
A Flexible String Class For C++

Roland J. Schemers III

Computer Science Department

Oakland University

December 8, 1990

Abstract

This paper describes the design and implentation of a
exible string

class for C++. It presents the reasoning behind design decisions and gives

examples of how to use the class. The project's goals were the following:

1. Strings should be completely dynamic, and grow to meet the user's

needs.

2. Strings should be compatible with existing UNIX system calls and

C libraries.

3. The string class should support substrings, and the substring class

should be derived from the string class.

4. Other classes should be able to inherit the string class easily, and be

noti�ed by the string class when a string's value is updated.

5. The user should be able to design classes and functions that work

transparently with the existing string class functions.

It is our belief that these design goals were met.

1 Introduction

In working on projects with C++, it was apparent that a string class would

greatly reduce the amount of e�ort needed to write programs. C++ comes with

no `standard' string handling library, and thus every user must write their own.

We wanted to write a string class that was fairly complete with the number of

built-in operations, and the ease of which it could be inherited by other classes.

By including a large number of built-in functions, it was hoped that the user

would be able to use the class, and not spend time writing their own functions.

Also, the existing functions can easily be used to come up with new functions,

with minimal e�ort spent by the user of the class. For those times when the

user does need to add functionality or inherit the string class, virtual functions

can be de�ned to control the action of the string class. It is very simple to write

1

class String {

char *str; // the actual string

public:

String() { str = new char; *str='0'; }

String(const char *s) {

str = new char[strlen(s)+1]; strcpy(str,s);

}

String(const String &s) {

delete str;

str = new char[strlen(s)+1]; strcpy(str,s);

}

~String() { delete str; }

operator < (String &s1) { return strcmp(str,s1.str) < 0; }

// other relational operators...

operator char *() { return str; }

int length() { return strlen(str); }

};

Figure 1: A Simple String Class

a trivial string class, and most people end up writing their own. See Figure 1

for an example of a simple string class.

The problem with string classes like the one in Figure 1 is that they are

simply encapsulating the standard C way of doing strings, and have the same

problems as the standard C strings. These problems all stem from using a

NULL [4] as a terminator or sentinel value to mark the end of the string:

1. Embedded NULLs within strings are di�cult (if not impossible) to deal

with.

2. Calculating the length of the string can be a time consuming task, and is

directly related to the length of the string.

3. Trying to keep track of the length of the string in a separate variable can

lead to inconsistencies when it is incorrectly maintained.

4. Functions that rely on the NULL being there do not act gracefully if it

is missing.

1

Our string class was designed to �x these problems, while remaining highly

compatible with existing C libraries.

1

The words core dump come to mind.

2

typedef unsigned short StringRange;

typedef struct {

StringRange len; // length of string (not including NULL)

StringRange size; // allocated size of string

char *data; // pointer to data

} StringData;

Figure 2: Data Structure for Representing a String

2 Design

In order to satisfy the design goals of this project, we came up with the data

structure shown in Figure 2. As shown by the typedef of StringRange, strings

can have a maximum length of 65534 characters (2

16

- 1 - 1 (for NULL) =

65534). If a larger or smaller range is desired, the typedef can be changed and

the library can be recompiled. In everyday use a 65534 character maximum

should be more than enough. Here is a description of each of the �elds in the

StringData structure:

len Is the actual length of the string, not including the NULL.

size Is the total amount of memory currently allocated.

data Is a pointer to the allocated memory for the string.

We will now describe how design goals were met.

2.1 Strings Should Be Dynamic

The StringData structure holds the total amount of memory currently allocated

for a string. When an attempt is made to change the value of a string such that

it would be larger than this amount, a new hunk of memory is allocated and

the size of the string is increased. Memory size is always increased in multiples

of the private static class varible String::hunksize; doing this helps keep resizing

of the string to a minimum.

The value of String::hunksize can be examined with the public static class

function get hunksize, which returns the current hunk size. This value can also

be set with the public static class function set hunksize. Setting this value to

1 ensures no internal fragmentation, but increases the frequency of which the

string may need to be resized. Setting this value to a large number increases

internal fragmentation, but cuts down on the number of times the string may

need to be resized. The default value of String::hunksize is 16.

