MC680x0

MC680x0

] COLLABORATORS
TITLE
MC680x0
ACTION NAME DATE SIGNATURE
WRITTEN BY July 24, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

MC680x0 iii

Contents
1 MCo680x0 1
1.1 MC680x0 Reference e e 1
1.2 mMOVEINS o o e e 1
L3 math o 1
14 10ZIC . . . o o o 2
LS flow . o 2
L6 MISC 2
1.7 shift . . o 3
L8 bit . . 3
1.9 abed . . . L 3
LI0 add 4
LI1 addao 4
112 addi e e e e 5
LI3 addq o s 5
L14 addX 6
LS and o o e 7
116 andi o 7
LI7 andicer. L 8
L8 andisr L 8
119 asd . . . o 9
L20 bee . . . o 9
1.21 behg . . o o 10
122 bCIr . . o 10
L23 DKPt . o o o 11
124 bra 12
L25 bset 12
1.26 DST . . e e e 13
L27 BSt. . . e e 13
128 chk. . . . 14

1.29

MC680x0 iv

130 cmp . . . e 15
L31 cmpa. . . o o e e e e e e 16
132 cmpi 16
133 cmpm e e e e e e e 17
1.34 dbce 17
L35 divs . o e e 18
136 divu . . . L 19
L37 €Or . . o o o e e e 20
138 €01l . . . o 20
1.39 €OriCCr . . . o o o e e e 21
140 OTIST o o o 21
LAL XZ . o o o e e e e 22
142 Xt . . o e 22
143 dllegal o e e e 23
144 Jmp . . . L 23
LAS JSU . o e e 23
146 Tea o o 24
LAT7 Tink . . o e e 24
148 Isd . . . o 25
149 mMOVe o L e e 25
1.50 movea L e e e 26
1.51 movefromceer e e e e 26
1.52 mMOVELOCCT o o e e e e e e e 27
1.53 movefromsr e e e 27
1.54 mMOVELOST o o e e e e e e e e 28
1.55 MOVEUSD o v o e e e e e e e e e e e e e 28
1.56 MOVEC o o o 29
157 movemo e 29
158 mOvep e 30
1.59 mMOveq o e e e e e e e 30
1.60 MOVES oo e 31
L.61 mul . . . e 31
1.62 nbcd 32
1.63 NEZ . . . o e 32
1.64 negx e 33
165 MNOD . . o e e e e 33
1.66 MOt L e e e 34
L1.O7 OF . . o e 34

168 Ori e e 35

MC680x0 v

1.69 OTICCT o o e 35
170 OFIST . . o oo e 36
L71 unnamed.l 36
172 unnamed.2o L e e e e 36
1.73 unnamed.3 L L e 37
174 1od . . oo 37
L75 roxd . . . 37
176 1td . . o e e 38
LT 1te . oo e 38
L78 Itm . . . 38
L7 Itr .o o e 39
180 Its . o o e 39
181 sbed o 39
L.82 5CC . . . o 40
1.83 StOp . o . o e e 40
L84 sub 40
L85 suba 40
1.86 subl 41
187 subq 41
1.88 SubX . . . e 41
L8O sWap o e e e 42
1.90 tas e e 42
LOT trap e 43
1.92 trapcC . . . o o e e e e 43
LO3 st . . 43
1.94 unlk 43
195 unpk . . . L 44
1.96 €XCEPLiONS v v v e e e e e e e e e e e e e e 44

1.97 localstack e e 44

MC680x0 1/45
1.1 MC680x0 Reference
Instrction types:
@{ "Move Instructions " link MovesInst }
@{ "Mathematical Instructions " link Math }
@{ "Logic Instructions " link Logic }
@{ "Flow Control Instructions " link Flow }
@{ "Shift and Rotate Instructions" link Shift }
@{ "Bit Manipulation Instructions" link Bit }
@{ "Miscellaneous Instructions " link Misc }
1.2 moveins
Normal:
@{ "MOVE " link Move } @{ "MOVEA" link Movea } @{ "MOVEC" link Movec } @Q{ " <«
MOVEM" link Movem } @{ "MOVEP" link Movep } @{ "MOVEQ" link Moveq } @{ "MOVES <+
" link Moves }
@{ "MOVE to CCR " link MoveToCCR } @{ "MOVE from CCR" link MoveFromCCR }
@{ "MOVE to SR " link MoveToSR } @{ "MOVE from SR " link MoveFromSR }
@{ "MOVE USP " link MoveUSP }
Special:
@{ "LEA " link Lea } @{ "PEA " link Pea }
1.3 math
Integer:
@{ "ADD " link Add } @{ "ADDI" link Addi } @{ "ADDQ" link Addg } @{ "ADDA" link <«
Adda } @{ "SUB " link Sub } @{ "SUBI" link Subi } @{ "SUBQ" link Subg } Q@{ <+
"SUBA" 1link Suba }
@{ "DIVS" link Divs } @{ "DIVU" link Divu } @{ "MULS" link Mul } @{ "MULU" link <«
Mul }
@{ "EXT " link Ext }
@{ "NEG " link Neg }

MC680x0 2/45

@{ "CMP " link Cmp } @{ "CMPI" link Cmpi } @{ "CMPA" link Cmpa }

Multi-Precision Integer:
@{ "ABCD" link Abcd } @{ "ADDX" link Addx } @{ "SBCD" link Sbcd } @{ "SUBX" link <
Subx }
@{ "NBCD" link Nbcd }
@{ "CMPM" link Cmpm }

1.4 logic

Bit-wise:
@{ "AND " link And } @{ "ANDI" link Andi } @{ "ANDI to CCR" link AndiCCR } @{ " <>
ANDI to SR" link AndiSR }
@{ "EOR " link Eor } @{ "EORI" link Eori } @{ "EORI to CCR" 1link EoriCCR } @{ " <
EORI to SR" link EoriSR }
@{ "OR " link Or } @{ "ORI " link Ori } @{ "ORI to CCR" link OriCCR } @{ " <«
ORI to SR" link OriSR }

Byte-wise:
@{ "TST " link Tst } @{ "TAS " link Tas }
@{ "Scc " link Scc }
@{ "NOT " link Not }

1.5 flow
Subroutine:
@{ "BSR " link Bsr } @{ "JSR " link Jsr }
@{ "RTS " link Rts } @{ "RTD " link Rtd } @{ "RTR " link Rtr <
}
Local:
@{ "BRA " line Bra } @{ "JMP " link Jmp }
Conditional:
@{ "Bcc " link Bcc } @{ "DBcc " link Dbcc }
System:
@{ "ILLEGAL" link Illegal } @{ "BKPT " link Bkpt }
@{ "TRAP " link Trap } @{ "TRAPV " link Trapv }
@{ "RESET " link Reset } @{ "STOP " link Stop }
@{ "RTE " link Rte }
1.6 misc

Stack Frame Maintainance:
@{ "LINK" link Link } @{ "UNLK" link Unlk }

Processor:
@{ "NOP " link Nop }

MC680x0 3/45

1.7 shift

Shifts:
@{ "ASd " link ASd } @{ "LSd " link Lsd }

Rotates:
@{ "ROA " link Rod } @{ "ROXd" link Roxd }

1.8 bit
Single Bit:
@{ "BCHG " link Bchg } @{ "BCLR " link Bclr } @{ "BSET " link Bset }oe{ ¢
"BTST " link Btst }
Bit Field:

@{ "BFCHG " link BFCHG } @{ "BFCLR " 1link Bfclr } @{ "BFSET " link Bfset }
@{ "BFINS " link Bfins } @{ "BFEXTS" link bfexts } @{ "BFEXTU" link Bfextu }
@{ "BFFFO " link Bfffo } @{ "BFTST " link Bftst }

1.9 abcd
NAME
ABCD —-- Add binary coded decimal
SYNOPSIS
ABCD Dy, Dx
ABCD - (Ay), - (Ax)
Size = (Byte)
FUNCTION
Adds the source operand to the destination operand along with
the extend bit, and stores the result in the destination location. The

addition is performed using binary coded decimal arithmetic. The
operands, which are packed BCD numbers, can be addressed in two dif-
ferent ways:

1. Data register to data register: The operands are contained in the
data registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecrement
addressing mode using the address registers specified in the
instruction.

