combined capabilities of
your operating system and processor. FEEL has been developed in a solely Unix
environment and this has considerably warped its view of the world. So far, FEEL

has only been ported to different versions of Unix. A particular feature of EULISP

is support for multiple threads of control. Whether these do actually execute con-
currently depends on the host system, but, in principle, it should be possible to
develop a program using threads on one system—perhaps a uni-processor simulat-
ing concurrency—and later execute the same program on a multi-processor or a
distributed processor to achieve the same net result.

Broadly speaking, FEEL can be made in any of three main configurations . . .

1These addresses may not work. The authors of this document are pab,jap@maths.bath.ac.uk

Generic Under the “any” machine configuration, FEEL attempts to be a fully
portable ANSI C program. Because there is no reliably portable method
of implementing threads in C, the thread operations in this mode are not
available and only a serial version of EULISP remains. This mode is most suit-
able for getting started quickly and also the most sensible place to begin for
porting to new architectures or operating systems. Memory use is minimised
which may benifit smaller machines such as PCs or any system where memory
is at a premium.

BSD This (badly named) configuration mode requires that a stack switching op-
eration be available for FEEL to use. Given this code (typically a few lines of
the local assembler), the thread operations become available with the limita-
tion that only one thread is run at a time. This mode allows programs to be
written in terms of threads which may later be run in parallel without alter-
ation. This mode is most useful for allowing the developing multi-threaded
applications under unsupportive operating systems such as BSD 4.2 or 4.3.

System V This configuration requires that stack switching code be available along
with the standard System V shared memory manipulation primitives. Given
these things FEEL becomes a truly parallel multi-threaded system using the
following model: on start-up a piece of shared memory is allocated, then FEEL

forks as many times as there are physical processors in the host machine (this
behaviour may be modified). Each of these forked processes runs the FEEL

scheduler, running threads from the pool in the shared heap. Each such thread
is run to conclusion—unless it yields control, in which case it will be returned
to the pool. More processes may be forked than existing processors to simulate
truly parallel operation on uniprocessor systems such as Suns running SunOS
4.1.

3 The FEEL environment

FEEL uses the shell variable FEEL_LOAD_PATH to load modules. If this variable is
unset, then modules are sought in the directory in which FEEL was invoked and in a
directory specified when the system was built. The value of FEEL_LOAD_PATH is read
at start-up and converted to a list of strings of information in a processor-defined
format concerning the filesystems or disks or directories to be searched when loading
modules. Modules are stored in files with the extension .em.

Similarly, the shell variable FEEL_INTF_PATH is used to find module interface
files. If the variable is unset, only the directory in which FEEL was invoked will
be searched. The value of FEEL_INTF_PATH is read at start-up and converted in a
manner analogous to that for FEEL_LOAD_PATH. Interfaces are stored in files with
the extension .i.

3.1 Getting in and out

FEEL is started by typing feel, assuming correct paths and installation. To leave
FEEL type CNTL-D, or possibly !exit (see later section).

3.2 Interacting with FEEL

When FEEL starts, the top-level is initially set to the user module2. This imports
eulisp0, and therefore contains most of the usual lisp functions. Most of the module
manipulation functionality is defined in the root module. The only operations

2This can be changed by setting the environment variable FEEL START MODULE

2

defined in the root module are those for loading modules and entering modules
(see below). The top-level prompt provides information about which module is the
current focus and the history number of the command, for example:

eulisp:0:root!3>

signifies that the top-level is executing on thread 0, the current module focus is
root and that the command history index of this line is 3.

eulisp-handler:0:sockets!1>

signifies that the top-level handler is executing on thread 0, the current module
focus is sockets and that the command history index of this line is 1. The following
operations are defined in the root module:

reload-module Feel special form

Arguments

symbol : name of the module to load.

!>> Feel special form

Arguments

symbol : name of the module to load.

Result

the name of the module.
Reload the specified module. This has the side-effect of resetting the exported

bindings of the module, such that any importing module will reference the new
values. This operation may be abbreviated to !>> which will cause the specified
module to be reloaded and change the focus to that module. Unlike reload-module,
!>> is recognized everywhere.

load-loudly Feel

Result

A boolean.
Switch on verbosity of monitoring during module loading.

load-quietly Feel

Result

A boolean.
Switch off verbosity of monitoring during module loading.

loaded-modules Feel

Result

A list of the names of the currently loaded modules.

(!> Feel special form

Arguments

module: Name of module to load.

3

enter-module Feel special form

Arguments

module: Name of module to load.

