
Reference Manual for the

Elk Extension Language Interpreter

Oliver Laumann

ABSTRACT

This document provides a complete list of all primitive procedures and spe-

cial forms implemented by the Elk Extension Language. Only those procedures

and special forms that are not defined in the Revised4 Report on the Algorithmic

Language Scheme by Jonathan Rees and William Clinger (editors) are described

in detail. The procedures that are mentioned in the report are only listed without

description or examples.

October 27, 1992

Reference Manual for the

Elk Extension Language Interpreter

Oliver Laumann

1. Lambda Expressions, Procedures

(lambda formals body) syntax

See R4RS.

(procedure-lambda procedure) procedure

Returns a copy of the lambda expression which has been evaluated to create the given procedure.

Example:

(define (square x) (* x x))

(procedure-lambda square) ==> (lambda (x) (* x x))

(procedure? obj) procedure

See R4RS.

(primitive? obj) procedure

Returns #t if obj is a primitive procedure, #f otherwise.

(compound? obj) procedure

Returns #t if obj is a compound procedure (a procedure that has been created by evaluating a

lambda expression), #f otherwise.

2. Local Bindings

(let bindings body) syntax

(let* bindings body) syntax

(letrec bindings body) syntax

See R4RS.

3. Fluid Binding

- 2 -hhh

(fluid-let bindings body) syntax

bindings is of the form ((variable1 init1) ...). The inits are temporarily assigned to the variables

and the body is executed. The variables must be bound in an enclosing scope. When the body is

exited normally or by invoking a control point, the old values of the variables are restored. In the

latter case, when the control returns back to the body of the fluid-let by invocation of a control

point created within the body, the bindings are changed again to the values they had when the

body exited.

Examples:

((lambda (x)

(+ x (fluid-let ((x 3)) x))) 1) ==> 4

(fluid-let ((print-length 2))

(write ’(a b c d))) ==> ’(a b ...)

(define (errset thunk)

(call-with-current-continuation

(lambda (catch)

(fluid-let

((error-handler

(lambda msg (catch #f))))

(list (thunk))))))

(errset (lambda () (+ 1 2))) ==> (3)

(errset (lambda () (/ 1 0))) ==> #f

4. Definitions

(define variable expression) syntax

(define (variable formals) body) syntax

(define (variable . formal) body) syntax

See R4RS.

Returns a symbol, the identifier that has been bound. Definitions may appear anywhere within a

local body (e. g. a lambda body or a let). If the expression is omitted, void (the non-printing

object) is used.

Examples:

(define nil #f)

(define ((f x) y) (cons x y))

(define (g x) ((f x) 5))

(g ’a) ==> (a . 5)

- 3 -hhh

5. Assignment

(set! variable expression) syntax

See R4RS.

Returns the previous value of variable.

Examples:

(define-macro (swap x y)

‘(set! ,x (set! ,y ,x)))

6. Procedure Application

(operator operand1 ...) syntax

See R4RS. operator can be a macro (see below).

(apply arg1 ... args) procedure

See R4RS.

7. Quotation, Quasiquotation

(quote datum) syntax

’datum
”
syntax

constant
”
syntax

See R4RS.

(quasiquote expression) syntax

(unquote expression) syntax

(unquote-splicing expression) syntax

See R4RS.

8. Sequencing

(begin expression1 expression2 ...) syntax

See R4RS.

(begin1 expression1 expression2 ...) syntax

Identical to begin, except that the result of the first expression is returned.

9. Conditionals

- 4 -hhh

(if test consequent alternate) syntax

(if test consequent) syntax

See R4RS.

In the first form, alternate can be a sequence of expressions (implicit begin).

(case key clause1 clause2 ...) syntax

See R4RS.

Each clause not beginning with else can be of the form

((datum1 ...) expression1 expression2 ...)

or

(datum expression1 expression2 ...)

In the latter case, the key is matched against the datum.

(cond clause1 clause2 ...) syntax

See R4RS.

(and test1 ...) syntax

(or test1 ...) syntax

See R4RS.

10. Booleans

(not obj) procedure

See R4RS.

(boolean? obj) procedure

See R4RS.

11. Iteration

(let variable bindings body) syntax

“Named let”. See R4RS.

(map procedure list1 list2 ...) procedure

(for-each procedure list1 list2 ...) procedure

See R4RS. for-each returns the empty list.

- 5 -hhh

(do initializations test body) syntax

See R4RS.

12. Continuations

(call-with-current-continuation procedure) procedure

See R4RS.

(control-point? obj) procedure

Returns #t if obj is a control point (a continuation), #f otherwise.

(dynamic-wind thunk thunk thunk) procedure

dynamic-wind is a generalization of the unwind-protect facility provided by many Lisp systems.