This operation is a byte operation only.
Normally the Z condition code bit is set via programming before the
start of an operation. That allows successful tests for zero results

upon completion of multiple-precision operations.

RESULT
X - Set the same as the carry bit.

MC680x0

4/45

— Undefined

— Cleared if the result is non-zero. Unchanged otherwise.

- Set
SEE ALSO
@{ "ADD

N
Z
V - Undefined
C

if a decimal carry was generated. Cleared otherwise.

" link Add } @{ "ADDI" link Addi } @{ "ADDQ" link Addg }

@{ "ADDX" link Addx }

@{ "SUB

" link Sub } @{ "SUBI" link Subi } @{ "SUBQ" link Subg }

@{ "SBCD" link Sbcd } @{ "SUBX" link Subx }

1.10 add

NAME

ADD -- Add integer

SYNOPSIS

ADD <ea>,Dn
ADD Dn, <ea>

Size =

FUNCTION

(Byte, Word, Long)

Adds the source operand to the destination operand using

binary addition, and stores the result in the destination location.
The size of the operation may be specified as byte, word, or long.
The mode of the instruction indicates which operand is the source and
which is the destination as well as the operand size.

RESULT
X - Set
N - Set
Z — Set
V - Set
C - Set
SEE ALSO

the same as the carry bit.

if the result is negative. Cleared otherwise.
if the result is zero. Cleared otherwise.

if an overflow is generated. Cleared otherwise.
if a carry is generated. Cleared otherwise.

@{ "ADDI" link Addi } @{ "ADDQ" link Addg } @{ "ADDX" link Addx }

@{ "SUB

" link Sub } @{ "SUBI" link Subi } @{ "SUBQ" link Subg }

@{ "SUBX" link Subx }

1.11 adda
NAME

ADDA —-- Add address
SYNOPSIS

ADDA <ea>,An

Size =

FUNCTION

(Word, Long)

MC680x0 5/45

Adds the source operand to the destination address register,

and stores the result in the destination address register. The size
of the operation may be specified as word or long. The entire
destination operand is used regardless of the operation size.

RESULT
None.

SEE ALSO
@{ "ADDQ" link Addg } @{ "SUBQ" link Subg } @{ "SUBA" link Suba }

1.12 addi
NAME

ADDI —-- Add immediate
SYNOPSIS

ADDI #<data>, <ea>

Size = (Byte, Word, Long)
FUNCTION
Adds the immediate data to the destination operand, and
stores the result in the destination location. The size of the
operation may be specified as byte, word, or long. The size of the

immediate data matches the operation size.

RESULT
X - Set the same as the carry bit.
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Set if an overflow is generated. Cleared otherwise.
C - Set if a carry is generated. Cleared otherwise.

SEE ALSO
@{ "ADD " link Add } @{ "ADDQ" link Addg } @{ "ADDX" link Addx }
@{ "SUB " link Sub } @{ "SUBI" link Subi } @{ "SUBQ" link Subg }
@{ "SUBX" link Subx }

1.13 addq
NAME

ADDQ —-- Add 3-bit immediate quick
SYNOPSIS

ADDQ #<data>, <ea>
Size = (Byte, Word, Long)

FUNCTION
Adds the immediate value of 1 to 8 to the operand at the

MC680x0

6/45

destination location. The size of the operation may be specified as
byte, word, or long. When adding to address registers, the condition
codes are not altered, and the entire destination address register is
used regardless of the operation size.

RESULT
X - Set the same as the carry bit.
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Set if an overflow is generated. Cleared otherwise.
C - Set if a carry is generated. Cleared otherwise.
SEE ALSO
@{ "ADD " link Add } @{ "ADDI" link Addi }
@{ "SUB " link Sub } @{ "SUBI" 1link Subi } @{ "SUBQ" link Subg }
1.14 addx
NAME
ADDX —-- Add integer with extend
SYNOPSIS
ADDX Dy, Dx
ADDX - (Ay), - (Ax)
Size = (Byte, Word, Long)
FUNCTION
Adds the source operand to the destination operand along with
the extend bit, and stores the result in the destination location. The

addition is performed using binary coded decimal arithmetic. The
operands, which are packed BCD numbers, can be addressed in two dif-
ferent ways:

Data register to data register: The operands are contained in the
data registers specified in the instruction.

Memory to memory: The operands are addressed with the predecrement
addressing mode using the address registers specified in the
instruction.

The size of operation can be specified as byte, word, or long.

Normally the Z condition code bit is set via programming before the

st

art of an operation. That allows successful tests for zero results

upon completion of multiple-precision operations.

RESUL
X Set the same as the carry bit.
N - Set if the result is negative. Cleared otherwise.
7 — Cleared if the result is non-zero. Unchanged otherwise.
V — Set if an overflow is generated. Cleared otherwise.
C - Set if a carry is generated. Cleared otherwise.
SEE ALSO

MC680x0 7145

@{ "ADD" link Add } @{ "ADDI" link Addi }
@{ "SUB" link Sub } @{ "SUBI" link Subi } @{ "SUBX" link Subx }

1.15 and

NAME
AND —-- Logical AND

SYNOPSIS
AND <ea>,Dn
AND Dn, <ea>

Size = (Byte, Word, Long)

FUNCTION
Performs a bit-wise AND operation with the source operand and
the destination operand and stores the result in the destination. The
size of ther operation can be specified as byte, word, or long. The
contents of an address register may not be used as an operand.

RESULT
X — Not affected
N - Set if the most-significant bit of the result was set. Cleared
otherwise.
Z — Set if the result was zero. Cleared otherwise.
Always cleared.
C - Always cleared.

<
|

SEE ALSO
@{ "ANDI" link Andi }

1.16 andi
NAME

ANDI -- Logical AND immediate
SYNOPSIS

ANDI {#<data>, <ea>
Size = (Byte, Word, Long)

FUNCTION
Performs a bit-wise AND operation with the immediate data and
the destination operand and stores the result in the destination. The
size of ther operation can be specified as byte, word, or long. The
size of the immediate data matches the operation size.

RESULT
X — Not affected
N - Set if the most-significant bit of the result was set. Cleared
otherwise.
Z — Set if the result was zero. Cleared otherwise.

MC680x0 8/45

V - Always cleared.
C - Always cleared.