Result

Ifmodule-name names a module which has been loaded, then the top-level is changed
to be in that module. If a module named module-name is not currently loaded,
then FEEL tries to load the module from a file called module-name.em. If loaded
succesfully, top-level is changed to be in that module. This operation may be
abbreviated to !>. However, it is also important to note that whilst enter-module
is only defined in root, !> is recognized everywhere.

start-module Feel special form

Arguments

module-name: Name of a module

function-name: Name of a function

arg: argument

Result

Calls the function function-name in the module module-name with the arguments
arg∗.

load-module Feel special form

Arguments

module-name: A symbol

Load the specified module.

load-path Feelaccessor

load-path Feelupdator

Result

load-path returns a list of strings which define the paths currently searched when
loading modules and accessing documentation. The setter function permits this
load path to be modified dynamically.
In addition, the following features are provided for controlling the focus of the
top-level:

!root Feel special form

Changes top-level back to the root module.

!exit Feel special form

Within a handler loop, returns to previous top-level. At top-level, EULISP ter-
minates.

4

!n Feel special form

Redo the input sequence number n.

!backtrace Feel special form

!b Feel special form

!q Feel special form

Within the handler loop, prints out a backtrace of function calls and their en-
vironments. This may be abbreiviated to !b. A simpler backtrace, only containing
the function calls, can be printed out by typing !q. The eulisp0 module exports a
function, !B (not a special form) which may do a better job in some circumstances,
but is more prone to infinite loops.

4 Start-Up Configuration

FEEL’s default starting behaviour may be modified in two ways . . .

Command Line Arguments The interpreter recognises a number of command
line arguments which are basically -heap, -stack-space and -do but you didn’t
want to know that. Actually:

-heap n The size of heap to use (in megabytes if n < 50, else bytes). Feel
needs at least a 1.5 meg heap.

-do cmds A list of things to do on startup

-stack-space n Amount of storage to allocate for stacks and static data.
This defaults to 1, but should be more for programs that use threads.

-boot Name of bytecode image file to load. See later

-map Produce bytecode map. See later.

-procs n Start up using n processors. Works in SystemV configuration only.

-stack-size The size of the interpreter stack. Default 32, max is 64. it should
note be necessary to change this unless your program stops with a stack-
overflow message. Beware that an infinite non-tail recursion problem
may also trigger this message.

A Configuration File Having first processed its command line arguments, FEEL

then looks for a file called .feelrc in the $HOME directory of the user3. If
found, the file is read and the expressions within executed as if entered at top
level.

5 Objects

The EULISP object system is called TELOS. Every data item in EULISP is part of the
class hierarchy. Simple classes can be defined by defstruct, more complex classes
with defclass. There is no message send primitive in EULISP, instead generic
functions are used. TELOS has been designed to offer programmability, efficiency
and flexibility and the next three subsections attempt to illustrate the kinds of
things you can do with it by means of a few examples.

3Likely to be elsewhere on non-UNIX systems

5

5.1 Generic Functions

You see, it’s like this. . . 4

5.1.1 Univariate polynomials over the integers

We start with a polynomial structure: this is a single term, with a reductum that
is the rest of the polynomial. A reductum that is an integer marks the end of the
polynomial. A term consists of the leading degree and the leading coefficient.

(defclass <polynomial> (<number>)

((ldeg accessor ldeg initarg ldeg initform 1)

(lc accessor lc initarg lc initform 1)

(red accessor red initarg red initform 0))

constructor make-polynomial)

We define a method on equal so we can check if two polynomials are the same.
Notice we do not have to check for the bottoming-out of the recursion on the reducta:
the generic nature of equal ensures that when we get to the end of a polynomial
(and we have an integer as a reductum rather than a polynomial) a different method
is called. This relies on the fact that equal-methods for (int, poly) and (poly, int) do
not exist: the generic function discriminator chooses the nearest applicable method
on equal, which in this case is (object, object). This method returns () (as the
args cannot be eq), which is just what we want.

(defmethod equal ((p <polynomial>) (q <polynomial>))

(and (equal (ldeg p) (ldeg q))

(equal (lc p) (lc q)) (equal (red p) (red q))))

We now need some operations on this new type. If we are trying to add polyno-
mials to integers, we would like some method for converting between integers and
polynomials. We use the function lift-numbers to do this.

(defmethod lift-numbers ((i <integer>) (p <polynomial>))

<polynomial>)

(defmethod lift-numbers ((p <polynomial>) (i <integer>))

<polynomial>)

(defmethod (converter <polynomial>) ((x <integer>))

(make-polynomial ’lc x ’ldeg 0))

Now if we call any operation with a polynomial and an integer, the integer is
lifted to class polynomial, and the operation proceeds as normal. For two polyno-
mials, the method is easy. A minor wrinkle is when the leading terms cancel: we
must take care not to have a leading coefficient of 0.

