LineOfSight

LineOfSight

] COLLABORATORS
TITLE
LineOfSight
ACTION NAME DATE SIGNATURE
WRITTEN BY July 24, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

LineOfSight iii

Contents

1 LineOfSight 1
L1 main o e e e 1

LineOfSight

Chapter 1

LineOfSight

1.1 main

A Fast Algorithm for Calculating Shading and Visibility in a
Two-Dimensional Field

By Joseph Hall
Applications Programmer, North Carolina State University
Email: jnh@ecemwl.ncsu.edu

This document copyright 1989 by Joseph Hall. It may be reproduced in
entirety for distribution for any purpose, so long as no fee whatsoever
is charged for its distribution and no attempt is made to restrict its
distribution. No other use is allowed without permission from the author.
Permission from the author must be obtained if a substantial portion of
this document is to be included in another copyrighted work.

As the author of this document, I hereby release the ALGORITHMS described
herein into the public domain. This release does not apply to the actual
text of this document.

Interactive terminal-based "rogue-like" games such as Hack, Moria, Omega,
and, of course, the original Rogue, feature a player character traveling
through a maze. The maze usually comprises several levels and is usually
laid out on a grid of squares or "tiles." Each tile contains one of several
distinct features, e.g., a piece of wall, floor, door, etc., and may also
contain objects and/or creatures, if it is not solid.

Hack and Rogue handle lighting and visibility quite simply. All corridors
and walls are "visible" once they have been seen. Rooms are square and are
either "1it" or "dark." A player carrying a lamp can see with a radius of
1 tile if he is in a corridor (which is always dark) or in a dark room.

A player cannot see the occupants of a room until he steps into that room.
These conditions eliminate the possible complexity of line-of-sight and
shading computations, but detract somewhat from the "realism" of the game.

Moria, on the other hand, allows for line-of-sight considerations. A player
can see whatever is standing or resting on a tile is it is both 1lit and

can be seen from his current location, i.e., if there are no "solid" tiles,
such as walls or closed doors, intervening. Thus a player can see some of

LineOfSight 2/4

the contents of a room as he approaches its entrance, and more as he gets
closer. Moria does not, however, allow for lights of radius greater than
one tile, and only the player is allowed to carry a light. Again, all rooms
are either 1lit or not 1lit, and corridors are dark, although certain player
actions can permanently light portions of corridors and permanently light

or darken portions of rooms.

One can see the desirability of a more complex scheme, where the player

is allowed a lamp of variable radius, other creatures can carry lamps, and
rooms are lit by lamps with finite radius. Such a scheme is not trivial to
implement, at least from the standpoint of the bookkeeping required, but the
greatest difficulty is the amount of calculation required, which can easily
take long enough on a microcomputer to remove the interactive feel of

the game.

Consider:

Whenever the player moves, and thus his viewpoint changes, the visibility
of the entire area surrounding him must be recalculated. This area will be
either the visible area on the screen or the portion of it within a limited
"sight radius" of the player. A sight radius of at least 25 tiles 1is
desirable, and this could entail calculations for pi » 25 % 25 tiles, or
about 2000 tiles.

Additionally, whenever a light source moves (when carried by the player or
by another creature), the lighting status of the area within the effective
radius of the light source must be recalculated. Although a radius of 1-5
tiles is probably optimum for players and other creatures, there may be a
number of these light sources on screen at the same time, and larger radii
also have some application.

Finally, considerable recalculation is required whenever the solidity of a
visible tile changes, e.g., when a door opens or closes.

The obvious approach to all of the above situations is to calculate both
visibility and lighting status on a tile-by-tile basis using an ordinary
"line-of-sight" routine. That is, for each light source on screen, calculate
whether it lights a tile within its radius by seeing whether a line of sight
exists between it and the tile; similarly, once the lighting status of all
tiles on screen is known, calculate whether the player can see them by
checking the line of sight from the player to each of the surrounding tiles.

The difficulty here is that the line-of-sight routine must check each of the
tiles intervening between the player/light source and destination. This
makes the calculations described above roughly O0(n”3), which is generally
unsuitable.

A previous posting on USENET suggested using "rays" emanating from the player
or light source, one ray to each screen border tile or each tile of limiting
circumference. The algorithm involves checking the solidity of tiles along
each ray, beginning at the player or light source, and marking them visible
until a solid object is encountered. While this is fast and efficient, it

is incorrect. To wit:

LineOfSight

(1) (2) (3) (4) (5)

Here, @ is the center of a light source, x is a solid object, ’'=x’ represents

a shaded tile, 7.’ is a 1lit tile, and ' |’ is a boundary. (1) shows the system
without shading. (2) is the correct shading. (3) is the shading generated
by the above algorithm. (4) and (5) are the lines of sight to the border that

cause the incorrect shading to be generated. The correct shading will be
generated only for the border tiles, and there will be some inaccuracies in
the remaining shading.

The author has, however, found an efficient technique that relies on
tables of pre-calculated, rasterized shading.

Consider this situation:

* *x
. * x X%
3 .ok 3
2 .. 2 x %
@ 1 @ 1 x @
(6) (7) (8) (9)
"1,” 2, and '3’ represent solid objects. (7), (8) and (9) are the shading

generated by the individual objects. The total shading can be generated by
overlaying (7), (8) and (9):

* *

* ok ok

3 % *

2 *x %

@ 1 * %
(10)

Thus the problem of calculating shading for an area can be reduced to one of
"summing" the shadows that its individual tiles create. This procedure is
straightforward and won’t be detailed in this short report.

HOW TO STORE the pre-calculated shadows is a matter to consider, however.
One might expect a full set of shadows, say, out to a radius of 32, to
occupy an inordinate amount of space, or, if tightly compressed, to present
problems in retrieval. But this turns out to be not nearly so bad.

Symmetry considerations, first, reduce the number of shadows that must be
stored by a factor of 8, since only one "octant" (45-degree slice), as

shown above, need be calculated.

The shadows can be stored as a series of "rasters," using the following
representation for each shadow:

byte

LineOfSight

4/4

1 # of rasters in this shadow
#1 start

#1 end

#2 start

#2 end

g w N

(7), (8) and (9) can be translated as follows:

The full set of radius-32 shadows can, in fact, be stored in a readily-
accessible table of LESS THAN 9000 BYTES.

I have written a prototype that uses this shading technique. Missing
certain optimizations in its current version, it still calculates a 32 x 32
area in a relatively-constant 50 milliseconds on an 8MHz 68000. The

most efficient conventional LOS-based version that I have been able to write
takes about 800 milliseconds. (!)

I am working on a cleaner version of the prototype and table generator and
will present them and a detailed report later (a couple of weeks?) in
rec.games.programmer.

	LineOfSight
	main