All three arguments are procedures of no arguments. In the normal case, all three thunks are

applied in order. The first thunk is also applied when the body (the second thunk) is entered by

the application of a control point created within the body (by means of call-with-current-

continuation). Similarly, the third thunk is also applied whenever the body is exited by invoca-

tion of a control point created outside the body.

Examples:

(define-macro (unwind-protect body . unwind-forms)

‘(dynamic-wind

(lambda () #f)

(lambda () ,body)

(lambda () ,@unwind-forms)))

(let ((f (open-input-file "foo")))

(dynamic-wind

(lambda () #f)

(lambda () do something with f)

(lambda () (close-input-port f))))

13. Delayed Evaluation

(delay expression) syntax

(force promise) procedure

See R4RS.

(promise? obj) procedure

Returns #t if obj is a promise, an object returned by the application of delay. Otherwise #f is

returned.

- 6 -hhh

14. Equivalence Predicates

(eq? obj1 obj2) procedure

(eqv? obj1 obj2) procedure

(equal? obj1 obj2) procedure

See R4RS.

15. Pairs and Lists

(cons obj1 obj2) procedure

See R4RS.

(car pair) procedure

(cdr pair) procedure

See R4RS.

(cxr pair pattern) procedure

pattern is either a symbol or a string consisting of a combination of the characters ‘a’ and ‘d’. It

encodes a sequence of car and cdr operations; each ‘a’ denotes the application of car, and each

‘d’ denotes the application of cdr. For example, (cxr p "ada") is equivalent to (cadar p).

(caar pair) procedure

...

(cddddr pair) procedure

See R4RS.

(set-car! pair obj) procedure

(set-cdr! pair obj) procedure

See R4RS.

Both procedures return obj.

(make-list k obj) procedure

Returns a list of length k initialized with obj.

Examples:

(make-list 0 ’a) ==> ()

(make-list 2 (make-list 2 1)) ==> ((1 1) (1 1))

- 7 -hhh

(list obj ...) procedure

See R4RS.

(length list) procedure

See R4RS.

(list-ref list k) procedure

See R4RS.

(list-tail list k) procedure

See R4RS.

(last-pair list) procedure

See R4RS.

(append list ...) procedure

See R4RS.

(append! list ...) procedure

Like append, except that the original arguments are modified (destructive append). The cdr of

each argument is changed to point to the next argument.

Examples:

(define x ’(a b))

(append x ’(c d)) ==> (a b c d)

x ==> (a b)

(append! x ’(c d)) ==> (a b c d)

x ==> (a b c d)

(reverse list) procedure

See R4RS.

(reverse! list) procedure

Destructive reverse.

(memq obj list) procedure

(memv obj list) procedure

(member obj list) procedure

See R4RS.

- 8 -hhh

(assq obj alist) procedure

(assv obj alist) procedure

(assoc obj alist) procedure

See R4RS.

(null? obj) procedure

(pair? obj) procedure

See R4RS.

(list? obj) procedure

See R4RS.

16. Numbers

(= z1 z2 ...) procedure

(< z1 z2 ...) procedure

(> z1 z2 ...) procedure

(<= z1 z2 ...) procedure

(>= z1 z2 ...) procedure

See R4RS.

(1+ z) procedure

(-1+ z) procedure

Returns z plus 1 or z minus 1, respectively.

(1- z) procedure

A synonym for -1+ (for backwards compatibility).

(+ z1 ...) procedure

(* z1 ...) procedure

See R4RS.

(- z1 z2 ...) procedure

(/ z1 z2 ...) procedure

See R4RS.

(zero? z) procedure

(positive? z) procedure

(negative? z) procedure

(odd? z) procedure

- 9 -hhh

(even? z) procedure

(exact? z) procedure

(inexact? z) procedure

See R4RS.

exact? returns always #f; inexact? returns always #t.

(abs z) procedure

See R4RS.

(quotient n1 n2) procedure

(remainder n1 n2) procedure

(modulo n1 n2) procedure

See R4RS.

(gcd n1 ...) procedure

(lcm n1 ...) procedure

See R4RS.

(floor x) procedure

(ceiling x) procedure

(truncate x) procedure

(round x) procedure

See R4RS.

(sqrt z) procedure

See R4RS.

(exp z) procedure

(log z) procedure

(sin z) procedure

(cos z) procedure

(tan z) procedure

(asin z) procedure

(acos z) procedure

(atan z) procedure

(atan y x) procedure

See R4RS.

(min x1 x2 ...) procedure

(max x1 x2 ...) procedure

See R4RS.

- 10 -hhh

(random) procedure

Returns an integer pseudo-random number in the range from 0 to 231-1.

(srandom n) procedure

Sets the random number generator to the starting point n. srandom returns n.