(defmethod binary-plus ((p <polynomial>) (q <polynomial>))

(cond ((= (ldeg p) (ldeg q))

(let ((sum (binary-plus (lc p) (lc q))))

(if (zerop sum) (binary-plus (red p) (red q))

(make-polynomial ’ldeg (ldeg p) ’lc sum ’red

(binary-plus (red p) (red q))))))

((< (ldeg p) (ldeg q))

(make-polynomial ’ldeg (ldeg q) ’lc (lc q)

4to quote Keith

6

’red (binary-plus p (red q))))

(t (make-polynomial ’ldeg (ldeg p) ’lc (lc p)

’red (binary-plus (red p) q)))))

(defmethod binary-difference ...

and so on for the other arithmetic operations. Also we would put new methods
on generic-prin and generic-write to print out the values of polynomials using
a suitable syntax.

5.2 Classes

Classes in EULISP are not static items: they can be defined and created dynamically
just as any other type in the system. The following example demonstrates this by
defining a class whose instances are themselves classes, whose instances are modular
numbers. The intermediate classes are parameterised by an integer, which are the
bases for the modular rings. This also illustrates the use of metaclasses, which
control the structure of classes.

We create a metaclass <zmodn>which is the class of the classes <Zmod3>, <Zmod5>,
<Zmod7>, etc.

(defclass <zmodn-class> (<class>)

((n initarg n reader zmodn-class-n))

metaclass <class>)

This will be a direct subclass of class, and so will inherit its methods, in par-
ticular the ability to create subclasses which are themselves classes. The instances
of this class will have a slot named n, which will be the modular base.

Now we define a superclass for all of its instances, to place them in their own
sub-hierarchy of the class graph. This class has an instance variable z, since the
instances of its subclasses are the fully instantiated modular numbers.

(defclass <zmodn-object> (<number>)

((z accessor zmodn-z))

metaclass <zmodn-class>)

The metaclass of the instances of zmodn-object is defined to be the class
zmodn-class. Thus the structure of the instances (the classes Zmod5, etc.) is
determined by zmodn-class.

The constructor for the instances of zmodn-class (the metaclass) could be the
following:

(defun make-zmodn-class (n)

(make <zmodn-class>

’direct-superclasses (list <zmodn-object>)

’name (make-symbol (format nil "<zmod-~a>" n))

’n n))

The make-instance requires values for the slots in zmodn-class, which include
n (the slot we defined), and direct-superclasses, a slot inherited from class.

If you want to avoid creating duplicate zmodn classes with the same N, try this
definition instead:

(defconstant *zmodn-table*

(make <table> ’comparator = ’hash-function generic-hash))

7

(defun make-zmodn-class2 (n)

(or (table-ref *zmodn-table* n)

(let ((cl (make-zmodn-class n)))

((setter table-ref) *zmodn-table* n cl)

cl)))

The function to create the modular objects themselves could be defined as fol-
lows:

(defun make-modular-number (z n)

(make-instance (make-zmodn-class2 n) ’z z))

Note that this implemenatation guarentees that the number is of the appropriate
range:

(defmethod initialize ((proto <zmodn-object>) lst)

(let ((i (call-next-method)))

((setter zmodn-z) i

(remainder (scan-args ’z lst required-argument)

(zmodn-n i)))

i))

Getting z from one of these instances is already defined by the reader on
zmodn-object. Getting n involves going to the class. Making this available from
instances means defining the following function:

(defgeneric zmodn-n (obj))

(defmethod zmodn-n ((z <zmodn-object>))

(zmodn-class-n (class-of z)))

Next, we want to define some simple arithmetic on modular numbers, for exam-
ple, addition. However, this only makes sense if we have the same modulus in both
of the summands.

(defun compatible-moduli (n m) (if (= (zmodn-n n) (zmodn-n m)) t

(error "incompatible moduli" Internal-Error)))

We define a method for addition on <zmodn-object>: this will then be inherited
by each instance, viz., the actual rings <zmod3>, <zmod5>, and so on.

(defmethod binary-plus ((n1 <zmodn-object>) (n2 <zmodn-object>))

(when (compatible-moduli n1 n2)

(make-modular-number (+ (zmodn-z i) (zmodn-z j))

(zmodn-n i))))

We can add a method to the print function to view numbers prettily

(defmethod generic-prin ((n <zmodn-object>) s)

(format s "~a<mod ~a>" (zmodn-z n) (zmodn-n n)))

Finally, some examples of numbers

(deflocal zero5 (make-modular-number 0 5))

(deflocal one5 (make-modular-number 1 5))

(deflocal two5 (make-modular-number 2 5))

(deflocal three5 (make-modular-number 3 5))

8

(deflocal four5 (make-modular-number 4 5))

(deflocal zero3 (make-modular-number 0 3))

(deflocal one3 (make-modular-number 1 3))

(deflocal two3 (make-modular-number 2 3))

Now if we try an addition:

> (+ two5 four5)

< 1<mod 5>

We didn’t have to specify a plus method for each modular ring individually: the
single definition on the superclass suffices.

Thanks to Harley Davis for help on this section.