SEE ALSO
@{ "AND " link And } @{ "ANDI to CCR" link AndiCCR } @{ "ANDI to SR" link AndiSR <>
}

1.17 andiccr

NAME
ANDI to CCR -- Logical AND immediate to condition code register

SYNOPSIS
ANDI #<data>,CCR

Size = (Byte)

FUNCTION
Performs a bit-wise AND operation with the immediate data and
the lower byte of the status register.

RESULT
X - Cleared if bit
N - Cleared if bit
7Z — Cleared if bit
V — Cleared if bit
C - Cleared if bit

of immed. operand is zero. Unchaned otherwise.
of immed. operand is zero. Unchaned otherwise.
of immed. operand is zero. Unchaned otherwise.
of immed. operand is zero. Unchaned otherwise.
of immed. operand is zero. Unchaned otherwise.

O P DN W

SEE ALSO
@{ "AND " link And } @{ "ANDI" link Andi } @{ "ANDI to SR" link AndiSR }

1.18 andisr

NAME
ANDI to SR —-- Logical AND immediate to status register (privileged)

SYNOPSIS
ANDI #<data>, SR

Size = (Word)

FUNCTION
Performs a bit-wise AND operation with the immediate data and
the status register. All implemented bits of the status register are
affected.

RESULT
X - Cleared if bit
N - Cleared if bit
7Z — Cleared if bit
V - Cleared if bit
C - Cleared if bit

of immed. operand is zero. Unchaned otherwise.
of immed. operand is zero. Unchaned otherwise.
of immed. operand is zero. Unchaned otherwise.
of immed. operand is zero. Unchaned otherwise.
of immed. operand is zero. Unchaned otherwise.

O, DN Wb

MC680x0

9/45

SEE ALSO
@{ "AND " link

And } @{ "ANDI" link Andi } @{ "ANDI to CCR" link AndiCCR }

1.19 asd
NAME
ASL, ASR —- Arithmetic shift left and arithmetic shift right

ASd #<data>,Dy
ASd <ea>

where ‘d’ is the direction, L or R

Size = (Byte,

FUNCTION

RESULT

Word, Long)

X — Set according to the list bit shifted out of the operand.

Unaffected
N - Set if the
otherwise.
Z — Set if the
V - Set if the

for a shift count of zero.
most-significant bit of the result is set. Cleared
result is zero. Cleared otherwise.

most significant bit is changed at any time during the
Cleared otherwise.

shift operation.
C - Set according to the list bit shifted out of the operand.
Cleared for a shift count of zero.

SEE ALSO
@{ "ROd " link

1.20 bcc

NAME

Rod } @{ "ROXd" link Roxd }

Bcc ——- Conditional branch

SYNOPSIS
Bcc <label>

Size = (Byte,

FUNCTION

CC carry clear C’

CS carry set
EQ equal Z
GE Jgreater or

GT greater than
VA vC
LE less or equal Z+N’-V+N’'V VS

HI high cr

Word)

LS low or same C+z
C LT less than N’ -V+N'V
MI minus N
equal N-V+N’'V’ NE
N-V-Z’+N'V’ -2’

not equal z’
PL plus N’
overflow clear V'
overflow set V

MC680x0

10/45

RESULT
None.

SEE ALSO
@{ "BRA " link Bra } @{ "DBcc" link Dbcc } @{ "Scc " link Scc }

1.21 bchg
NAME

BCHG —-- Bit change
SYNOPSIS

BCHG Dn,<ea>
BCHG #<data>, <ea>

Size = (Byte, Long)

FUNCTION
Tests a bit in the destination operand and sets the Z

condition code appropriately, then inverts the bit in the destination.

If the destination is a data register, any of the 32 bits can be
specifice by the modulo 32 number. When the distination is a memory
location, the operation must be a byte operation, and therefore the
bit number is modulo 8. 1In all cases, bit zero is the least
significant bit. The bit number for this operation may be specified
in either of two ways:

1. Immediate —-- The bit number is specified as immediate data.
2. Register —- The specified data register contains the bit number.
RESULT

X — not affected
N - not affected
Z — Set if the bit tested is zero. Cleared otherwise.
V - not affected
C - not affected

SEE ALSO
@{ "BCLR " link Bclr } @{ "BSET " link Bset } @{ "BTST " 1link Btst
@{ "EOR " link Eor } @{ "BFCHG" link Bfchg }

1.22 bclr

NAME
BCLR -- Bit clear

SYNOPSIS

BCLR Dn, <ea>
BCLR #<data>, <ea>

Size = (Byte, Long)

MC680x0

11/45

FUNCTION
Tests a bit in the destination operand and sets the Z
condition code appropriately, then clears the bit in the destination.
If the destination is a data register, any of the 32 bits can be
specifice by the modulo 32 number. When the distination is a memory
location, the operation must be a byte operation, and therefore the
bit number is modulo 8. 1In all cases, bit zero is the least
significant bit. The bit number for this operation may be specified
in either of two ways:

1. Immediate —-- The bit number is specified as immediate data.
2. Register —- The specified data register contains the bit number.
RESULT

X - not affected
N - not affected
Z — Set if the bit tested is zero. Cleared otherwise.
V - not affected
C - not affected

SEE ALSO
@{ "BCHG " link Bchg } @{ "BSET " link Bset } @{ "BTST " link Btst
@{ "AND " link And } @{ "BFCLR" 1link Bfclr }

1.23 bkpt

NAME
BKPT —-- Break-point

SYNOPSIS

BKPT #<data>

FUNCTION
This instruction is used to support the program breakpoint
function for debug monitors and real-time hardware emulators, and
the operation will be dependent on the implementation. Execution of
this instruction will cause the MC68010 to run a breakpoint
acknowledge bus cycle and zeros on all address lines, but an
MC68020 will place the immediate data on lines A2, A3, and A4, and
zeros on lines A0 and Al.

Whether the breakpoint acknowledge cycle is terminaled with
(DTACK)'", (BERR)’, or (VPA)’ the processor always takes an illegal
instruction exception. During exception processing, a debug monitor
can distinguish eight different software breakpoints by decoding the
field in the BKPT instruction.

For the MC68000 and the MC68HC000, this instruction causes an illegal
instruction exception, but does not run the breakpoint acknowledge
bus cycle.

There are two possible responses on an MC68020: normal and exception.
The normal response is an operation word (typically the instruction
the BKPT originally replaced) on the data lines with the (DSACKx)'
signal asserted. The operation word is the executed in place of the

MC680x0

12/45

breakpoint instruction.

For the exception response, a bus error signal will cause the MC68020
to take an illegal instruction execpetion,

MC68000 would do.

RESULT
None.

SEE ALSO
@{ "ILLEGAL " link Illegal }
@{ "Exceptions" link Exceptions }

1.24 bra
NAME

BRA —-- Unconditional branch
SYNOPSIS

BRA <label>

Size = (Byte, Word)
Size = (Byte, Word, Long) (68020+)
FUNCTION

Program execution continues at location
The PC contains the address of the instruction word of the BRA
instruction puls two. The displacement is a twos complement integer
that represents the relative distance in bytes from the current PC

to the destination PC.

RESULT
None.