(number? obj) procedure

(complex? obj) procedure

(real? obj) procedure

(rational? obj) procedure

(integer? obj) procedure

See R4RS.

(number−>string number) procedure

(number−>string number radix) procedure

See R4RS.

(string−>number string) procedure

(string−>number string radix) procedure

See R4RS.

17. Characters

(char−>integer char) procedure

(integer−>char n) procedure

See R4RS.

(char-upper-case? char) procedure

(char-lower-case? char) procedure

See R4RS.

(char-alphabetic? char) procedure

(char-numeric? char) procedure

(char-whitespace? char) procedure

See R4RS.

(char-upcase char) procedure

(char-downcase char) procedure

See R4RS.

- 11 -hhh

(char=? char1 char2) procedure

(char<? char1 char2) procedure

(char>? char1 char2) procedure

(char<=? char1 char2) procedure

(char>=? char1 char2) procedure

See R4RS.

(char-ci=? char1 char2) procedure

(char-ci<? char1 char2) procedure

(char-ci>? char1 char2) procedure

(char-ci<=? char1 char2) procedure

(char-ci>=? char1 char2) procedure

See R4RS.

(char? obj) procedure

See R4RS.

18. Strings

(string char ...) procedure

Returns a string containing the specified characters.

Examples:

(string) ==> ""

(string #\a #\space #\b) ==> "a b"

(string? obj) procedure

See R4RS.

(make-string k char) procedure

See R4RS.

(string-length string) procedure

See R4RS.

(string-ref string k) procedure

See R4RS.

(string-set! string k char) procedure

See R4RS.

Returns the previous value of element k of the given string.

- 12 -hhh

(substring string start end) procedure

See R4RS.

(string-copy string) procedure

See R4RS.

(string-append string ...) procedure

See R4RS.

(list−>string chars) procedure

(string−>list string) procedure

See R4RS.

(string-fill! string char) procedure

See R4RS.

Returns string.

(substring-fill! string start end char) procedure

Stores char in every element of string from start (inclusive) to end (exclusive). Returns string.

(string=? string1 string2) procedure

(string<? string1 string2) procedure

(string>? string1 string2) procedure

(string<=? string1 string2) procedure

(string>=? string1 string2) procedure

See R4RS.

(string-ci=? string1 string2) procedure

(string-ci<? string1 string2) procedure

(string-ci>? string1 string2) procedure

(string-ci<=? string1 string2) procedure

(string-ci>=? string1 string2) procedure

See R4RS.

(substring? string1 string2) procedure

(substring-ci? string1 string2) procedure

If string1 is a substring of string2, these procedures return the starting position of the first

occurrence of the substring within string2. Otherwise #f is returned. substring-ci? is the case

insensitive version of substring?.

Examples:

- 13 -hhh

(define s "Hello world")

(substring? "foo" x) ==> #f

(substring? "hello" x) ==> #f

(substring-ci? "hello" x) ==> 0

(substring? "!" x) ==> 11

19. Vectors

(vector? obj) procedure

See R4RS.

(make-vector k) procedure

(make-vector k fill) procedure

See R4RS.

(vector obj ...) procedure

See R4RS.

(vector-length vector) procedure

See R4RS.

(vector-ref vector k) procedure

See R4RS.

(vector-set! vector k obj) procedure

See R4RS.

Returns the previous value of element k of the vector.

(vector−>list vector) procedure

(list−>vector list) procedure

See R4RS.

(vector-fill! vector fill) procedure

See R4RS.

Returns vector.

(vector-copy vector) procedure

Returns a copy of vector.

- 14 -hhh

20. Symbols

(string−>symbol string) procedure

(symbol−>string symbol) procedure

See R4RS.

(put symbol key value) procedure

(put symbol key) procedure

Associates value with key in the property list of the given symbol. key must be a symbol.

Returns key.

If value is omitted, the property is removed from the symbol’s property list.

(get symbol key) procedure

Returns the value associated with key in the property list of symbol. key must be a symbol. If no

value is associated with key in the symbol’s property list, #f is returned.

Examples:

(put ’norway ’capital "Oslo")

(put ’norway ’continent "Europe")

(get ’norway ’capital) ==> "Oslo"

(symbol-plist symbol) procedure

Returns a copy of the property list of symbol as an alist.

Examples:

(put ’norway ’capital "Oslo")

(put ’norway ’continent "Europe")

(symbol-plist ’norway)

==> ((capital . "Oslo") (continent . "Europe"))

(symbol-plist ’foo) ==> ()

(symbol? obj) procedure

See R4RS.

(oblist) procedure

Returns a list of lists containing all currently interned symbols. Each sublist represents a bucket

of the interpreters internal hash array.