3

2.2 Strings Should Be CompatibleWith Standard C Strings

All of our string functions correctly maintain a NULL at the end of the string.

This ensures maximal compatibility with existing UNIX systems calls and C

library functions. Although all the functions maintain this NULL internally,

they do not use or look at it in any way. This means if the user uses only the

supplied string functions, then they can have embedded NULLs in their data,

at the expense of losing compatiblity with C.

Substrings are also incompatible with functions that rely on the NULL.

This is because substrings can point anywhere within a string, and thus aren't

necessarily NULL terminated.

2.3 Substrings

When we started this project, one of the goals was to design the substring

class such that it was derived from the string class. Substring classes that

aren't inherited from the base string class are usually not treated as equals with

strings. For example, you can't have a substring of a substring, or some string

functions cannot be called with a substring. We decided this treament was

unnecessary, and with careful design of both the string and substring classes

can be avoided all altogether.

Our substring class is derived from the string class, and thus is represented

by the same data structure as strings. Two additional pointers are used:

� str is a pointer to the parent string.

� sstr is a pointer to the parent substring, if this is a substring of a substring.

When a substring is created, its data pointer points within the original string to

the start of the substring. The length is set to the length of the substring, and

the size of the substring is also set to the length. The size �eld for substrings is

not used internally, but is provided for consistency with the String class. When

taking the substring of a string, the str �eld points to the parent string, and

the sstr �eld is set to NULL. When taking the substring of a substring, the

str �eld is copied, and the sstr is set to point to the parent substring. The sstr

�eld thus sets up a linked list of substrings, with the children pointing back to

their parents. This is so when a substring is assigned a new value, the assign

function can traverse this list and update all the parent substrings. When a

substring's destructor is called, the data pointer is set to NULL, so that when

the inherited string destructor is called, the data is not inadvertently deleted.

Since the substring class is derived from the string class, string functions

must behave when they are passed a substring. To achieve this two string

functions were declared as virtual: substr and assign. The substr function

creates a new substring, and the assign function assigns a new value to a string

or substring.

4

Just about every single function uses the substr function to do its work.

For example:

� To insert characters into a string, simply make an assignment to the sub-

string of length 0 at the given position: s.substr(pos,0) = "hello".

� To prepend characters to a string, simply make an assignment to the

substring of length 0 at position 0: s.substr(0,0) = "hello".

� To append characters to a string, simply make an assignment to the sub-

string of length 0 at the end of the string: s.substr(s.length(),0) = "hello".

� To remove characters from a string, simply make an assignment to the

substring of length n at the given position: s.substr(pos,n) = "".

As shown above, almost every function can be broken down as an assignment

to a substring. In order for these functions to work, the substr function must

be declared as virtual. When a substring of a string is taken, the substring

must be created so it points back to the parent string. When a substring of a

substring is taken, the new substring must point back to the parent string of the

old substring. The new substring must also point back to its parent substring.

The assign function is also virtual because when a substring is passed to

a function that requires a string, that function must call the correct assign

function when the string is assigned a new value. Also, when changing the

value of the substring of a substring, it must correctly update all the parent

substrings.

As described above, almost all the functions depend on both the substr and

the assign function

2

. Because of this fact, the substring assign function has

been optimized to recognize special cases like prepending, inserting, removing,

and appending strings.

2.4 Inheritance

When creating new classes from the base string class, users need a way to �nd

out when a string's value has changed. This is achieved through the virtual

function update. By de�ning the update function in the derived class, the

user will be noti�ed whenever a string's value has been changed. Figure 3

shows how to create a class called UpStr, which uses the update function to

uppercase the string when its value changes. When a user declares an object

of type UpStr, it can be used with all the existing string functions. When one

of those functions changes the value of the string, the UpStr::update function

will be called. This function will then correctly change any lowercase letters to

uppercase.

2

Since the substring created with the substr function is assigned a new value!