5.3 Slot Descriptions

Another aspect of the programmability of TELOS is slot-descriptions. This allows
the user to control how the slots of a class are accessed. Here we present an example
of the use of slot-descriptions to provide a classed (typed) slot facility. The aim is
to be able to define a class and, at the same time, the class of the values to be
associated with a given slot. The solution is to define a new kind of slot-description
to verify that only values of the correct class are stored in the slot. We start by
defining a new kind of slot-description <classed-local-slot-description>.

(defclass <classed-local-slot-description> (<local-slot-description>)

((contents-class initform <object> initarg contents-class

reader classed-local-slot-description-contents-class))

metaclass <slot-description-class>)

The classed-local-slot-description class inherits the normal slots from <local-

-slot-description> and adds somewhere to keep track of the allowed class of its
contents.

To police the class (type) constraint, we must check that whenever a value is
written to a slot with this class—that the value is of the specified kind. we therefore
want a new method on compute-primitive-writer-using-slot-description.

(defmethod compute-primitive-writer-using-slot-description

((csd <classed-local-slot-description>) cl lst)

(let ((std-writer (call-next-method))

(contents-cl (classed-local-slot-description-contents-class csd)))

(lambda (obj val)

(if (subclassp (class-of val) contents-cl)

(std-writer obj val)

(error "invalid class of value for slot"

some-error ’object obj ’sd csd ’val val)))))

The call to the standard writer is reached only if the value satisfies the class
constraint. It just means the value is acceptable—go ahead and do whatever you
normally do to put the slot value inside.

All that remains is how to use one of these slots in a class. The example you
give can be done as follows—but remember that defclass must be used instead of
defstruct because the latter does not support user-defined slot classes.

(defclass <person> ()

((age slot-class <classed-local-slot-description>

initarg age

9

slot-initargs (’contents-class <integer>) accessor age)

(name slot-class <classed-local-slot-description>

slot-initargs (’contents-class <string>)

accessor name)

(ordinary-slot initform ’bleagh))

)

The slots age and name are of the new class of slot with their contents class set
to integer and string respectively. Of course, other slots with different classes of
slot description may also be defined.

Now, we may type the following:

(setq i (make <person>)) ((setter age) i 27)

which is fine and (age i) will return 27.

((setter age) i ’not-a-number)

but this signals an error. Thanks to Luis Mandel for prompting this example.

5.4 Mixins

FEEL supplies a mixin module5 to allow the use mixin classes à la flavors. A mixin
class is a class that can be used in a multiple inheritance network, but has certain
restrictions to enable the creation of more efficient accessors—multiple inheritance
is restricted to non-instantiable classes and these classes, mixins are then used
for specialisation of instantiable objects, base-objects. Mixins tend to be used to
describe attributes of objects, and then these are “mixed in” with base classes to
create specialized classes. The mixin implementation has two metaclasses

• <mixin-class> The class of a mixin class

• <mixin-base-class> The class of a base-object class

Instances of <mixin-class> are not instantiable, but allow full MI. Only in-
stances of <mixin-base-class> may inherit from mixin-classes, and the list of
direct superclasses of a <mixin-base-class> must have all mixin-classes before a
single non-mixin class (In FEEL, it may inherit from any other class in the system,
including <class>).

Note on the implementation: <mixin-class> has a different default slot type,
<mixin-slot-description>. When this slot is inherited directly by a <mixin-base-class>
its the accessor is computed. If the slot is not newly created, however, no new access
method is computed, therefore reducing the number of such methods for a given
accessor.

6 eql methods

These are supplied bye the eql module. Effectively it defines new generic function
and method classes, and allows eql methods to be defined. See eql.em for full
details.

5called mixins

10

(defclass <point> ()

((x initform 0 accessor point-x initarg x)

(y initform 0 accessor point-y initarg y))

)

(defclass <colored> ()

((color initform ’black initarg color

reader color))

metaclass <mixin-class>)

(defgeneric color-of (obj)

method (((obj <object>)) ’gray)

method (((obj <colored>))

(color obj)))

(defclass <colored-point> (<colored> <point>)

()

metaclass <mixin-base-class>)

(setq p1 (make <point>))

(color-of p1)

(setq p2 (make <colored-point> ’x 1 ’y 1 ’color ’red))

(color-of p2)

Figure 1: Usage of mixin inhertance

7 Differences between FEEL and EuLisp

Inevitably there are a number of minor ways in which FEELis not an accurate im-
plementation of EULISP. This section outlines these differences. The 0.98 version is
taken as the main version.

The whole of Level 0 is implemented. Much of Level 1 is also running. The
library modules (section 5 of EULISP0.69) are much more patchy.

A major area of incompatability is in the conditions, some of which are not used
when the document says they should. This is being improved daily6

7.1 Input and Output

The EULISPdefinition does not yet have a powerful input/output mechanism. The
one in FEELis intended to be a starting point, and no more. It provides input and
output primitives, plus scan and format.