Examples:

- 15 -hhh

(define (apropos what)

(let ((ret ()))

(do ((tail (oblist) (cdr tail))) ((null? tail))

(do ((l (car tail) (cdr l))) ((null? l))

(if (substring? what (symbol->string (car l)))

(set! ret (cons (car l) ret)))))

ret))

(apropos "let") ==> (let* let letrec fluid-let)

(apropos "make") ==> (make-list make-vector make-string)

(apropos "foo") ==> ()

21. Environments

(the-environment) procedure

Returns the current environment.

(global-environment) procedure

Returns the global environment (the “root” environment in which all predefined procedures are

bound).

(environment−>list environment) procedure

Returns a list representing the specified environment. The list is a list of frames, each frame is a

list of bindings (an alist). The car of the list represents the most recently established environ-

ment. The list returned by environment−>list can contain cycles.

Examples:

(let ((x 1) (y 2))

(car (environment->list

(the-environment)))) ==> ((y . 2) (x . 1))

((lambda (foo)

(caar (environment->list

(the-environment)))) "abc") ==> (foo . "abc")

(eq?

(car (last-pair (environment->list

(the-environment))))

(car (environment->list

(global-environment)))) ==> #t

- 16 -hhh

(procedure-environment procedure) procedure

(promise-environment promise) procedure

(control-point-environment control-point) procedure

Returns the environment in which the the body of the procedure is evaluated, the environment in

which a value for the promise is computed when force is applied to it, or the environment in

which the control-point has been created, respectively.

(environment? obj) procedure

Returns #t if obj is an environment, #f otherwise.

22. Ports and Files

Generally, a file name can either be a string or a symbol. If a symbol is given, it is converted into

a string by applying symbol−>string. A tilde at the beginning of a file name is expanded accord-

ing to the rules employed by the C-Shell (see csh(1)).

Elk adds a third type of ports, input-output (bidirectional) ports. Both input-port? and output-

port? return #t when applied to an input-output port, and both input primitives and output primi-

tives may be applied to input-output ports. An input-output port (in fact, any port) may be closed

with any of the primitives close-input-port and close-output-port.

The only way to create an input-output-port is by means of the procedure open-input-output-file.

Extensions may provide additional means to create bidirectional ports.

(call-with-input-file file procedure) procedure

(call-with-output-file file procedure) procedure

See R4RS.

(input-port? obj) procedure

(output-port? obj) procedure

See R4RS.

(current-input-port) procedure

(current-output-port) procedure

See R4RS.

(with-input-from-file file thunk) procedure

(with-output-to-file file thunk) procedure

See R4RS.

file can be a string as well as a symbol.

(open-input-file file) procedure

- 17 -hhh

(open-output-file file) procedure

(open-input-output-file file) procedure

See R4RS.

file can be a string as well as a symbol. open-input-output-file opens the file for reading and writ-

ing and returns an input-output port; the file must exist and is not truncated.

(close-input-port port) procedure

(close-output-port port) procedure

See R4RS.

Calls to close-input-port and close-output-port are ignored when applied to string ports or to ports

connected with the standard input or standard output of the process.

(clear-output-port) procedure

(clear-output-port output-port) procedure

If the argument is omitted, it defaults to the current output port.

In case of “buffered” output, this procedure is used to discard all characters that have been output

to the port but have not yet been sent to the file associated with the port.

(flush-output-port) procedure

(flush-output-port output-port) procedure

If the argument is omitted, it defaults to the current output port.

In case of “buffered” output, this procedure is used to force all characters that have been output to

the port to be printed immediately. This may be necessary to force output that is not terminated

with a newline to appear on the terminal. An output port is flushed automatically when it is

closed.

(clear-input-port) procedure

(clear-input-port input-port) procedure

If the argument is omitted, it defaults to the current input port.

In case of “buffered” input, this procedure discards all characters that have already been read

from the file associated with the port but have not been processed using read or similar pro-

cedures.

(port-file-name port) procedure

Returns the name of the file associated with port if it is a file port, #f otherwise.

(port-line-number) procedure

Returns the current line number of a file input port or string input port, i. e. the number of newline

characters that have been read from this port plus one. “Unreading” a newline character decre-

ments the line number, but it never drops below one. The result of applying port-line-number to

an output port is undefined.

- 18 -hhh

(tilde-expand file) procedure

If file starts with a tilde, performs tilde expansion as described above and returns the result of the

expansion (a string); returns file otherwise. file is a string or a symbol.

(file-exists? file) procedure

Returns #t if file is accessible, #f otherwise. file is a string or a symbol; tilde expansion is not per-

formed.

23. Input

(read) procedure

(read input-port) procedure

See R4RS.

(read-char) procedure

(read-char input-port) procedure

See R4RS.