5

class UpStr : public String {

public:

UpStr() : String() { update(); }

UpStr(int n) : String(n) { update(); }

UpStr(char ch) : String(ch) { update(); }

UpStr(const char *s) : String(s) { update(); }

UpStr(const char *s,int n) : String(s,n) { update(); }

UpStr(const String &s) : String(s) { update(); }

UpStr &operator=(char ch) { (String&) *this = ch; return *this; }

UpStr &operator=(const char *s) { (String&) *this = s; return *this; }

UpStr &operator=(const String &s) { (String&) *this = s; return *this; }

virtual void update();

};

void UpStr::update()

{

int l=length();

char *p=cptr();

while(l--) {

if (islower(*p)) *p=_toupper(*p);

p++;

}

}

test()

{

UpStr str("Hello"); // str =="HELLO"

str +=" world"; // str =="HELLO WORLD"

}

Figure 3: Using the update Function

6

2.5 Adding Functionality to Existing String Functions

In order to add functionality to existing string functions, all functions that per-

form searches can be called with a StringSearch object. By doing this users can

create their own special search functions and have them called from within a

string function. User-de�ned functions must conform to the folllowing conven-

tion:

1. The search function should be declared as taking two arguments, the �rst

a reference to a constant string, and the second a reference to an integer.

It should return an integer value.

2. The search function should perform its search on the string, and return

the position within the string the match occurred, or return a �1 if a

match was not made.

3. The search function should set its second argument equal to the length of

the matched string, or 0 in the case of no match. Note that a 0 length

match is valid if the search function does not return a �1.

There are basically two ways to use the StringSearch class. The �rst is to

declare a StringSearch object. Using this method, you pass the address of your

string search function to the StringSearch constructor. This method is useful

if you don't need all the baggage that comes along with a derived class. The

second method is to derive a class from the StringSearch class. In this case the

virtual function search should be redeclared in the derived class. For example,

you could derive a symbol table class from the StringSearch class, and then

the string functions would use your symbol table to look up keywords. See

Appendix B for examples on how to use the StringSearch class. Here are some

of the built-in StringSearch functions:

� SSwhite matches 1 or more whitespace characters.

� SSoptwhite matches 0 or more whitespace characters.

� SSnonwhite matches 1 or more non-whitespace characters.

� SSint matches a signed integer value.

� SSalpha matches a letter.

� SSalphanum matches a letter or a number.

� SSupper matches an uppercase letter.

� SSlower matches an lowercase letter.

� SSstr matches a quoted string.

7

3 Further Work

Although fairly complete, some issues still remain. Currently strings don't have

a pointer to their substrings. If you pass the substring of a global string to a

function, then modify this global string within that function, the passed sub-

string would become invalid. This can be corrected and implemented e�ciently

by having a doubly linked list of substrings within each string. When a string

is modi�ed, it must then check this list to see if it has any substrings. If so,

it must traverse this list and update them. Another problem is passing two or

more substrings of one string to a function. Modifying one of the substrings can

leave the other one invalid. This problem can be solved the same as the �rst.

When a substring is modi�ed, it noti�es the parent string and then the parent

updates all the other substrings.

4 Conclusions

In the end we found that by deriving the substring class from the string class,

we were able to re-use over 190 functions from the string class. Only 6 functions

from the string class had to be re-de�ned in the substring class. Also included

in the string library is a regular expression class which is derived from the

StringSearch class, a string iterator class, and a class for scanning through

strings. See the Appendix for examples of these classes.

The string class turned out to be an extremely useful class. We have used it

in designing an account registration system for UNIX (4000 lines), and a VMS

like help system for UNIX (500 lines). In the registration system, classes such as

UserName and ClassName were derived from the string class. These classes

di�er from strings in that only certain characters are legal within a user name

or a class name. By rede�ning the virtual function update in these classes,

checks can be made to ensure these strings contain only legal values. In both

of these programs, the string class allowed us to focus on the project and not

worry about string manipulation problems. By using this class, a major source

of bugs in both C and C++ programs (string handling) was removed.

References

[1] Dewhurst, S.C., and Stark, K.T.: Programming in C++. Prentice Hall, 1990.