7.2 Elementary Functions Module

None of the elementary functions are implemented on integers.

7.3 Formatted-IO Module

The function format is defined, and understands the esacapes ~a, ~s, ~t, ~% and ~~

only. It also implements the additional escape ~u for printing lists with hexadecimal

6at least that is the intention!

11

values for system debugging. The numerical formats for binary, octal decimal and
hexadecimal are only implemented for fixed integers. The treatment of the field
sizes in g, e and f formats are very inconsistent.

8 Pretty printing

There is an elementary prettyprinter in the module pretty. It exports the following
three functions.

prettyprint Feel

Arguments

object : Object to print

Result

The answer is the same as the argument, but as a sideffect a pretty-printed form of
the object is printed. The layout is controlled by a table which can be modified. In
theory (but not yet in practice) setting the variable *symmetric* controls whether
the printed form is capable of re-entry. The code also shows how one adds new
stream-type objects to the system.

9 AVL tree Module

To be written The source code is a reasonable description

10 OPS5 Module

To be written

11 Thread Abstractions

EULISP provides a set of primitive operations for thread creation and manipulation,
but for most work these are too low-level and require the user to be overly concerned
with their management. It is also true that one of the design goals of EULISP was
to provide an experimentation environment for parallel processing, so it should not
be surprising that several thread abstractions have been built on the EULISP thread
primitives. So far these abstractions comprise: futures, linda and timewarp. The
next three subsections describe them in detail.

11.1 Futures

The nature of the EULISP thread mechanismmeans that it lends itself quite naturally
to providing a base for the implementation of a simple future abstraction. The acts
of creating futures and of eventually interrogating them for their values map almost
directly onto starting threads and accessing thread results.

The code for basic future manipulation is given below. A couple of examples
of replacements for “strict” functions that allow for future objects are shown. The
extensibility of generic functions and module renaming can be used to make these
necessary changes transparent for users.

12

future Future macro

Syntax

(future (expression∗))

Remarks

Constructs a future object and spawns a thread to calculate the value of expression.
An object of class future is returned by the expression resulting from the macro
expansion. The implementation of future in FEEL is:

(defmacro future exp

‘(let

((future (make-future-object))

(task (make-thread

(lambda (future fun)

((setter future-object-value) future (fun))

((setter future-object-done) future t)

t))))

((setter future-object-thread) future task)

((setter future-object-function) future (lambda () ,@exp))

(thread-start task future (lambda () ,@exp))

future))

futurep Future generic

Arguments

obj : The object to be tested

Result

nil if obj is not a future, otherwise, non-nil.

future-value Future

Arguments

future: The value to be evaluated

Result

Forces the evaluation of a future and if the result of the evaluation is also a future

that too is forced until the result is not a future.

future-select Future

Arguments

list : a list of futures

Result

Return the first of future-list to complete

13

11.2 Linda

To be written. See eulinda.em

11.3 Communicating Sequential Processes

The CSP module provides a new class of thread, called a CSP-thread, the channel
class and several syntactic extensions. These extension are detailed below.

11.3.1 Channels

Channels are the basic form of interprocess communication in CSP. They provide
a means for 2 processes to communicate via a synchronous link. In this version of
CSP there area two types of channel: the simple channel and the channel pair. A
simple channel is specified at dynamically by the functions connect-channel-input
and connect-channel-output. Only IN operations are permitted on the channel
returned by the former, and only OUT operations on the latter. These operations
are only alowed on the thread that connected the channel or one that it created. A
channel pair is made up of two channels and is connected to a thead by connect-

chan-pair

11.3.2 Bindings

make-Channel CSP

Result

Returns an unconnected simple channel

make-Chan-Pair CSP

Result

Returns an unconnected channel pair

connect-channel-input CSP

Arguments

channel : a channel

Result

A channel. Connects the thread executing the statement to the input end of the
channel.

connect-channel-output CSP

Arguments

channel : A channel

Result

A channel. Connects the thread executng the statement to the output end of the
channel.

14

connect-chan-pair CSP

Arguments

channel-pair : A channel pair

Result

Returns one end of the specified channel as a connected channel.

IN CSP macro

Syntax

(IN channel [variable])

Remarks

Waits until transmitter (process on the other end of channel) is ready to send data
(signaled by doing OUT on channel) and then reads the object from channel assigning
it to variable. If the variable is ommited, IN simply returns the value on the channel.

OUT CSP macro

Syntax

(OUT channel obj)

Remarks

Waits until reciever (process on the other end of channel) is ready to receive data
(by doing IN) and then outputs obj to the channel channel.

PAR CSP macro

Syntax

(PAR expression∗)

Remarks

The expression can be any lisp expression. Execute each expression as a seperate
thread. The construct waits until all its subexpressions have completed, and returns
a list of values returned by the expressions.