(read-string) procedure

(read-string input-port) procedure

If the argument is omitted, it defaults to the current input port.

Returns the rest of the current input line as a string (not including the terminating newline).

(unread-char char) procedure

(unread-char char input-port) procedure

If the second argument is omitted, it defaults to the current input port.

Pushes char back on the stream of input characters. It is not an error for char not to be the last

character read from the port. It is undefined whether more than one character can be pushed back

without an intermittent read operation, and whether a character can be pushed back before some-

thing has been read from the port. The procedure returns char.

(peek-char) procedure

(peek-char input-port) procedure

See R4RS.

peek-char uses unread-char to push back the character.

(eof-object? obj) procedure

See R4RS.

- 19 -hhh

24. Output

print-length variable

print-depth variable

These variables are defined in the global environment. They control the maximum length and

maximum depth, respectively, of a list or vector that is printed. If one of the variables is not

bound to an integer, or if its value exceeds a certain, large maximum value (which is at least

2ˆ20), a default value is taken. The default value for print-length is 1000, and the default value

for print-depth is 20. Negative values of print-length and print-depth are treated as “unlimited”,

i. e. output is not truncated.

(write obj) procedure

(write obj output-port) procedure

See R4RS.

(display obj) procedure

(display obj output-port) procedure

See R4RS.

(write-char char) procedure

(write-char char output-port) procedure

See R4RS.

(newline) procedure

(newline output-port) procedure

See R4RS.

(print obj) procedure

(print obj output-port) procedure

If the second argument is omitted, it defaults to the current output port.

Prints obj using write and then prints a newline. print returns void.

(format destination format-string obj ...) procedure

Prints the third and the following arguments according to the specifications in the string format-

string. Characters from the format string are copied to the output. When a tilde is encountered in

the format string, the tilde and the immediately following character are replaced in the output as

follows:

˜s is replaced by the printed representation of the next obj in the sense of write.

˜a is replaced by the printed representation of the next obj in the sense of display.

˜˜ is replaced by a single tilde.

- 20 -hhh

˜% is replaced by a newline.

An error is signaled if fewer objs are provided than required by the given format string. If the

format string ends in a tilde, the tilde is ignored.

If destination is #t, the output is sent to the current output port; if #f is given, the output is

returned as a string; otherwise, destination must be an output or input-output port.

Examples:

(format #f "Hello world!") ==> "Hello world"

(format #f "˜s world!" "Hello") ==> "\"Hello\" world"

(format #f "˜a world!" "Hello") ==> "Hello world"

(format #f "Hello˜a") ==> "Hello!"

(define (flat-size s)

(fluid-let ((print-length 1000) (print-depth 100))

(string-length (format #f "˜a" s))))

(flat-size 1.5) ==> 3

(flat-size ’(a b c)) ==> 7

25. String Ports

String ports are similar to file ports, except that characters are appended to a string instead of

being sent to a file, or taken from a string instead of being read from a file. It is not necessary to

close string ports. When an string input port has reached the end of the input string, successive

read operations return end-of-file.

(open-input-string string) procedure

Returns a new string input port initialized with string.

Examples:

(define p (open-input-string "Hello world!"))

(read-char p) ==> #\H

(read p) ==> ello

(read p) ==> world!

(read p) ==> end of file

(define p (open-input-string "(cons ’a ’b)"))

(eval (read p)) ==> (a . b)

(open-output-string) procedure

Returns a new string output port.

- 21 -hhh

(get-output-string string-output-port) procedure

Returns the string currently associated with the specified string output port. As a side-effect, the

string is reset to zero length.

Examples:

(define p (open-output-string))

(display ’(a b c) p)

(get-output-string p) ==> "(a b c)"

(get-output-string p) ==> ""

(define (flat-size s)

(let ((p (open-output-string)))

(display s p)

(string-length (get-output-string p))))

26. Loading

(load file) procedure

(load file environment) procedure

Loads a source file or one or more object files. If the file contains source code, the expressions in

the file are read and evaluated. If a file contains object code, the contents of the file is linked

together with the running interpreter and with additional libraries that are specified by the vari-

able load-libraries (see below). Names of object files must have the suffix “.o”. load returns

void.

file must be either a string or a symbol or a list of strings or symbols. If it is a list, all elements of

the list must be the names of object files. In this case, all object files are linked by a single run of

the linker.

If an optional environment is specified, the contents of the file is evaluated in this environment

instead of the current environment.

Example:

(fluid-let ((load-noisily? #t))

(load ’test.scm))

load-path variable

This variable is defined in the global environment. It is bound to a list of directories in which

files to be loaded are searched for. Each element of the list (a string or a symbol) is used in turn

as a prefix for the file name passed to load until opening succeeds. Elements of load-path that are

not of type string or symbol are ignored.