SEE ALSO

@{ "JMP" link Jmp } @{ "Bcc" link Bcc }

1.25 bset
NAME

BSET —-- Bit set
SYNOPSIS

BCLR Dn,<ea>
BCLR #<data>, <ea>

Size = (Byte, Long)

FUNCTION

Tests a bit in the destination operand and sets the Z
condition code appropriately, then sets the bit in the destination.
If the destination is a data register,

just as an MC68010 or

+ displacement.

any of the 32 bits can be

MC680x0

13/45

specifice by the modulo 32 number. When the distination is a memory
location, the operation must be a byte operation,

and therefore the

bit number is modulo 8. In all cases, bit zero is the least

significant bit. The bit number for this operation may be specified

in either of two ways:

1. Immediate —-- The bit number is specified as immediate data.
2. Register -- The specified data register contains the bit number.
RESULT

X — not affected
- not affected

— Set if the bit tested is zero. Cleared otherwise.

N
Z
V - not affected
C — not affected

SEE ALSO

@{ "BCHG " link Bchg } @{ "BCLR " link Bclr
@{ "OR " link Or } @{ "BFSET" link Bfset } @{ "BFINS" link Bfins }

1.26 bsr

NAME
BSR —-—- Branch to subroutine

SYNOPSIS
BSR <label>

Size = (Byte, Word)
Size (Byte, Word, Long) (68020+)

FUNCTION

}oaq

Pushes the long word address of the instruction immediately

following the BSR instruction onto the system stack.
the address of the instruction word plus two.

continues at location (PC) + displacement.

RESULT
None.

SEE ALSO
@{ "JSR" link Jsr } @{ "BRA" link Bra }
@{ "RTS" link Rts } @{ "RTD" link Rts } @f{

1.27 Dbist
NAME

BTST —— Bit test
SYNOPSIS

BTST Dn,<ea>
BTST #<data>, <ea>

n RTR"

link Rts }

"BTST " link Btst

The PC contains
Program execution

MC680x0

14 /45

Size = (Byte, Long)

FUNCTION
Tests a bit in the destination operand and sets the Z

condition code appropriately. If the destination is a data register,

any of the 32 bits can be specified by the modulo 32 number. When
the distination is a memory location, the operation must be a byte
operation, and therefore the bit number is modulo 8. In all cases,
bit zero is the least significant bit. The bit number for this
operation may be specified in either of two ways:

1. Immediate —-- The bit number is specified as immediate data.
2. Register -—- The specified data register contains the bit number.
RESULT

X — not affected
N - not affected
Z — Set if the bit tested is zero. Cleared otherwise.
V - not affected
C - not affected

SEE ALSO
@{ "BFTST" link Bftst } @{ "BFFFO" link Bfffo }

1.28 chk

NAME
CHK —-- Check bounds

SYNOPSIS
CHK <ea>,Dn

Size = (Word)

FUNCTION
Compares the value in the data register specified to
zero and to the upper bound. The upper bound is a twos complement
integer. TIf the register value is less than zero or greater than
the upper bound, a CHK instruction, vector number 6, occours.

RESULT
X - Not affected

N — Set if Dn < 0; cleared if Dn > <ea>. Undefined otherwise.
Z — Undefined.
V - Undefined.
C - Undefined.
SEE ALSO

@{ "CMP " link Cmp } @{ "CMPI" link Cmpi } @{ "CMPA" link Cmpa }
@{ "CHK2" link Chk2 }

MC680x0

15/45

1.29 clr

NAME
CLR —-—- Clear

SYNOPSIS
CLR <ea>

Size = (Byte, Word, Long)

FUNCTION
Clears the destination operand to zero.

On an MC68000 and MC68HC000, a CLR instruction does both a
read and a write to the destination. Because of this, this
instruction should never be used on custom chip registers.

RESULT
X — Not affected
N - Always cleared
Z — Always set
V - Always cleared
C - Always cleared

SEE ALSO
@{ "MOVE " link Move } @{ "MOVEQ" link Moveq }
@{ "BCLR " link Bclr } @{ "BFCLR" link Bfclr }

1.30 cmp

NAME
CMP -- Compare

SYNOPSIS
CMP <ea>,Dn

Size = (Byte, Word, Long)

FUNCTION
Subtracts the source operand from the destination data
register and sets the condition codes according to the result. The
data register is NOT changed.

RESULT
X — Not affected
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Set if an overflow occours. Cleared otherwise.
C - Set if a borrow occours. Cleared otherwise.

SEE ALSO
@{ "CMPI"™ link Cmpi } @{ "CMPA" link Cmpa } @{ "CMPM" link Cmpm } @{
Cmp2 }
@{ "TST " link Tst } @{ "CHK " link Chk } @{ "CHK2" link Chk2 }

"CMP2"

link ¢

MC680x0 16/45
1.31 cmpa
NAME
CMPA —- Compare address
SYNOPSIS
CMPA <ea>,An
Size = (Word, Long)
FUNCTION
Subtracts the source operand from the destination address
register and sets the condition codes according to the result. The
address register is NOT changed. Word sized source operands are
sign extended to long for comparison.
RESULT
X — Not affected
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Set if an overflow occours. Cleared otherwise.
C - Set if a borrow occours. Cleared otherwise.
SEE ALSO
@{ "CMP " link Cmp } @{ "CMPI" link Cmpi } @{ "CMP2" link Cmp2 }
1.32 cmpi
NAME
CMPI -- Compare immediate
SYNOPSTIS
CMP #<data>, <ea>
Size = (Byte, Word, Long)
FUNCTION
Subtracts the source operand from the destination operand
and sets the condition codes according to the result. The destination
is NOT changed. The size of the immediate data matches the operation
size.
RESULT
X — Not affected
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Set if an overflow occours. Cleared otherwise.
C - Set if a borrow occours. Cleared otherwise.
SEE ALSO
@{ "CMP " link Cmp } @{ "CMPA" link Cmpa } @{ "CMPM" link Cmpm } @{ "CMP2" link <

Cmp2 }
@{ "TST " link Tst } @{ "CHK " link Chk } @{ "CHK2" link Chk2 }

MC680x0 17 /45

1.33 cmpm
NAME

CMPM —-- Compare memory
SYNOPSIS

CMPM (Ay) +, (Ax) +

Size = (Byte, Word, Long)
FUNCTION
Subtracts the source operand from the destination operand
and sets the condition codes according to the result. The destination

operand is NOT changed. Operands are always addressed with the
postincrement mode.

RESULT
X - Not affected

N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Set if an overflow occours. Cleared otherwise.
C - Set if a borrow occours. Cleared otherwise.
SEE ALSO
@{ "CMP " link Cmp } @{ "CMPI" link Cmpi } @{ "CMPA" link Cmpa } @{ "CMP2" link <
Cmp2 }

@{ "TST " link Tst } @{ "CHK " link Chk } @{ "CHK2" link Chk2 }

1.34 dbcc
NAME

DBcc —- Decrement and branch conditionally
SYNOPSIS

DBcc Dn,<label>

Size = (Word)
FUNCTION
Controls a loop of instructions. The parameters are: a

condition code, a data register (counter), and a displacement value.
The insctruction first tests the condition (for termination); if it
is true, no operation is performed. If the termination condition is
not true, the low-order 16 bits of the counter are decremented by
one. If the result is -1, execution continues at the next
instruction, otherwise, execution continues at the specified
address.