[2] Ellis, Margaret A., and Stroustrup, Bjarne: The Annotated C++ Reference

Manual. Addison-Wesley, 1990.

[3] Hansen, Tony L.: The C++ Answer Book. Addison-Wesly, 1990.

[4] Kernighan, B.W., and Ritchie, D.M.: The C Programming Language.

Prentice-Hall, 1978.

8

[5] Lea, Douglas: libg++, The GNU C++ Library. USENIX C++ Conference

Proceedings, 1988.

[6] Lippman, Stanley B.: C++ Primer. Addison-Wesly, 1989.

[7] Stroustrup, Bjarne: The C++ Programming Language. Addison-Wesley,

1986.

9

Appendix

A String Functions

In the following tables assume:

� S is a String

� ch is a char

� n,i,p,l are int

� s is a side type (Left,Right,Both)

� C is either a char, const char *, or const String &

� X is either a C or a const StringSearch &

� Y is either an X or an int (pos)

� Z is either an Y or an int,int (position and length)

� SS is a const StringSearch &

� bool is an int value where zero is false and non-zero is true

� StringRange is a typedef (currently unsigned short)

� String & is a reference to S

� SubString is a SubString within S, and can be used on the left hand of

assignment i.e. S.after("hello")="good bye";

String Constructors

Constructor Description

String() Empty String

String(int n) Empty String with a pre-allocated size n

String(char ch) Initializes String to character ch

String(const char *s) Initializes String to const char * (NULL terminated)

String(const char *s,int n) Initializes String to const char * of length n

String(const String &s) Initializes String to another String

10

String Operators

Operator Returns Description

S = C String& assigns X to S

S+= C String& appends Y to the end of S

S�= Y String& removes Y if at end of S

S�= n String& multiplies S by n

S= = X String& remove all occurances of X from S

C1 +C2 String concats C1 to C1

C1�C2 String removes string C2 if at the end of C1

C1 � n String multiplies C1 by n

C1=X String remove all occurances of X from C1

!S bool true if length=0

C1 < C2 bool standard relational

C1 <= C2 bool standard relational

C1 == C2 bool standard relational

C1! = C2 bool standard relational

C1 >= C2 bool standard relational

C1 > C2 bool standard relational

S[i] char returns char indexed by i

S(Z) SubString returns the substring Z in S

const char * const char * converts string to char *

void * void * true if length!=0 // if (S) ...