MAPPAR CSP macro

Syntax

(MAPPAR function list)

Remarks

Apply function, which should take one argument to each element of the list, as a
parallel operation.

FOR CSP macro

Remarks

PAR as iteration over a sequence of values.

15

ALT CSP macro

Syntax

(ALT alternative∗)

Remarks

Each alternative has the following form:

((IN channel variable) expression∗)

When one one the listed channels is known to be ready, this executes the code
associated with the IN statement with the specified variable bound to the next
value on the channel. This construct should be viewed as non-deterministic – ie. it
does not necessarily return the first ready channel.

IN-FROM CSP macro

(channel-var value-var) channels . expressions

Syntax

(IN-FROM (channel-var value-var) channels (expressions)∗)

Remarks

When one of the channels is known to be ready, the expressions are evaluated with
channel-var bound to the channel, and value-var to the value on that channel.

SEQ CSP macro

Syntax

SEQ expression∗ The same as progn, ie execute the following expressions in the order
given.

11.4 Time Warp

To be written

12 Distributed Processing

The basis for distributed processing in FEEL under Unix is supplied by the sockets
module, which exports the functions defined below.

socketp FEEL

Arguments

obj : An object

Result

If obj is a socket returns t, otherwise ().

16

make-listener FEEL

Result

Allocates a fresh listener object.

make-socket FEEL

Result

Allocates a fresh socket object. Note that this function is almost never called.

listener-id FEEL

Arguments

Listener : a listener

Result

Returns a pair, whose car field contains a symbol naming the local host and whose
cdr field is a port number on that host identified with the listener.

listen FEEL

Arguments

listener : a listener

Result

Listens on the port number returned by listener-id applied to listener and returns
socket when a connection is established.

connect FEEL

Arguments

pair : A pair identifying a listening port on a remote machine

Result

The pair contains the information returned by listener-id and makes a connection
to the named machine on the specified port, returning socket which is the handle
on the established connection bewteen the two processes.

close-listener FEEL

Arguments

listener : a listener

Result

Changes internal state of listener so that it can no longer be used for listening.

17

close-socket FEEL

Arguments

socket : a socket

Flushes all pending data related to socket and changes the internal state of socket
so that it is no longer readable or writable.

socket-readable-p FEEL

Arguments

socket : a socket.

Result

If there is data available for reading from socket, returns t, otherwise ().

socket-writable-p FEEL

Arguments

socket : A socket.

Result

If data can be written to socket, returns t, otherwise ().
Figure 2 is two scripts of a simple example of establishing a socket connection

and a dialogue across the connection
Currently socket-read and socket-write are used for input and output. If

you are comminicating with non-EULISPprocesses then you should use format/print
and scan/input. Read, for various reasons cannot be used.

12.1 Linda

To be written

12.2 Time Warp

To be written

12.3 The PVM module

The pvm module provides an interface to the pvm library. This section assumes
that the reader has read at least some of the pvm documentation.

The module differs from the pvm library in the following ways:

• Arbitrary lisp expressions (including circular structures) may be sent from
machine to machine

• The format in which objects are sent is not the XDR format used by pvm,
but an internal format. It is hopefully machine (and byte order) independent.
See the section on the reader module for more details.

• Several reads may occur simultaneously on separate threads 7. In other words,
it is possible to call thread-suspend during a read.

The module exports the following functions:

7note that pvm is not yet interfaced to the System V version.

18

machine-1 machine-2

eulisp:0:root!0> (!> standard)

Loading module ’standard’

Loading module ’extras’

Loaded ’extras’

Loaded ’standard’

eulisp:0:standard!0< standard

eulisp:0:standard!1> (import sockets)

eulisp:0:standard!1< ()

eulisp:0:standard!2> (setq s

(connect ’(machine-2 . 1236)))

eulisp:0:standard!2< #socket(3,3)

eulisp:0:standard!3> (socket-read s)

eulisp:0:standard!3< 1

eulisp:0:standard!4> (socket-write s 2)

eulisp:0:standard!4< 2

eulisp:0:root!0> (!> standard)

Loading module ’standard’

Loading module ’extras’

Loaded ’extras’

Loaded ’standard’

eulisp:0:standard!0< standard

eulisp:0:standard!1> (import sockets)

eulisp:0:standard!1< ()

eulisp:0:standard!2> (setq l

(make-listener))

eulisp:0:standard!2< #listener(3,1)

eulisp:0:standard!3> (listener-id l)

eulisp:0:standard!3< (machine-2 . 1236)

eulisp:0:standard!4> (setq s (listen l))

eulisp:0:standard!4< #socket(4,3)

eulisp:0:standard!5> (socket-write s 1)

eulisp:0:standard!5< 1

eulisp:0:standard!6> (socket-read s)

eulisp:0:standard!6< 2

Figure 2: Example socket based communication

make-pvm-id PVM

Arguments

string: A string

id : An identifier

Result

creates a pvm-id which can be used to broadcast to a group of remote processes.
Note that this is simply a cons cell.

pvm-status PVM

Arguments

id : Identifier of a pvm-process

Result

Query the status of the process with id id.