\

Condition code ‘cc’ specifies one of the following:
CC carry clear C’ LS low or same C+z

CS carry set C LT less than N’ - V+N'V

EQ equal Z MI minus N

GE greater or equal N-V+N’'V’ NE not equal z'

MC680x0

18 /45

GT greater than N-V-Z’+N’'V’-Z" PL plus N’
HI high cr-z’ VC overflow clear V'’
LE less or equal Z+N’ -V+N’'V VS overflow set V

Keep the following in mind when using DBcc instructions:

1. A DBcc acts as the UNTIL loop contruct in high level
languages. E.g., DBMI would be "decrement and branch until
minus".

2. Most assemblers accept DBRA or DBF for use when no condition
is required for termination of a loop.

RESULT
None.

SEE ALSO
@{ "Bcc" link Bcc } @{ "Scc" link Scc }

1.35 divs
NAME
DIVS, DIVSL -- Signed divide
SYNOPSIS
DIVS.W <ea>,Dn 32/16 -> lé6r:16q
DIVS.L <ea>,Dqg 32/32 —> 32q (68020+)

DIVS.L <ea>,Dr:Dg 64/32 -> 32r:32q (68020+)
DIVSL.L <ea>,Dr:Dg 32/32 -> 32r:32q (68020+)

Size = (Word, Long)

FUNCTION
Divides the signed destination operand by the signed source
operand and stores the signed result in the destination.

The instruction has a word form and three long forms. For the

word form, the destination operand is a long word and the source
operand is a word. The resultant quotient is placed in the lower
word of the destination and the resultant remainder is placed in the
upper word of the destination. The sign of the remainder is the
same as the sign of the dividend.

In the first long form, the destination and the source are both
long words. The quotient is placed in the longword of the destination
and the remaineder is discarded.

The second long form has the destination as a quadword (eight bytes),
specified by any two data registers, and the source is a long word.
The resultant remainder and quotient are both long words and are
placed in the destination registers.

The final long form has both the source and the destination as long
words and the resultant quotient and remainder as long words.

RESULT

MC680x0

19/45

X — Not affected

N - Set if the quotient is negative, cleared otherwise. Undefined if
overflow or divide by zero occurs.
Z — Set if the quotient is zero, cleared otherwise. Undefined if

overflow or divide by zero occurs.

V - Set if overflow occurs, cleared otherwise. Undefined if divide by
Zero occurs.

C - Always cleared.

Notes:
1. If divide by zero occurs, an exception occurs.
2. If overflow occurs, neither operand is affected.

SEE ALSO
@{ "DIVU" link Divu } @{ "MULS" link Muls } @{ "MULU" link Mulu }
@{ "Exceptions" link Exceptions }

1.36 divu
NAME
DIVU, DIVUL -- Unsigned divide
SYNOPSIS
DIVU.W <ea>,Dn 32/16 -> 1lé6r:16qg
DIVU.L <ea>,Dg 32/32 -> 329 (68020+)

DIVU.L <ea>,Dr:Dg 64/32 -> 32r:32g (68020+)
DIVUL.L <ea>,Dr:Dg 32/32 -> 32r:32q (68020+)

Size = (Word, Long)

FUNCTION
Divides the unsigned destination operand by the unsigned
source operand and stores the unsigned result in the destination.

The instruction has a word form and three long forms. For the

word form, the destination operand is a long word and the source
operand is a word. The resultant quotient is placed in the lower
word of the destination and the resultant remainder is placed in the
upper word of the destination. The sign of the remainder is the
same as the sign of the dividend.

In the first long form, the destination and the source are both

long words. The quotient is placed in the longword of the destination

and the remaineder is discarded.

The second long form has the destination as a quadword (eight bytes),
specified by any two data registers, and the source is a long word.
The resultant remainder and quotient are both long words and are
placed in the destination registers.

The final long form has both the source and the destination as long
words and the resultant quotient and remainder as long words.

RESULT

MC680x0

20/45

=4

C

No
1.
2.

- Not affected
- See below.

- Set if

the quotient is zero, cleared otherwise. Undefined if

overflow or divide by zero occurs.

- Set if

overflow occurs, cleared otherwise. Undefined if divide by

zero occurs.

- Always

tes:

cleared.

If divide by zero occurs, an exception occurs.
If overflow occurs, neither operand is affected.

According to the Motorola data books, the N flag is set if the
quotient is negative, but in an unsigned divide, this seems to
be impossible.

SEE ALSO
@{ "DIVS" link Divs } @{ "MULS" link Muls } @{ "MULU" link Mulu }
@{ "Exceptions" link Exceptions }

1.37 eor

NAME
EOR —-- Exclusive logical OR

SYNOPSIS

EOR Dn, <ea>

Si

FUNC

ze = (Byte, Word, Long)

TION

Performs an exclusive OR operation on the destination operand
with the source operand.

RESU
X

N
Z
\%
C

SEE
EO

LT

- Not Affected

- Set to
- Set if
- Always
- Always

ALSO
RI BCHG

1.38 eori

NAME
EO

SYNO
EO

the value of the most significant bit.
the result is zero.

cleared

cleared

RI —-- Exclusive OR immediate

PSIS

RI #<data>, <ea>

MC680x0

21/45

Size = (Byte, Word, Long)

FUNCTION
Performs an exclusive OR operation on the destination operand
with the source operand.

RESULT
X — Not Affected
N - Set to the value of the most significant bit.
Z — Set if the result is zero.
V - Always cleared
C - Always cleared

SEE ALSO
@{ "EOR " 1link Eor } @{ "EORI to CCR" link EoriCCR } @{ "EORI to SR" link
EoriSR }

@{ "BCHG" link Bchg }

1.39 eoriccr

NAME
EORI to CCR -- Exclusive OR immediate to the condition code register

SYNOPSIS
EORI #<data>,CCR

Size = (Byte)

FUNCTION
Performs an exclusive OR operation on the condition codes
register with the source operand.

RESULT
X - Changed if bit
N - Changed if bit
Z — Changed if bit
V - Changed if bit
C - Changed if bit

of the source 1is set, cleared otherwise.
of the source is set, cleared otherwise.
of the source is set, cleared otherwise.
of the source 1s set, cleared otherwise.
of the source is set, cleared otherwise.

O P DN W

SEE ALSO
@{ "EOR " link Eor } @{ "EORI" link Eori } @Q@{ "EORI to SR" link EoriSR }

1.40 eorisr

NAME
EORI to SR —- Exclusive OR immediated to the status register (privileged)

SYNOPSIS
EORI #<data>, SR

Size = (Word)

MC680x0 22 /45

FUNCTION
Performs an exclusive OR operation on the status register
with the source operand.

RESULT
X - Changed if bit
N - Changed if bit
Z — Changed if bit
V - Changed if bit
C - Changed if bit

of the source 1is set, cleared otherwise.
of the source is set, cleared otherwise.
of the source is set, cleared otherwise.
of the source 1is set, cleared otherwise.
of the source 1is set, cleared otherwise.

O RPN Wb

SEE ALSO
EOR EORI EORI to CCR

1.41 exg

NAME
EXG —-- Register exchange

SYNOPSIS
EXG Rx,Ry

Size = (Long)

FUNCTION
Exchanges the contents of any two registers.

RESULT
None.