11

String Functions

Function Returns Description

S.length() StringRange returns length of string

S.empty() bool true if length=0

S.index(X) int position of X within S, or {1

S.contains(X) bool true if S contains X

S.substr(p) SubString substring starting at p to end of S

S.substr(p,l) SubString substring starting at p with length l

S.left(n) SubString left n characters in S

S.right(n) SubString right n characters in S

S.between(n1,n2) SubString characters between position n1 and n2

S.insert(p,C) String& inserts C into S at position p

S.prepend(C) String& prepends C to S

S.append(C) String& appends C to S

S.remove(Z) String& removes Z from S

S.before(Y) SubString substring in S before Y

S.through(Y) SubString substring in S up to and including Y

S.at(Z) SubString substring in S at Z

S.from(Y) SubString substring in S from Y to end of S

S.after(Y) SubString substring in S after Y to end of S

S.except(Z) String everything in S except Z

S.pos(p) String& assigns p current position within S

S.replace(X1,X2) String& replaces X1 with X2

S.split(R,S1[],n) int splits S into array S1 on R and returns number split

S.icase() String& ignores case during next function

S.ucase() String& uses case during next function

S.cptr() char * converts string to char *

12

Special Search Functions

Function Returns Description

S.skip(X) SubString skips optional X, returns substring after

S.ws() SubString skips whitespace, returns substring after

S.moveto(X) SubString moves up to X and returns from X to end

S.moveto(X,p) SubString as above, also assigns the position of X to p

S.moveto(X,p,S1) SubString as above, also assigns S1 to matched string

S.moveto(X,S1,p,l) SubString as above, also assigns l to matched length

S.�nd(X) SubString �nds X in S, returns after X to end

S.�nd(X,p) SubString as above, also assigns position of X to p

S.�nd(X,p,S1) SubString as above, also assigns S1 to matched strings

S.�nd(X,S1,p,l) SubString as above, also assigns l to matched length

S.match(X) SubString matches X if at leftmost side of S, returns substring after

S.match(X,p) SubString as above, also assigns position of X to p

S.match(X,p,S1) SubString as above, also assigns S1 to matched string

S.match(X,S1,p,l) SubString as above, also assigns l to matched length

String IO Functions

Function Returns Description

ios << S ostream& outputs S on stream ios

ios >> S istream& inputs S from stream ios

getline(ios,S,ch) int reads into S using ch as delimeter and returns length

13

Misc String Functions

Function Returns Description

S.trim(s) String& trims whitespace on side s

S.pad(n,s,ch) String& pads to length n with char ch on side s

S.trunc(n) String& truncates S to length n

S.upper() String& uppercases S

S.lower() String& lowercases S

S.reverse() String& reverses S

14

B StringSearch Examples

class SSwhitespace : public StringSearch {

public:

SSwhitespace(int n){ num=n; }

int search(const String &s, int &matchlen) const ;

private:

int num;

};

int SSwhitespace::search(const String &s, int &len) const

{

len=0;

int p1;

StringIterator next(s);

char ch;

while (next(ch))

if (isspace(ch)) {

p1=next.pos();

while (next(ch) && isspace(ch) && (next.pos()-p1)<num);

len=next.pos()-p1;

if (len<num) break; // not found

return p1;

}

return -1;

}

int SearchInt(const String &s, int &len) const

{

len=0;

int pos=0,p1;

StringIterator next(s);

char ch;

while (next(ch)) if (isdigit(ch) || ch=='-') {

p1=next.pos();

while (next(ch) && isdigit(ch));

len=next.pos()-p1;

return p1;

}

15

return -1;

}

const SSwhitespace whitespace(5); // find five white space characters

const StringSearch Sint(SearchInt);

void main()

{

String s1("This is a test");

s1.at(whitespace)=""; // s1=="This is a test"

s1="this is 1234, not abc";

s1.at(SSint)="one two three four";

}

16

C String Examples

String s1,s2,r[10];

s1="12 ab 56";

s1.after("12").before("56") = "34";

// s1=="123456"

s1="12 y 34";

s1.at("y").append("z").prepend("x").insert(0,w);

// s1=="12 wxyz 34"

s1="ab 12 cd";

s1.at("12") += "34";

// s1=="ab 1234 cd"

s1="ab cd ef";

int num=s1.split(SSnonwhite,r,10);

// num==3, r[0]=="ab", r[1]=="cd", r[2]=="ef"

s1="12 34 56";

s1 /= SSwhite;

//s1=="123456"

s1="test.c";

s2=s1-".c";

// s2=="test"

s1="hello";

if (s1.icase()=="HELLO") ... // would be true

s1="show proc/id=12";

s1.ws().find("proc").match("/id=").match(SSint,s2);

// s2=="12"

D Regular Expression Examples

String s1("123ababaa456");

Regex RXab("[ab]+");

s1.at(RXab)="";

// s1=="123456"

17

Regex RXint("-?[0-9]+");

s1="this is 10, not 11";

s1.at("RXint)="ten";

// s1=="this is ten, not 11"

E StringScan Examples

String s1("these are words")

String w;

StringScan Word(s1,StringScan::ByMatch,SSnonwhite);

while (Word(w)) cout << w << endl; // output each word in s1

String f;

s1="joe::100:45:Joe Smith:/usr/joe:/bin/seashell");

StringScan Field(s1,StringScan::ByField,String(":"));

Field(f); // f=="joe"

Field(f); // f==""

Field(f); // f=="100"

Field(f); // f=="45"

Field(f); // f=="Joe Smith"

Field(f); // f=="/usr/joe"

Field(f); // f=="/bin/seashell"

String num;

s1="ab 12 cd 34 ef";

StringScan Int(s1,StringScan::ByMatch,SSint);

Int(num); // num=="12"

Int(num); // num=="34"

Int(num); // num==""

18