19

pvm-send PVM

Arguments

dest : A pvm process identifier

type: The numeric type of the message

msg: The message (can be anything)

[reader]: A reader which is used to write the message.

Result

Send a message of type type to the process specified by the id dest containing the
value msg. If a reader is specified it is used to handle any complex lisp types inside
the message.

pvm-recv PVM

Arguments

type: The type of message to be recieved

info? : Is Information on message wanted

[reader]: A reader which is used to read the message.

Result

Block until a message of type type is recieved. If info? is nil, then the message is
returned. If info? is non-nil, a list is returned in the following format: (msg type

from) where msg is the message, type is the type and from is the process-id of the
sending processes.

pvm-recv-multi PVM

Arguments

type-list : A list of possible message types

info? : Information on message wanted flag

[reader]: A reader which is used to read the message.

Result

As pvm-recv, but blocks until a message which has a type in the type-list.

pvm-initiate-by-type PVM

Arguments

type: Type of machine (string)

name: Name of the new process (string)

Result

Start a process on a host of the specified type with the name name. It returns the
pvm identifier of the process.

20

pvm-initiate-by-hostname PVM

Arguments

hostname: Hostname in which to start process

name: Name of the new process

Result

Start a process on the host with name hostname with the name name

pvm-enroll PVM

Arguments

name: A string

Result

Enroll into pvm under the given name. Must be called before any other pvm
function.

pvm-leave PVM

Result

Exit from pvm-control. After this is called, all pvm functions return an error mes-
sage (except pvm-enroll).

pvm-probe PVM

Arguments

type: A message type

Result

Test for messages of a given type. Returns the type, or nil if no message of that
type is in the input queue.

pvm-probe-multi PVM

Result

Test for messages from a list of types. Not yet implemented (as of PVM 2.4). Can
be simulated via probe.

pvm-whoami PVM

Result

Return the pvm-id (the value returned by enroll) of the process.

pvm-make-id-from-pair PVM

Arguments

Pair : A pair

21

Result

Construct a pvm-identifier from a cons cell. Mostly used when passing addresses
around — when a pvm-id is sent, it is read as a cons-cell. This operation is now a
null operation.

The other functions provided are

• pvm-barrier

• pvm-ready

• pvm-waituntil

• pvm-terminate

The Feel versions are untested, but ought to work. See the PVM documentation
for details about their functionality.

13 The Reader Module

The reader module provides functions to read and write lisp forms as bytevectors.
It is intended to be reasonably machine independent, although at the current time
it falls a little short. The module currently deals with reading and writing lisp forms
for the pvm, socket and dbm modules.

The module exports the following interface (for use in user modules):

/∗
∗ obread.h

∗ interface for obread

∗/

/∗ class of the reader ∗/

extern LispObject object reader;

/∗ functions ∗/

extern void write obj(LispObject ∗,LispObject, unsigned char ∗∗,
LispObject);

extern LispObject read obj(LispObject ∗,unsigned char ast∗, LispObject);

#define EUBUG(x)

The reader in its default form can read any ’simple’ lisp expression that is:
integers, floats, strings, symbols8, lists and vectors. The extensibility is provided
via an extra argument which may be supplied to control the reader’s behaviour on
complex lisp types. A type here means a group of classes which can be read in
the same way. The type of an object is given by the integer identifier passed to
add-writer and add-reader.

make-obj-reader Reader

Result

Makes a new reader object. The class and internals of this object are left unspecified.

8Support for symbols may be removed in future versions because they may require some caching,

which will be provided by a lisp level

22

add-writer Reader

Arguments

reader : A reader

class : A class

type-ident : An identifier (> 16)

function: A function to be called when an object of class class is encountered.

Result

This function adds a new writer function, function to the given reader. The function
is called when an object of class class (or one of its subclasses) is encountered by a
write process. It is called with three arguments: the object to be written, a value
representing write buffer and the reader which called the function. The function
should call write-next with any data associated with the object.

add-reader Reader

Arguments

reader : A reader

type-ident : An identifier

function: A function.

Result

This function adds a new reader function function to the given reader. The func-
tion is called whenever an object of type type-ident is encountered by a read
process. It is called with two arguments: a value representing the read buffer plus
the reader supplied by the caller of the read. The function then calls read-next to
obtain any data associated with the object. If the function fails to consume all the
data written by its corresponding write, an unhandled error condition results9.

read-next Reader

Arguments

ptr : A pointer value

reader : A reader

Result

This function returns the next object in the read-buffer specified by ptr, using
reader as the reader object. It can only be called inside the dynamic scope of a read
function.