SEE ALSO
@{ "SWAP" link Swap }

1.42 ext

NAME
EXT, EXTB —-- Sign extend

SYNOPSIS
EXT.W Dn Extend byte to word
EXT.L Dn Extend word to long word
EXTB.L Dn Extend byte to long word (68020+)

Size = (Word, Long)

FUNCTION
Extends a byte to a word, or a word to a long word in a data
register by copying the sign bit through the upper bits. If the
operation is from byte to word, bit 7 is copied to bits 8 through
15. 1If the operation is from word to long word, bit 15 is copied
to bits 16 through 31. The EXTB copies bit 7 to bits 8 through 31.

MC680x

0

23/45

RESULT
X_
N_
Z_
V7
C_

SEE AL

1.43

NAME

Not affected

Set if
Set if
Always
Always

SO

illegal

the result is negative. Cleared otherwise.
the result is zero. Cleared otherwise.
cleared

cleared

ILLEGAL —-- Illegal processor instruction

SYNOPS
ILLE

FUNCTI

IS
GAL

ON

This instruction forces an Illegal Instruction exception,
vector number 4. All other illegal instruction bit patterns,

incl

uding,

but not limited to, $fxxx and Saxxx, are reserved for

future expansion.

RESULT
None

SEE AL
@{ n

SO
BKPT

" link Bkpt }

@{ "Exceptions" link Exceptions }

1.44

NAME

imp

JMP —- Unconditional far jump

SYNOPS
JMP

FUNCTI

IS
<ea>

ON

Program execution continues at the address specified by
the operand.

RESULT
None

SEE AL
@{ "

1.45

SO

BRA" link Bra } @{ "JSR" link Jsr }

jsr

MC680x0

24 /45

NAME
JSR —— Jump to far subroutine

SYNOPSIS
JSR <ea>

FUNCTION
Pushes the long word address of the instruction immediately
following the JSR instruction onto the stack. The PC contains
the address of the instruction word plus two. Program execution
continues at location specified by <ea>.

RESULT
None.

SEE ALSO

@{ "BSR" link Jsr } @{ "BRA" link Bra }
@{ "RTS" 1link Rts } @{ "RTD" link Rts } @{ "RTR" link Rts }

1.46 lea

NAME
LEA —-- Load effective address

SYNOPSIS
LEA <ea>,An

Size = (Long)

FUNCTION
Places the specified address into the destination address

register. Note: All 32 bits of An are affected by this instruction.

RESULT
None.

SEE ALSO
@{ "MOVEA" link Movea } @{ "ADDA " link Adda } @{ "SUBA " link Suba

1.47 link

NAME
LINK —-- Create local stack frame

SYNOPSIS
LINK An, #<data>

Size = (Word)
Size (Word, Long) (68020+)

FUNCTION

MC680x0

25/45

This instruction saves the specified address register onto

the stack, then places the new stack pointer in that register. It
then adds the specificed immediate data to the stack pointer. To
allocate space on the stack for a local data area, a negative value
should be used for the second operand.

RESULT
None.

SEE ALSO
@{ "UNLK " link Unlk }
@{ "Local Stack Frames" link LocalStack }

1.48 Isd

NAME
LSL, LSR —-- Logical shift left and logical shift right

SYNOPSIS
LSd Dx,Dy
LSd #<data>,Dy
LSd <ea>
where d is directoin, L or R

Size = (Byte, Word, Long)

FUNCTION
Shift the bits of the operand in the specified direction.
The carry bit set set to the last bit shifted out of the operand.
The shift count for the shifting of a register may be specified in
two different ways:

1. Immediate - the shift count is specified in the instruction (shift
range 1-8).

2. Register - the shift count is contained in a data register
specified in the instruction (shift count mod 64)

For a register, the size may be byte, word, or long, but for a memory
location, the size must be a word. The shift count is also restricted
to one for a memory location.

RESULT
X - Set according to the last bit shifted out of the operand.
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Always cleared
C - Set according to the last bit shifted out of the operand.

SEE ALSO

1.49 move

MC680x0

26/45

NAME
MOVE —-- Source -> Destination

SYNOPSIS
MOVE <ea>,<ea>

Size = (Byte, Word, Long)

FUNCTION
Move the content of the source to the destination location.
The data is examied as it is moved, and the condition codes
set accordingly.

RESULT
X — Not affected.
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Always cleared.
C - Always cleared.

SEE ALSO

1.50 movea

NAME
MOVEA —-- Source —> Destination

SYNOPSIS
MOVEA <ea>,An

Size = (Word, Long)

FUNCTION
Move the content of the source to the destination address
register. Word sized operands are sign extended to 32 bits

before the operation is done.

RESULT
None.

SEE ALSO
MOVE LEA

1.51 movefromccr

NAME
MOVE from CCR —-- CCR -> Destination

SYNOPSIS
MOVE CCR, <ea>

MC680x0

27 /45

Size = (Word)

FUNCTION
The content of the status register is moved to the
destination location. The source operand is a word,
but only the low order byte contains the condition
codes. The high order byte is set to all zeros.

RESULT
None.

SEE ALSO

1.52 movetoccr

NAME
MOVE to CCR —-—- Source —> CCR

SYNOPSIS
MOVE <ea>,CCR

Size = (Word)

FUNCTION
The content of the source operand is moved to the
condition codes. The source operand is a word, but

only the low order byte is used to update the condition
codes. The high order byte is ignored.

RESULT
X — Set the same as bit 4 of the source operand.
N - Set the same as bit 3 of the source operand.
Z — Set the same as bit 2 of the source operand.
V - Set the same as bit 1 of the source operand.
C - Set the same as bit 0 of the source operand.
SEE ALSO
1.53 movefromsr
NAME
MOVE from SR —-- Move from status register (privileged)
SYNOPSIS

MOVE SR, <ea>
Size = (Word)
FUNCTION

The content of the status register is moved to the
destination location. The operand size is a word.

MC680x0

28 /45

RESULT
None.

SEE ALSO

1.54 movetosr

NAME
MOVE to SR —-—- Move to status register (privileged)

SYNOPSIS
MOVE <ea>, SR

Size = (Word)

FUNCTION
The content of the source operand is moved to the
status register. The source operand size is a word
and all bits of the status register are affected.

RESULT
X - Set the same as bit 4 of the source operand.
N - Set the same as bit 3 of the source operand.
Z — Set the same as bit 2 of the source operand.
V - Set the same as bit 1 of the source operand.
C - Set the same as bit 0 of the source operand.
SEE ALSO
MOVE to CCR
1.55 moveusp
NAME
MOVE USP —-- Move to/from user stack pointer (privileged)
SYNOPSTIS

MOVE USP, An
MOVE An,USP

Size = (Long)

FUNCTION

The contents of the user stack pointer are transferred

either to or from the specified address register.

RESULT
None.

SEE ALSO

MC680x0

29/45

1.56 movec

NAME
MOVEC -- Move to/from control register

SYNOPSIS
MOVEC Rc, Rn
MOVEC Rn, Rc

Size = (Long)

FUNCTION
Copy the contents of the specified control register
to the specified general register or copy from the
general register to the control register. This is
always a 32-bit transfer even though the the control
register may be implemented with fewer bits.

RESULT
None.

SEE ALSO

1.57 movem

NAME
MOVEM -- Move multiple registers

SYNOPSIS
MOVEM register list,<ea>
MOVEM <ea>, register list

Size = (Word, Long)

FUNCTION
Registers in the register list are either moved to or
fetched from consecutive memory locations at the specified
address. Data can be either word or long word, but if
the register list is destination and the size is word,
each register is filled with the source word sign extended
to 32-bits.