If the value of load-path is not a list of at least one valid component, or if the name of the file to

be loaded starts with “/” or with “˜”, it is opened directly.

The initial value of load-path is a list of the three elements “.” (i. e. the current directory),

“$(TOP)/scm”, and “$(TOP)/lib”, where $(TOP) is the top-level directory of the Elk installation.

- 22 -hhh

load-noisily? variable

This variable is defined in the global environment. When a file is loaded and the value of load-

noisily? is true, the result of the evaluation of each expression is printed. The initial value of

load-noisily is #f.

load-libraries variable

This variable is defined in the global environment. If load-libraries is bound to a string, its value

specifies additional load libraries to be linked together with an object file that is loaded into the

interpreter (see load above). Its initial value is “-lc”.

(autoload symbol file) procedure

Binds symbol in the current environment (as with define). When symbol is evaluated the first

time, file is loaded. The definitions loaded from the file must provide a definition for symbol dif-

ferent from autoload, otherwise an error is signaled.

file must be either a string or a symbol or a list of strings or symbols, in which case all elements

of the list must be the names of object files (see load above).

autoload-notify? variable

This variable is defined in the global environment. If the value of autoload-notify? is true, a mes-

sage is printed whenever evaluation of a symbol triggers autoloading of a file. autoload-notify?

is bound to #t initially.

27. Macros

(macro formals body) syntax

Creates a macro. The syntax is identical to the syntax of lambda expressions. When a macro is

called, the actual arguments are bound to the formal arguments of the macro expression in the

current environment (they are not evaluated), then the body is evaluated. The result of this

evaluation is considered the macro expansion and is evaluated in place of the macro call.

(define-macro (variable formals) body) syntax

(define-macro (variable . formal) body) syntax

Like define, except that macro is used instead of lambda.

Examples:

(define-macro (++ x) ‘(set! ,x (1+ ,x)))

(define foo 5)

foo ==> 5

(++ foo)

foo ==> 6

- 23 -hhh

(define-macro (while test . body)

‘(let loop ()

(cond (,test ,@body (loop)))))

(macro? obj) procedure

Returns #t if obj is a macro, #f otherwise.

(macro-body macro) procedure

Returns a copy of the macro expression which has been evaluated to created the given macro

(similar to procedure-lambda).

Examples:

(define-macro (++ x) ‘(set! ,x (1+ ,x)))

(macro-body ++)

==> (macro (x) (quasiquote (set! (unquote x) (1+ (unquote x)))))

(macro-expand list) procedure

If the expression list is a macro call, the macro call is expanded.

Examples:

(define-macro (++ x) ‘(set! ,x (1+ ,x)))

(macro-expand ’(++ foo)) ==> (set! foo (1+ foo))

The following function can be used to expand all macro calls in an expression, i. e. not only at the

outermost level:

(define (expand form)

(if (or (not (pair? form)) (null? form))

form

(let ((head (expand (car form)))

(args (expand (cdr form)))

(result))

(if (and (symbol? head) (bound? head))

(begin

(set! result (macro-expand (cons head args)))

(if (not (equal? result form))

(expand result)

result))

(cons head args)))))

- 24 -hhh

28. Error and Exception Handling

error-handler variable

This variable is defined in the global environment. When an error occurs or when the procedure

error is invoked and the variable error-handler is bound to a compound procedure (the error

handler), the interpreter invokes this procedure. The error handler is called with an object (either

the first argument that has been passed to error or a symbol identifying the primitive procedure

that has caused the error), and an error message consisting of a format string and a list of objects

suitable to be passed to format.

Typically, a user-defined error handler prints the error message and then calls a control point that

has been created outside the error handler. If the error handler terminates normally or if error-

handler is not bound to a procedure, the error message is printed in a default way, and then a

reset is performed.

interrupt-handler variable

This variable is defined in the global environment. When an interrupt occurs (typically as a result

of typing the interrupt character on the keyboard), and the variable interrupt-handler is bound to

a procedure (the interrupt handler), this procedure is called with no arguments. If interrupt-

handler is not bound to a procedure or if the procedure terminates normally, a message is printed,

and a reset is performed.

Examples:

(set! interrupt-handler

(lambda ()

(newline)

(backtrace)

(reset)))

(error obj string obj ...) procedure

Signals an error. The arguments of error are passed to the error-handler.

Examples:

(define (foo sym)

(if (not (symbol? sym))

(error ’foo "argument not a symbol: ˜s" sym))

...

top-level-control-point variable

(reset) procedure

Performs a reset by calling the control point to which the variable top-level-control-point is

bound in the global environment. The control point is called with the argument #t. If top-level-

control-point is not bound to a control point, an error message is printed and the interpreter is ter-

minated.