9Feel goes kaboom

23

write-next Reader

Arguments

object : the object to be written

ptr : A pointer value

reader : A reader

Result

This function writes the object object onto the write-buffer specified by ptr, using
reader as the reader object.

13.1 Example

;; define a structure which we want to pass around}

(defstruct silly-cons-pair ()

((car initarg car reader silly-car)

(cdr initarg cdr reader silly-cdr))

constructor (silly-cons car cdr))

;; invent a number --- this *must* be more than 16

(defconstant *silly-type-id* 18)

;; make a reader

(defconstant *the-reader* (make-obj-reader))

;; define readers and writers for silly-cons

;; note that both these functions *can* side effect, so circular

;; structures and caching can be handled (using tables or similar), also that the

;; particular reader can be changed for the recursive call

;; to the reader (although I do neither here).

(defun write-silly-cons (obj ptr rdr)

;; easy really. Just write whats inside.

(write-next (silly-car obj) ptr rdr)

(write-next (silly-cdr obj) ptr rdr))

(defun read-silly-cons (ptr rdr)

;; read the internals

(let* ((a-car (read-next ptr rdr))

(a-cdr (read-next ptr rdr)))

;; construct the appropriate object

(silly-cons a-car a-cdr)))

;; add them to the reader structure

(add-reader *the-reader*

silly-type-id

read-silly-cons)

24

(add-writer *the-reader*

silly-cons-pair

silly-type-id

write-silly-cons)

;; we can add more types later...

;; should make

;; (pvm-send (pvm-whoami) 102

;; (silly-cons (silly-cons 1 2)

;; (silly-cons 3 4))

;; *the-reader*)

;; work ok.

;; to receive, (pvm-recv 102 nil *the-reader*)

14 Bytecode Compiler

The Feel bytecode interpreter is implemented as an add-on to feel, rather than the
integral part of the system that, in an ideal world, it would be. The code produced
is quite respectable, and should give significant improvements over interpreted code.

The compiled code does not do any error checking on car, cdr, vector-ref and
similar functions. A later extension will define these functions as generic so that
type errors can be detected. In fact, all one needs to do is let extras0.em redefine
the relevant functions, and recompile.

14.1 How to run it

14.1.1 File Types

Eulisp module files These have a .em suffix and contain eulisp source code.

Standard compiled modules These have a .sc suffix, and contain position and
byte-order independent compiled code.

Interface files These have a .i suffix, and contain the interface exported by their
module, and information on dependencies, etc.

Bytecode files These have .ebc and .est sufficies. They hold the raw bytecodes
and statics for a group of modules.

Fast load files These have .fm extensions, and contain raw bytecodes for a single
module.

Documentation files These have a .doc extension (probably a bad choice), and
contain bytefunction names, and their documentation. Note that this is a very
recent addition to the compiler, but seems simple enough to work reliably.

14.1.2 Compiling

The compiler is invoked from inside the compile module. This module exports the
following bindings:

25

comp2sc Compiler

Arguments

module-name: A symbol

Result

Compile a .em file into a .sc file, plus a .i file.

(setter optimize-code) Compiler

Arguments

value: New value

Result

If value is non-nil, then the peephole optimiser will be invoked at the end of com-
pilations. This reduces code size by an average 10%, and also makes code execute
a little faster. The optimiser handles most obvious optimisations, but does not
attempt any cross procedure-call/branch optimisations.

14.1.3 linking

The linker is invoked from the combine module. It exports the following bindings:

load-module Compiler

Arguments

module name: A symbol

Result

Load a module into the current feel image. It will also load any submodules that the
module needs. For this to work correctly, there should be no implicit dependencies
between the initialisation of modules — if (the initialisation of) module A depends
on module B, then A should use a binding from B. For the majority of cases, it
should work OK.

load-modules Compiler

Arguments

module-list : List of symbols

Load all of the modules in mod-list in the given order.

combine-user-modules Compiler

Arguments

image-name: A symbol

module-list : List of modules

26

Result

Link the modules in mod-list with the system module standard0, producing an file
which can be used with the -boot option.

combine-user-modules-with-desc Compiler

Arguments

image-name: A symbol

module-list : List of modules

filename: Module-description file

Result

As above, but use the description file provided to locate external bindings, rather
than the system itself. This is primarily for cross-linking.

14.1.4 running

To have feel load an image, bootimage, produced by combine-modules, do:

feel -boot bootimage

14.2 Bootstrapping

The directory Feel/Boot contains a Makefile. Modify this to fit in with your system,
and do make map followed by make init map. This should produce a map of the
system, and an initialization module. Then, in the directory Feel/Boot/CBoot, edit
the Makefile, and do make install. After half an hour or so, an image file should
be produced. To test do ../.../Src/you -boot image. This should produce a running
image. feel -boot image should then work on your system.

27