Also, in the case that the register list is the destination,
register indirect with predecrement is not a valid source
mode. If the register list is the source, then the
destination may not be register indirect with postincrement.

MOVEM.L DO0/D1/A0, (A2)+ ; invalid
MOVEM.W - (Al),D5/D7/24 ; invalid

The register list is accessed with DO first through D7, followed

by A0 through A7.

RESULT

MC680x0 30/45

None.

SEE ALSO

1.58 movep

NAME
MOVEP -- Move peripheral data

SYNOPSIS
MOVEP Dx, (d,Ay)
MOVEP (d,Ay),Dx

Size = (Word, Long)

FUNCTION
Data 1s transferred between a data register and ever-other
byte of memory at the selected address. Example:

LEA port0,A0 ; AQ0 —> SFFFFFFFFFFFFFFFF
MOVEQ #0,DO

MOVEP.L DO, (0,A0) ; A0 —> SFFOOFFOOFFOOFFO00
MOVE.L #$55554444,D0

MOVEP.L DO, (1,A0) ; AO —> SFF55FF55FF44FF44

RESULT
None.

SEE ALSO

1.59 moveq

NAME
MOVEQ —-- Move signed 8-bit data quick

SYNOPSIS
MOVEQ #<data:8>,Dn

Size = (Long)

FUNCTION
Move signed 8-bit data to the specified data register.
The specified data is sign extended to 32-bits before
it is moved to the register

RESULT
X — Not affected.
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Always cleared.
C - Always cleared.

MC680x0 31/45

SEE ALSO

1.60 moves

NAME
MOVES —-- Move address space (privileged)

SYNOPSIS
MOVES Rn, <ea>
MOVES <ea>, Rn

FUNCTION

RESULT
None.

SEE ALSO

1.61 mul

NAME
MULS -- Signed multiply
MULU -- Unsigned multiply

SYNOPSIS
MULS.W <ea>,Dn 16%16->32
MULS.L <ea>,Dn 32x32->32 68020+
MULS.L <ea>,Dh:D1 32x32->64 68020+

MULU.W <ea>,Dn 16x16-—>32
MULU.L <ea>,Dn 32x32->32 68020+
MULU.L <ea>,Dh:D1 32%32->64 68020+

Size = (Word)
Size = (Word, Long) 68020+
FUNCTION

Multiply two signed (MULS) or unsigned (MULU) integers
to produce either a signed or unsigned, respectivly,

result.
This instruction has three forms. They are basically
word, long word, and quad word. The first version is

the only one available on a processore lower than a
68020. It will multiply two 1l6-bit integers are produce
a 32-bit result. The second will multiply two 32-bit
integers and produce a 32-bit result.

The third form needs some special consideration. It
will multiply two 32-bit integers, specified by <ea>
and D1, the result is (sign) extended to 64-bits with
the low order 32 being placed in D1 and the high order

MC680x0 32/45

32 being placed in Dh.

RESULT
X — Not affected.
N - Set if the result is negative. Cleared otherwise.
Z — Set if the result is zero. Cleared otherwise.
V - Set if overflow. Cleared otherwise.
C - Always cleared.

SEE ALSO
1.62 nbcd
NAME
NBCD -- Negate binary coded decimal with extend
SYNOPSIS

NBCD <ea>

Size = (Byte)

FUNCTION
The specified BCD number and the extend bit are subtracted
from zero. Therefore, if the extend bit is set a nines

complement is performed, else a tens complement is performed.
The result is placed back in the specified <ea>.

It can be use full to set the zero flag before performing
this operation so that multi precision operations can
be correctly tested for zero.

RESULT
X - Set the same as the carry bit.
N - Undefined.
7 — Cleared it the result is non-zero, unchanged otherwise.
V - Undefined.
C - Set if a borrow was generated, cleared otherwise.

SEE ALSO
NEG NEGX

1.63 neg

NAME
NEG —-- Negate

SYNOPSIS
NEG <ea>

Size = (Byte, Word, Long)

FUNCTION

MC680x0

33/45

The operand specified by <ea> is subtracted from
zero. The result is stored in <ea>.

RESUL
X - Set the same as the carry bit.
N - Set if the result is negative, otherwise cleared.
72 — Set if the result is zero, otherwise cleared.
V - Set if overflow, otherwise cleared.
C - Cleared if the result is zero, otherwise set.

SEE ALSO
NBCD NEGX
1.64 negx
NAME
NEGX —-- Negate with extend
SYNOPSIS

NEGX <ea>
Size = (Byte, Word, Long)

FUNCTION
Perform an operation similar to a NEG, with the
exception that the operand and the extend bit are both
subtracted from zero. The result then being place in
the given ea.

As with ADDX, SUBX, ABCD,

SBCD, and NBCD, it can be useful to set

the zero flag before performing this operation so that
multi precision operations can be tested for zero.

RESULT
X - Set the same as the carry bit.
- Set if the result is negative, otherwise cleared.

— Cleared if the result is non-zero, otherwise unchanged.

N
Z
V - Set if an overflow is generated, cleared otherwise.
C - Set if a borrow is generated, otherwise cleared.

SEE ALSO
NEG NBCD ADDX SUBX

1.65 nop
NAME

NOP —-- No operation
SYNOPSIS

NOP

MC680x0 34/45

FUNCTION
Nothing happens! Well, sort of. This instruction will
basically wait until all pending bus activity is
completed. This allows synchronization of the pipeline
and prevents instruction overlap.

RESULT
None.

SEE ALSO

1.66 not

NAME
NOT -- Logical complement

SYNOPSIS
NOT <ea>

Size = (Byte, Word, Long)

FUNCTION
All bits of the specified operand are inverted and placed
back in the operand.

RESULT
X — Not affected.
N - Set if the result is negative, otherwise cleared.
72 — Set if the result is zero, otherwise cleared.
V - Always cleared.
C - Always cleared.

SEE ALSO

1.67 or

NAME
OR -- Logical OR

SYNOPSIS
OR Dn, <ea>

Size = (Byte, Word, Long)

FUNCTION
Performs an OR operation on the destination operand
with the source operand.

RESULT
X — Not Affected
N - Set to the value of the most significant bit.
Z — Set if the result is zero.

MC680x0

35/45

V - Always cleared
C - Always cleared

SEE ALSO
ORI BSET

1.68 ori

NAME
ORI -- Logical OR immediate

SYNOPSIS
ORI #<data>, <ea>

Size = (Byte, Word, Long)

FUNCTION
Performs an OR operation on the destination operand
with the source operand.

RESULT
X — Not Affected
N - Set to the value of the most significant bit.
Z — Set if the result is zero.
V - Always cleared
C - Always cleared

SEE ALSO
@{ "OR " link Eor } @{ "ORI to CCR" link oriCCR } @{ "ORI to SR"
@{ "BSET" link Bchg }
1.69 oriccr
NAME
ORI to CCR —-- Logical OR immediate to the condition code register
SYNOPSIS

ORI #<data>,CCR
Size = (Byte)
FUNCTION

Performs an OR operation on the condition codes
register with the source operand.