- 25 -hhh

Examples:

(if (call-with-current-continuation

(lambda (x)

(fluid-let ((top-level-control-point x))

do something

#f)))

(print "Got a reset!"))

(exit) procedure

(exit n) procedure

Terminates the interpreter. The optional argument n indicates the exit code; it defaults to zero.

29. Garbage Collection

(collect) procedure

Causes a garbage collection.

garbage-collect-notify? variable

This variable is defined in the global environment. If the value of garbage-collect-notify? is true,

a message indicating the amount of free memory on the heap and the size of the heap is displayed

whenever a garbage collection is performed. garbage-collect-notify? is bound to #t initially.

30. Features

(feature? symbol) procedure

Returns #t if symbol is a feature, i. e. provide has been called to indicate that the feature symbol is

present; #f otherwise.

(provide symbol) procedure

Indicates that the feature symbol is present. Returns void.

(require symbol) procedure

(require symbol file) procedure

(require symbol file environment) procedure

If the feature symbol is not present (i. e. (feature? symbol) evaluates to #f), file is loaded. A mes-

sage is displayed prior to loading the file if the value of the global variable autoload-notify? is

true. If the feature is still not present after the file has been loaded, an error is signaled. If the file

argument is omitted, it defaults to symbol. If an environment argument is supplied, the file is

loaded into given environment. if the environment argument is omitted, it defaults to the current

environment.

file must be either a string or a symbol or a list of strings or symbols, in which case all elements

of the list must be the names of object files (see load above).

- 26 -hhh

31. Miscellaneous

(dump file) procedure

Writes a snapshot of the running interpreter to file and returns #f. When file is executed, execu-

tion of the interpreter resumes such that the call to dump returns #t (i.e., dump actually returns

twice). dump closes all ports except the current input and current output port.

(eval list) procedure

(eval list environment) procedure

Evaluates the expression list in the specified environment. If environment is omitted, the expres-

sion is evaluated in the current environment.

Examples:

(let ((car 1))

(eval ’car (global-environment))) ==> primitive car

(define x 1)

(define env

(let ((x 2)) (the-environment)))

(eval ’x) ==> 1

(eval ’x env) ==> 2

(bound? symbol) procedure

Returns #t if symbol is bound in the current environment, #f otherwise.

(type obj) procedure

Returns a symbol indicating the type of obj.

Examples:

(type 13782343423544) ==> integer

(type 1.5e8) ==> real

(type (lambda (x y) (cons x y))) ==> compound

(type #\a) ==> character

(type ’(a b c)) ==> pair

(type ()) ==> null

(type (read

(open-input-string ""))) ==> end-of-file

(void? obj) procedure

Returns true if obj is the non-printing object, false otherwise.

- 27 -hhh

(command-line-args) procedure

Returns the command line arguments of the interpreter’s invocation, a list of strings.

32. Incompatibilities with the R4RS

The following list enumerates the points where the Elk Extension Language does not conform to

the R4RS. These are language features which could cause a Scheme program to not properly run

under Elk, although it does run under a R4RS-conforming implementation.

g Quasiquotation can currently not be used to construct vectors.

g Rational and complex numbers are not implemented.

g All numbers are inexact.

g #b #o #d #x Radix prefixes (#b, #o, #d, and #x) for real numbers are currently not imple-

mented.

g Prefixes for exact and inexact constants (#e and #i) are not implemented.

g exact−>inexact and inexact−>exact are not implemented.

g char-ready? is not implemented.

g transcript-on and transcript-off are not implemented.