RESULT
X — Set if bit 4 of the source is set, cleared otherwise.
N - Set if bit 3 of the source is set, cleared otherwise.
Z — Set 1f bit 2 of the source is set, cleared otherwise.
V - Set if bit 1 of the source is set, cleared otherwise.
C - Set if bit 0 of the source is set, cleared otherwise.

link oriSR }

MC680x0

36/45

SEE AL

@ { " OR n

SO

1.70 orisr

NAME

ORI to SR —-- Logical OR immediated to the status register

SYNOPS

ORI #<data>, SR

Size

FUNCTI

IS

ON

(Word)

link or }

@

"ORI" link ori } @{

"ORI to SR"

Performs an OR operation on the status register with
and leaves the result in the status

the source operand,
register.

RESULT
X_
N_
Z7
V_
C_

SEE AL
OR

1.71

NAME

Set
Set
Set
Set
Set

SO
ORI

if
if
if
if
if

bit
bit
bit
bit
bit

ORI to

of
of
of
of
of

O N W b

CCR

unnamed.1

the
the
the
the
the

source
source
source
source
source

is
is
is
is
is

PACK -- Pack binary coded decimal

SYNOPS
PACK

IS

- (Ax) , - (Ay) , #<adjustment>

PACK Dx,Dy, #<adjustment>

FUNCTI

ON

set,
set,
set,
set,
set,

cleared
cleared
cleared
cleared
cleared

(68020+)

otherwise.
otherwise.
otherwise.
otherwise.
otherwise.

Convert byte-per-digit unpacked BCD to packed two-digit-—
per—byte BCD.

RESULT
None

SEE AL

SO

1.72 unnamed.2

link oriSR }

(privileged)

MC680x0 37/45

NAME
PEA —-- Push effective address

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.73 unnamed.3

NAME
RESET —-- Reset external devices

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.74 rod

NAME
ROL, ROR —-- Rotate left and rotate right

SYNOPSIS

FUNCTION

RESULT
X_

N_
Z7
V_
C_

SEE ALSO

1.75 roxd

NAME
ROXL, ROXD —-- Rotate left with extend and rotate right with extend

MC680x0 38/45

SYNOPSIS

FUNCTION

RESULT
X_

N_
Z_
V_
C7

SEE ALSO

1.76 rtd

NAME
RTD —- Return and deallocate parameter stack frame (68010+)

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.77 rte

NAME
RTE -- Return from exception

SYNOPSIS
FUNCTION
RESULT

SEE ALSO

1.78 rtm

NAME
RTM -- Return from process module (68020 only)

SYNOPSIS
FUNCTION

RESULT

MC680x0 39/45

SEE ALSO

1.79 rir

NAME
RTR -- Return and restore condition code register

SYNOPSIS
FUNCTION
RESULT

SEE ALSO

1.80 rts

NAME
RTS —-—- Return from subroutine

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.81 sbcd

NAME
SBCD —-- Subtract binary coded decimal with extend

SYNOPSIS
FUNCTION

RESUL

X -
N -
A
vV -
c -

SEE ALSO

MC680x0

40/ 45

1.82 scc

NAME
Scc —— Conditional set

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.83 stop

NAME
STOP ——- Stop processor execution

SYNOPSIS
FUNCTION
RESULT

SEE ALSO

1.84 sub

NAME
SUB —-- Subtract

SYNOPSIS
FUNCTION

RESULT

X -
N -
A
vV -
c -

SEE ALSO

1.85 suba

NAME
SUBA —- Subtract address

(privileged)

MC680x0

41/45

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.86 subi

NAME
SUBI —-- Subtract immediate

SYNOPSIS
FUNCTION

RESULT
X_
N7
Z_
V_
C_

SEE ALSO

1.87 subq

NAME
SUBQ ——- Subtract 3-bit immediate

SYNOPSIS
FUNCTION

RESULT

X -
N -
7 -
vV -
c -

SEE ALSO

1.88 subx

quick

MC680x0

42 /45

NAME
SUBX ——- Subtract with extend

SYNOPSIS
FUNCTION

RESULT

X -
N -
A
vV -
c -

SEE ALSO

1.89 swap

NAME
SWAP —-- Swap register upper and

SYNOPSIS
FUNCTION

RESULT

X -
N -
A
vV -
c -

SEE ALSO

1.90 tas

NAME
TAS —— Test and set operand

SYNOPSIS
FUNCTION

RESULT

X -
N -
A
v -
c -

SEE ALSO

lower words

MC680x0

43 /45

1.91 trap

NAME

TRAP -- Initiate processor trap

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.92 trapcc

NAME
TRAPcc —-- Conditional trap
TRAPv ——- Trap on overflow
SYNOPSIS

FUNCTION

RESULT
None.

SEE ALSO

1.93 tst

NAME

TST —— Test operand for zero

SYNOPSIS
FUNCTION

RESUL

X_
N_
Z_
v -
C_

SEE ALSO

1.94 unlk

(68020+)

MC680x0 44/ 45

NAME
UNLK —-- Free stack frame created by LINK

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.95 unpk

NAME
UNPK —-- Unpack binary coded decimal (68020+)

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.96 exceptions

NAME
Processor exception initiation and handling

SYNOPSIS
FUNCTION

RESULT
None.

SEE ALSO

1.97 localstack

NAME
Local stack frame maintaince

SYNOPSIS
LINK An, #<data>

UNLK An

MC680x0 45/ 45

RTS

FUNCTION
The use of a local stack frame is critically important to the
programmer who wishes to write re-entrant or recursive functions.
The creation of a local stack frame on the MC680x0 family is done
through the use of the LINK and UNLK instructions. The LINK
instruction saves the frame pointer onto the stack, and places a
pointer to the new stack frame in it. The UNLK instruction
restores the old stack frame. For example:

link a5, #-8 ; a5 is chosen to be the frame
; pointer. 8 bytes of local stack
; frame are allocated.

unlk ab ; a5, the old frame pointer, and the
; old SP are restored.

Since the LINK and UNLK instructions maintain both the frame pointer
and the stack pointer, the following code segment is perfectly
legal:

link a5, #-4

movem.l d0-a4, - (sp)
pea (500) .w

move.l d2,-(sp)
bsr.b Routine

unlk ab
rts

RESULT
None.

SEE ALSO
@{ "LINK" link Link } @{ "UNLK" link Unlk }

	MC680x0
	MC680x0 Reference
	moveins
	math
	logic
	flow
	misc
	shift
	bit
	abcd
	add
	adda
	addi
	addq
	addx
	and
	andi
	andiccr
	andisr
	asd
	bcc
	bchg
	bclr
	bkpt
	bra
	bset
	bsr
	btst
	chk
	clr
	cmp
	cmpa
	cmpi
	cmpm
	dbcc
	divs
	divu
	eor
	eori
	eoriccr
	eorisr
	exg
	ext
	illegal
	jmp
	jsr
	lea
	link
	lsd
	move
	movea
	movefromccr
	movetoccr
	movefromsr
	movetosr
	moveusp
	movec
	movem
	movep
	moveq
	moves
	mul
	nbcd
	neg
	negx
	nop
	not
	or
	ori
	oriccr
	orisr
	unnamed.1
	unnamed.2
	unnamed.3
	rod
	roxd
	rtd
	rte
	rtm
	rtr
	rts
	sbcd
	scc
	stop
	sub
	suba
	subi
	subq
	subx
	swap
	tas
	trap
	trapcc
	tst
	unlk
	unpk
	exceptions
	localstack