- 28 -hhh

Index

*

*, 8

+

+, 8

-

-1+, 8

-, 8

/

/, 8

1

1+, 8

1-, 8

<

<, 8

<=, 8

=

=, 8

>

>, 8

>=, 8

A

abs, 9

acos, 9

and, 4

append!, 7

append, 7

apply, 3

asin, 9

assoc, 8

assq, 8

assv, 8

atan, 9

autoload-notify?, 22

autoload, 22

B

begin1, 3

begin, 3

boolean?, 4

bound?, 26

C

caar, 6

call-with-current-continuation, 5

call-with-input-file, 16

call-with-output-file, 16

car, 6

case, 4

cddddr, 6

cdr, 6

ceiling, 9

char-alphabetic?, 10

char-ci<=?, 11

- 29 -hhh

char-ci<?, 11

char-ci=?, 11

char-ci>=?, 11

char-ci>?, 11

char-downcase, 10

char-lower-case?, 10

char-numeric?, 10

char-upcase, 10

char-upper-case?, 10

char-whitespace?, 10

char<=?, 11

char<?, 11

char=?, 11

char>=?, 11

char>?, 11

char?, 11

char−>integer, 10

clear-input-port, 17

clear-output-port, 17

close-input-port, 17

close-output-port, 17

collect, 25

command-line-args, 27

complex?, 10

compound?, 1

cond, 4

cons, 6

constant, 3

control-point-environment, 16

control-point?, 5

cos, 9

current-input-port, 16

current-output-port, 16

cxr, 6

D

define-macro, 22

define, 2

delay, 5

display, 19

do, 5

dump, 26

dynamic-wind, 5

E

environment?, 16

environment−>list, 15

eof-object?, 18

eq?, 6

equal?, 6

eqv?, 6

error-handler, 24

error, 24

eval, 26

even?, 9

exact?, 9

exit, 25

exp, 9

F

feature?, 25

file-exists?, 18

floor, 9

fluid-let, 2

flush-output-port, 17

for-each, 4

force, 5

format, 19

G

garbage-collect-notify?, 25

gcd, 9

get-output-string, 21

get, 14

global-environment, 15

I

if, 4

inexact?, 9

input-port?, 16

integer?, 10

integer−>char, 10

- 30 -hhh

interrupt-handler, 24

L

lambda, 1

last-pair, 7

lcm, 9

length, 7

let*, 1

let, 1, 4

letrec, 1

list-ref, 7

list-tail, 7

list, 7

list?, 8

list−>string, 12

list−>vector, 13

load-libraries, 22

load-noisily?, 22

load-path, 21

load, 21

log, 9

M

macro-body, 23

macro-expand, 23

macro, 22

macro?, 23

make-list, 6

make-string, 11

make-vector, 13

map, 4

max, 9

member, 7

memq, 7

memv, 7

min, 9

modulo, 9

N

negative?, 8

newline, 19

not, 4

null?, 8

number?, 10

number−>string, 10

O

oblist, 14

odd?, 8

open-input-file, 16

open-input-output-file, 17

open-input-string, 20

open-output-file, 17

open-output-string, 20

operator, 3

or, 4

output-port?, 16

P

pair?, 8

peek-char, 18

port-file-name, 17

port-line-number, 17

positive?, 8

primitive?, 1

print-depth, 19

print-length, 19

print, 19

procedure-environment, 16

procedure-lambda, 1

procedure?, 1

promise-environment, 16

promise?, 5

provide, 25

put, 14

Q

quasiquote, 3

quote, 3

- 31 -hhh

quotient, 9

R

random, 10

rational?, 10

read-char, 18

read-string, 18

read, 18

real?, 10

remainder, 9

require, 25

reset, 24

reverse!, 7

reverse, 7

round, 9

S

set!, 3

set-car!, 6

set-cdr!, 6

sin, 9

sqrt, 9

srandom, 10

string-append, 12

string-ci<=?, 12

string-ci<?, 12

string-ci=?, 12

string-ci>=?, 12

string-ci>?, 12

string-copy, 12

string-fill!, 12

string-length, 11

string-ref, 11

string-set!, 11

string, 11

string<=?, 12

string<?, 12

string=?, 12

string>=?, 12

string>?, 12

string?, 11

string−>list, 12

string−>number, 10

string−>symbol, 14

substring-ci?, 12

substring-fill!, 12

substring, 12

substring?, 12

symbol-plist, 14

symbol?, 14

symbol−>string, 14

T

tan, 9

the-environment, 15

tilde-expand, 18

top-level-control-point, 24

truncate, 9

type, 26

U

unquote-splicing, 3

unquote, 3

unread-char, 18

V

vector-copy, 13

vector-fill!, 13

vector-length, 13

vector-ref, 13

vector-set!, 13

vector, 13

vector?, 13

vector−>list, 13

void?, 26

W

with-input-from-file, 16

with-output-to-file, 16

write-char, 19

- 32 -hhh

write, 19

Z

zero?, 8

Table of Contents

Lambda Expressions, Procedures .. 1

Local Bindings ... 1

Fluid Binding ... 1

Definitions .. 2

Assignment .. 3

Procedure Application ... 3

Quotation, Quasiquotation ... 3

Sequencing ... 3

Conditionals ... 3

Booleans ... 4

Iteration .. 4

Continuations ... 5

Delayed Evaluation .. 5

Equivalence Predicates .. 6

Pairs and Lists .. 6

Numbers ... 8

Characters ... 10

Strings .. 11

Vectors ... 13

Symbols .. 14

Environments ... 15

Ports and Files .. 16

Input ... 18

Output .. 19

String Ports ... 20

Loading .. 21

Macros .. 22

Error and Exception Handling ... 24

Garbage Collection .. 25

Features .. 25

Miscellaneous .. 26

Incompatibilities with the R4RS .. 27

Index .. 28

